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Candidate glutamatergic and dopaminergic pathway gene
variants do not influence Huntington’s disease motor onset
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Abstract Huntington’s disease (HD) is a neurodegenerative
disorder characterized by motor, cognitive, and behavioral
disturbances. It is caused by the expansion of the HTT CAG
repeat, which is the major determinant of age at onset (AO)
of motor symptoms. Aberrant function of N-methyl-D-aspar-
tate receptors and/or overexposure to dopamine has been

suggested to cause significant neurotoxicity, contributing to
HD pathogenesis. We used genetic association analysis in
1,628 HD patients to evaluate candidate polymorphisms in
N-methyl-D-aspartate receptor subtype genes (GRIN2A
rs4998386 and rs2650427, and GRIN2B rs1806201) and
functional polymorphisms in genes in the dopamine
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pathway (DAT1 3′ UTR 40-bp variable number tandem
repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2
rs1800497, and COMT rs4608) as potential modifiers of
the disease process. None of the seven polymorphisms
tested was found to be associated with significant modifica-
tion of motor AO, either in a dominant or additive model,
after adjusting for ancestry. The results of this candidate-
genetic study therefore do not provide strong evidence to
support a modulatory role for these variations within
glutamatergic and dopaminergic genes in the AO of HD
motor manifestations.
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Introduction

Huntington’s disease (HD) is a dominantly inherited neuro-
degenerative disorder, usually of adult onset, characterized
by involuntary choreiform movements, cognitive impair-
ment, and behavioral changes. HD is caused by the expan-
sion of an unstable polymorphic CAG repeat in HTT [1].
Age at onset (AO) of diagnostic clinical symptoms is in-
versely correlated with the size of the expanded CAG re-
peat. It explains about 50–70 % of the variance in motor AO
[2–4], while the remainder is highly heritable, strongly
implying the existence of genetic factors that modulate the

rate of the pathogenic process that leads to onset of symp-
toms [5–7].

The neuropathological changes that comprise the patho-
logical grading system for HD are found in the striatum,
where there is a selective and progressive neuronal loss of
medium spiny neurons (MSNs) [8, 9]. Glutamatergic and
dopaminergic pathways are well known to regulate striatal
neuronal function by interacting and modulating each other,
suggesting that both glutamate and dopamine receptors may
act coordinately in causing deregulation of calcium homeo-
stasis [10–12] with consequent mitochondrial depolarization
and caspase activation [13, 14]. Both pathways have been
implicated in HD pathogenesis, suggesting that variation in
function or expression of glutamate receptor subunits and/or
dopamine pathway genes might modulate excitotoxic cell
death, thereby modulating AO of symptoms. Indeed, poly-
morphisms within the genes that encode the NR2A and
NR2B glutamate receptors (GRIN2A and GRIN2B) have
been implicated in genetic studies with HD patients as
potential modifiers of clinical AO [15–18].

Based upon these observations, the aim of the present
study was to utilize common and multi-allele functional
polymorphisms to test the possibility that genetic variation
in genes of the glutamatergic (GRIN2A and GRIN2B) and
dopaminergic (COMT, DRD2, DRD4, and DAT1) pathways
may explain some of the variation in AO of HD motor
manifestations, in a large and well-described cohort of
1,628 HD patients of European ancestry.
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Material and methods

Subjects We analyzed 1,628 DNA samples from HD patients
participating in research from collaborating investigators
(HD-MAPS), the HD observational study COHORT, the Har-
vard Tissue Resource Center Bank (McLean’s Hospital, Bel-
mont, MA) and the National Neurological Research Bank
(VAMC Wadsworth Division, Los Angeles, CA). Our cohort
comprises a well-described set of HD samples [19] with CAG
repeat sizes ranging from 40 to 53 repeats, known motor AO,
ancestry, and familial relationship.

Genotyping Repeat sizes of the HTT CAG alleles and DAT1
and DRD4 variable number tandem repeats (VNTRs) were
determined using previously established polymerase chain
reaction (PCR) amplification assays [20–22]. The size of the
products was determined using the ABI PRISM 3730xl
automated DNA Sequencer (Applied Biosystems, Foster
City, CA) and GeneMapper version 3.7 software.
Genotyping of the polymorphisms in GRIN2A (rs4998386
and rs2650427), GRIN2B (rs1806201), COMT (rs4680),
and DRD2 (rs1800497) was performed by real-time PCR
using commercially available TaqMan Genotyping probes
(Applied Biosystems, Foster City, CA) and carried out on
the LightCycler® 480 (Roche Diagnostics, Mannheim), fol-
lowing the manufacturer’s instructions.

Statistical analysis Multivariate analyses were conducted
using generalized estimating equations (GEE) to assess the
association of the different polymorphisms with residual HD
motor onset, adjusting for familial component and ancestry.
The weighted GEE was computed assuming an independent
correlation structure and using the robust estimator of the
variance to account for familial relationships. All statistical
analyses were performed using PASW Statistics (version 18).

Results

Association with GRIN2A and GRIN2B The genetic evi-
dence supporting a role forGRIN2A orGRIN2B in modulating
AO of HD symptoms is equivocal. A candidate gene study
with 167 German HD patients reported an association between
AO and rs1969060 in GRIN2A and two polymorphisms in
GRIN2B (rs1806201 and rs890) [17]. However, in a follow-up
study, the same authors found that two other SNPs, rs8057394
and rs2650427, inGRIN2A had a stronger association with AO
[16]. A subsequent study in 1,211 European HD individuals
found an association of GRIN2A rs2650427, and when strati-
fied by AO subtypes, they found a nominally significant
association with rs1969060 (GRIN2A) and rs1806201
(GRIN2B) [15]. On the other hand, in a Venezuelan sample,
no evidence was found for theGRIN2B polymorphisms, and a

weak association was found for GRIN2A rs1969060 [18]. We
attempted to replicate the apparent genetic association of the
polymorphisms with the greatest evidence of association with
HD AO, namely rs2650427 in GRIN2A and rs1806201 in
GRIN2B, as well as an interesting GRIN2A polymorphism
associated with decreased Parkinson’s disease (PD) risk in
conjunction with heavy coffee consumption (rs4998386)
[23]. However, the results of association analysis for each
polymorphism failed to demonstrate significant association
with HD motor AO (Table 1).

Association with dopamine pathway genes Dopamine path-
way genes have not previously been assessed as genetic HD
AO modifiers. Therefore, we tested functional polymor-
phisms in DRD2 and DAT1 believed to affect neurotrans-
mission primarily in the striatum, in addition to
polymorphisms in COMT and DRD4, known to have an
impact on the frontal cortex function. The Val158Met
COMT polymorphism has been shown to affect, in a co-
dominant mode, the activity level of the COMT enzyme that
metabolizes dopamine [24–26]. The TaqIA polymorphism
in the vicinity of DRD2 is reported to be a genetic marker
for D2 receptor density in the brain, with the minor allele
being associated with a lower density of this receptor espe-
cially in the striatum [27–30]. However, the results of our
genetic analysis failed to reveal significant evidence of
association of the functional polymorphism in DRD2 or in
COMT with HD motor AO (Table 1).

We then evaluated theDRD4 gene, as it has been suggested
that different repeat sequences of themulti-allele 48-bp VNTR
in DRD4 may differentially affect the gene’s expression and
consequently alter D4 receptor density in the brain. The
seven-repeat allele had a lower expression compared with
two- and four-repeat alleles [31]. Given this observation, our
analysis specifically tested the potential association of the
seven-repeat allele with motor HD AO. The results demon-
strated that the presence of this allele did not explain any
variance of AO in our cohort of HD patients (Table 1).

We also assessed the DAT1 gene by evaluating the multi-
allele 40-bp VNTR polymorphism. This polymorphism was
chosen because it has been reported that individuals with
10/10 repeats have lower dopamine transporter density than
individuals with at least one copy of the nine-repeat allele who
exhibit more effective dopamine removal at the synapse [32,
33]. However, despite evidence for biological effects, the re-
sults of our analysis did not reveal a significant association of
the ten-repeat allele with HD motor AO (Table 1).

Discussion

The circuitry of the striatum, where MSNs are particularly
vulnerable to the effects of the HD mutation [8, 9], has
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provided a rich source of candidate HD genetic modifiers.
Aberrant function of N-methyl-D-aspartate receptors
(NMDAR) and overexposure of MSNs to dopamine cause
neurotoxicity [34–36], suggesting that variation in expres-
sion or function of glutamate receptor subunits and/or do-
pamine pathway genes could modulate excitotoxic death
and thereby affect HD AO.

Association of AO with specific polymorphisms in NR2A
and NR2B, encoding NMDAR subunits, has been previous-
ly reported [15–18]. However, in our sample of European
ancestry, we found no definitive evidence of association for
either of the two GRIN2A or for the GRIN2B SNPs that were
tested with the residual AO after accounting for the effect of
HTT CAG repeat length. One SNP, rs1806201 in GRIN2B,
was close to nominal significance (p=0.053 in the additive
model). Though this value would not survive correction for
the multiple hypotheses tested in our study, it may be of
interest for future modifier studies given the effects previ-
ously reported [15–17]. The lack of replication in our sam-
ple of the reported associations might be explained by
different study designs, including the patient populations
and definition of the phenotypic trait. We have previously
shown that stringent sample selection and analysis criteria
are critical factors in HD association studies. Indeed, genetic
background related to ancestry [19] and non-normal distri-
bution of CAG allele size [37] can have a profound
confounding effect when testing for the effects of potential
genetic modifiers.

Our test of the GRIN2A rs4998386 polymorphism that
has been recently associated with decreased risk of devel-
oping PD in individuals who are heavy coffee drinkers [23]
was an attempt to assess a neurodegenerative disease-
associated risk allele that may interact with a common
environmental factor. We did not find evidence of associa-
tion of this particular SNP with AO of HD motor symptoms.

Though coffee consumption data are not available on our
study subjects, this negative result is consistent with previ-
ous genetic findings showing that the HTT CAG repeat
polymorphism is not a modifier of PD onset [38], strongly
suggesting that the pathogenic process that culminates in
HD manifestations may be distinct from the neurodegener-
ative disease process that leads to PD symptoms.

Genes in the dopamine pathway have not previously been
evaluated as potential modifiers of the AO of overt motor
symptoms in HD. We selected polymorphisms in four dopa-
minergic pathway genes that have been investigated in other
neurological disorders because they are believed to affect
neurotransmission by affecting the level of the enzyme that
metabolizes dopamine, the density of dopamine receptors, and
the activity of dopamine transporter. Our results did not reveal
a significant modifying effect of any of the four polymor-
phisms, in COMT, DRD2, DRD4, or DAT1, on the onset of
HD motor symptoms and therefore fail to support a role for
these functional variants in the disease process that leads to the
onset of neurological symptoms in HD.

In summary, the results of our study did not provide evi-
dence for an association of DNA variants that affect the
biology of particular genes in the glutaminergic pathway
(GRIN2A, GRIN2B) or the dopaminergic pathway (DRD2,
DRD4, DAT1, COMT) with the HTT CAG repeat length-
dependent disease process that leads to the onset of clinical
motor manifestations of HD. However, our study does not
preclude the possibility that other DNA variants in these
genes, or in other genes involved in these pathways, may act
as genetic AO modifiers. Moreover, it is also possible that
genes in the glutaminergic and dopaminergic pathways may
serve to modify the rate of progression of the distinct process-
es that determine the rate of decline in the ∼18-year period
between the age at clinical diagnosis of HD and death, which
is independent of the size of the HTT CAG repeat [39].

Table 1 Multivariate correlation of the polymorphisms in the glutamatergic (GRIN2A and GRIN2B) and dopaminergic (COMT, DRD2, DRD4, and
DAT1) pathway genes with residual age at motor onset

Gene Polymorphism Number of samples Dominant model Additive model

Standardized coefficient p valuea Standardized coefficient p valuea

Glutamatergic pathway

GRIN2A rs4998386 1,585 0.087 0.108 0.074 0.144

rs2650427 1,619 −0.014 0.739 0.004 0.878

GRIN2B rs1806201 1,602 −0.056 0.164 −0.060 0.053

Dopaminergic pathway

COMT rs4680 1,620 −0.047 0.222 0.025 0.333

DRD2 rs1800497 1,625 0.051 0.196 0.035 0.326

DRD4 Exon 3 48-bp VNTR 1,527 −0.043 0.322 −0.035 0.322

DAT1 3′ UTR 40-bp VNTR 1,614 0.062 0.363 0.022 0.487

a p values were derived using GEE to account for familial relationships and ancestry
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