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Abstract In description logic-based information systems,
objects are described not only by attributes but also by binary
relations between them. This work studies concept learn-
ing in such information systems. It extends the bisimulation-
based concept learningmethod ofNguyen andSzałas (Rough
sets and intelligent systems. Springer, Berlin, pp 517–543,
2013). We take attributes as basic elements of the lan-
guage. Each attribute may be discrete or numeric. A Boolean
attribute is treated as a concept name. This approach is
more general and suitable for practical information systems
based on description logic than the one of Nguyen and Sza-
łas (Rough sets and intelligent systems. Springer, Berlin,
pp 517–543, 2013). As further extensions, we also allow
data roles and the concept constructors “functionality” and
“unqualified number restrictions”. We formulate and prove
an important theorem on basic selectors. We also present
a domain partitioning method based on information gain that
has been used for our implementation of the method. Apart
from basic selectors and simple selectors, we introduce a new
kind of selectors, called extended selectors. The evaluation
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results show that our concept learning method is valuable
and extended selectors support it significantly.
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1 Introduction and motivation

Semantic Technologies have intensively been investigated
and applied in many areas such as Bioinformatics, Seman-
tic Web Browser, Knowledge Managements, Software Engi-
neering, etc. One of the pillars of the SemanticWeb is ontolo-
gies. They are an important aspect in knowledge representa-
tion and reasoning for the Semantic Web.

Nowadays, ontologies are usually modeled by using the
WebOntology Language (OWL), which is a standard recom-
mended by W3C for the Semantic Web. In essence, OWL is
a language based on description logics (DLs) [14], which are
a family of formal languages suitable for representing and
reasoning about terminological knowledge [3]. Constructing
useful ontologies is desirable, and in ontology engineering,
concept learning is helpful for suggesting important concepts
and their definitions.

Concept learning in DLs is similar to binary classification
in traditional machine learning. However, the problem in the
context of DLs differs from the traditional setting in that
objects are described not only by attributes but also by binary
relations between objects.

The major settings of concept learning in DLs are as fol-
lows:
Setting 1 Given a knowledge base KB in a DL L and sets
E+, E− of individuals, learn a concept C in L such that:

1. KB |� C(a) for all a ∈ E+, and
2. KB |� ¬C(a) for all a ∈ E−.
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The sets E+ and E− contain positive examples and neg-
ative ones of C , respectively.
Setting 2 This setting differs from the previous one only
in that the condition (2) is replaced by the weaker one:
KB �|� C(a) for all a ∈ E−.
Setting 3Given an interpretation I and sets E+, E− of indi-
viduals, learn a concept C in a DL L such that:

1. I |� C(a) for all a ∈ E+, and
2. I |� ¬C(a) for all a ∈ E−.

Note that I �|� C(a) is the same as I |� ¬C(a).

In DLs, the domain of interest is described in terms of
individuals (objects), concepts, object roles and data roles.
A concept stands for a set of objects, an object role stands
for a binary relation between objects, and a data role stands
for a binary predicate relating objects to data values. Thus, a
concept name is a Boolean attribute, and a “functional” data
role name is a partial attribute. The interesting features are
object roles, which specify the relationships between objects,
as well as concept constructors and object role constructors,
which allow us to form complex concepts and complex roles
from concept names, role names and individual names.

Nguyen and Szałas [22] proposed to use bisimulation for
concept learning in DLs. They also studied concept approx-
imation using bisimulation and Pawlak’s rough set the-
ory [23,24]. They defined terminological roughification to be
any technique that uses the largest auto-bisimulation relations
as the equivalence relation for defining approximations. The
learning algorithm proposed in [22] works for information
systems that are either explicitly given as an interpretation
or specified by an acyclic knowledge base with closed world
assumption. This is similar the traditional setting of machine
learning, and a bit different from those of [4,11,15,18,19],
where learning algorithms work for (cyclic) knowledge base
with open world assumption.

This work extends the concept learning method of [22]
for richer DLs and provides experimental results. It com-
bines and revises the results reported in our conference
papers [30,31] to give a full picture on the current state of
bisimulation-based concept learning for information systems
in DLs.1 In comparison with [22], we take attributes as basic
elements of the language. Each attribute may be discrete or
numeric. A Boolean attribute is treated as a concept name.
One can simulate a discrete attribute by concepts as shown
in [22], but this is inconvenient. Amore serious problem con-
cerns numeric attributes. To deal with this, one can directly
allow numeric attributes as in the current work or use data
roles of description logic togetherwith comparisonoperators.
Direct use of numeric attributes makes the concept learning
problem closer to binary classification in traditional machine

1 The paper [30] is co-authored by our colleagues.

learning. Neither attributes nor data roles are considered
in [22]. Thus, our approach is more general and suitable for
practical information systems than the one of [22]. As further
extensions,we also allowdata roles and the concept construc-
tors “functionality” and “unqualified number restrictions”.
Also note that the work [22] does not provide details on
strategies for domain partitioning nor experimental results.

The class ofDLs studied in this paper is very rich. It allows
all role constructors of ALCreg (a variant of propositional
dynamic logic) plus I (inverse) andU (universal role), and all
concept constructors of ALCreg plus O (nominal), F (func-
tionality), N (unqualified number restriction), Q (qualified
number restriction) and Self (local reflexivity of a role).

We formulate and prove an important theorem on basic
selectors, which states that: to reach the partition correspond-
ing to the equivalence relation characterizing indiscernibility
of objects w.r.t. a given sublanguage of the considered logic,
it suffices to start from the full block consisting of all objects
and repeatedly granulate it using the basic selectors of the
sublanguage.

Regarding the granulation process, a natural question is:
which block from the current partition should be split first
and which selector should be used to split it? These affect
both the “quality” of the final partition and the complexity
of the process. One can use basic selectors and simple selec-
tors together with information gain to guide the granulation
process, where simple selectors cover basic selectors and are
created from the blocks of the partitions appeared in the gran-
ulation process. Such selectors split blocks in the partitions
and bring good results in favorable cases. However, they are
not advanced enough for complex cases. To obtain a final
partition, the main loop of the granulation process may need
to repeat many times. This usually results in too complex
concepts, which poorly classify new objects.

As an extensionof [22,30], apart fromsimple selectors,we
propose to use also a new kind of selectors, called extended
selectors, which are created from available selectors (the cur-
rent simple selectors and extended selectors) for splitting
blocks.

We have implemented the bisimulation-based method
using thementioned selectors and information gainmeasures
for concept learning in DLs w.r.t. Setting 3. The aim is to
study effectiveness of simple selectors and extended selec-
tors as well as to provide experimental results for the concept
learningmethod.The evaluation results show that the concept
learning method is valuable and extended selectors support
it significantly.

The rest of this paper is organized as follows. In Sect. 2
we discuss related work. In Sect. 3 we give a brief introduc-
tion to DLs and DL-based information systems. Section 4
contains the theory of bisimulation and indiscernibility. In
Sect. 5 we describe the concept learning method for DL-
based information systems, formulate and prove a theoremon
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basic selectors. In addition, we introduce extended selectors,
the simplicity of concepts and information gain measure for
granulating partitions. Techniques for processing the result-
ing concepts are also presented in this section. In Sect. 6 we
provide examples to illustrate the bisimulation-based concept
learning algorithm. The experimental results are presented
in Sect. 7. We summarise our work and draw conclusions in
Sect. 8.

2 Related work

Related work on methods of concept learning in DLs can
be divided into three groups. The first group focuses on
learnability in DLs [6,12] and presents some relatively sim-
ple algorithms [6,12,18]. The second group studies concept
learning in DLs using refinement operators as in inductive
logic programming [4,11,15,19]. The third group exploits
bisimulation for concept learning in DLs [13,22,29,30].

As an early work on concept learning in DLs, Cohen and
Hirsh [6] studied PAC-learnability of the CLASSIC descrip-
tion logic (an early DL formalism) and its sublogic called
C-CLASSIC. They proposed a concept learning algorithm
called LCSLearn, which is based on “least common sub-
sumers”. In [12] Franzier and Pitt provided some results on
learnability in the CLASSIC description logic using some
kinds of queries and either the exact learning model or the
PAC model. In [18] Lambrix and Larocchia proposed a sim-
ple concept learning algorithm based on concept normaliza-
tion.

Badea and Nienhuys-Cheng [4] studied concept learning
in the DLALER for Setting 1 using refinement operators as
in inductive logic programming. They introduced some the-
oretical properties of refinement operators and used a down-
ward refinement operator to enable a top-down search. Ian-
none et al. [15] also investigated learning algorithms using
refinement operators for Setting 1, but for the richer DL
ALC . Themain idea of those algorithms is tofind and remove
some parts of a concept responsible for classification errors.

The works [11,19] study concept learning in DLs for
Setting 2 using refinement operators. Fanizzi et al. [11]
introduced the DL-FOIL system that is adapted to concept
learning for DL representations supporting the OWL–DL
language. They also considered unlabeled data as in semi-
supervised learning. Lehmann and Hitzler [19] introduced
methods from inductive logic programing for concept learn-
ing in DL knowledge bases. Their algorithm, DL-Learner,
exploits genetic programming techniques.

Apart from refinement operators, scoring functions and
search strategies also play an important role in the algorithms
proposed in the works [4,11,15,19].

As DLs are variants of modal logics, bisimulation can be
used to characterize indiscernibility of objects [9,10] and

hence for concept learning in DLs. The earlier discussed
work by Nguyen and Szałas [22] is devoted to Setting 3.
Ha et al. [13] developed the first bisimulation-based meth-
ods, called BBCL and dual-BBCL, for concept learning in
DLs using Setting 1. The idea is to use models of the given
knowledge base and bisimulation in those models to guide
the search for the concept to be learnt. Based on the BBCL
method, Divroodi et al. [8] studied C-learnability in DLs
for Setting 3. Tran et al. [29] developed the BBCL2 method
for concept learning in DLs using Setting 2. It is based on
dual-BBCL. The methods of [13,22,29] are formulated for
a large class of useful DLs, with well-known DLs such as
ALC , SHIQ , SHOIQ , SROIQ . There are also other
related works on learning terminological axioms or ontolo-
gies. The works [2,7,20] study theory learning or concept
inclusion axioms learning in DLs. The works [2,20] involve
probabilistic DLs. Some other researchers combined concept
learning inDLswith inductive logic programming (e.g., [16])
or studied concept learning in DLs via inductive logic pro-
gramming (e.g., [17]).

3 Description logic-based information systems

3.1 Description logics and semantics

The basicDLALCwas first introduced bySchmidt–Schaubß
andSmolka in [27]. The nameALC stands for “Attribute con-
cept Language with Complements”. It is obtained from the
DLALby adding the complement constructor (¬). Complex
concepts of ALC are built from simpler ones using various
constructors. In the following, we recall a formal definition
of the syntax of ALC [19].

Definition 1 (ALC Syntax) Let �C be a set of concept
names and �R be a set of role names (�C ∩ �R = ∅). The
elements in �C are called atomic concepts. The description
logic ALC allows concepts defined recursively as follows:

• if A ∈ �C then A is a concept,
• if C and D are concepts and r ∈ �R is a role then �, ⊥,

¬C , C 	 D, C 
 D, ∃r.C and ∀r.C are also concepts.

The intended meaning of the symbols and concept con-
structors is described as follows:

• � stands for the top concept,
• ⊥ stands for the bottom concept,
• ¬C stands for the complement of C ,
• C 	 D stands for the intersection of C and D,
• C 
 D stands for the union of C and D,
• ∃r.C stands for the existential restriction of C by r ,
• ∀r.C stands for the value/universal restriction of C by r .
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The followinggrammar rule is a brief description of syntax
of concepts in ALC :

C, D −→ A | � | ⊥ | ¬C | C 	 D | C 
 D | ∃r.C | ∀r.C

Propositional dynamic logic (PDL) is a modal logic
specifically designed for reasoning about program schemes.
Schild [26] pointed out an interesting correspondence
between DLs and PDL. In the following, we give the def-
inition of the description logic ALCreg that corresponds to
PDL.

Definition 2 (ALCreg Syntax) Let �C be a set of concept
names and �R be a set of role names (�C ∩ �R = ∅). The
elements in �C are called atomic concepts, while the ele-
ments in �R are called atomic roles. The DLALCreg allows
concepts and roles defined recursively as follows:

• if A ∈ �C then A is a concept,
• if r ∈ �R then r is a role,
• if C and D are concepts, R and S are roles then

– ε, R ◦ S, R 
 S, R∗, C? are roles,
– �,⊥,¬C ,C	D,C
D, ∃R.C and∀R.C are concepts.

The following rules are a brief description of syntax of
concepts and roles in ALCreg , where r ∈ �R and A ∈ �C :

R, S −→ ε | r | R ◦ S | R 
 S | R∗ | C?
C, D −→ A | � | ⊥ | ¬C | C 	 D | C 
 D | ∃R.C | ∀R.C

The meaning of the role constructors is as follows:

• ε stands for the identity relation,
• R ◦ S stands for the sequential composition of R and S,
• R 
 S stands for the set-theoretical union of R and S,
• R∗ stands for the reflexive and transitive closure of R,
• C? stands for the test operator.

The concept constructors ∀R.C and ∃R.C correspond to
the modal operators [R]C and 〈R〉 C of PDL, respectively.
We now consider description languages with attributes and
additional concept/role constructors.

A DL-signature is a finite set � = �I ∪ �d A ∪ �nA ∪
�oR ∪ �dR , where �I is a set of individuals, �d A is a set of
discrete attributes, �nA is a set of numeric attributes, �oR

is a set of object role names, and �dR is a set of data roles.2

All the sets �I , �d A, �nA, �oR , �dR are pairwise disjoint.
Let �A = �d A ∪ �nA. For each attribute A ∈ �A,

range(A) is a non-empty set that is countable if A is dis-

2 Object role names are atomic object roles.

crete, and partially ordered by ≤ otherwise.3 (For simplicity
we do not subscript ≤by A.) A discrete attribute is called
a Boolean attribute if range(A) = {true, false}. We refer to
Boolean attributes also as concept names. Let �C ⊆ �d A be
the set of all concept names of �.

An object role name stands for a binary predicate between
individuals. A data role σ stands for a binary predicate relat-
ing individuals to elements of a set range(σ ).

We will denote individuals by letters such as a and b,
attributes by letters such as A and B, object role names by
letters such as r and s, data roles by letters such as σ and �,
and elements of sets of the form range(A) or range(σ ) by
letters such as c and d.

We consider some DL-features denoted by I (inverse), O
(nominal), F (functionality), N (unqualified number restric-
tion), Q (qualified number restriction), U (universal role),
Self (local reflexivity of a role). A set of DL-features is a set
consisting of zero or some of these names.

Definition 3 (TheL�,� Language)Let� be aDL-signature,
� be a set of DL-features and L stand for ALCreg . The
DL language L�,� allows object roles and concepts defined
recursively as follows:

• if r ∈ �oR then r is an object role of L�,�,
• if A ∈ �C then A is concept of L�,�,
• if A ∈ �A \�C and d ∈ range(A) then A = d and A �= d
are concepts of L�,�,

• if A ∈ �nA and d ∈ range(A) then A ≤ d, A < d, A ≥ d
and A > d are concepts of L�,�,

• if R and S are object roles of L�,�, C and D are concepts
of L�,�, r ∈ �oR , σ ∈ �dR , a ∈ �I , and n is a natural
number then

– ε, R ◦ S, R 
 S, R∗ and C? are object roles of L�,�,
– �,⊥,¬C ,C	D,C
D, ∀R.C and ∃R.C are concepts

of L�,�,
– if d ∈ range(σ ) then ∃σ.{d} is a concept of L�,�,
– if I ∈ � then R− is an object role of L�,�,
– if O ∈ � then {a} is a concept of L�,�,
– if F ∈ � then ≤ 1 r is a concept of L�,�,
– if {F, I } ⊆ � then ≤ 1 r− is a concept of L�,�,
– if N ∈ � then ≥ n r and ≤ n r are concepts of L�,�,
– if {N , I } ⊆ � then ≥ n r− and ≤ n r− are concepts

of L�,�,
– if Q ∈ � then ≥ n r.C and ≤ n r.C are concepts of
L�,�,

– if {Q, I } ⊆ � then ≥ n r−.C and ≤ n r−.C are
concepts of L�,�,

3 One can assume that, if A is a numeric attribute, then range(A) is
the set of real numbers and ≤ is the usual linear order between real
numbers.
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(R ◦ S)I = RI ◦ SI (R−)I = (RI)−1 (R∗)I = (RI)∗

(R S)I = RI ∪ SI (C?)I = x, x CI(x)}

εI = x, x x ∈ ΔI} UI = ΔI × ΔI I = ΔI

(C D)I = CI ∩ DI (C D)I = CI ∪ DI ⊥I = ∅

(¬C)I = ΔI \ CI {a}I = {aI}

(A ≤ d)I = {x ∈ ΔI | AI(x) is defined, AI(x) ≤ d}

(A ≥ d)I = {x ∈ ΔI | AI(x) is defined, AI(x) ≥ d}

(A = d)I = {x ∈ ΔI | AI(x) = d}

(A = d)I = (¬(A = d))I

(A < d)I = ((A ≤ d) (A = d))I

(A > d)I = ((A ≥ d) (A = d))I

(∀R.C)I = {x ∈ ΔI | ∀y [RI(x, y) ⇒ CI(y)]}

(∃R.C)I = {x ∈ ΔI | ∃y [RI(x, y) ∧ CI(y)]}

(∃r.Self)I = {x ∈ ΔI | rI(x, x)}

(∃σ.{d})I = {x ∈ ΔI | σI(x, d)}

(≥n R.C)I = {x ∈ ΔI | #{y | RI(x, y) ∧ CI(y)} ≥ n}

(≤n R.C)I = {x ∈ ΔI | #{y | RI(x, y) ∧ CI(y)} ≤ n}

(≥n R)I = (≥n R. )I (≤n R)I = (≤n R. )I

Fig. 1 Interpretation of complex object roles and complex concepts

– if U ∈ � then U is an object role of L�,�,
– if Self ∈ � then ∃r.Self is a concept of L�,�.

The concept constructors≥ n R.C and≤ n R.C are called
qualified number restrictions. They correspond to graded
modal operators. The concept constructors ≥ n R and ≤ n R
are called unqualified number restrictions.

Definition 4 (Semantics) An interpretation inL�,� is a pair
I = 〈

�I , ·I 〉
,where�I is a non-empty set called thedomain

of I and ·I is a mapping called the interpretation function
of I that associates each individual a ∈ �I with an ele-
ment aI ∈ �I , each concept name A ∈ �C with a set
AI ⊆ �I , each attribute A ∈ �A \�C with a partial func-
tion AI : �I → range(A), each object role name r ∈ �oR

with a binary relation rI ⊆ �I × �I , and each data role
σ ∈ �dR with a binary relation σI ⊆ �I × range(σ ). The
interpretation function ·I is extended to complex object roles
and complex concepts as shown in Fig. 1, where #� stands
for the cardinality of the set �.

As showed in Definition 4, each individual is interpreted
as an object, each concept name is interpreted as a set of

objects, each attribute is interpreted as a partial function from
the domain to the set of values of the attribute, each object
role name is interpreted as a binary relation between objects
and each data role is interpreted as a binary relation between
objects and elements in the range of the data role.

We say thatCI (resp. RI ) is the denotation of the concept
C (resp. object role R) in the interpretation I. If aI ∈ CI ,
then we say that a is an instance of C in the interpreta-
tion I. For abbreviation, we write CI(x) (resp. RI(x, y)
and σI(x, d)) instead of x ∈ CI (resp. 〈x, y〉 ∈ RI and
〈x, d〉 ∈ σI ).

3.2 Description logic-based information systems

In DL systems, information is stored in a knowledge base.
It is usually made up of two parts. The first part contains
individual assertions, called the ABox, while the second part
contains terminological axioms, called the TBox.

An individual assertion in L�,� is of the form A(a),
(B = c)(a), r(a, b) or σ(a, d), where a, b ∈ �I , A ∈ �C ,
B ∈ �A \�C , c ∈ range(B), r ∈ �oR , σ ∈ �dR and
d ∈ range(σ ). For simplicity of notation, we write B(a) = c
instead of (B = c)(a).

In the most general case, a terminological axiom in L�,�

is of the form C � D (resp. R � S ), C ≡ D (resp. R ≡ S),
where C and D are concepts of L�,�, R and S are object
roles ofL�,�. The former is called ageneral inclusion axiom,
while the latter is called an equivalence axiom. For an equiv-
alence axiom C ≡ D (resp. R ≡ S), if C (resp. R) is a con-
cept (resp. an object role) name of the form A ∈ �C (resp.
r ∈ �oR) then A ≡ D (resp. r ≡ S) is called a concept (resp.
an object role) definition.

Definition 5 (Knowledge Base) An acyclic knowledge base
in L�,� is a pair KB = 〈T ,A〉 , where:

• A is a finite set, called the ABox (assertion box) of KB,
consisting of individual assertions.

• T is a finite list (ϕ1, ϕ2, . . . , ϕn), called the TBox (termi-
nological box) of KB, where each ϕi is a terminological
axiom of one of the the following forms:

– A ≡ C , where A ∈ �C is a concept name not occur-
ring in C , A and ϕ1, ϕ2, . . . , ϕi−1,

– r ≡ R, where R is an object role of L�,� and r ∈
�oR is an object role name not occurring in R, A and
ϕ1, ϕ2, . . . , ϕi−1.

An acyclic knowledge base as defined above is similar to
stratified logic programs [1]. The concept (resp. object role)
names occurring inA are said to be primitive concepts (resp.
object roles), while the concept (resp. object role) names
occurring in the left hand-side of ‘≡’ in the definitions from
T are called defined concepts (resp. object roles).
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P1 : 2010

Awarded
P2 : 2009 P5 : 2006

P3 : 2008
P4 : 2007

Awarded

P6 : 2006

Awarded

Fig. 2 An illustration for the knowledge base given in Example 1

Example 1 This example is about publications. Let

� = {I, O, N , Q}, �I = {P1,P2,P3,P4,P5,P6},
�C = {Pub,Book,Article,Awarded,ExcellentPub,

UsefulPub,GoodPub,RecentPub,CitingP5},
�d A = �C ∪ {Title,Kind}, �nA = {Year},
�oR = {cites, cited _by}, �dR = ∅,

A = {Title(P1) = “Introduction to Logic”,

Title(P2) = “The Essence of Logic”,

Awarded(P1),Awarded(P4),Awarded(P6),

Kind(P1) = “book”,Kind(P2) = “book”,

Kind(P3) = “book”,Kind(P4) = “article”,

Kind(P5) = “article” ,Kind(P6) = “conf. paper” ,

Year(P1) = 2010,Year(P2) = 2009,

Year(P3) = 2008,Year(P4) = 2007,

Year(P5) = 2006,Year(P6) = 2006,

cites(P1,P2), cites(P1,P3), cites(P1,P4),

cites(P1,P6), cites(P2,P3), cites(P2,P4),

cites(P2,P5), cites(P3,P4), cites(P3,P5),

cites(P3,P6), cites(P4,P5), cites(P4,P6)},
T = (P ≡ �,Book ≡ (Kind = “book”),

Article ≡ (Kind = “article”),

cited _by ≡ cites−,UsefulPub ≡ ∃cited _by.�,

GoodPub ≡ (≥ 2 cited _by),

ExcellentPub ≡ GoodPub 	 Awarded,

RecentPub ≡ (Year ≥ 2008),

CitingP5 ≡ ∃cites.{P5}).
Then KB = 〈T ,A〉 is an acyclic knowledge base in

L�,�. The definition Pub ≡ � states that the domain of
any model of KB consists of only publications. This knowl-
edge base is illustrated in Fig. 2. In this figure, nodes denote
publications and edges denote citations (i.e., assertions of
the role cites), and we display only information concerning
assertions about Year, Awarded and cites.

The relation whether an interpretation I satisfies an indi-
vidual assertion or a terminological axiom ϕ, denoted by
I |� ϕ, is defined as follows:

I |� A(a) if AI(aI) = true,

I |� (B(a) = c) if BI(aI) = c,
I |� r(a, b) if rI(aI , bI),

I |� σ(a, d) if σI(aI , d),

I |� C ≡ D if CI = DI ,

I |� C � D if CI ⊆ DI ,

I |� R ≡ S if RI = SI ,

I |� R � S if RI ⊆ SI .

Definition 6 (Model) An interpretation I is a model of a
TBox T , denoted by I |� T , if it satisfies all the termino-
logical axioms of T . It is a model of an ABox A, denoted
by I |� A, if it satisfies all the individual assertions of A. It
is a model of a knowledge base KB = 〈T ,A〉 , denoted by
I |� KB, if it is a model of both T and A.

The standard model of an acyclic knowledge base KB =
〈T ,A〉 in L�,� is an interpretation I such that:

• �I = �I (i.e., the domain of I consists of all the indi-
vidual names of �),

• if A ∈ �C is a primitive concept of KB then
AI = {a | A(a) ∈ A},

• if B ∈ �A\�C then BI : �I → range(B) is the partial
function such that BI(a) = c if (B(a) = c) ∈ A,

• if r ∈ �oR is a primitive object role of KB then rI =
{〈a, b〉 | r(a, b) ∈ A},

• if σ ∈ �dR then σI = {〈a, d〉 | σ(a, d) ∈ A},
• if A ≡ C is a definition from T then AI = CI ,
• if r ≡ R is a definition from T then rI = RI ,
• if A ∈ �C but A does not occur in KB then AI = ∅,
• if r ∈ �oR but r does not occur in KB then rI = ∅.

Note that the standard model of KB is a finite interpreta-
tion. The definition adopts the unique name and closed world
assumptions.

Remark 1 The unique name assumption is used just for
increasing simplicity. One can allowABoxes to contain indi-
vidual assertions of the form a = b, where a, b ∈ �I ,
with the semantics that an interpretation I satisfies a = b
if aI = bI . In that case a given acyclic knowledge base
in L�,� can be converted to an equivalent one by merging
individuals that are equal to each other.

Definition 7 (Information System) An information system
specified by an acyclic knowledge base in L�,� is the stan-
dard model of that knowledge base in L�,�.
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Example 2 Consider the knowledge baseKB given inExam-
ple 1. The information system specified by KB is the inter-
pretation I with:

�I = {P1,P2,P3,P4,P5,P6},PubI = �I ,

PI
1 = P1,P

I
2 = P2, . . . ,P

I
6 = P6, BookI = {P1,P2,P3},

ArticleI = {P4,P5}, AwardedI = {P1,P4,P6},
citesI = {〈P1,P2〉, 〈P1,P3〉, 〈P1,P4〉, 〈P1,P6〉,

〈P2,P3〉, 〈P2,P4〉, 〈P2,P5〉, 〈P3,P4〉,
〈P3,P5〉, 〈P3,P6〉, 〈P4,P5〉, 〈P4,P6〉},

cited _byI =(citesI)−1,UsefulPubI ={P2,P3,P4,P5,P6},
GoodPubI = {P3,P4,P5,P6},ExcellentPubI = {P4,P6},
RecentPubI = {P1,P2,P3},CitingP5I = {P2,P3,P4},

the (partial) functions TitleI , YearI and KindI are specified
as usual.

4 Bisimulation and indiscernibility

Bisimulations were first introduced under the name p-
relation [32] and the name zigzag relation [33] by J. van
Benthem. They have been used to analyze the expressive-
ness of a wide range of extended modal logics. Divroodi and
Nguyen [9,10] studied bisimulations for a number of DLs.
Nguyen and Szałas [22] generalized that notion to model
indiscernibility of objects and study concept learning. In this
section, we generalize the notion of bisimulation further for
the class of DLs studied in this paper, which is larger and
more general than the one studied in [9,10,22].

Definition 8 (Bisimulation) Let� and�† be DL-signatures
such that �† ⊆ �, � and �† be sets of DL-features such
that �† ⊆ �, I and I ′ be interpretations in L�,�.

A binary relation Z ⊆ �I × �I ′
is called an L�†,�† -

bisimulation between I and I ′ if the following conditions
hold for every a ∈ �

†
I , A ∈ �

†
C , B ∈ �

†
A \�

†
C , r ∈ �

†
oR ,

σ ∈ �
†
dR , d ∈ range(σ ), x, y ∈ �I , x ′, y′ ∈ �I ′

:

Z(aI , aI ′
) (1)

Z(x, x ′) ⇒ [AI(x) ⇔ AI ′
(x ′)] (2)

Z(x, x ′) ⇒ [BI(x) = BI ′
(x ′) or both are undefined] (3)

[Z(x, x ′) ∧ rI(x, y)] ⇒ ∃y′ ∈ �I ′ [Z(y, y′) ∧ rI ′
(x ′, y′)]

(4)

[Z(x, x ′) ∧ rI ′
(x ′, y′)] ⇒ ∃y ∈ �I [Z(y, y′) ∧ rI(x, y)]

(5)

Z(x, x ′) ⇒ [σI(x, d) ⇔ σI ′
(x ′, d)], (6)

if I ∈ �† then

[Z(x, x ′) ∧ rI(y, x)] ⇒ ∃y′ ∈ �I ′ [Z(y, y′) ∧ rI ′
(y′, x ′)]

(7)

[Z(x, x ′) ∧ rI ′
(y′, x ′)] ⇒ ∃y ∈ �I [Z(y, y′) ∧ rI(y, x)],

(8)

if O ∈ �† then

Z(x, x ′) ⇒ [x = aI ⇔ x ′ = aI ′ ], (9)

if N ∈ �† then

Z(x, x ′) ⇒ #{y | rI(x, y)} = #{y′ | rI ′
(x ′, y′)}, (10)

if {N , I } ⊆ �† then

Z(x, x ′) ⇒ #{y | rI(y, x)} = #{y′ | rI ′
(y′, x ′)}, (11)

if F ∈ �† then

Z(x, x ′)⇒[#{y | rI(x, y)}≤1 ⇔ #{y′ | rI ′
(x ′, y′)} ≤ 1] ,

(12)

if {F, I } ⊆ �† then

Z(x, x ′)⇒[#{y | rI(y, x)}≤1 ⇔ #{y′ | rI ′
(y′, x ′)} ≤ 1] ,

(13)

if Q ∈ �† then

if Z(x, x ′) holds then, for every r ∈ �
†
oR, there exists

a bijection h : {y | rI(x, y)} → {y′ | rI ′
(x ′, y′)}

such that h ⊆ Z , (14)

if {Q, I } ⊆ �† then

if Z(x, x ′) holds then, for every r ∈ �
†
oR, there exists

a bijection h : {y | rI(y, x)} → {y′ | rI ′
(y′, x ′)}

such that h ⊆ Z , (15)

if U ∈ �† then

∀x ∈ �I ∃x ′ ∈ �I ′
Z(x, x ′) (16)

∀x ′ ∈ �I ′ ∃x ∈ �I Z(x, x ′), (17)

if Self ∈ �† then

Z(x, x ′) ⇒ [rI(x, x) ⇔ rI ′
(x ′, x ′)]. (18)

We say that I is L�†,�† -bisimilar to I ′ if there exists
an L�†,�† -bisimulation between I and I ′. We say that x ∈
�I isL�†,�† -bisimilar to x ′ ∈ �I ′

if there exists anL�†,�† -
bisimulation between I and I ′ such that Z(x, x ′) holds.

A concept C of L�†,�† is said to be invariant for L�†,�† -
bisimulation if, for every interpretations I and I ′ in L�,�

with� ⊇ �† and� ⊇ �†, and everyL�†,�† -bisimulation Z

between I and I ′, if Z(x, x ′) holds then x ∈ CI iff x ′ ∈ CI ′
.
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Theorem 1 All concepts ofL�†,�† are invariant forL�†,�† -
bisimulation.

This theorem can be proved in a similar way as [9, The-
orem 3.4]. By this theorem, L�†,�† -bisimilarity formalizes
indiscernibility by the sublanguage L�†,�† .

An interpretation I is finitely branching (or image-finite)
w.r.t. L�†,�† if, for every x ∈ �I and every r ∈ �

†
oR :

• the set {y ∈ �I | rI(x, y)} is finite,
• if I ∈ �† then the set {y ∈ �I | rI(y, x)} is finite.

Let x ∈ �I and x ′ ∈ �I ′
. We say that x is L�†,�† -

equivalent to x ′ if, for every concept C of L�†,�† , x ∈ CI

iff x ′ ∈ CI ′
.

Theorem 2 (The Hennessy–Milner Property) Let� and�†

beDL-signatures such that�† ⊆ �,� and�† be sets of DL-
features such that�† ⊆ �. Let I and I ′ be interpretations in
L�,�, finitely branching w.r.t.L�†,�† and such that for every

a ∈ �
†
I , a

I is L�†,�† -equivalent to aI ′
. Assume U /∈ �†

or �
†
I �= ∅. Then x ∈ �I is L�†,�† -equivalent to x ′ ∈ �I ′

iff there exists an L�†,�† -bisimulation Z between I and I ′
such that Z(x, x ′) holds.

This theorem presents necessary and sufficient for invari-
ant w.r.t finitely branching interpretations. It can be proved in
a similarway as [9, Theorem4.1].We nowhave the following
corollary.

Corollary 1 Let� and�† beDL-signatures such that�† ⊆
�, let � and �† be sets of DL-features such that �† ⊆ �,
and let I and I ′ be finite interpretations in L�,�. Assume
that �†

I �= ∅ and, for every a ∈ �
†
I , a

I is L�†,�† -equivalent

to aI ′
. Then, the relation {〈x, x ′〉 ∈ �I ×�I ′ | x is L�†,�† -

equivalent to x ′} is an L�†,�† -bisimulation between I and
I ′.

Definition 9 (Auto-bisimulation) An L�†,�† -auto-
bisimulation of I is an L�†,�† -bisimulation between I and
itself. An L�†,�† -auto-bisimulation of I is said to be the
largest if it is larger than or equal to (⊇) any other L�†,�† -
auto-bisimulation of I.

Given an interpretation I inL�,�, by∼�†,�†,I we denote
the largest L�†,�† -auto-bisimulation of I, and by ≡�†,�†,I
we denote the binary relation on �I with the property that
x ≡�†,�†,I x ′ iff x is L�†,�† -equivalent to x ′.

Theorem 3 Let� and�† be DL-signatures such that�† ⊆
�, � and �† be sets of DL-features such that �† ⊆ �, and
I be an interpretation in L�,�. Then:

1. the largestL�†,�† -auto-bisimulation of I exists and is an
equivalence relation,

2. if I is finitely branching w.r.t. L�†,�† then the relation
≡�†,�†,I is the largest L�†,�† -auto-bisimulation of I
(i.e., the relations ≡�†,�†,I and ∼�†,�†,I coincide).

This theorem can be proved as [9, Proposition 5.1 and
Theorem 5.2].

We say that a set Y is split by a set X if Y \X �= ∅ and
Y ∩ X �= ∅. Thus, Y is not split by X if either Y ⊆ X or
Y ∩ X = ∅. A partition Y = {Y1,Y2, . . . ,Yn} is consistent
with a set X if, for every 1 ≤ i ≤ n, Yi is not split by X .

Theorem 4 Let I be an interpretation inL�,�, and let X ⊆
�I , �† ⊆ � and �† ⊆ �. Then:

1. if there exists a concept C of L�†,�† such that X = CI
then the partition of �I by ∼�†,�†,I is consistent with
X,

2. if the partition of �I by ∼�†,�†,I is consistent with X
then there exists a conceptC ofL�†,�† such thatCI = X.

This theorem differs from the ones of [13,22] only in the
studied class of DLs. It can be proved analogously as in [22,
Theorem 4].

5 Concept learning

Let I be an information system in L�,� treated as a training
system. Let Ad ∈ �C be a concept name standing for the
“decision attribute”. Let E+ = {a | aI ∈ AI

d } and E− =
{a | aI ∈ (¬Ad)

I} be sets of positive examples and negative
examples of Ad in I, respectively. Suppose that Ad can be
expressed by a concept C in a sublanguage L�†,�† , where
�† ⊆ � \ {Ad} and�† ⊆ �. How can we learn that concept
C on the basis of I, E+ and E−? The conceptC must satisfy
the following conditions:

• I |� C(a) for all a ∈ E+, and
• I |� ¬C(a) for all a ∈ E−.

We say that a set Y ⊆ �I is split by E if there exist
a ∈ E+ and b ∈ E− such that {aI , bI} ⊆ Y . A partition
Y = {Y1,Y2, . . . ,Yn} of �I is said to be consistent with E
if, for every 1 ≤ i ≤ n, Yi is not split by E .

Observe that if Ad is definable in L�†,�† by a concept C
then:

• by the first assertion of Theorem 4,CI should be the union
of a number of equivalence classes of �I w.r.t. ∼�†,�†,I ,

• we should have thataI ∈ CI for alla ∈ E+, andaI /∈ CI
for all a ∈ E−.
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The general method of [22] for learning C is as follows:

1. Starting from the partition {�I}, make subsequent gran-
ulations to reach the partition corresponding to∼�†,�†,I .
The granulation process can be terminated as soon as the
current partition is consistent with AI

d (or when some cri-
teria are met).

2. In the granulation process,wedenote the blocks created so
far in all steps by Y1,Y2, . . . ,Yn , where the current parti-
tion {Yi1 ,Yi2 , . . . ,Yik } consists of only some of them.We
do not use the same subscript to denote blocks of different
contents (i.e., we always use new subscripts obtained by
increasing n for new blocks). We take care that, for each
1 ≤ i ≤ n:

• Yi is characterized by an appropriate concept Ci (such
that Yi = CI

i ),
• we keep information about whether Yi is split by AI

d ,
• if Yi ⊆ AI

d then LargestContainer[i] := j , where
1 ≤ j ≤ n is the subscript of the largest block Y j such
that Yi ⊆ Y j ⊆ AI

d .

3. At the end, let j1, j2, . . . , jh be all the indices from
{i1, i2, . . . , ik} such that Y jt ⊆ AI

d for 1 ≤ t ≤ h, and let
{l1, l2, . . . , l p} = {LargestContainer[ jt ] | 1 ≤ t ≤ h}.
LetC be a simplified form ofCl1 
Cl2 
· · ·
Clp . Return
C as the result.

In the granulation process, we use selectors to split blocks
of the current partition. In the next definitions, we introduce
basic selectors, simple selectors and extended selectors in
L�†,�† for splitting a block. We also prove that using the
basic selectors for the granulation process is sufficient to
reach the partition corresponding to the equivalence relation
∼�†,�†,I .

5.1 Selectors

Definition 10 (Basic Selectors) Let the current partition of
�I be {Yi1 ,Yi2 , . . . ,Yik }, where each block Yit is character-
ized by a concept Cit such that Yit = CI

it
. A basic selector

in L�†,�† for splitting a block Yi j is a concept of one of the
following forms:

• A, where A ∈ �
†
C ,

• A = d, where A ∈ �
†
A\�

†
C and d ∈ range(A),

• ∃σ.{d}, where σ ∈ �
†
dR and d ∈ range(σ ),

• ∃r.Cit , where r ∈ �
†
oR and 1 ≤ t ≤ k,

• ∃r−.Cit , if I ∈ �†, r ∈ �
†
oR and 1 ≤ t ≤ k,

• {a}, if O ∈ �† and a ∈ �
†
I ,

• ≤ 1 r , if F ∈ �† and r ∈ �
†
oR ,

• ≤ 1 r−, if {F, I } ⊆ �† and r ∈ �
†
oR ,

• ≥ l r and ≤ m r , if N ∈ �†, r ∈ �
†
oR , 0 < l ≤ #�I and

0 ≤ m < #�I ,
• ≥ l r− and ≤ m r− , if {N , I } ⊆ �†, r ∈ �

†
oR ,

0 < l ≤ #�I and 0 ≤ m < #�I ,
• ≥ l r.Cit and ≤ m r.Cit , if Q ∈ �†, r ∈ �

†
oR ,

1 ≤ t ≤ k, 0 < l ≤ #CI
it
and 0 ≤ m < #CI

it
,

• ≥ l r−.Cit and ≤ m r−.Cit , if {Q, I } ⊆ �†, r ∈ �
†
oR ,

1 ≤ t ≤ k, 0 < l ≤ #CI
it
and 0 ≤ m < #CI

it
,

• ∃r.Self, if Self ∈ �† and r ∈ �
†
oR .

Theorem 5 (On Basic Selectors) Let I be an information
system in L�,�, � and �† be DL-signatures such that
�† ⊆ �,� and�† be sets of DL-features such that�† ⊆ �.
To reach the partition corresponding to the equivalence rela-
tion ∼�†,�†,I it suffices to start from the partition {�I} and
repeatedly granulate it using the basic selectors.

Proof Let Y = {Yi1 ,Yi2 , . . . ,Yik } be a final partition
obtained by starting from the partition {�I} and repeat-
edly granulating it using the basic selectors. Recall that Cit
is the concept characterizing Yit , i.e., Yit = CI

it
. Let Z be

the equivalence relation corresponding to that partition, i.e.,
Z = {〈x, x ′〉 | x, x ′ ∈ Yi j for some 1 ≤ j ≤ k}.

We first show that Z is an L�†,�† -auto-bisimulation of I.

• Clearly, Z(aI , aI) always holds for a ∈ �
†
I .• Consider the assertion (2) and suppose Z(x, x ′) holds.

Since the partition Y cannot be granulated anymore using
the concept A, we have Yi j ⊆ AI or Yi j ∩ AI = ∅ for any

1 ≤ j ≤ k. If x, x ′ ∈ Yi j andYi j ⊆ AI then x, x ′ ∈ AI . If
x, x ′ ∈ Yi j and Yi j ∩ AI = ∅ then x, x ′ /∈ AI . Therefore
AI(x) ⇔ AI(x ′).

• Consider the assertion (3) and suppose Z(x, x ′) holds.
Similarly as above, since the partition cannot be granulated
anymore using any selector (B = d) with d ∈ range(B),
we have Yi j ⊆ (B = d)I or Yi j ∩ (B = d)I = ∅ for any

1 ≤ j ≤ k. If x, x ′ ∈ Yi j and Yi j ⊆ (B = d)I for some

d ∈ range(B) then x, x ′ ∈ (B = d)I , and hence B(x) =
d = B(x ′). If x, x ′ ∈ Yi j and Yi j ∩ (B = d)I = ∅ for all
d ∈ range(B) then both B(x) and B(x ′) are undefined.

• Consider the assertion (4) and suppose that Z(x, x ′) and
rI(x, y) hold. Let Yit be the block of Y that contains y.
We have that x ∈ (∃r.Cit )

I . SinceY cannot be granulated
anymore using the selector (∃r.Cit ), it follows that x

′ ∈
(∃r.Cit )

I . Hence, there exists y′ ∈ �I such that rI(x ′, y′)
holds and y′ ∈ CI

it
= Yit , which means Z(y, y′).

• The assertion (5) can be proved analogously to (4).
• For the assertion (6) we can use the argumentation given
for (2), with A replaced by ∃σ.{d}.

• The assertion (7) holds when I ∈ �† because the argu-
mentation used for proving (4) is still applicable when r
is replaced by r−.
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• Similarly, the assertion (8) also holds when I ∈ �†.
• The assertion (9) holds when O ∈ �† because we can use
the argumentation given for (2), with A replaced by {a}.

• Consider the assertion (10) and the case N ∈ �†. Sup-
pose Z(x, x ′) holds and let l = #{y | rI(x, y)}. Since
the partition Y cannot be granulated anymore using the
selectors ≥ l r (when l > 0) and ≤ l r (when l < #�I ),
we have that x ′ ∈ (≥ l r)I and x ′ ∈ (≤ l r)I . Therefore
#{y′ | rI(x ′, y′)} = l.

• The assertion (11) for the case {N , I } ⊆ �† can be proved
analogously to (10), using r− instead of r .

• Consider the assertion (12) and the case F ∈ �†. Suppose
Z(x, x ′) holds. Using the argumentation given for (2) with
A replaced by (≤ 1 r), we can derive that x ∈ (≤ 1 r)I
iff x ′ ∈ (≤ 1 r)I . Therefore, #{y | rI(x, y)} ≤ 1 ⇔
#{y′ | rI(x ′, y′)} ≤ 1.

• The assertion (13) for the case {F, I } ⊆ �† can be proved
analogously to (12), using r− instead of r .

• Consider the assertion (14) and the case Q ∈ �†. Suppose
Z(x, x ′) holds. Let S = {y ∈ �I | rI(x, y)} and S′ =
{y′ ∈ �I | rI(x ′, y′)}. Clearly, S and S′ are finite. For
the sake of contradiction, suppose there does not exist any
bijection h : S → S′ such that h ⊆ Z . Thus, there must
exist 1 ≤ t ≤ k such that #(S∩Yit ) = l �= m = #(S′∩Yit ).
If l > m then x ∈ (≥ l r.Cit )

I but x ′ /∈ (≥ l r.Cit )
I . If

m > l then x /∈ (≥ m r.Cit )
I but x ′ ∈ (≥ m r.Cit )

I .
Therefore, x and x ′ are distinguishable by a basic selector
in L�†,�† , which contradicts the fact that the partition Y

cannot be granulated anymore.
• The assertion (15) for the case {Q, I } ⊆ �† can be proved

analogously to (14), by using r− instead of r .
• The assertion (16) holds because for any x ∈ �I we can

choose x ′ = x . Similarly, the assertion (17) holds because
for any x ′ ∈ �I we can choose x = x ′.

• The assertion (18) holds when Self ∈ �† because we
can use the argumentation given for (2), with A replaced
by ∃r.Self.

We now show that Z is the largest L�†,�† -auto-bisimula-
tion of I. At each step of the granulation process, the
equivalence relation corresponding to the current partition
is a superset of ≡�†,�†,I because each block of the current
partition is characterized by a concept. Thus, at the end, we
have Z ⊇ ≡�†,�†,I . Since Z is anL�†,�† -auto-bisimulation
of I and ∼�†,�†,I is the largest L�†,�† -auto-bisimulation
of I, we have that Z ⊆ ∼�†,�†,I . Since ≡�†,�†,I and
∼�†,�†,I coincide (Theorem 3), we can conclude that Z =
∼�†,�†,I .

Basic selectors are adequate to granulate {�I} to reach the
partition corresponding to the equivalence relation∼�†,�†,I .
However, to prevent overfitting to the training system I and
obtain as simple as possible definitions for the learnt con-

cept, it is worth to consider also simple selectors defined
below although they are expressible by the basic selectors
over I. Most of them, except the ones related to attributes,
were proposed in [22].

Definition 11 (Simple Selectors) Let Y1, . . . , Yn be the
blocks that have been created so far in the process of granulat-
ing {�I}, where each block Yi is characterized by a concept
Ci such that Yi = CI

i .
4 A simple selector inL�†,�† for split-

ting a block is either a basic selector or a concept of one of
the following forms:

• A ≤ d and A < d, where A ∈ �
†
nA, d ∈ range(A) and d

is not a minimal element of range(A),
• A ≥ d and A > d, where A ∈ �

†
nA, d ∈ range(A) and d

is not a maximal element of range(A),
• ∃r.�, ∃r.Ci and ∀r.Ci , where r ∈ �

†
oR and 1 ≤ i ≤ n,

• ∃r−.�, ∃r−.Ci and ∀r−.Ci , if I ∈ �†, r ∈ �
†
oR and

1 ≤ i ≤ n,
• ≥ l r.Ci and ≤ m r.Ci , if Q ∈ �†, r ∈ �

†
oR , 1 ≤ i ≤ n,

0 < l ≤ #CI
i and 0 ≤ m < #CI

i ,

• ≥ l r−.Ci and ≤ m r−.Ci , if {Q, I } ⊆ �†, r ∈ �
†
oR ,

1 ≤ i ≤ n, 0 < l ≤ #CI
i and 0 ≤ m < #CI

i .

Our experiments showed that the resulting concepts
obtained by the learning method that use only simple selec-
tors to split blocks have the following characteristics:

• the length of the resulting concept is usually long,
• the accuracy, precision, recall and F1 measures of the
resulting classifier are not high for new objects.

The main reason is that simple selectors are not advanced
enough for granulating partitions. We propose to use a new
kind of selectors, called extended selectors.

Let D be a set of available selectors (at the beginning,
D = ∅). At each step in the granulation process, selectors
are created and added into D. Together with the current par-
tition Y, we have D = {D1, D2, . . . , Dh}, called the current
set of selectors. Extended selectors are defined using the cur-
rent set of selectors and object roles of the sublanguage as
follows.

Definition 12 (Extended Selectors) Let the current set of
selectors be D = {D1, D2, . . . , Dh}. An extended selector
in L�†,�† for splitting a block is a concept of one of the
following forms:

• ∃r.Du and ∀r.Du , where r ∈ �
†
oR and Du ∈ D,

• ∃r− .Du and ∀r− .Du , if I ∈ �†, r ∈ �
†
oR and Du ∈ D,

4 The current partition of�I may consist of only some of these blocks.
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• ≥ l r.Du and ≤ m r.Du , if Q ∈ �†, r ∈ �
†
oR , Du ∈ D,

0 < l ≤ #DI
u and 0 ≤ m < #DI

u ,
• ≥ l r−.Du and ≤ m r−.Du , if {Q, I } ⊆ �†, r ∈ �

†
oR ,

Du ∈ D, 0 < l ≤ #DI
u and 0 ≤ m < #DI

u .

Extended selectors are useful for the granulation process.
Using them, we have more selectors that can be used to
split blocks and we can obtain better partitions than using
only simple selectors. Furthermore, using extended selec-
tors, the number of iterations of the main loop of the learning
method is usually reduced significantly. This leads to simpler
resulting concepts with higher accuracy in classifying new
objects.

5.2 Simplicity of concepts

There are different normal forms for concepts [3,21]. Using
a normal form, one can represent concepts in a unified way.
We propose below a new normal form, which extends the
one of [21]. The normal form of a concept is obtained by
applying the following normalization rules:

1. concepts are represented in the negation normal form,
2. a conjunction C1 	 C2 	 · · · 	 Cn is represented by

an “and”-set, denoted by 	{C1,C2, . . . ,Cn},
3. 	{C} is replaced by C ,
4. 	{	{C1,C2, . . . ,Ci },Ci+1, . . . ,Cn} is replaced by

	{C1,C2, . . . ,Cn},
5. 	{� ,C1,C2, . . . , Cn} is replaced by 	{C1,C2, . . . ,

Cn},
6. 	{⊥,C1,C2, . . . ,Cn} is replaced by ⊥,
7. if Ci � C j and 1 ≤ i �= j ≤ n, then remove C j from

	{C1,C2, . . . ,Cn},
8. if Ci = C j and 1 ≤ i �= j ≤ n, then

	{C1,C2, . . . , Cn} is replaced by ⊥, where C is the
normal form of ¬C ,

9. ∀R.(	{C1,C2, . . . ,Cn}) is replaced by 	{∀R.C1,

∀R.C2, . . . ,∀R.Cn},
10. ∀R.� is replaced by �,
11. ≤ n R.⊥ is replaced by �,
12. ≥ n R.⊥ is replaced by ⊥ when n > 0,
13. ≥ 1 R.C is replaced by ∃R.C ,
14. the rules “dual” to the rules 2–10 (for example, dually

to the rule 5, 
{⊥,C1,C2, . . . ,Cn} is replaced by

{C1,C2, . . . ,Cn}).

Each step of the partition process may generate many
concepts. To avoid repetition of the same concepts in the
storage, we design the data structure appropriately. If two
concepts have the same normal form then they are rep-
resented only once in the data structure by the normal
form.

Example 3 Let A and B be concept names, r and s be
object role names. Let C = ¬(∃r.¬A 	 (B 
 ∀s.A)) 	
¬(≥ 3 r.A 
 ¬B). The negation normal form of C is
(∀r.A 
 (¬B 	 ∃s.¬A)) 	 (≤ 2 r.A 	 B). The normal form
of C is 	{
{∀r.A,	{¬B, ∃s.¬A}},≤ 2 r.A, B}.
Definition 13 (Modal Depth) Let C be a concept in the nor-
mal form. The modal depth of C , denoted bymdepth(C), is
defined to be:

• 0 if C is of the form �, ⊥, A, A = d, A �= d, A > d,
A ≥ d, A < d or A ≤ d,

• mdepth(D) if C is the normal form of ¬D,
• 1 if C is of the form ∃σ.{d}, ∃r.Self, ≥ n R or ≤ n R,
• 1+mdepth(D) ifC is of the form ∃R.D,∀R.D,≥ n R.D
or ≤ n R.D,

• max{mdepth(D1),mdepth(D2), . . . ,mdepth(Dn)} if
C is of the form 	{D1, D2, . . . , Dn} or 
{D1, D2, . . . ,

Dn}.

Definition 14 (Length) Let C be a concept in the normal
form. The length of C , denoted by length(C), is defined to
be:

• 0 if C is � or ⊥,
• 1 if C is of the form A, A = d, A �= d, A > d, A ≥ d,

A < d or A ≤ d,
• length(D) if C is the normal form of ¬D,
• 3 if C is of the form ∃σ.{d}, ∃r.Self, ≥ n R or ≤ n R,
• 2 + length(D) if C is of the form ∃R.D or ∀R.D,
• 3+ length(D) if C is of the form ≥ n R.D or ≤ n R.D,
• 1+ length(D1)+ length(D2)+· · ·+ length(Dn) if C is
of the form 	{D1, D2, . . . , Dn} or 
{D1, D2, . . . , Dn}.

In this paper, concepts are represented in the normal form
(i.e., the negation constructor appears only in front of atomic
concepts). For this reason, length(¬D) is defined to be
length(D).

Example 4 Let A and B be concept names, r and s be object
role names. We have:

• mdepth(	{¬A,≥ 2 r.(∃r.�), ∃s.B}) = 2,
• length(	{¬A,≥ 2 r.(∃r.�), ∃r.B}) = 10.

Given concepts C and D in the normal form, we say that
C is simpler than D if:

• length(C) < length(D), or
• length(C)= length(D) and mdepth(C)≤mdepth(D).

In fact, the modal depth of a concept is usually restricted
by a very small value, while the length of a concept is
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usually large. Hence, the differences between the modal
depths of concepts are usually small. In contrast, the dif-
ferences between the lengths of concepts may be very
large. Thus, we choose the length of a concept as the
main factor for deciding whether a concept is simpler than
another.

LetC = {C1,C2, . . . ,Cn} be a set of concepts. A concept
Ci ∈ C is said to be the simplest if it is simpler than any other
concept in C.

5.3 Information gain in the context of DLs

Let X and Y be subsets of �I , where X plays the role of
a set of positive examples for the concept to be learnt.

Definition 15 Entropy of Y w.r.t. X in �I , denoted by
E�I (Y/X), is defined as follows:

E�I (Y/ X)

=
⎧
⎨

⎩

0, if Y ∩ X = ∅ or Y ⊆ X

− # X Y

#Y
log2

# X Y

#Y
− # X Y

#Y
log2

# X Y

#Y
, otherwise

(19)

where XY stands for the set X ∩Y and XY stands for the set
X ∩ Y .

Entropy is an information—theoretic measure of the
“uncertainty” contained in an information system treated as
a training set, due to the presence of more than one possible
classification. It takes the minimum value (zero) iff all the
examples have the same classification, in which case there
is only one non-empty class, for which the probability is 1.
Entropy takes its maximum value when the examples are
equally distributed amongst the two possible sets.

Remark 2 According to (19), E�I (Y/X) = 0 iff Y is not
split by X .

We want to determine which attribute in a given set of
training features is most useful for discriminating between
the classes to be learnt. In [25] Quinlan proposed to use infor-
mation gain for deciding the ordering of attributes in the
nodes of a decision tree. In the context of DLs, we formulate
information gain for a selector to split a block in a partition
as follows.

Definition 16 Information gain for a selector D to split Y
w.r.t. X in �I , denoted by IG�I (Y/X, D), is defined as
follows:

IG�I (Y/X, D) = E�I (Y/X)

−
(
#DIY
#Y

E�I (DIY/X) + #DIY
#Y

E�I (DIY/X)

)

(20)

where DIY stands for the set DI ∩ Y and DIY stands for
the set DI ∩ Y .

The information gain is based on the decrease in entropy
after an information system is split on a block by a selec-
tor. Constructing a decision tree is all about finding a block
as well as a selector that returns the highest information
gain.

In the case �I and X are clear from the context, we
write E(Y ) and IG(Y, D) instead of E�I (Y/X) and
IG�I (Y/X, D), respectively.

5.4 A bisimulation-based concept learning algorithm

We now describe a bisimulation-based concept learning
method for information systems in DLs via Algorithm 1. It
is based on the general method of [22]. In this algorithm, the
kinds of selectors applied in the granulation process depend
on Steps 2 and 19. We can use only basic selectors, only
simple selectors or both of simple selectors and extended
selectors.

Function chooseBlockSelector in Step 4 is used
to choose the best block and selector at the current moment
in the granulation process. This function applies informa-
tion gain measure while taking into account also simplic-
ity of selectors. Suppose that we have the current parti-
tion Y = {Yi1 ,Yi2 , . . . ,Yik } and the current set of selectors
D = {D1, D2, . . . , Dh}.

For each block Yi j ∈ Y (where 1 ≤ j ≤ k), let Si j be the
simplest selector from the set argmaxDu ∈ D{IG(Yi j , Du)}.
If a block Yi j of Y is chosen to be split then Si j is the choice
for splitting Yi j . Note that the information gain is used for
the selection.

After choosing the selectors for blocks, we decide which
block should be split first. We choose a block Yi j such that
applying the selector Si j to split Yi j maximizes the infor-
mation gain. That is, we split a block Yi j ∈ argmaxYi j ∈ Y

{IG(Yi j , Si j )} first.
For Step 19, after splitting a block,wehave a newpartition.

We also create and add new selectors to the current set of
selectors. This set is used to continue granulating the new
partition.

Similarly to the method proposed in [22], we keep infor-
mation about whether Yi is split by E and set Largest
Container[i] := j if it is not, where 1 ≤ j ≤ n is the
subscript of the largest block Y j such that Yi ⊆ Y j and Y j is
not split by E .

For Step 24, the meaning of J is to collect subscripts l
such that Yl is the largest block which is not split by E and
Yl ⊆ {aI | a ∈ E+}.
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Function chooseBlockSelector(Y, D)
Output:

〈
Yi j , Si j

〉
such that IG(Yi j , Si j ) is maximal, where

Yi j ∈ Y and Si j ∈ D

BS := ∅;1
foreach Yi j ∈ Y do2

foreach Du ∈ D do3
compute IG(Yi j , Du);4

S := argmax
Du∈D

{IG(Yi j , Du)};
5

let Si j be the simplest concept in S;6

BS := BS ∪ {〈Yi j , Si j
〉 };7

choose
〈
Yi j , Si j

〉 ∈ BS such that IG(Yi j , Si j ) is maximal;8

return
〈
Yi j , Si j

〉
;9

In practice, it is very difficult to obtain the condition “Y j is
not split by E”. Therefore, we can approximate this condition
by a hight rate r of positive examples in each block (for
example, the parameter r may be 90%).

Remark 3 The expression
⊔

C in Step 27 is understood as
follows:

• ⊔
C = Cl1 
 Cl2 
 · · · 
 Clp , if C = {Cl1,Cl2 , . . . ,Clp },

• ⊔
C = ⊥, if C = ∅.

The decision trees generated in the granulation process
can be very large. They may give complex concepts which
overfit the training datasets and poorly classify new objects.
In Step 28, simplifying a concept can be done using some
techniques to reduce the size of the decision trees and the
length of the resulting concepts. A validating dataset is used
to prune the decision tree as well as to reduce the result-
ing concept. The goal is to increase the accuracy. Function
Simplify can use the following techniques:

• The first technique is pruning. Given a decision tree gen-
erated by the granulation process, it allows to reduce the
size of the tree by removing parts that provide little power
in classifying objects. Pruning can be done top-down or
bottom-up. For example, using the bottom-up fashion, one
can repeatedly choose a node whose successors are leaves
and cut off the successors if the average accuracy of the
resulting concept is not worse on the training and validat-
ing datasets.

• The second technique is based on replacement. The result-
ing concept is usually a disjunction C1 
C2 
 · · · 
Cn . In
the case Ci is a too complex concept, we consider replac-
ing it by a simpler one from the set of selectors if they
have the same denotation in the considered information
system. The replacement is done only when the accuracy
of the resulting concept is not worse on the validating
dataset.

• The third technique is simplification. De Morgan’s laws
are used to reduce the resulting concept to an equivalent
one.

6 Illustrative examples

In this section, we present three examples to illustrate Algo-
rithm 1. Example 5 uses only basic selectors, Example 6
uses only simple selectors, and Example 7 uses both simple
selectors and extended selectors for the granulation process.
The aim is to show the effectiveness of different kinds of
selectors.

Example 5 Consider the information system I given in
Example 2. Assume that we want to learn a definition of
the concept ExcellentPub (i.e., E = 〈

E+, E−〉
with E+ =

{P4,P6} and E− = {P1,P2,P3,P5}) in the sublanguage

Algorithm 1: bisimualtion-based concept learning for
information systems in description logics

Input: I, �†, �†, E = 〈
E−, E+〉

Output: A concept C such that:
• I |� C(a) for all a ∈ E+, and
• I �|� C(a) for all a ∈ E−.

n := 1; Y1 := �I ; Y := {Y1}; D := ∅;1
create and add selectors to D;2
while Y is not consistent with E do3 〈

Yi j , Si j
〉
:= chooseBlockSelector(Y, D);4

if (Yi j is not split by S
I
i j

) then5
break;6

s := n + 1; t := n + 2; n := n + 2;7

Ys := Yi j ∩ SI
i j
; Cs := Ci j 	 Si j ;8

Yt := Yi j ∩ (¬Si j )
I ; Ct := Ci j 	 ¬Si j ;9

if (Yi j is not split by E) then10
LargestContainer[s] := LargestContainer[i j ];11
LargestContainer[t] := LargestContainer[i j ];12

else13
if (Ys is not split by E) then14

LargestContainer[s] := s;15

if (Yt is not split by E) then16
LargestContainer[t] := t ;17

Y := Y ∪ {Ys , Yt } \ {Yi j };18

create and add new selectors to D;19

J := ∅; C := ∅;20
if (Y is consistent with E) then21

foreach Yi j ∈ Y do22

if (Yi j contains some a
I with a ∈ E+) then23

J := J ∪ {LargestContainer[i j ]};24

foreach l ∈ J do25
C := C ∪ {Cl };26

C := ⊔
C ;27

return Crs := Simplify (C);28
else29

return failure;30
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{P1,P2,P3,P4,P5,P6}
Awarded

¬Awarded

{P1,P4,P6}
¬∃cited by.

∃cited by.

{P2,P3,P5}

{P1} {P4,P6}

Fig. 3 A decision tree illustrating Example 5

L�†,�† , where �† = {Awarded, cited _by} and �† = ∅.
Basic selectors are used in the granulation process. The steps
are as follows:

1. Y1 := �I , parti tion := {Y1}
2. According to the information gain measure, the best basic

selector for splitting Y1 is Awarded. Using it we obtain:

• Y2 := {P1,P4,P6}, C2 := Awarded
• Y3 := {P2,P3,P5}, C3 := ¬Awarded
• LargestContainer[3] := 3 (as Y3 is not split by E)
• parti tion := {Y2,Y3}

3. According to the information gain measure, the best basic
selectors for splitting Y2 are ∃cited _by.�, ∃cited _by.C2

and ∃cited _by.C3. All of them split Y2 in the same way.
We choose ∃cited _by.�, as it is the simplest one. Using
it we obtain:

• Y4 := {P1}, C4 := C2 	 ¬∃cited _by.�
• LargestContainer[4] := 4 (as Y4 is not split by E)
• Y5 := {P4,P6}, C5 := C2 	 ∃cited _by.�
• LargestContainer[5] := 5 (as Y5 is not split by E)
• parti tion := {Y3,Y4,Y5}

The obtained partition is consistentwith E , having onlyY5
contains P4, P6 with P4,P6 ∈ E+. (It is not yet the partition
corresponding to ∼�†,�†,I .)

Since LargestContainer[5] = 5, we have C = {C5}. The
returned concept is C = C5 = Awarded 	 ∃cited _by.�.
It is simple and “comparable” with the original definition
ExcellentPub ≡ (GoodPub 	 Awarded) ≡ (Awarded 	 ≥
2 cited _by).

The granulation process is illustrated by the decision tree
given in Fig. 3.

The following example shows that when no role is used,
i.e., when �

†
oR ∪ �

†
dR = ∅, the above proposed method

is similar the traditional learning method based on decision
trees.

Example 6 Consider again the information systemI given in
Example 2.Assume thatwewant to learn a concept definition
of X = {P4,P6} (i.e., E = 〈

E+, E−〉
with E+ = {P4,P6}

and E− = {P1,P2,P3,P5}) in the sublanguage L�†,�† ,

{P1,P2,P3,P4,P5,P6}
Awarded

¬Awarded

{P1,P4,P6}
Year≥2009

Year<2009

{P2,P3,P5}

{P1} {P4,P6}

Fig. 4 A decision tree illustrating Example 6

where �† = {Awarded,Year} and �† = ∅. Simple selec-
tors are used in the granulation process. The steps are as
follows:

1. Y1 := �I , parti tion := {Y1}
2. According to the information gain measure, the best

simple selectors for the current step are Awarded and
Year ≥2008. We choose Awarded and obtain:

• Y2 := {P1,P4,P6}, C2 := Awarded
• Y3 := {P2,P3,P5}, C3 := ¬Awarded
• LargestContainer[3] := 3 (as Y3 is not split by E)
• parti tion := {Y2,Y3}.

3. According to the information gain measure, one of the
best simple selectors for splitting Y2 is Year ≥ 2009.
Using it we obtain:

• Y4 := {P1}, C4 := C2 	 (Year ≥ 2009)
• LargestContainer[4] := 4 (as Y4 is not split by E)
• Y5 := {P4,P6}, C5 := C2 	 (Year < 2009)
• LargestContainer[5] := 5 (as Y5 is not split by E)
• parti tion := {Y3,Y4,Y5}.

The obtained partition is consistentwith E , having onlyY5
contains P4, P6 with P4,P6 ∈ E+. (It is not yet the partition
corresponding to ∼�†,�†,I ).

Since LargestContainer[5] = 5, we have C = {C5}. The
returned concept is C = C5 = Awarded 	 (Year < 2009).

The granulation process is illustrated by the decision tree
given in Fig. 4.

The following example shows the effectiveness of simple
selectors and extended selectors.

Example 7 Let � = {I } and
�I = { Ava, Britt,Colin, Dave, Ella, Flor,Gigi,

Harry},
�C ={ Human, Male, Female, Nephew, Niece},
�d A = �C

�oR = {hasChild, hasParent, hasSibling}, �dR = ∅,

T = {hasParent ≡ hasChild−,

Human ≡ �, Female ≡ ¬Male,
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a : F b : F c : M

d : M e : F f : F g : F h : M

Fig. 5 An illustration for the information system given in Example 7

Niece ≡ Female 	 ∃hasChild−.(∃hasSibling.�),

Nephew ≡ Male 	 ∃hasChild−.(∃hasSibling.�)},
A = {Female(Ava), Female(Britt), Male(Colin),

Male(Dave), Female(Ella), Female(Flor),

Female(Gigi), Male(Harry),

hasChild(Ava, Dave), hasChild(Ava, Ella),

hasChild(Britt, Flor), hasChild(Colin,Gigi),

hasChild(Colin, Harry), hasSibling(Britt, Colin),

hasSibling(Colin, Britt), hasSibling(Dave, Ella),

hasSibling(Ella, Dave), hasSibling(Gigi, Harry),

hasSibling(Harry,Gigi)}.

Consider the information system I specified by:

�I = { Ava, Britt,Colin, Dave, Ella, Flor,Gigi,

Harry},
FemaleI = {Ava, Britt, Ella, Flor,Gigi},
MaleI = {Colin, Dave, Harry},
hasChildI = {〈Ava, Dave〉, 〈Ava, Ella〉,

〈Britt, Flor〉, 〈Colin,Gigi〉, 〈Colin, Harry〉},
hasParentI = { 〈Dave, Ava〉, 〈Ella, Ava〉,

〈Flor, Britt〉, 〈Gigi,Colin〉, 〈Harry,Colin〉},
hasSiblingI = { 〈Dave, Ella〉, 〈Ella, Dave〉,

〈Britt, Colin〉, 〈Colin, Britt〉, 〈Gigi, Harry〉,
〈Harry,Gigi〉},

(hasSibling−)I = hasSiblingI ,

NieceI = {Flor,Gigi}, NephewI = {Harry}.
This interpretation is illustrated in Fig. 5. In this figure,

each node denotes a person, the letter M stands for Male,
F stands for Female, the solid edges denote assertions of
the role hasChild , and the dashed edges denote assertions
of the role hasSibling. We abbreviate Ava to a, Britt to b,
…, and Harry to h.

Let �† = {Female, hasChild, hasSibling}, �† =
{I } and X = { f, g} (i.e., E = 〈

E+, E−〉
with E+ =

{ f, g} and E− = {a, b, c, d, e, h}). One can think of X
as the set of instances of the concept Niece ≡ Female 	
∃hasChild−.(∃hasSibling.�) in I. We illustrate the steps
of the granulation process by decision trees.

a, b, c, d, e, f, g, h

Female ¬Female

a, b, e, f, g

∃hasChild. ∀hasChild.⊥
c, d, h

a, b e, f, g

∃hasSibling. ∀hasSibling.⊥

e, g

∃hasChild−.Female ∀hasChild−.(¬Female)

f

e g

Fig. 6 Adecision tree illustrating the granulation process using simple
selectors

a, b, c, d, e, f, g, h

Female ¬Female

a, b, e, f, g

∃hasChild−.(∃hasSibling. ) ∀hasChild−.(∀hasSibling.⊥)

c, d, h

f, g a, b, e

Fig. 7 A decision tree illustrating the granulation process using both
simple selectors and extended selector

1. Consider learning a definition of X in L�†,�† using
simple selectors. The steps are illustrated by the deci-
sion tree in Fig. 6. The resulting concept is (Female 	
∀hasChild.⊥ 	 ∃hasSibling.� 	 ∀hasChild−.

(¬Female))
(Female	∀hasChild.⊥	∀hasSibling.
⊥). This concept can be simplified to Female 	 ∀has
Child.⊥	(∀hasChild−.(¬Female)
∀hasSibling.⊥).

2. Consider learning a definition of X in L�†,�† using both
simple selectors and extended selectors. The steps are
illustrated by the decision tree in Fig. 7. The resulting
concept is Female 	 ∃hasChild−.(∃hasSibling.�).

The concept ∃hasChild−.(∃hasSibling.�) is an
extended selector (in the second case). It is created by apply-
ing the second form in Definition 12 to ∃hasSibling.�,
which is one of the available selectors in the current set of
selectors D.

This example demonstrates that using both simple selec-
tors and extended selectors is better than using only simple
selectors. The former reduces the number of iterations of the
main loop and the length of the resulting concept.

In Examples 5, 6 and 7, the use of LargestContainer does
not bring benefits. To see its usefulness we refer the reader
to [22].

123



164 Vietnam J Comput Sci (2015) 2:149–167

Table 1 Evaluation results on the WebKB, PokerHand and Family datasets using 100 random concepts in the DL ALCIQ
Avg. Dep.
Res./Org.

Avg. Len.
Res./Org.

Avg. Acc.
[min; max]

Avg. Pre.
[min; max]

Avg. Rec.
[min; max]

Avg. F1
[min; max]

WebKB dataset

Simple selectors 0.82/1.02 6.81/4.41 93.84 ± 13.50 92.09 ± 17.04 92.82 ± 17.32 91.59 ± 16.68

[33.69; 100.0] [32.08; 100.0] [23.08; 100.0] [27.69; 100.0]

Simple and extended 0.84/1.02 3.40/4.41 94.60 ± 12.20 92.81 ± 15.93 93.14 ± 17.17 92.33 ± 16.17

Selectors [33.69; 100.0] [32.08; 100.0] [23.08; 100.0] [27.69; 100.0]

PokerHand dataset

Simple selectors 1.41/2.60 37.02/15.97 97.17 ± 08.61 95.96 ± 14.99 94.95 ± 14.40 94.66 ± 14.64

[50.57; 100.0] [01.67; 100.0] [01.67; 100.0] [01.67; 100.0]

Simple and extended 1.23/2.60 3.47/15.97 99.44 ± 02.15 98.68 ± 09.08 98.06 ± 09.58 98.18 ± 09.14

Selectors [83.25; 100.0] [01.67; 100.0] [01.67; 100.0] [01.67; 100.0]

Family dataset

Simple selectors 2.38/3.34 78.50/18.59 88.50 ± 16.65 90.60 ± 18.57 85.66 ± 22.36 86.09 ± 20.10

[27.91; 100.0] [04.55; 100.0] [07.69; 100.0] [08.70; 100.0]

Simple and extended 2.29/3.34 10.20/18.59 92.79 ± 14.35 91.99 ± 18.40 91.75 ±19.82 90.39 ± 19.89

Selectors [27.91; 100.0] [04.55; 100.0] [07.69; 100.0] [08.70; 100.0]

7 Experimental results

We implemented our method and conducted experiments
only for the class L�,� of DLs such that L stands for
ALC (i.e., the role constructors of propositional dynamic
logic are discared), �nA = �dR = ∅ and �d A = �C (i.e.,
� = �I ∪ �C ∪ �R with �R = �oR), and � ⊆ {I, Q}.

The L�,� language is redefined by removing the redun-
dant items from Definition 3.

By ALCIQ (resp. ALCI , ALCQ ) we denote the L�,�

language with L = ALC and � = {I, Q} (resp. � = {I },
� = {Q}).

The difficulty we encountered is that there were too few
available datasets with linked data that can directly be used
for concept learning using our setting. We had to build/get
datasets for our setting from some resources on the Inter-
net, including the WebKB [28], PokerHand [5] and Family
datasets.

The WebKB dataset consists of information about web
pages of four departments of computer science (Cornell,
Washington, Wisconsin, and Texas universities). It contains
information about 877 web pages (objects) and 1608 links
between them of one relationship (ci tes).

Each object in the dataset is described by a 0/1-valued
word vector indicating the absence/presence of the cor-
responding word from the dictionary (1703 words). It is
assigned one of five concepts indicating the type ofweb page:
Course, Faculty, Student , Project and Staff .

We use data from two of the four departments for training
(230objects) andvalidating (195objects). The two remaining
ones (452 objects) are used for testing.

The Family dataset consists of information about people
from five families (British Royal, Bush, Roberts, Romanov
and Stevens families). It contains information about 943 peo-
ple (objects) and 11,062 links between them of seven rela-
tionships (hasChild , hasSon, hasDaughter , hasWi f e,
hasHusband, hasBrother and hasSister ). Each object
is an instance of either the concept Male or Female. The
data from two of the five families are used for training (437
objects) andvalidating (49objects). The three remainingones
(457 objects) are used for testing.

The PokerHand dataset is a subset taken from UCI
Machine Learning Repository. It consists of information
about 2542hands, 12,710 cards, 119 features of cards (15,371
objects in total) and 65,220 links between them of six
relationships (hasCard, hasRank, hasSuit , sameRank,
next Rank, sameSuit). The goal is to predict which among
nine classes should be assigned to a hand. These classes are
“one pair”, “two pairs”, “three of a kind”, “straight”,
“ f lush”, “ f ull house”, “ f our of a kind”, “straight
f lush” and “royal f lush”. Because the number of hands
in the classes “royal f lush”, “straight f lush” and
“ f our of a kind” is very small, we remove these classes
from our dataset. The dataset is divided into seven subsets.
Two subsets are used for training (1343 objects) and vali-
dating (1343 objects). The five remaining ones are used for
testing (12,685 objects).

We have used Java language (JDK 1.6) to implement the
bisimulation-based concept learning method for informa-
tion systems in the DL ALCIQusing simple selectors and
extended selectors as well as the information gain discussed
in Sect. 5.3. The reduction techniques mentioned in that sec-
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Table 2 Evaluation results on the Family dataset using five popular concepts in the DL ALCI
Dep. Res. Len. Res. Avg. Acc.

[min; max]
Avg. Pre.
[min; max]

Avg. Rec.
[min; max]

Avg. F1
[min; max]

Concept: Grandparent = ∃hasChild.(∃hasChild.�)

Simple selectors 2.00 4.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

[100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Simple and extended 2.00 4.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

Selectors [100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Concept: Grand f ather = Male 	 ∃hasChild.(∃hasChild.�)

Simple selectors 2.00 36.00 95.90 ± 01.39 87.38 ± 06.81 79.15 ± 17.38 81.44 ± 08.35

[94.28; 97.67] [80.00; 96.43] [57.45; 100.0] [72.00; 92.31]

Simple and extended 2.00 07.00 99.46 ± 00.77 100.0 ± 00.00 95.74 ± 6.02 97.73 ± 03.21

Selectors [98.37; 100.0] [100.0; 100.0] [87.23; 100.0] [93.18; 100.0]

Concept: Grandmother = Female 	 ∃hasChild.(∃hasChild.�)

Simple selectors 2.00 18.00 89.74 ± 01.30 100.0 ± 00.00 15.32 ± 04.47 26.31 ± 06.85

[88.37; 91.49] [100.0; 100.0] [09.30; 20.00] [17.02; 33.33]

Simple and extended 2.00 07.00 99.91 ± 00.13 100.0 ± 00.00 99.22 ± 01.10 99.61 ± 00.55

Selectors [99.73; 100.0] [100.0; 100.0] [97.67; 100.0] [98.82; 100.0]

Concept: Niece = Female 	 ∃hasChild−.(∃hasBrother.� 
 ∃hasSister.�)

Simple selectors 3.00 151.00 85.57 ± 09.47 57.92 ± 32.09 64.70 ± 29.35 60.69 ± 31.33

[72.21; 93.02] [12.66; 83.33] [23.26; 87.50] [16.39; 83.33]

Simple and extended 2.00 11.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

Selectors [100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Concept: Nephew = Male 	 ∃hasChild−.(∃hasBrother.� 
 ∃hasSister.�)

Simple selectors 3.00 178.00 91.40 ± 05.74 77.04 ± 26.30 88.40 ± 01.99 79.82 ± 17.72

[83.38; 95.74] [40.22; 100.0] [86.05; 90.91] [54.81; 93.75]

Simple and extended 2.00 11.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

Selectors [100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

tion have been integrated into our program. The program and
datasets can be downloaded fromhttp://www.mimuw.edu.pl/
~ttluong/ConceptLearning.rar.

We tested our method on the above mentioned three
datasets using 100 random origin concepts in the DL
ALCIQ . For each random origin concept C , we used
E+ = {a | aI ∈ CI} as the set of positive examples and
E− = {a | aI ∈ �I \CI} as the set of negative exam-
ples, where I is the considered interpretation used as the
training information system. These concepts have different
depths and lengths. We ran the program on each dataset
and each concept in two cases: using only simple selec-
tors and using both simple selectors and extended selec-
tors. Table 1 summarizes the evaluation of our experiments
in:

• the average (Avg.) modal depth (Dep.) of the origin con-
cepts (Org.),

• the average length (Len.) of the origin concepts,
• the average modal depth of the resulting concepts (Res.),
• the average length of the resulting concepts,

• the average accuracy (Acc.), precision (Pre.), recall (Rec.)
and F1 measures,

• the standard variant, minimum (Min) and maximum
(Max) values of accuracy, precision, recall and F1 mea-
sures.

As can be seen in Table 1, the accuracy, precision,
recall and F1 measures of the resulting concepts in classi-
fying new objects are usually very high. This demonstrates
that the bisimulation-based concept learning method is
valuable.

In addition, we tested the method using specific concepts
on the Family and PokerHand datasets. For the former, we
use the following five popular concepts in the DL ALCI :

1. Grandparent ≡ ∃hasChild.(∃hasChild.�),
2. Grand f ather ≡ Male 	 ∃hasChild.(∃hasChild.�),
3. Grandmother ≡ Female 	 ∃hasChild.(∃hasChild.

� ),

4. Nephew ≡ Male 	 ∃hasChild−.(∃hasBrother.� 

∃hasSister.�),
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Table 3 Evaluation results on the PokerHand dataset using six sets of objects in the DL ALCQ
Dep. Res. Len. Res. Avg. Acc.

[min; max]
Avg. Pre.
[min; max]

Avg. Rec.
[min; max]

Avg. F1
[min; max]

One pair

Simple selectors 4.0 109.00 42.57 ± 01.48 16.74 ± 00.87 76.00 ± 4.03 27.44 ± 01.42

[40.71; 45.24] [15.64; 18.05] [71.67; 81.67] [25.67; 29.45]

Simple and extended selectors 5.00 15.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

[100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Two pairs

Simple selectors 4.00 25.00 36.33 ± 00.47 17.16 ± 0.53 90.33 ± 4.14 28.83 ± 00.96

[35.48; 36.67] [16.34; 17.70] [83.33; 95.00] [27.32; 29.84]

Simple and extended selectors 5.00 15.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

[100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Three of a kind

Simple selectors 4.00 48.00 52.52 ± 02.16 20.92 ± 1.01 83.33 ± 01.83 33.43 ± 01.39

[50.71; 56.67] [19.75; 22.77] [80.00; 85.00] [31.68; 35.92]

Simple and extended selectors 3.00 11.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

[100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Straight

Simple selectors 5.00 97.00 81.24 ± 02.01 39.65 ± 04.62 58.33 ± 04.94 47.13 ± 4.41

[80.00; 85.24] [36.36; 48.72] [53.33; 65.00] [43.24; 55.07]

Simple and extended selectors 5.00 32.00 98.67 ± 00.68 96.35 ± 03.44 94.33 ± 02.00 95.31 ± 02.35

[97.62; 99.52] [90.32; 100.0] [91.67; 96.67] [91.80; 98.31]

Flush

Simple selectors 2.00 10.00 94.33 ± 00.80 71.71 ± 02.79 100.0 ± 00.00 83.49 ± 01.92

[92.86; 95.24] [66.67; 75.00] [100.0; 100.0] [80.00; 85.71]

Simple and extended selectors 3.00 7.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

[100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

Full house

Simple selectors 4.00 68.00 60.48 ± 03.05 25.95 ± 01.45 94.67 ± 2.45 40.71 ± 01.73

[57.62; 64.76] [24.23; 28.00] [91.67; 98.33] [38.33; 43.08]

Simple and extended selectors 2.00 6.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00 100.0 ± 00.00

[100.0; 100.0] [100.0; 100.0] [100.0; 100.0] [100.0; 100.0]

5. Niece ≡ Female 	 ∃hasChild−.(∃hasBrother.� 

∃hasSister.�).

For the PokerHand dataset, we tested the method using
six sets of objects corresponding to six concepts (classes) in
the DL ALCQ . They are described below:

1. “one pair”: one pair of equal ranks within five cards,
2. “two pairs”: two pairs of equal ranks within five cards,
3. “three of a kind”: three equal ranks within five cards,
4. “straight”: five cards, sequentially ranked with no gaps,
5. “ f lush”: five cards with the same suit,
6. “ f ull house”: pair + different rank three of a kind.

Table 2 provides the evaluation results on the Family
dataset using the mentioned popular concepts.

Table 3 provides the evaluation results on the PokerHand
dataset using the above six classes.

From Tables 1, 2 and 3, it is clear that extended selec-
tors are highly effective for reducing the length of the
resulting concepts and for obtaining better classifiers. This
demonstrates that extended selectors efficiently support the
bisimulation-based concept learning method.

8 Conclusions

We have generalized and extended the bisimulation-based
concept learning method [22] for DL-based information sys-
tems. As demonstrated by Examples 1, 5 and 6, by taking
attributes as basic elements of the language, our approach is
more general and muchmore suitable for practical DL-based
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information systems than the one of [22]. In comparison
with [22], we allow also data roles and the concept construc-
tors “functionality” and “unqualified number restrictions”.
Furthermore, we have formulated and proved an important
theorem on basic selectors.

Apart from simple selectors, we introduced and used
extended selectors for our method.We used information gain
to choose blocks and selectors for granulating partitions. We
also proposed a normal form which is used to represent con-
cepts in a unified way. By Example 7, we showed that using
both simple selectors and extended selectors ismore effective
than using only simple selectors. We have also implemented
our method for a number of DLs.

We tested the method using simple selectors and extended
selectors for different datasets. Our experimental results
show that the method is valuable and extended selectors sup-
port it significantly.
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