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Abstract Spatial accuracy of hydrologic modeling in-
puts influences the output from hydrologic models. A
pertinent question is to know the optimal level of soil
sampling or howmany soil samples are needed for model
input, in order to improve model predictions. In this
study, measured soil properties were clustered into five
different configurations as inputs to the Soil and Water
Assessment Tool (SWAT) simulation of the Castor River
watershed (11-km2 area) in southern Quebec, Canada.
SWAT is a process-based model that predicts the impacts
of climate and land use management on water yield,
sediment, and nutrient fluxes. SWAT requires geograph-
ical information system inputs such as the digital eleva-
tion model as well as soil and land use maps. Mean
values of soil properties are used in soil polygons (soil
series); thus, the spatial variability of these properties is
neglected. The primary objective of this study was to
quantify the impacts of spatial variability of soil proper-
ties on the prediction of runoff, sediment, and total phos-
phorus using SWAT. The spatial clustering of the mea-
sured soil properties was undertaken using the regional-
ized with dynamically constrained agglomerative cluster-
ing and partitioning method. Measured soil data were
clustered into 5, 10, 15, 20, and 24 heterogeneous re-
gions. Soil data from the Castor watershed which have
been used in previous studies was also set up and termed

“Reference”. Overall, there was no significant difference
in runoff simulation across the five configurations includ-
ing the reference. This may be attributable to SWAT's use
of the soil conservation service curve number method in
flow simulation. Therefore having high spatial resolution
inputs for soil data may not necessarily improve predic-
tions when they are used in hydrologic modeling.

Keywords Heterogeneities . Hydrology .Model
averaging . Spatial variability .Water quality

1 Introduction

Spatial heterogeneity of soil properties in hydrologic and
water quality models is often ignored or rarely taking
into consideration in the management of freshwater re-
sources (Steinman and Denning 2005). Heterogeneity of
soil and land processes contributes to all aspects of the
hydrologic cycle (Tague 2005). Having an understand-
ing of the types and processes of spatial heterogeneity is
a fundamental component of both theoretical and applied
hydrology (Tague 2005). In other words, incorporation
of spatial heterogeneity into hydrologic andwater quality
models should provide a new way to view water quality
prediction and freshwater management. This should lead
to potentially useful management strategies (Steinman
and Denning 2005).

In water quality predictions, there is a need for good
nutrient management plans, along with monitoring and
decision support systems for nonpoint sources control.
Daily or weekly sampling techniques of soil and water
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variables are technically feasible but not economical.
Therefore, there is a need for good prediction models
which take spatial watershed variability into account to
aid in this circumstance.

One of the most widely applied hydrologic and water
quality models is the Soil and Water Assessment Tool
(SWAT), developed by the USDepartment of Agriculture
(Arnold et al. 1998). SWAT needs spatial inputs such as a
digital elevation model (DEM) as well as land use and
soil maps. The modeling procedure and various applica-
tions can be found in Arnold et al. (1998) and Gassman
et al. (2007). There is a major challenge in the application
of this model: the representation of soil heterogeneities.
The Hydrologic Response Unit (HRU) is a virtual but
unique homogeneous classification of units (areas) of
similar land-use, soil class and slope. These units are then
aggregated together to form a sub-basin. Each sub-basin
drains into a stream which exits to a main drainage
waterway. The assumption is that spatial distributions of
soil properties are preserved in HRUs; however, in the
soil database, the soil classes use mean values for all soil
properties. Therefore, the spatial variations of these prop-
erties are not completely represented in SWAT.

Given the foregoing, the aim of this research is to
quantify the impact of incorporating spatial variability
and heterogeneity of soil properties into SWAT, specif-
ically in terms of predicting runoff, sediment, and total
phosphorus (TP) loss from agricultural fields. This pa-
per is the first of two regarding the quantification of the
impacts of soil heterogeneities on prediction of runoff,
sediment, and P loss to Missisquoi Bay. The second
paper will involve the quantification of heterogeneities
(of other watershed features such as land use) and the
sensitivities of SWAT configurations to long-term pre-
dictions of runoff, sediment, and TP loss.

2 Materials and Methods

2.1 Study Watershed Description

Castor watershed (45°08′N, 72°58′W, 11-km2 area), a
sub-watershed of the Pike River, is located near the town
of Bedford in southern Quebec, Canada (Fig. 1). The
Pike River watershed drains into Missisquoi Bay (north-
eastern portion of Lake Champlain). There is a great deal
of evidence that the eutrophication seen in the Bay is due
to excess nutrient losses from agricultural watersheds

(Hegman et al. 1999; Jamieson et al. 2003; Deslandes
et al. 2004; Medalie and Smeltzer 2004). This is a serious
challenge from a water quality perspective.

Castor watershed's landscape ranges from 36 to 49 m
of elevation above sea level. There is a transition gradient
from low, poorly drained lacustrine clays to loamy glacial
calcareous tills (Michaud 2004). This result in low water
infiltration and poor drainage, which along with wet ante-
cedent moisture conditions and snow melt have contribut-
ed to flooding events in recent years. Consequently, sub-
surface drains are installed on most farms to remove
excess water from agricultural fields. The water table in
this region is reported to be shallow (Deslandes et al.
2007). The mean long-term annual precipitation (1971–
2007) of this study area is about 1,057 mm (Michaud
2004). The watershed is an area of intensive agricultural
activity, where land is cropped 44% to corn (ZeamaysL.),
28% to grass (hay), and 20% to cereals. Other agricultural
operations such as swine, poultry, and dairy production
make up the remaining 8 % (Deslandes et al. 2007).

The major soil series of the watershed are as follows
(Michaud 2004):

& Ste. Rosalie: poorly drained lacustrine and marine
clays

& Bedford: an Orthic Humic Gleysol, fine loamymixed
calcareous

& Ste. Brigide: an Orthic Humic Gleysol, Coarse-loamy
mixed calcareous

& St. Sebastien: Gleyed Sombric Brunisol, loamy-
skeletal, mixed, monoacid, mesic

2.2 Field Measurements and Laboratory Analysis
of Soil Properties

A stratified random soil sampling of the study area was
also completed (Fig. 1). Soil samples (at depths 0–0.30,
0.30–0.60, and 0.60–0.90 m) were collected. SWAT soil
database requires the following soil physical properties
(Neitsch et al. 2009):

& Soil bulk density (SOL_BD). This quantity measures
soil compaction. Among the factors that influence
SOL_BD include volumetric water content, hydraulic
conductivity, soil water content, and soil porosity. The
core sampleswereweighed and oven dried to constant
weight at 105 °C. SOL_BD was calculated as
(Neitsch et al. 2009)
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ρ ¼ MW−MDð Þ
V

ð1Þ

where ρ is the bulk density (g cm−3),MW is the weight
of wet soil (before oven dry) (g),WD is the weight of
dry soil (after oven dry) (g), andV is the volume of soil
core in (cm3).

& Particle size distribution (SOL_CLAY, SOL_SILT,
and SOL_SAND). Hydrometer method was used to
analyze the percentage of clay, sand and silt (Neitsch
et al. 2009; Somenahally et al. 2009). The unit is
percentage of soil by weight.

& Soil organic carbon (SOL_CBN). Soil organic mat-
ter is related to soil stability, structure, fertility, and

Fig. 1 The study area and sample points
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nutrient retention. The loss-on-ignition procedure
was used. This is based on the concept of using a
very high temperature to convert the carbon to carbon
dioxide. A soil mass of about 20 to 30 g was used for
this process (Neitsch et al. 2009; Prasad and Power
1997; Donkin 1991). The unit is percentage of soil
weight.

& Available water content (SOL_AWC). This is calcu-
lated as the difference between the fraction of water
present at wilting point and that present at field capac-
ity. A pressure plate device was used to estimate the
soil field capacity and permanent wilting point. We
determined the field capacity (ψfc) as the amount of
water content at a soil matric potential of −0.033 bars.
The permanent wilting point (ψpwp) was determined
as the water content at a soil matric potential of −15
bars (Neitsch et al. 2009; Burk and Dalgliesh 2008).
The unit is millimeter water per millimeter soil (mm
H2O mm−1 soil).

& Universal soil loss equation’s soil erodibility factor (K)
(USLE_K). This quantifies how one soil is more erod-
ible than another when all other factors are the same
(the unit is 0.013 Mg m2 h) / m3–Mg cm). This can
also be defined as the soil loss rate per erosion index
unit for a specified soil as measured on a unit plot
(Neitsch et al. 2009; Wischmeier and Smith 1978).
The procedure suggested by (Neitsch et al. 2009) was
used to derive the USLE_K.

& Hydraulic conductivity (SOL_K) (mm h − 1). The
mean soil texture in this study area is fine textured;
therefore, the falling-head method was used to mea-
sure the soil permeability characteristics. The falling-
head permeability test was used (Bowles 1986).

2.3 Spatial Clustering and Discretization of Soil
Polygons

To account for spatial heterogeneity in soil properties,
actual soil values instead of averages should be used.
Therefore, clustering of the measured point set data was
performed. This will provide the platform and the ability to
define any desired number of spatial objects (soil poly-
gons). This was done through the following procedures:

1. The Thiessen polygon tool in ArcGIS software
10 (Environmental Systems Research Institute,
Redlands, CA, USA) was used to divide the area
covered by each sample point (input feature) into
Thiessen or proximal zones (Guo 2008). These

proximal polygons are very important in aggregation
and division of sample points into desired heteroge-
neous regions. This process divided the study area
into triangulated irregular networks that we consid-
ered heterogeneous. The concept of a Thiessen poly-
gon is defined as a process whereD is a set of points
in coordinate or Euclidean space (x, y). For any point
k in that space, there is one point of D closest to k,
except where point k is equidistant to two or more
points of D (ESRI 2012).

2. As clustering these individual proximal zones was of
interest, regionalization with dynamically constrained
agglomerative clustering and partitioning (REDCAP)
technique was implemented (Guo 2008; Bernassi and
Ferrara 2010). Regionalization is very important in
dividing spatial objects (proximal polygons) into a
number of spatially contiguous regions. A full-order
complete-linkage clustering (CLK) technique (Guo
2008) was used to derive heterogeneous clustered
regions. This procedure involved two steps:

1) Clustering the data with contiguous constraints to
produce spatially contiguous trees or hierarchy,
and

2) Partitioning the tree to generate regions while
optimizing an objective function

According to Guo (2008), the CLK defines
the distance between two clusters as the dissim-
ilarity between the farthest pair of points as

XCLK P;Rð Þ ¼ Maxa∈P;b∈R X a;b

� �
; ð2Þ

where P and R are two clusters, a ∈ P and b ∈ R
are the data points, and Xa,b is the dissimilarity
between a and b.

Guo (2008) defined full-order constraining
strategies as a clustering process where all edges
are included in the process. The advantage of
using full order over the first order is that the
full-order strategy is dynamic and it updates the
contiguity matrix after each merge (Guo 2008).
This method produces different trees (Guo 2008),
which therefore define different search methods
for the partitioning. Thereafter, the partitioning of
the contiguous tree will produce a number of sub-
trees, each of which corresponds to a contiguous
region (Bernassi and Ferrara 2010). The parti-
tioning is iteratively done to partition a spatial
contiguous tree into a number of regions by cut-
ting a sub-tree (Guo 2008; Bernassi and Ferrara
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2010). The following equation gives the homo-
geneity gain. This can also be called heteroge-
neity reduction. The best sub-tree to cut at each
step is the sub-tree with the largest homogeneity
expressed as

h*g kð Þ ¼ max L Kað Þ−L Kbð Þ½ � ð3Þ
where Ka and Kb are the two sub-trees from a
possible cut of K and hg* is the homogeneity
gain for the tree after the best cut (Guo 2008;
Bernassi and Ferrara 2010).

The sum of square deviation (SSD), which
can be used as the heterogeneity measure, is
expressed as (Guo 2008)

L Kð Þ ¼
X s

h ¼ 1

X nr
g ¼ 1

xhg−γh
� �2 ð4Þ

where nr is the number of objects in region K,
xgh is the value for the hth attribute of the gth
object, γh is the mean value of the hth attribute
for all objects, K is a region, L(K) is the hetero-
geneity, and S is the number of attributes.

Therefore, the total heterogeneity, Lk, for a
regionalization result with k regions can be giv-
en as the total of the k heterogeneity values (Guo
2008):

Lk ¼
X k

h ¼ 1
L Khð Þ ð5Þ

3. From the foregoing, we partitioned the proximal
zones (from (1) using the procedure explained in
(2)) into 5, 10, 15, 20, and 24 heterogeneous clusters,
termed “Region_5”, “Region_10”, “Region_15”,
“Region_20”, and “Region_24”, respectively.

4. We used the normal soil map with average properties
that have been used in several studies (Deslandes
et al. 2007; Michaud et al. 2008) in the watershed as
the sixth configuration termed “Reference”.

2.4 SWAT Model Setup

The SWAT model was selected for this project because
of its worldwide applications (Gassman et al. 2007).
SWAT2009 being the most stable recent version was
selected along with an AVSWAT interface combined
with ArcView 3.3.

SWAT requires several inputs such as a digital eleva-
tion model (DEM), land use, and soil characteristics.

Some climatic variables are also needed: daily rainfall,
relative humidity, temperature, etc. All spatial inputs
(DEM, soil (termed Reference later) and land use)
were obtained from the Institut de Recherche et de
Développement en Agroenvironment. DEM has a spa-
tial resolution of 30 m, accurate to approximately
±1.3 m (Michaud et al. 2008). The climatological data
was derived from the three closest weather stations
(Philipsburg, Farnham, and Sutton) in the area
(MDDEPQ 2003, 2005). Based on previous hydrologic
modeling done in the area using SWAT (Michaud et al.
2008), a recommended value of 31 mg kg−1 was adopted
for the initialized labile P soil concentration.

A sub-surface drainage of approximate 60 % for cul-
tivated land, mean drain depth of 0.900 m, time required
to achieve field capacity of 48 h, and drainage time into
waterways of 18 h were assumed for the study area
(Michaud et al. 2008).

Finally, we set up six SWAT model scenarios using
the different soil configurations:

1. Reference. This was the SWAT model setup using
soil map that has been used for previous studies in
the study area. We call this reference because it is
based on average values of soil properties.

2. Region_5. This was a SWAT configuration setup
using the survey soil properties partitioned into five
heterogeneous regions.

3. Region_10. This is a SWAT configuration setup
using the survey soil properties partitioned into ten
heterogeneous regions.

4. Region_15. This is a SWAT configuration setup
using the survey soil properties partitioned into 15
heterogeneous regions.

5. Region_20. This is a SWAT configuration setup
using the survey soil properties partitioned into 20
heterogeneous regions.

6. Region_24. This is a SWAT configuration setup
using the survey soil properties partitioned into 24
heterogeneous regions. In other words, in this con-
figuration, each unit (sampled points) is a region in
itself.

2.5 Evaluating Model

The model's output was obtained as a monthly time step.
The model's performance was assessed using the coeffi-
cient of determination (R2) and the Nash–Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe 1970). The R2 is a
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statistical index which varies from 0 to 1, where R2=1.0
indicates that the correspondence between the predicted
and observed perfectly fits a linear relationship. The NSE
also ranges from −∞ to 1. AnNSE of 1 indicates a perfect
fit between the predicted and observed values, whereas
an NSE of 0 represents predictions that are only as
accurate as the mean of the observed data. When the
NSE is less than zero, then the observed mean is a better
predictor than themodel. The simulation periodwas from
January 1971 to December 2007. The periods from
January 1971 to December 1976 (5 years) were used as
a warm-up period. This is done to allow the model to
“stabilize”, especially for model parameters such as soil
moisture where they are dependent on prior conditions.
The time periods from April 2001 to December 2002
were used for the evaluation of flow, sediment, and TP
fluxes (before and after calibration). Observed dis-
charges, suspended sediments, and TP data sets were
obtained from the Ministère du Développement durable,
Environnement et Parcs du Quebec (MDDEPQ 2003,
2005).

3 Results and Discussion

3.1 Descriptive Statistics of the Measured Soil
Properties

Descriptive statistics of surveyed soil properties SOL_BD,
SOL_CLAY, SOL_SILT, SOL_SAND, SOL_CBN,
SOL_AWC, and SOL_K are presented in Tables 1, 2,
and 3 for soil depths of 0–0.30, 0.30–0.60, and 0.60–
0.90 m, respectively. The parameter ranges are within the
acceptable ranges required by SWAT (Neitsch et al.

2009). In examining the coefficient of variation for the
three depths, SOL_K and SOL_CLAY were found to
have the highest variability, while SOL_BD has the
lowest. This is consistent with findings from the literature
concerning soil permeability and bulk density.

3.2 Soil Clustering Analysis, Partitioning,
and Regionalization

The result of the spatial division of the study area into
24 polygons using the Thiessen polygon technique in
ArcGIS 10 is illustrated in Fig. 2. Each polygon has
unique soil properties.We clustered these proximal zones
into 24, 20, 15, 10, and 5 heterogeneous zones. The
clusters and derived soil maps can be seen in Figs. 3, 4,
and 5. Within-region heterogeneity of each of the regions
is shown in Fig. 6. The SSD measure of within-region
heterogeneity indicated that the configurations with the
least number of regions (Region_5) were the most het-
erogeneous while the lowest SSD value was found for
Region_24. In other words, the smallest SSD value was
obtained when each unit (sample point) was a region in
itself. This makes the region mean the same as the unit
mean. Therefore, the greater number of regions, the less
heterogeneous the region is. These maps were used as
soil inputs into SWAT to quantify the impact of hetero-
geneities of the measured soil properties.

3.3 Impacts of Soil Heterogeneities

3.3.1 Hydrologic Response Units

The HRU is a unique combination of land use pattern, soil
types, and landscape attributes. The different HRUs for

Table 1 Descriptive statistics of surveyed soil properties (0–0.30 m)

SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 CLAY1 SILT1 SAND1 USLE_K1

Mean 1.34 0.061 60.90 4.28 18.18 31.42 50.39 0.23

Standard error 0.04 0.005 9.02 0.23 3.06 1.9077 4.1070 0.029

Median 1.34 0.054 49.14 4.15 12.70 29.43 56.46 0.21

Standard deviation 0.20 0.028 44.19 1.15 15.029 9.346 20.120 0.14

Sample variance 0.040 0.00080 1953.18 1.33 225.89 87.35 404.82 0.020

Kurtosis 0.42 −0.086 −1.62 −0.028 −0.4602 −0.50 −0.993 −0.49
Skewness 0.27 0.95 0.36 0.502 0.902 0.706 −0.599 0.343

Range 0.85 0.091 110.29 4.59 48.79 32.640 63.046 0.508

Minimum 0.98 0.029 10.11 2.37 2.61 18.186 10.972 0.0085

Maximum 1.84 0.12 120.40 6.96 51.41 50.82 74.019 0.51
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each soil configuration are shown in Fig. 7. There is a
significant difference among the various configurations.
This makes sense since the soils with higher region num-
bers are expected to have more soil classes and therefore
higher HRUs. Since HRU is where the simulation of
runoff, sediment, and nutrients starts, we should expect a
proportionate increase in the magnitude of the simulations.

3.3.2 Before Calibration

The following factors are considered before calibration:

& Runoff. Graphical comparisons between the model
simulation and observation of surface flow between
April 2001 and December 2002 are shown in Fig. 8.
For the five different configurations, no significant
differences are seen (Fig. 8). This may be attributable
to the SCS–curve number (CN) method implemented
in SWAT. Surface runoff is estimated using the SCS

runoff equation. This is an empirical model and could
contribute to the variability of surface runoff. Ye et al.
(2009) found that the SCS–CN method weakens the
discrepancy between the different resolutions of soil
heterogeneities and strongly affects the similarity in
flow prediction. In other words, the CN threshold
determined by the soil hydrologic groups are ranked
based on soil permeability (Ye et al. 2009; Mishra and
Singh 2003). Using this group across all soil types
often masked out soils that have notable differences in
physical characteristics.

TheNSE values for the prediction of surface runoff
were 0.60, 0.57, 0.60, 0.59, 0.59, and 0.41, and the
R2 values were 0.72, 0.67, 0.69, 0.69, and 0.63, for
the Reference, Region_5, Region_10, Region_15,
Region_20, and Region_24, respectively (Table 4).
The performance evaluation was quite good for an
uncalibrated model. In other words, to increase these
indices, we need to adjust some parameters as would

Table 2 Descriptive statistics of surveyed soil properties (0.30–0.60 m)

SOL_BD2 SOL_AWC2 SOL_K2 SOL_CBN2 CLAY2 SILT2 SAND2 USLE_K2

Mean 1.40 0.068 35.52 3.503 26.29 35.78 37.91 0.26

Standard error 0.03 0.006 7.35 0.29 4.15 2.21 4.47 0.037

Median 1.35 0.058 26.43 3.139 23.16 33.18 31.36 0.22

Standard deviation 0.16 0.029 36.02 1.43 20.36 10.87 21.94 0.18

Sample variance 0.026 0.00087 1297.60 2.06 414.55 118.17 481.48 0.033

Kurtosis 3.48 0.171 −1.31 1.44 −1.26 2.29 −1.48 2.35

Skewness 2.00 0.99 0.70 0.33 0.47 1.38 0.074 1.29

Range 0.64 0.104 87.38 6.80 60.40 44.08 66.30 0.80

Minimum 1.24 0.032 0.88 0 5.08 20.94 3.085 0.004

Maximum 1.89 0.13 88.26 6.80 65.48 65.020 69.38 0.811

Table 3 Descriptive statistics of surveyed soil properties (0.60–0.90 m)

SOL_BD3 SOL_AWC3 SOL_K3 SOL_CBN3 CLAY3 SILT3 SAND3 USLE_K3

Mean 1.21 0.073 1.90 2.62 31.23 30.35 25.91 0.27

Standard error 0.099 0.0067 0.31 0.31 5.51 3.90 4.93 0.048

Median 1.39 0.070 1.25 2.54 21.70 29.08 18.50 0.22

Standard deviation 0.48 0.033 1.52 1.54 27.02 19.15 24.16 0.23

Sample variance 0.23 0.001 2.31 2.37 730.25 366.78 583.73 0.05

Kurtosis 3.23 0.71 −1.24 1.12 −1.156 0.971 −1.23 0.31

Skewness −2.09 1.07 0.41 0.38 0.56 0.61 0.57 0.86

Range 1.69 0.11 4.40 6.61 76.71 79.84 66.91 0.86

Minimum 0 0.033 0 0 0 0 0 0

Maximum 1.69 0.14 4.40 6.61 76.71 79.8 66.91 0.86

Water Air Soil Pollut (2013) 224:1692 Page 7 of 16, 1692



be done under sensitivity analysis. The significant
underestimation, especially in the period of January–
March 2002, has been attributed to the exceptionally
unseasonable near-zero and above-zero temperatures

(some as high as 10 °C) recorded. SWAT had diffi-
culty in distinguishing between rainfall and snowfall
given its weather-generating method (Deslandes et al.
2004; Michaud et al. 2007)

Fig. 2 Thiessen polygons or proximal zones derived from sample points using ArcGIS 10 (Note 1–24 are the geo-referenced points
where soil samples were collected)
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& Sediment. The time series plot of the simulated and
observed sediment load is shown in Fig. 9. A

comparison shows that SWATconfigurations capture
the peak flow periods and also the low flow periods.

Fig. 3 Heterogeneous soil clusters derived using REDCAP a five and b ten regions

Fig. 4 Heterogeneous soil clusters derived using REDCAP a 15 and b 20 regions
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The NSE was poor, being less than 0.3 in all cases
(Table 4). The R2 was 0.58 in all cases, except for
Region_24 for which it was 0.45 (Table 4).

& Total phosphorus. The plot of measured vs.
uncalibrated TP load predicted is shown in Fig. 10.
Although the SWAT configurations captured high

Fig. 5 Twenty-four heterogeneous soil clusters derived using REDCAP
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fluxes due to high flows, in all cases, it underpredicted
the P fluxes. The coefficients of determination were
0.83, 0.78, 0.85, 0.85, and 0.88 for Reference,
Region_5, Region_10, Region_15, Region_20, and
Region_24, respectively (Table 4).

3.3.3 Sensitivity Analysis

Before calibration, sensitivity analysis is a process that
must be performed to know which parameters to adjust
during the calibration procedure and by how much. We

Fig. 6 Within-region mea-
sured heterogeneity

Fig. 7 HRUs across all configurations
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used the sequential uncertainty fitting (SUFI) version 2
algorithm in SWATcalibration and uncertainty procedures
to carry out this process. SUFI is used to derive the
posterior parameters from priors. In other words, param-
eter uncertainty accounts for all sources of uncertainties

such as the uncertainties in inputs (such as rainfall), model
structure, and observed data (Abbaspour et al. 2007). A
95 % uncertainty is obtained at the 2.5 and 97.5 % levels
of the cumulative distribution of the input variable de-
rived by the Latin hypercube sampling (Abbaspour et al.

Fig. 8 Plot of the comparison between averages of monthly simulated and observed discharge (April 2001–December 2002)

Table 4 The Performance assessment of SWAT configurations using R2 and the Nash–Sutcliffe coefficient

Model Reference Region

5 10 15 20 24

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Monthly discharge (cm)

Non-calibrated 0.72 0.60 0.67 0.57 0.69 0.60 0.69 0.59 0.69 0.59 0.63 0.41

Calibrated 0.65 0.54 0.64 0.59 0.65 0.59 0.65 0.59 0.65 0.59 0.60 0.48

Sediment load (Mg)

Non-calibrated 0.58 −0.56 0.57 −0.64 0.58 −0.21 0.58 −0.18 0.58 −0.10 0.45 −2.94
Calibrated 0.50 0.21 0.50 0.23 0.50 0.21 0.50 0.23 0.47 0.27 0.40 0.10

Total phosphorus (kg)

Non-calibrated 0.83 0.51 0.78 0.53 0.85 0.32 0.85 0.48 0.85 0.52 0.88 0.28

Calibrated 0.81 0.45 0.71 0.51 0.80 0.45 0.86 0.55 0.81 0.56 0.80 0.45
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2007). The parameters shown in Table 5 were found to be
the most sensitive for hydrology for all SWAT configu-
rations after 1,000 simulations. The t-stat provides a
measure of sensitivity, while the p values determined

the significance of the sensitivity (Abbaspour et al.
2007). A value close to zero has more significance
(Abbaspour et al. 2007). Therefore, in Table 5, the base
flow factor (ALFA_BF), base flow alpha factor for bank

Fig. 9 Plot of the comparison between averages of monthly simulated and observed sediment load (April 2001–December 2002)

Fig. 10 Plot of the comparison between averages of monthly simulated and observed total phosphorus load (April 2001–November 2002)
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storage (ALPHA_BNK), and Manning's “n” value for
the main channel (CH_N2) are the most sensitive param-
eters followed by SCS runoff CN2.

3.3.4 After Calibration for Hydrology, Sediment,
and TP

In terms of hydrology, model performance was evaluated
usingR2 andNSE. In all cases,R2 is greater than 0.6, while
NSE is up to 0.6 for all configurations except Region_24
(Table 4). As for sediment load, USLE support, biological
mixing efficiency, peak rate adjustment factor for sediment
routing in the main channel, and peak rate adjustment
factor for sediment routing in the sub-basins were the
parameters that were adjusted. There were significant im-
provements in the models' performance based on NSE.
The R2 also increases. For TP, SWAT predictions were
hardly improved compared to the uncalibrated results. The
following parameters were adjusted, namely phosphorus

sorption coefficient, phosphorus percolation coefficient,
and phosphorus soil partitioning coefficient. R2 equally
ranges from 0.72 to 0.85 across all configurations.

Generally, the essence of calibration in hydrology is to
modify the input parameters to a hydrologic model until
the output from the model matches an observed set of
data. There are uncertainties in the observed set of data.
Also, the conceptualization or structure of the model is
not free from uncertainties. Therefore, it is possible to
have lower performance indices such asR2 andNSE after
calibration as seen in this study and in other literature
(Srinivasan et al. 2010). Also, Mukundan et al. (2010)
reported that calibration can mask important parametric
information. In fact, Heathman et al. (2008) attested that
hydrologic models in uncalibrated mode eliminate bias
due to parameter optimization.

Overall, it can be said that all SWAT configurations
perform at the same scale compared with the observed
data. Putting the reference configuration into perspec-
tive, onemay not necessarily be losingmuch information
using the average values. In other words, having detailed
or high-resolution information, especially for soil prop-
erties, does not necessarily improve the prediction in the
face of model structural uncertainty. Use of CN in SWAT
tends to mask or cover what would have been the impact
of different soil properties.

4 Concluding Remarks

The impact of soil heterogeneity in predicting runoff,
sediment load, and TP was examined in this study. Five
different soil configurations that were partitioned and
regionalized to account for heterogeneity at various
stages (5, 10, 15, 20, and 24 heterogeneous regions) were
investigated. This method showed that when a sample
point is a region unto itself, the measure of within-region
heterogeneity is lowest. In other words, the greater the
number of regions, the lesser the within-region heteroge-
neity is. From an HRU perspective, there are significant
differences in their distributions. However, this does not
translate into differences in model prediction.

Results showed that an increase in spatial detail by
taking more soil measurements does not necessarily in-
crease the accuracy of the model predictions. The use of
curve numbers in SWAT tends to mask any discrepancies
because it is based on the soil hydrologic group, which
conceals the different physical properties of the soil. This
is part of the uncertainty in the model structure that needs

Table 5 The sensitivity analysis results for SWAT configurations

Parameter name t-Stat P value

v__GW_REVAP.gwa 0.08 0.93

v__GW_DELAY.gwa −0.10 0.92

r__SOL_AWC(1).solb −0.14 0.89

r__SOL_K(1).solb −0.21 0.83

v__CH_K2.rtea −0.31 0.75

v__ESCO.hrua −0.44 0.66

v__SFTMP.bsna 0.68 0.50

r__SOL_BD(1).solb −0.68 0.50

r__CN2.mgtb −0.69 0.49

v__GWQMN.gwa 0.73 0.46

v__CH_N2.rtea 1.70 0.09

v__ALPHA_BNK.rtea 3.09 0.00

v__ALPHA_BF.gwa 22.41 0.00

GW_REVAP groundwater “revap” coefficient, GW_DELAY
groundwater delay (days), SOL_AWC available water capacity of
the soil layer, SOL_K saturated hydraulic conductivity, ESCO soil
evaporation compensation factor, SFTMP snowfall temperature,
SOL_BD moist bulk density, CN2 SCS runoff curve number,
GWQMN threshold depth of water in the shallow aquifer required
for return flow to occur (mm),CH_N2Manning's “n” value for the
main channel, CH_K2 effective hydraulic conductivity in main
channel alluvium, ALPHA_BNK base flow alpha factor for bank
storage, ALPHA_BF base flow alpha factor (days)
a v__ means the existing parameter value is to be replaced by the
given value
b r__means the existing parameter value is multiplied by 1+ a given
value
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to be addressed. Therefore, hydrologists need to weigh
the pros and cons of having high-resolution data and the
cost involved. As demonstrated in this study, havingmore
samples and using them as individual units without aver-
aging does not necessarily improve the predictions.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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