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Abstract The physico-chemical properties of interaction
interfaces have a crucial role in characterization of pro-
tein–protein interactions (PPI). In silico prediction of partic-
ipating amino acids helps to identify interface residues for
further experimental verification using mutational analysis,
or inhibition studies by screening library of ligands against
given protein. Given the unbound structure of a protein and
the fact that it forms a complex with another known protein,
the objective of this work is to identify the residues that are
involved in the interaction. We attempt to predict interaction
sites in protein complexes using local composition of amino
acids together with their physico-chemical characteristics.
The local sequence segments (LSS) are dissected from the

protein sequences using a sliding window of 21 amino
acids. The list of LSSs is passed to the support vector
machine (SVM) predictor, which identifies interacting resi-
due pairs considering their inter-atom distances. We have
analyzed three different model organisms of Escherichia
coli, Saccharomyces Cerevisiae and Homo sapiens, where
the numbers of considered hetero-complexes are equal to
40, 123 and 33 respectively. Moreover, the unified multi-
organism PPI meta-predictor is also developed under the
current work by combining the training databases of above
organisms. The PPIcons interface residues prediction meth-
od is measured by the area under ROC curve (AUC) equal
to 0.82, 0.75, 0.72 and 0.76 for the aforementioned organ-
isms and the meta-predictor respectively.
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Introduction

Proteins perform a biological function by interacting with
other proteins, small chemical compounds, metabolites, and
RNA/DNA molecules. Interactions are completed by the for-
mation of complexes, either transient or more permanent, e.g.,
the replisome, RNA polymerases, spliceosome, ribosome,
haperonins and various complexes formed along signal trans-
duction pathways, or during enzyme catalysis and inhibition.
Such interaction networks mediate biological processes.
Protein-protein interactions (PPI) are at the core of the entire
interaction system of any living cell, making them the central
hubs or major mediators for virtually every bio-chemical
process. Therefore for a given protein, in order to understand
its biological function, it is important to identify its likely
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interactions with other proteins. Detailed information of
protein-protein interactions, metabolic and signal transduction
networks improves our understanding of diseases, perturba-
tion of healthy states or processes, providing the theoretical
basis for new therapeutic approaches, mutant engineering and
design, high throughput screening for drug design [1].

Large molecular machines carry out most of molecular
processes in the cell, like DNA replication. The topological
organization and connectivity of the components within a
protein complex are given by structural alignment of their
interfaces. Understanding the characteristics of interfacial
sites is a requirement for modeling the molecular recogni-
tion process. It is observed that the recognition sites have
very similar common properties. Interaction sites share spe-
cific chemical and physical characteristics, which contribute
to a molecular recognition process, for example hydropho-
bic, planar, globular and protruding properties.

Currently developed high-throughput experimental
methods, such as Yeast two-hybrid, or mass spectrometry
provided the global view of the whole interaction network
for model organisms (interactome) [2–6]. The growing num-
ber of observed PPI interactions, makes it increasingly impor-
tant to distinguish true physical interactions from experimen-
tal methods’ artifacts or purely functional complexes. The
mapping between identified protein-protein interactions and
its atomic level structural details is essential for understanding
the PPI molecular functions, and for designing drugs that can
inhibit formation of a complex. Typically, X-ray crystallogra-
phy, or NMR techniques are used for assigning the three-
dimensional structure for given protein-protein complex,
allowing for detailed structural analysis in the context of
molecular organization and its dynamics [7].

Predicting residues that participate in protein–protein in-
teractions helps to suggest, which amino acids are located at
the interface, and further experimentally verifying using muta-
tional analysis. Moreover, it can be used in the virtual screen-
ing of ligands to find potent inhibitors that are able to alter the
protein-protein interaction for therapeutics discovery. First, it is
important to findwhich properties of protein–protein interfaces
differentiate them from non-interface surface regions. Analysis
of physical and chemical properties required selecting distinc-
tive features as observed in known three dimensional structures
of complexes. Those features can be used for building statisti-
cal models and further in silico prediction using the variety of
machine learning algorithms. Two major types of complexes
are observed, namely homodimers and heterodimers, where
homodimers mostly form permanent and highly optimized
complexes, generally by aligning hydrophobic interfaces. In
contrast, in the case of hetero-complexes, hydrophobicity is
indistinguishable from the rest of the surface [8–10]. Jones and
Thornton [11] suggested importance of differentiating between
aforementioned types of complexes, when analyzing their
intermolecular interfaces.

Typically, PPI recognition methods use either protein-
protein docking studies for structural fitting of complexes’
members [12–14], or exploit structural and physico-chemical
characterization of the interface. Structural properties of inte-
rior surface and interfaces residues of oligometric proteins
were compared by [15–18] and they found that hydrophobic-
ity, accessible surface area (ASA), shape and residues’ pref-
erences are the most important factors. Two protein subunits
may interact and form a protein-protein interface by aligning
two relatively flat surfaces, or can form non-planar curved
interface. Therefore we need to describe a curvature of inter-
face that is how far the interface residues are deviated from a
plane. The planarity of the surfaces can be calculated by root
mean square deviation of all interface atoms from the corre-
sponding least squares plane as calculated using positions of
those atoms. It has been observed that interfaces of hetero-
complexes are more planar than homodimers, and for them it
is difficult to find single parameter sufficient to distinguish
interface residues from other surface patches. However, fur-
ther studies suggest [11] that accessible surface area has the
high impact on the differentiation. Protein-protein interfaces
can be identified by the change in their solvent ASA, when
going from monomeric to the dimeric state. Interface residues
are defined as those, where ASA is decreased by 1 Å. Jones
and Thornton observed that protein-protein interfaces for per-
manent complexes are more closely packed, but less planar
with fewer inter sub-unit hydrogen bonds than the
nonobligatory complexes [11].

Fariselli et al. [19] defined surface residues if their ASA is
larger than 16 % of its nominal maximum area [20]. The
DSSP program [21] helps to calculate ASA values for each
residue in unbound chain. Liu et al. [22] recognized a surface
residue as an interface one, if the distance between its Cα
atom and any residue’s Cα atom from its molecular partner is
less than 1.2 nm. Transient protein-protein interactions have
an important role in many biological processes, such as cell
regulation and signal transduction. In their study, the temper-
ature factor (B-factor) was observed to differentiate between
an interface and the rest of the protein surface. Therefore, apart
from two well-known features, such as sequence profiles and
ASA, the temperature factor is also important. In our work, we
show that incorporation of a great variety of different physico-
chemical properties, together with other structural attributes,
allows for further improving the quality of characterization of
protein-protein interactions.

Several web servers have been recently developed for
protein-protein interaction sites prediction, using different
computational methodology and providing different levels
of accuracy:

a) Cons-PPISP http://pipe.scs.fsu.edu/ppisp.html method
uses PSI-Blast sequence profile and solvent accessibil-
ity as the input to the artificial neural network [23];
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b) Promate http://bioportal.weizmann.ac.il/promate is based
on Bayesian representation of secondary structure, atoms
distribution, amino-acid pairing, and sequence conserva-
tion [24];

c) PINUP http://sparks.informatics.iupui.edu/PINUP/ uses
an empirical scoring function; consisting of the side-
chain energy term, the term proportional to solvent acces-
sible area, and the term accounting for sequence conser-
vation; to predict protein binding site [25];

d) PPI-Pred http://bmbpcu36.leeds.ac.uk/ppi_pred/ takes
six properties (including surface shape and its electro-
static potential) as input to the support vector machine
approach [26];

e) SPPIDER http://sppider.cchmc.org/ is based on artificial
neural network method, which uses predicted solvent
accessibility [27];

f) Meta-PPISP http://pipe.scs.fsu.edu/meta-pisp.html pro-
vides the meta web server that is built on top of the raw
scores from cons-PPISP, Promate and PINUP [28].

Zhou and Shan [29] predicted protein–protein interaction
sites using artificial neural network (ANN) classifier trained
with sequence profiles of neighboring residues and solvent
exposure as the input. The main strength of the ANN pre-
dictor lies in the fact that neighbors’ lists and solvent expo-
sure are relatively insensitive to structural changes upon a
complex formation, therefore performing equally well for
bound or unbound structures of interacting partners.

In one of the recent works, Jang et al. [30] proposed a
domain-based PPI prediction model using intra-protein do-
main cohesion and intra-protein domain combination cou-
pling interactions. The technique uses hybrid inter/intra-
domain interaction information for improvement of the pre-
diction accuracy. The work by Guo et al. [31] uses SVM and
auto covariance which accounts for the interactions between
amino acids within 30 amino acids apart in the sequence.
This method considers effect of neighboring amino acids,
similar to the sliding window scheme used in many earlier
works [32–35]. However, they are not considering inter-
residue interactions between two interacting proteins and
therefore Guo et al. cannot specifically predict the interacting
residue fragments in a pair of interacting protein. They have
also curated the negative data samples, leading to over esti-
mation of prediction accuracy [36].

Summarizing, significant research was done in the area of
protein-protein interactions, yet the problem of interaction
sites prediction is still not fully understood. Major unresolved
issues are, among others, linked with the problem of selection
of biological and physico-chemical features crucial for
protein-protein interactions [37]. The main problem in terms
of theoretical analysis and machine learning algorithms typi-
cally is linked with non-balanced training dataset, namely the
number of interaction sites is typically very small in

comparison to non-interacting sites [38]. Moreover, any single
physico-chemical feature is not sufficient to distinguish inter-
face and non-interface residues, the complex nonlinear com-
binations of features are needed to describe an interaction site.

The PPI prediction is not the balanced learning problem;
therefore the optimal set of computational methods’ param-
eters is not easy to obtain. To select the proper subset of
descriptors, we applied the consensus fuzzy clustering tech-
nique [38] to extract high quality physico-chemical indices
from the set of 544 indices provided by the AAindex1
database (http://www.genome.jp/aaindex/). The selected
subset of the most informative features is proved to be very
useful for local representation of protein sequence charac-
teristics in various machine learning applications [39]. Deng
et al. [39] proposed ensemble learning method in order to
overcome the misbalancing problem in PPI and effectively
utilize a wide variety of features. He combined bootstrap
sampling technique, SVM-based fusion classifiers and
weighted voting strategy.

Other works in this domain include extraction of PPIs
from biomedical literature [40, 41]. The challenge here is to
find a suitable compromise between the biological relevance
of the results and a comprehensive coverage of the analyzed
networks. Zhang et al. [34] have used the graph kernel to
compute dependency graphs representing the sentence
structure for PPI extraction task, which can efficiently make
use of full graph structural information, and particularly
capture the contiguous topological and label information,
ignored before. PPI networks can be grouped in two cate-
gories, one allowing a protein to participate in different
clusters and the other generating only non overlapping clus-
ters. Pizzuti et al. [35] present a co-clustering based tech-
nique to generate both overlapping and non overlapping
clusters from the input PPI networks.

In view of the above facts, the goal of our paper is to
predict the interacting residues for a pair of proteins given
their unbound structures. The interface residues define the
interaction site for those two proteins. More specifically, we
attempt to predict interaction sites in protein complexes
more accurately using selective high quality index
physico-chemical features (HQI) extracted from AAindex1
dataset. We have used the sliding window algorithm with
the length of 21 amino acids to select sets of local sequence
segments for each protein, then identifying interacting resi-
due pairs by considering their inter-atom distances. We have
trained our method on three datasets of interacting proteins
for Escherichia coli, Saccharomyces Cerevisiae and Homo
sapiens and evaluated the PPI sites prediction performance
on unknown test samples using SVM classifier. The
PPIcons software is available for public domain at http://
code.google.com/p/cmater-bioinfo/ under Apache License
2.0. The meta-predictor is also designed by combining the
interacting proteins from all considered organisms. PPIcons
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therefore is able to perform identification of interaction sites:
1) using organism specific prediction by the classifiers
designed separately for three aforementioned organisms, and
2) using unified organism-independent meta-prediction. The
dataset design principles, selected HQI features, and classifier
design methodology are described in detail in the following
section. The Results section provides the performance evalu-
ation metrics and analysis of the prediction results for PPIcons
software.

Methods

Training dataset

There are several databases available online containing pro-
teins pairs that are experimentally observed to interact. We
can divide these resources roughly into two groups: provid-
ing either sequence or structural details. The first group of
experimentally confirmed protein-protein pairings also in-
volves transient interactions, and the second focuses on real
protein-protein complexes, i.e., stable, permanent interac-
tions. In almost all databases, the developers use their own
format for the data storage and processing, making the
integration across different datasets difficult. However, the
theoretical analysis of interactions depends on heteroge-
neous sources of biological information, such as sequence
(genomic) and structural (crystallographic) databases, the
literature mining, and experimental data. For our analysis,
we selected two major databases containing experimental
information about protein-protein interactions, namely
Protein Data Bank (PDB) [42], where one can find the
three-dimensional structures of protein complexes, and

Database of Interacting Proteins (DIP, http://dip.doe-
mbi.ucla.edu/dip) [43], where the known interactions among
protein pairs are stored.

Initially we started with 12606 number of protein-protein
interactions of E. coli organism, which are given in the file
Ecoli20100614.txt of DIP database. Among these interac-
tions, some entries did not have UniProt KB signatures,
matching PDB code, or even their primary sequences.
Therefore, we applied the multi-stage refinement. After
removing the interactions with incomplete information
(unavailability of primary sequence and some missing
UniProtKb id), the DIP database for E. coli is reduced to
8740 interactions (step 2). In step 3, we have checked the
PDB entry for these known interactions by mapping the
PDB id from their UniProtKb id. This process further re-
duces the PPI data to 2256 interaction pairs. Then the in-
teractions are verified for availability of the same PDB entry
for both interacting proteins, therefore known bound struc-
tures, and in this step the database size gets reduced to 312
entries (step 4). Each entry is now comprised of a valid PDB
database identifier (for the protein-protein complex), with
multiple UniProtKb codes. Further, the entries for
homodimers are also removed (step5) and we finally get only
40 valid hetero-interactions as our training dataset. The amino
acid sequences are extracted from file dip20091230.seq file
(http://dip.doe-mbi.ucla.edu/dip/) using the corresponding
UniProtKb id. A schematic description of the database prep-
aration phase is shown in Fig. 1.

In the case of PPI interactions for Yeast, we started with
22,208 entries from the Scere20100614.txt file of DIP
database. After processing them through step 1 and step
2, as discussed above, the database first remains the same
number 22,208 and after applying step 3 it was reduced to

Fig. 1 A schematic diagram
shows the training data
preparation steps for PPI
organism-specific database
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1372, which further ended up as 204 entries, following step
4. After removing the homo-complexes protein (same pro-
tein) interactions (step 5), we finally get only 123 hetero-
complex (different proteins) interactions in our Yeast train-
ing dataset.

Similarly for Homo sapiens we started with 2251 entries
from the Hsapi20100614.txt file of DIP database. After
processing them through step 1 and step 2, as discussed
above, the database first remains the same number 2251 and
after applying step 3 it reduced to 1007, which further
reduces to 168 entries, following step 4. After removing
the homo protein interactions (step 5), we finally get only
33 hetero interactions in our Homo sapiens training dataset.

The database format, used for our work is shown below,
along with three valid interactions for the three organisms.
The statistics recognized of PPI networks of E. coli, Yeast and
Homo sapiens are also shown in the Figures 1, 2 and 3
respectively (see Supplementary material). The complete da-
tabases are available freely to download for academic users
from our website http://code.google.com/p/cmater-bioinfo/.

Choice of the amino acid feature set

In conjunction with earlier machine and statistical learning
approaches, Saha et al. [38] have performed an extensive search
to derive, optimize, and evaluate physico-chemical features that
can best discriminate between interacting and non-interacting
sites. These features can be roughly divided into eight groups,
namely electric properties, hydrophobicity, alpha and turn pro-
pensities, physico-chemical properties, residue propensity, com-
position, beta propensity and intrinsic propensities. Currently,
544 amino acid indices are released in AAindex1 database.
These features previously were clustered into different high-
quality-indices (HQI) by co-authors [38] . In the current work,
we have used eight HQIs (HQI8) with names: BLAM930101,
BIOV880101, MAXF760101, TSAJ990101, NAKH920108,
CEDJ970104, LIFS790101, and MIYS990104. Detailed de-
scription of the clustering method, software and
Supplementary material are available for academic users at
http://sysbio.icm.edu.pl/aaindex/AAindex/.

Representation of PPI features

Here, we are working with interacting protein pairs (say, PA
and PB) from our aforementioned training datasets. Let PA
and PB be described by their own amino acid sequences as
a1, a2, …, aM and b1, b2,…,bN respectively, where

ai; bj∈ A;R;N;D;L;K;M; F;C;Q;E;G;H; I; P; S;T;W;Y;Vf g;
∀i ¼ 1 to M and ∀ j ¼ 1 to N :

In the next step, we compute inter-atom distances be-
tween PA and PB. Please note that we consider only the

heavy atoms (as given in respective PDB entry) from each
amino acid for this purpose. We define the distance mea-
sures as follows:

DP ai; b j

� � ¼ dr aik ; bjl
� �� �

; ∀k ¼ 1 to P and ∀l ¼ 1 to Q;

where P and Q are number of heavy atoms in the residues ai
and bj respectively and dr(aik,bjl)=inter-atom Euclidean dis-
tances between the kth heavy atom of ai and lth heavy atom
of bj. If DP(ai,bj) is lower than 3.5 Å [44], then correspond-
ing residue pair (ai, bj) corresponding belonging to the
protein pair (PA, PB) is said to be interacting, otherwise they
are said to be non-interacting.

The protein sequences of hetero-complexes are therefore
divided into multiple overlapping segments of sub-
sequences, each consisting of 21 amino acids. Please note
that the results from our current study strongly support
selection of 21 window size, providing optimal results for
protein-protein interaction prediction as tested on sample
subsets of pairs of interacting proteins. For each pair of local
sequence segments (LSS) from proteins PA and PB we
consider all residues from a1, a2,…,a21 and b1, b2,…, b21
respectively, and check whether any of the residue pairs
has DP(ai,bj)<3.5 Å. If found, we annotate the given pair
of sub-sequences (obtained from PA and PB respectively)
as positive, i.e., confirmed interaction and extract HQI8
features for the 42 residues, resulting in a 428=336 di-
mensional feature vector representing positive training
case. The overlapping subsequences are then shifted, as a
sliding window, to check for further interactions. In all
cases, where two sub-sequences have no interacting resi-
due pair, then such sub-sequence pair is said to be non-
interacting, and we recognized it as negative training cases
described by 336 dimensional vector of features using also
HQI8 features. These positive and negative vectors are
then used by the machine learning procedure to train the
support vector machine algorithm, designed separately to
produce optimal recall, precision and area under ROC
curve (AUC) scores.

Support vector machine

Support vector machine (SVM) is the pattern classification
technique proposed by Vapnik and co-workers [45].
Traditional methods generally minimize the empirical train-
ing error, while SVM aims to minimizing the upper bound
of the generalization error by maximizing the margin be-
tween the separating hyperplane and the data, providing the
structure risk minimization principle protocol. Striking fea-
ture of SVM is the property of compacting information
contained in the training data, and providing a sparse repre-
sentation even using a small number of data points.
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SVM performs both linear and nonlinear classification in
the parameter space. Nonlinear classification is done by
mapping the space S={x} of the input data into a high-
dimensional feature space F={Φ(x)} and this is achieved
by choosing an appropriate mapping f so that the data points
become almost linearly separable in the high-dimensional
space. For this, there is no need to compute the mapped
patterns Φ(x) explicitly, instead only the dot products be-
tween mapped patterns are calculated. This can be done
easily by choosing different kernel function, which gener-
ates Φ(x), e.g., radial basis function (RBF), polynomial,
sigmoid and multi-layer perceptron classifiers [46–48].
Typically the performance of SVM mostly depends on the
appropriate kernel function, yet there is no regular way to
choose appropriate kernel functions within a data-driven
approach.

In the case of our prepared dataset of interacting and non-
interacting fragments, one group contains vectors of features
representing positives denoted by (+ve) and the second
group include negatives (−ve). Therefore, using those two
clusters the problem is finally becoming the binary classifi-
cation, which can be handled by nonlinear support vector
machine with polynomial kernel function. Input training
samples are nonlinearly mapped into higher dimensional
space, where they are separated using hyperplane, which is
at maximum margin from each of the two clusters. Given
the training set of n input points {xi, yi}; i=1, 2, 3, 4,……,n;
xi represents input feature vectors and yi represents corre-
sponding class label with two values {+1, −1}.

The separating hyperplane is represented as a linear com-
bination of the training samples and classification of un-
known test pattern x is done by the cost function:

f xð Þ ¼ ∑
1

i¼1
αiyik xi; yið Þ þ b, where k(xi,yi) is SVM kernel

function and b is the bias that can be optimized on given

training data. Note that if k(xi, yi) becomes small as it grows
further away from xi, each element in the sum measures the
degree of closeness of the test point x to the corresponding
point xi. The sum of kernels above can be used to measure the
relative nearness of each test point to the data points originat-
ing in one or the other of the sets to be discriminated. The
optimal hyperplane is found by varying αi and data point xi.
Finally, the sign of f(x) function determines the class member-
ship of the input query point. Here, we have used polynomial
kernel function after testing different types of the kernels,
observing that it provides the best results for our datasets.

Results

The current work, reported in this paper, involves 3254
positive interactions and 4948 negative interactions for E.
coli proteome, 3490 positive interactions and 5082 negative
interactions for Yeast proteome, and 3923 positive interac-
tions and 6153 negative interactions for Homo sapiens pro-
teome. We have also prepared a meta-dataset consisting of
all three species mentioned above, which results in 9667
positive interactions, and 16,183 negative ones. It may be
noted that the number of positive and negative interactions,
considered in the training dataset for any proteome, are only
a subset of all possible positive and negative interactions.
This is done so to limit the computational complexity of the
training algorithm, during the multi-fold cross validation
(CV) process. Each interacting or non-interacting residue
fragments are represented using HQI8 amino acids indices
for both positive and negative data samples for the three
organisms. We discuss here the training and testing predic-
tion results for these organisms. Finally, the results with the
meta-predictor that combines the training and test datasets
from all three organisms are discussed in this section. In our

Table 1 Result on AUC opti-
mized network over E. coli CV
set and test set

Bold entries represent average
CV results and Test set results

Run Accuracy Recall Precision Specificity AUC MCC F-measure

CV run#1 80.3571 0.737024 0.760714 0.84738 0.792202 0.587729 0.748682

CV run#2 81.3443 0.716263 0.793103 0.877273 0.796768 0.60559 0.752727

CV run#3 80.9328 0.709343 0.788462 0.875 0.792171 0.596719 0.746812

CV run#4 82.3288 0.741379 0.799257 0.877273 0.809326 0.627545 0.769231

CV run#5 79.6982 0.695502 0.770115 0.863636 0.779569 0.570494 0.730909

CV run#6 82.4417 0.754325 0.792727 0.870455 0.81239 0.630533 0.77305

CV run#7 83.0137 0.758621 0.80292 0.877273 0.817947 0.642617 0.780142

CV run#8 81.07 0.705882 0.793774 0.879545 0.792714 0.599392 0.747253

CV run#9 80.5213 0.743945 0.759717 0.845455 0.7947 0.591595 0.751748

CV run#10 78.4932 0.724138 0.731707 0.825 0.774569 0.550128 0.727903

CVAverage 81.02011 0.728642 0.77925 0.863829 0.796236 0.600234 0.752846

Test Set 83.07692 0.736842 0.818462 0.892532 0.814687 0.642583 0.77551
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case we used the following evaluation metrics, based on the
TP (true positives), TN (true negatives), FP (false positive),
and FN (false negative) numbers:

Accuracy ¼ 1−Errorð Þ ¼ TP þ TN

TP þ FP þ TN þ FN ;

TruePositiveRate TPRð Þor Recall Rð Þor Sensitivity ¼ TP

TP þ FN ;

Precision Pð Þ ¼ TP

TP þ FP ;

Specificity ¼ TN

FP þ TN ;

FalsePositiveRate FPRð Þ or 1−specificityð Þ ¼ FP

FP þ TN ;

MCC ¼ TP � TN−FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp

F − measure ¼ 2 � precision� recallð Þ
precisionþ recallð Þ

AUC is calculated by using an average of a number of
trapezoidal approximations over TPR versus FPR curve [49,
50]. The Matthews correlation coefficient is used in our
work as a measure of the quality of binary (two-class)

classifications and F-measure is used as a measure of the
test’s accuracy.

To analyze the performance of the developed technique,
we have designed a two-stage evaluation strategy. In the
first stage, the overall dataset is divided into two parts with
the ratio 88:12 to define the CV set and the test set respec-
tively. Then ten-fold cross validation is done with the CV
set. In the second stage, the optimum network (chosen from
the best of the ten runs during the CVexperiment) is selected
to evaluate the performance over the independent test set.
For CV experiments with the E. coli proteome, we have
randomly chosen 2893 positive interactions out of total
3254 interactions, and 4399 negative interactions from
4948 data samples. The nonlinear support vector machine
classifier with polynomial kernel function of degree 5 is
used during classification experiments over the CV set and
the test set. A comparative result with different kernel func-
tions (together with polynomial kernel function of degree 3)
on the dataset for E. coli proteome is included in
Supplementary Table S1. It may be observed that the current
choice of polynomial kernel function of degree 5 gives

Table 2 Result on AUC opti-
mization over Yeast CV set and
test set

Bold entries represent average
CV results and Test set results

Run Accuracy Recall Precision Specificity AUC MCC F-measure

CV run#1 75.5585 0.683871 0.706667 0.804878 0.744375 0.49141 0.695082

CV run#2 74.4094 0.654839 0.697595 0.80531 0.730074 0.465255 0.675541

CV run#3 74.4094 0.687097 0.684887 0.783186 0.735141 0.470046 0.68599

CV run#4 74.574 0.684887 0.68932 0.787611 0.736249 0.472979 0.687097

CV run#5 75.3281 0.703226 0.694268 0.787611 0.745418 0.489872 0.698718

CV run#6 72.6675 0.680645 0.659375 0.758315 0.71948 0.436918 0.669841

CV run#7 75.3604 0.697749 0.697749 0.792035 0.744892 0.489785 0.697749

CV run#8 74.5407 0.7 0.68239 0.776549 0.738274 0.474736 0.691083

CV run#9 75.4593 0.690323 0.701639 0.798673 0.744498 0.490283 0.695935

CV run#10 74.443 0.700965 0.68125 0.774336 0.73765 0.473305 0.690967

CVAverage 74.67503 0.68836 0.689514 0.78685 0.737605 0.475459 0.6888

Test Set 75.60463 0.741602 0.684964 0.765957 0.75378 0.502249 0.712159

Table 3 Result on AUC opti-
mized network over Homo sapi-
ens CV set and test set

Bold entries represent average
CV results and Test set results

Run Accuracy Recall Precision Specificity AUC MCC F-measure

CV run#1 83.6872 0.741379 0.821656 0.897623 0.819501 0.652729 0.779456

CV run#2 83.9286 0.73639 0.831715 0.904936 0.820663 0.657941 0.781155

CV run#3 84.0402 0.74212 0.830128 0.903108 0.822614 0.660444 0.783661

CV run#4 84.8214 0.739255 0.851485 0.917733 0.828494 0.677197 0.791411

CV run#5 83.2589 0.74212 0.811912 0.890311 0.816216 0.644075 0.775449

CV run#6 84.581 0.767241 0.824074 0.895795 0.831518 0.672559 0.794643

CV run#7 82.1429 0.74212 0.787234 0.872029 0.807075 0.621285 0.764012

CV run#8 81.9196 0.716332 0.798722 0.884826 0.800579 0.614878 0.755287

CV run#9 85.2679 0.767908 0.840125 0.906764 0.837336 0.687094 0.802395

CV run#10 84.1518 0.759312 0.820433 0.893967 0.82664 0.663478 0.78869

CVAverage 83.77995 0.745418 0.821748 0.896709 0.821064 0.655168 0.781616

Test Set 72.27191 0.721839 0.624254 0.72328 0.722559 0.436224 0.66951
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superior performance in the current experimental setup. For
all subsequent experiments we therefore use this setup and
report the classification performances accordingly.

During CV, training is performed on three different opti-
mization criterion, viz., Recall, precision and AUC scores.
Ten CV experiment runs are marked as run#1, run#2…
run#10. We present the results over the E. coli CV set for
all ten runs, the average CV performance and the perfor-
mance over the test set using AUC optimized network in
Table 1. Corresponding performances with the recall and
precision optimized networks are given in Tables S2 and S3
respectively, in the Supplementary material. AUC, recall
and precision optimized training strategies are discussed in
our earlier works [51–54].

To allow some flexibility in the training program, SVM
models have a cost parameter, c, that controls the trade-off
between allowing training errors and forcing rigid margins.
It creates a soft margin that permits some misclassifications.
Increasing the value of c increases the cost of misclassifying
points and forces the creation of a more accurate model that
may not generalize well. In the support-vector networks
algorithm, one can control the trade-off between complexity
of decision rule and frequency of error by changing the
parameter c [55]. In our work we have varied the value of
c in the range (16, 316). The gamma (γ) and degree of
polynomial kernel determine the ability of the resulting
SVM in fitting the data. We can also vary the kernel coef-
ficient (r), to make the kernel non-symmetric. The intuitive
meaning of gamma is the amount of influence of a support
vector upon its surroundings. In the current work we have
heuristically chosen: 0≤γ≤32, and 0≤r≤300. During any
run of the CV experiment (runi), the optimum set of kernel
parameters are estimated as Pi. We generate one-model files
(m1), over the complete CV set using the best set of kernel
parameters (chosen on the basis of best AUC scores during
CV). For three different optimization experiments, three
different model files (m1,m2,m3) are generated.

Performances of these model files (mi) over the E. coli test
set are evaluated and the best results for the AUC optimiza-
tion is reported in the last row of Table 1. Figure S4 in the
Supplementary data sheet shows a performance analysis
over the E. coli dataset during the CV experiment.

In the same way, we have prepared interacting and non-
interacting residue fragments and extracted HQI8 features
for both positive and negative data samples for the Yeast
organism. For the CVexperiment, 3103 positive interactions
have been randomly chosen from 3490 positive interactions,
and 4518 negative interactions are chosen for 5082 data
samples. AUC optimized results of ten-fold CV experiment
and over the independent test set are shown in Table 2, and
the corresponding results with the recall and precision opti-
mization are shown in Tables S4 and S5 respectively (see
Supplementary data). Figure S5 (see Supplementary data)
shows the performance analysis over the Yeast dataset dur-
ing the CV experiment using three different optimization
strategies.

For the CV experiment with the Homo sapiens organism,
3488 positive and 5470 negative interactions are randomly
selected from the total set of 3923 and 6153 interactions
respectively. The AUC optimized results of ten-fold CV

Table 4 Result on AUC opti-
mized network over the multi-
organism meta-data CV set and
test set

Bold entries represent average
CV results and Test set results

Run Accuracy Recall Precision Specificity AUC MCC F-measure

CV run#1 78.5415 0.718354 0.735421 0.829624 0.773989 0.550257 0.726788

CV run#2 80.2681 0.739451 0.757838 0.844336 0.791894 0.586334 0.748532

CV run#3 81.4489 0.742887 0.779867 0.86171 0.802298 0.609998 0.760928

CV run#4 80.176 0.712025 0.771429 0.860918 0.786472 0.58178 0.740538

CV run#5 80.4858 0.724974 0.770437 0.85754 0.791257 0.589146 0.747014

CV run#6 79.3884 0.690928 0.766979 0.86171 0.776319 0.564125 0.72697

CV run#7 80.1341 0.739451 0.755388 0.842142 0.790797 0.583781 0.747335

CV run#8 80.1508 0.748156 0.751323 0.836692 0.792424 0.585272 0.749736

CV run#9 79.5978 0.71519 0.757542 0.849201 0.782195 0.570451 0.735757

CV run#10 79.6482 0.726027 0.753005 0.842946 0.784487 0.572722 0.73927

CVAverage 79.98396 0.725744 0.759923 0.848682 0.787213 0.579387 0.742287

Test Set 76.13293 0.722739 0.69063 0.786748 0.754744 0.510918 0.708903

Table 5 Comparison of our current work with the existing techniques

Methods AUC Sensitivity Specificity

1 Wang et. al. [56] 0.71933 0.68640 0.65417

2 Nguyen et. al. [57] 0.74943 0.3598 0.92949

3 Deng et. al. [39] 0.79761 0.76765 0.63158

4 Borderner et. al. [58] – 0.57 0.26

5 Singh et. al. [44] – 0.6 0.75

6 PPIcons(E.coli) 0.814687 0.736842 0.892532

7 PPIcons(Yeast) 0.75378 0.741602 0.765957

8 PPIcons(Homo sapiens) 0.722559 0.721839 0.72328

9 PPIcons (meta-data) 0.754744 0.722739 0.786748
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experiment and over the independent test set are shown in
Table 3, and the recall and precision optimized results are
shown in Tables S6 and S7, in the Supplementary data sheet.
Figure S7 (see in Supplementary data sheet) shows a per-
formance analysis over the Homo sapiens dataset during the
CV experiment using three different optimization strategies.

Finally, in the case of meta-dataset experiment, 9484
positive and 14,387 negative interactions are randomly se-
lected from the combined data set (collected from the afore-
mentioned three organisms in the same ratio of train and test
as discussed above in individual cases) of 9667 positive and
16,183 negative interactions respectively, in the ratio of
88:12 to generate the CV set and the test set. The AUC
optimized results of the ten-fold CVexperiment and over the
independent test set are shown in Table 4 and the corre-
sponding recall and precision results are shown in Tables S8
and S9 respectively (see Supplementary data). Figure S8, in
Supplementary sheet, shows a performance analysis of the
meta dataset during the CV experiment, over the indepen-
dent test set using three different optimization strategies.

We compared our results with similar works reported pre-
viously in the literature. In the work of Wang et al. [56]
position specific scoring matrices (PSSMs) were used along
with evolutionary conservation score for 11 neighbor residues.
They obtained 71.9 % AUC, 68.6 % sensitivity and 65.4 %
specificity over their dataset of 113 pairs of interacting pro-
teins. Nguyen et al. [57] used PSSMs and accessible surface
areas (ASA) with 15 neighbor residue to get 74.9 % AUC,
35.9 % sensitivity and 92.9 % specificity scores over 77
individual proteins collected from the Protein Data Bank.
Both the above methods used SVM pattern classifier. Deng
et al. [39] used an ensemble method with weighted voting

strategy along with SVM approach and achieved 79.7 %
AUC, 76.7 % sensitivity and 63.1 % specificity over 54
hetero-complexes. Bordner and Abagyan [58] achieved
76 % accuracy, 57 % recall and 26 % precision over 1494
protein-protein interfaces, of which 518 were homodimers,
114 were heterodimers and 862 were multimers. Singh et al.
[44] obtained 60 % sensitivity and 75 % specificity in their
Struct2Net web server.

In comparison, our results are prepared using 196 hetero-
complexes (40 for E. coli, 123 for Yeast, 33 for Homo
sapiens) and obtained up to 81.46 % AUC, 73.68 % sensi-
tivity (or recall) and 89.25 % specificity (see Table 1) over
our E. coli test dataset. For Yeast test data, we have obtained
75.4 % AUC, 74.2 % sensitivity (or recall) and 76.6 %
specificity (see Table 2). For Homo sapiens test data, we
have obtained 72.3 % AUC, 72.2 % sensitivity (or recall)
and 72.3 % specificity (see Table 3). Finally, in the case of
meta-dataset, we have 75.5 % AUC, 72.3 % sensitivity,
78.7 % specificity (see Table 4). We have also calculated
the MCC for all three organisms E. coli, Yeast, Homo
sapiens which are 64.26 %, 50.23 %, 43.62 % (given in
Tables 1, 2 and 3) respectively and finally for meta dataset,
it is 50.59 % (see Table 4). The F-measures are also calcu-
lated for all three organisms E. coli, Yeast, Homo sapiens
which are 77.55 %, 71.22 %, 66.95 % (given in Tables 1, 2
and 3) respectively and finally for meta dataset, it is 70.63 %
(see Table 4). We have also added Table 5 and Fig. 2 for
easy comparison of our work with the existing ones avail-
able in the literature.

Although the performances of different existing tech-
niques are not evaluated over an identical test-bed (due to
large variations in the datasets), the PPIcons results over the
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Fig. 2 The performance on testing dataset of PPIcons in comparison with the existing state-of-the-art tools
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196 hetero-complexes are found to be comparable with the
existing state-of-the-art tools. In fact, the reported numbers
show that PPIcons performance is better than most of the
other prediction tools. For example, the AUC score of the
meta-data PPIcons is higher than all but the one designed by
Deng et al. Our E. coli specific PPIcons on the other hand
has better AUC score than Deng et al. It may also be noted
that work of Deng et al. has higher sensitivity value, but
lower specificity value in comparison to our work.
Similarly, the work of Nguyen et al. has lower sensitivity
but higher specificity in comparison to PPIcons. In general,
our predictors are found to be stable and reports balanced
prediction results in comparison to the existing systems.

Conclusions

In the present work, we introduce the PPIcons software as a
novel and accurate tool for PPI site prediction, using only
protein sequences. In the training dataset we have used three
dimensional structures of interacting proteins, yet the pre-
dictor uses only sequence composition in order to predict
which local sequence segments from both proteins are
interacting. The distance between all atom pairs are calcu-
lated, if it is equal or less than 3.5 Å, the pair is considered
as interacting. The local sequence neighborhoods are then
considered and HQI8 features vectors are used to represent
the continuous, overlapping sliding window of length 21
residues. Finally, support vector machine algorithm with
polynomial kernel function of the degree 5 is used to build
the statistical learning model for individual organisms and
the meta-predictor. This prediction model allows annotating
unknown interactions, enriching the biological knowledge
about proteins’ partners. The current work also provides
datasets of interacting hetero-complexes collected from
three organisms, viz., E. coli, Yeast and Homo sapiens.
Moreover, the results of meta-predictor show that the meth-
od is stable over different organisms. The training datasets
and the source code for PPIcons tool are available in public
domain at http://code.google.com/p/cmater-bioinfo/. The
performance of our predictor is better than most of the
methods discussed in this paper. Although the datasets used
in different works are sometimes different, up to now the
general performance scores from different publications are
compared in evaluation of different in silico methods in PPI
domain.

In this paper, we have worked with three different organ-
ism specific databases, as well as a combined meta-
database. We would like to improve the database by includ-
ing more organisms in the near future. Due to limitation of
computing resources, all interactions could not be consid-
ered for training. Despite certain constraints, the current
version of PPIcons is observed to generate a steady and

balanced prediction result (in terms of AUC score, sensitiv-
ity and specificity) over labeled test samples of different
organisms. As evident from the discussion in the Results
section, the performance of the PPIcons program is found to
be comparable or better than the state-of-the-art tools avail-
able today. For most of the existing predictors their perfor-
mances are not balanced, producing high sensitivity, yet low
specificity, or vice-versa. Avoiding such a biasing is often
difficult in a complex binary classification problem.
Considering that, the balanced prediction potential of our
developed algorithm may be considered as a good statistical
learning characteristic. The PPIcons software tool is also
made available for free download in the public domain. In
the future we plan to incorporate a larger training/test
datasets, incorporating more proteins from E. coli, Yeast,
Homo sapiens and other organisms, for design of improved
versions of PPIcons. Design of an effective classifier en-
semble, for meta-analysis of classification results different
experimental sources, may be incorporated in future.
Brainstorming consensus [59] or weighted Markov chain
based rank aggression approach [60] may be used for the
in future to achieve such an objective.
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