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Abstract This paper considers two-person non-zero-sum games on the unit square
with payoff functions having a new property called poor convexity. This property
describes “something between” the classical convexity and quasi-convexity. It is
proved that various types of such games have Nash equilibria with a very simple
structure, consisting of the players’ mixed strategies with at most two-element sup-
ports. Since poor convexity is a basic notion in the paper, also a theory of poorly
convex functions is also developed.

Keywords Nash equilibrium · Two-person sum game · Non-zero sum game ·
Two-point strategy · Poor convexity

1 Introduction

The problem of existence of the solution introduced by Nash (1951) for noncoopera-
tive games, is widely studied in the literature. In particular, many of such results have
been obtained under assumptions related to different types of concavity or convex-
ity of payoff functions, possibly discontinuous. We can mention here several recent
papers like Bich (2009), Carmona (2009), Carmona (2010), McClendon (1986) and
Połowczuk et al. (2007).

The aim of the paper is to study the problem of the existence of “simple” Nash equi-
libria formed by so-called two-point strategies, that is such mixed strategies whose
supports consist of at most two of players’ pure strategies. We examine this problem for
two-person non-zero-sum games on the unit square with payoff functions possessing
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170 T. Radzik

some new properties called poor concavity and poor convexity. It is worth mention-
ing that several results of this type were found both for finite games (Połowczuk
2006, 2003; Połowczuk et al. 2007; Radzik 2000) and for games on the unit square
(Parthasarathy and Raghavan 1975; Radzik 1991, 1993) with convex and concave
payoff functions.

Five new “existence theorems” are proposed for games in which players’ payoff
functions are poorly concave or poorly convex in various configurations. This new
notion of poor convexity is a natural generalization and extension of the classical
convexity. In the paper, we develop the theory of poorly convex functions, using these
results further in the proofs of the theorems.

The organization of the paper is as follows. Section 2 is devoted to preliminary
definitions and some background results which are a starting point for our study. In
Sect. 3 we introduce the new basic notions of poorly convex functions and discuss
them. In Sect. 4 we present our five main results about the existence of Nash equilibria
in games. Poorly concave functions and their properties are studied in Sects. 5 and 6,
while Sect. 7 contains the proofs of the theorems.

2 Preliminary results

In this section we introduce preliminary notions and quote three basic results from
the literature (Theorems A–C) which are an inspiration for our considerations in the
paper.

Throughout this paper we consider only two-person non-zero-sum games on the
unit square, that is the games with normal form

� = 〈{1, 2}, {X1, X2}, {F1, F2}〉 (1)

where

1. {1, 2} is the set of two players;
2. for i = 1, 2, Xi = [0, 1] is the interval space of pure strategies xi of Player i .
3. F1(x1, x2) and F2(x1, x2) are bounded functions on X1 × X2, and for i =

1, 2, Fi (x1, x2) describes the payoff function of Player i , in the situation when
Players 1 and 2 use their pure strategies x1 and x2, respectively.

A mixed strategy for Player i is any probability measure μi on Xi , i = 1, 2.
We will also write Fi (μ1, μ2) = ∫ ∫

Fi (x1, x2)dμ1(x1)dμ2(x2) for i = 1, 2. So
Fi (μ1, μ2) describes the expected payoff of Player i when Players 1 and 2 use their
mixed strategies μ1 and μ2, respectively, and the vector (F1(μ1, μ2), F2(μ1, μ2)) is
the payoff vector corresponding to the pair (μ1, μ2).

A (mixed) Nash equilibrium in game � is any pair (μ∗
1, μ

∗
2) of players’ mixed

strategies that satisfy the inequalities

F1(μ
∗
1, μ

∗
2) ≥ F1(μ1, μ

∗
2) and F2(μ

∗
1, μ

∗
2) ≥ F2(μ

∗
1, μ2)

for all mixed strategies μ1 and μ2 of Players 1 and 2, respectively. When these two
inequalities hold up to an ε > 0, the pair (μ∗

1, μ
∗
2) is called an ε-Nash equilibrium.
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The main problem we consider in our paper is the existence of Nash equilibria
consisting of two-point strategies in game �. By definition, a two-point strategy is any
pure strategy or mixed one with support consisting of at most two pure strategies, and
will be denoted by αδx + (1−α)δy with 0 ≤ α, x, y ≤ 1. Here and throughout the
paper, δt is a degenerate probability distribution concentrated at point t and will be
identified with a pure strategy t , 0 ≤ t ≤ 1. So a two-point strategy αδx + (1−α)δy

prescribes a player to choose pure strategy x with probability α and pure strategy y
with probability 1−α. It appears that two-point strategies (in spite of their simple
form) play an essential role in describing Nash equilibria in wide classes of games.

To begin with, we recall three results concerning games � on the unit square in
which the conditions for the existence of Nash equilibria in two-point strategies are
described. These results are a starting point for our study.

First background theorem belongs to Glicksberg (1952) and relates to the existence
of Nash equilibrium in pure strategies for general n-person games. We quote his
result only in the version for a two-person game on the unit square of the form (1),
better suited for our discussion. We recall here that a real-valued function f on [0, 1] is
quasi-concave, when for each real c, the set {x : f (x) ≥ c} is convex. In the analogous
way, a quasi-convex function is defined (after replacing “≥” by “≤)”. Of course, every
convex (concave) function is quasi-convex (quasi-concave).

Theorem A Assume that the payoff functions F1(x1, x2) and F2(x1, x2) are contin-
uous on the unit square [0, 1]2, and quasi-concave in x1 and x2, respectively. Then
game � possesses a Nash equilibrium in pure strategies.

The second theorem belongs to Parthasarathy and Raghavan (1975) and can be seen
as complementary to Theorem A.

Theorem B Assume that the payoff functions F1(x1, x2) and F2(x1, x2) are contin-
uous on [0, 1]2, and F1(x1, x2) is concave in x1. Then game � possesses a Nash
equilibrium of the form (δa, βδc + (1 − β)δd) with 0 ≤ β, a, c, d ≤ 1.

The third result (Theorem 2.3 in Radzik 1993), also essential for our further con-
siderations, is a “convex version” of Theorem B.

Theorem C Assume that for a = 0, 1 the payoff functions F1(a, x2) and F2(a, x2)

are continuous in x2, and F1(x1, x2) is convex in x1. Then game � possesses a Nash
equilibrium of the form (αδ0 + (1 − α)δ1, βδc + (1 − β)δd) with 0 ≤ α, β, c, d ≤ 1.

When the quasi-concavity of the payoff functions is omitted in the assumption of
Theorem A, then there still exists a Nash equilibrium, but generally in mixed strategies.
Glicksberg (1952) showed it for general n-person games. However we quote it only
in the form analogous to that of Theorem A.

Theorem D Assume that the payoff functions F1(x1, x2) and F2(x1, x2) are contin-
uous on the unit square [0, 1]2. Then game � possesses a Nash equilibrium in mixed
strategies.

Remark 1 It is known that the assumption about continuity of payoff functions in
Theorem A cannot be weakened by upper semicontinuity (see Example 1 in Radzik
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and Ravindran 1989). However an open question is, if game � with continuous payoff
functions F1 and F2 and with function F1(x1, x2) quasi-concave in x1 has a Nash equi-
librium in two-point strategies. Note that Theorem B says that when quasi-concavity
of both payoff functions in Theorem A is replaced by concavity of only one of them,
game � still has an “almost pure” Nash equilibrium. Further, Example 1 below shows
that if we remove the continuity assumption for function F2, both Theorems B and C
are not longer true, and then game � may have no Nash equilibrium at all. As far as the
“concavity” assumption in Theorem B is concerned, Example 2 shows that it cannot
be weakened by the assumption of quasi-concavity in x1 for function F1(x1, x2). The
answer is not known for the analogous question concerning Theorem C.

Remark 2 It is worth mentioning that Theorems B and C have their generalizations (see
Theorems 2.1 and 2.3 in Radzik (1993)). Namely, it may be seen as rather surprising
that if in Theorem B the assumption about continuity of payoff functions F1 and F2
is replaced by boundedness on [0, 1]2, then game � has an ε-Nash equilibria of the
form (αδa + (1 − α)δb, βδc + (1 − β)δd), for some 0 ≤ α, β, a, b, c, d ≤ 1 with
|a − b| < ε.

Similarly, after removing “continuity” in Theorem C, game � also has an ε-Nash
equilibrium of the form described there.

Example 1 Consider the game � with the payoff functions F1 and F2 described by:
F1(x1, x2) = 0 for 0 ≤ x1, x2 ≤ 1, and F2(x1, x2) = 0 for 0 ≤ x1 ≤ 1 with x2 = 1
and F2(x1, x2) = x2 otherwise. Since, as we easily see, each pure strategy x2 ∈ [0, 1]
is strictly dominated by another one, there is no Nash equilibrium in this game. On
the other hand, it is immediately seen that function F1( x1, x2) is both concave and
convex in x1, and function F2( x1, x2) is discontinuous. So, Theorems B and C are no
longer true when the continuity assumptions are removed.

Example 2 Consider the game � with the payoff functions described by the following:

F1(x1, x2) =
{

(1 − 2x1)(1 − 2x2) if 0 ≤ x1, x2 < 1
2 or 1

2 < x1, x2 ≤ 1
0 otherwise

and

F2(x1, x2) = x2
2 − 2x1x2 for 0 ≤ x1, x2 ≤ 1 .

One can easily verify that both payoff functions F1 and F2 are continuous on [0, 1]2,
and function F1(x1, x2) is quasi-concave in x1 (but not concave), and function
F2(x1, x2) is convex in x2. On the other hand, it is easy to show that game � does
not have a Nash equilibrium of the form η∗ = (δa, βδc + (1 − β)δd) with c < d
(the subcase c = d is equivalent to c < d with β = 0 and thereby can be omitted).
To prove it, suppose that game � has a Nash equilibrium of the form η∗, and assume
first that 0 < c < 1 or 0 < d < 1. Then F2(η

∗) = βF2(a, c) + (1 − β)F2(a, d) <

max{F2(a, 0), F2(a, 1)}, because function F2(x1, x2) is strictly convex in x2. But this
contradicts the fact that η∗ is a Nash equilibrium. Therefore c = 0 and d = 1, and let
μ

β
2 := βδ0 + (1 − β)δ1.
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Further, supposing that a �= 1
2 and 0 < β < 1, we have: F2(a, μ

β
2 ) = βF2(a, 0)+

(1 − β)F2(a, 1) < max{F2(a, 0), F2(a, 1)}, because F2(x1, 0) �= F2(x1, 1) for x1 �=
1
2 . But this contradicts the optimality of strategy μ

β
2 of Player 2.

Similarly, the case [a = 1
2 and 0 ≤ β ≤ 1] is impossible, because for β >

0F1(δ 1
2
, μ

β
2 ) = βF1

( 1
2 , 0

) + (1 − β)F1
( 1

2 , 1
) = 0 <

β
2 = F1

(
1
4 , μ

β
2

)
, while for

β = 0F1(δ 1
2
, μ0

2) = F1
( 1

2 , 1
) = 0 < 1

2 = F1
( 3

4 , μ0
2

)
, contradicting the optimality

of strategy δ 1
2

of Player 1.

The impossibility of the two remaining cases, (I) [a �= 1
2 and β = 0], and (II)

[a �= 1
2 and β = 1], can be shown similarly. Namely, in case (I), if a < 1 then we

have: F1(δa, μ0
2) = F1(a, 1) ≤ max{0, (1 − 2a) · (−1)} < 1 = F1(1, μ0

2), which
contradicts the optimality of strategy δa of Player 1. On the other hand, if a = 1
then F2(δ1, μ

0
2) = F2(1, 1) = −1 < 0 = F2(δ1, 0), contradicting the optimality of

strategy μ0
2 of Player 2. The impossibility of the case (II) can be shown in almost

exactly the same way as for (I), and is left to the reader.

3 Definition of poorly convex functions

In this section we introduce two basic notions of poorly convex/concave functions and
pairwise poorly convex/concave families, together with a wide discussion. They play
a fundamental role in the paper. In particular, they arise in the assumptions of our five
main theorems presented in Sect. 4. The theory of poorly convex functions, needed
for the proofs of the theorems, is developed in Sect. 5.

We begin with the following definition.

Definition 1 A function f on [a, b] is poorly convex (poorly concave) if for every
(x1, x2, λ) with a ≤ x1 < x2 ≤ b and 0 < λ < 1 there is a real number p =
p(x1, x2, λ) with 0 < p < 1 such that

f (λx1 + (1 − λ)x2) ≤ (≥)p(x1, x2, λ) f (x1) + [1 − p(x1, x2, λ)] f (x2). (2)

Remark 3 It is not difficult to see that the above definition can be straightforwardly
generalized to poorly convex and poorly concave functions defined on convex subsets
U of an arbitrary vector space. It suffices only to replace the set of vectors {(x1, x2, λ) :
a ≤ x1 < x2 ≤ b, 0 < λ < 1} by the set {(x1, x2, λ) : x1, x2 ∈ U, x1 �= x2, 0 <

λ < 1}. However, in this paper we restrict our attention only to such functions on an
interval of the real line which are needed to formulate our main theorems in Sect. 4.

Now we give a proposition which presents an equivalent but a little simpler char-
acterization of poorly convex and poorly concave functions, more convenient for our
further considerations. To formulate it, for brevity, we introduce the notation

ū := (u1, u2, u3),

and, for a given interval [a, b], we define the set
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Q[a,b] := {ū : a ≤ u1 < u2 < u3 ≤ b}. (3)

Proposition 1 A function f is poorly convex (poorly concave) on [a, b] if and only
if there is a positive function T defined on the set Q[a,b], such that for all ū ∈ Q[a,b],
the following inequality hold:

f (u2) − f (u1) ≤ (≥)T (ū)[ f (u3) − f (u2)]. (4)

Proof (⇒) Fix arbitrarily (x1, x2, λ) with a ≤ x1 < x2 ≤ b and 0 < λ < 1. Let
u1 = x1, u3 = x2 and u2 = λx1 + (1 − λ)x2, whence λ = u3−u2

u3−u1
. So we can write (2)

as dependent only on (u1, u2, u3), in the form equivalent to (4) with

T (ū) =
1 − p

(
u1, u3,

u3−u2
u3−u1

)

p
(

u1, u3,
u3−u2
u3−u1

) , (5)

as it is easy to verify. This equality well defines a positive function T on Q[a,b] because
ū ∈ Q[a,b], whence a ≤ u1 < u3 ≤ b and 0 < u3−u2

u3−u1
< 1.

(⇐) Fix arbitrarily ū ∈ Q[a,b]. Obviously, for some 0 < λ < 1, u2 = λu1 + (1 −
λ)u3. Putting now u1 = x1, u3 = x2 and u2 = λx1 + (1−λ)x2 in (4), we easily check
that this inequality is equivalent to (2) with

p(x1, x2, λ) = 1

1 + T (x1, λx1 + (1−λ)x2, x2)
. (6)

The value p(x1, x2, λ) is well defined, because a ≤ x1 < x2 ≤ b, 0 < λ < 1 and
(x1, λx1 + (1−λ)x2, x2) ∈ Q[a,b]. This ends the proof. ��

Proposition 1 allows us to give an equivalent definition of poorly convex and poorly
concave functions on an interval [a, b], which is better suited for our further consid-
erations.

Definition 2 A function f on [a, b] is poorly convex (poorly concave) if there is a
positive function T defined on the set Q[a,b] such that for all ū ∈ Q[a,b], inequality
(4) holds. Then function f is also called T -convex (T -concave) on [a, b].

Now we are ready to give our second basic definition.

Definition 3 Let X be an index set. A family { fα : α ∈ X } of functions on interval
[a, b] is pairwise poorly convex (pairwise poorly concave) if for every pair α, β ∈ X
there is a positive function T on Q[a,b] such that the functions fα and fβ are T -convex
(T -concave) on [a, b].
Remark 4 One can easily see that function T related to a poorly convex function (in
Definition 1) neither has to be continuous nor unique. A wide analysis of poorly con-
vex functions and pairwise poorly convex families of functions is presented in Sects.
5 and 6. In particular, in Proposition 3 we give necessary and sufficient conditions
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Poor convexity and Nash equilibria in games 175

for a continuous function to be poorly convex, which shows that the family of poor
convex (concave) functions on an interval is much richer than that of convex (concave)
ones. We also mention here the relations between convex and poorly convex func-
tions. Namely, every convex (concave) function f on an interval [a, b] is T -convex
(T -concave) on [a, b] with function T of the form T (ū) = u2−u1

u3−u2
. Therefore every

family of convex (concave) functions is a pairwise poorly convex (concave) one, but
not conversely. The pairwise poorly convex (concave) families are substantially richer
and play a fundamental role in our considerations. At the end of Sect. 6 we give
two examples (Examples 3 and 4) of pairwise poorly convex families consisting of
non-convex standard functions.

Remark 5 An easy analysis of inequality (4) shows that poor convexity of a function
f on an interval [a, b] can also be defined by requiring for all a ≤ u1 < u2 <

u3 ≤ b the following two implications: [ f (u2) = f (u1)] ⇒ [ f (u3) ≥ f (u2)],
and [ f (u2) > f (u1)] ⇒ [ f (u3) > f (u2)]. This latter definition shows that poor
convexity is indeed stronger than quasi-convexity. However, poor convexity can be
also seen as a very minor strengthening of quasi-convexity, since every continuous
quasi-convex function on an interval can be approximated by a sequence of continuous
poorly convex functions in the topology of uniform convergence (see Proposition 4 in
Sect. 5). Similar remarks can be made for poor concavity.1

4 Main theorems

In this section we discuss possible generalizations of Theorems B and C from
Sect. 2. As a result, five new Theorems 1–5 are proposed (their proofs will be given
in Sect. 7). The basic question is how far we can weaken the assumptions of Theo-
rems B and C, still having (in game �) the existence of a Nash equilibrium of the
form described there. Example 2 given in Sect. 2 shows that Theorem B is false when
we replace “concave” by “quasi-concave” in its assumptions. Hence a very intriguing
question is whether Theorem B will remain true if we replace concavity assumption by
“something between” concavity and quasi-concavity. The same question is essential
for Theorem C. Just these two questions are basic for our study and we will show that
the answer for both of them is positive.

Below we formulate the main five results of the paper. Their proofs are given in
Sect. 7 which is preceded by the two auxiliary Sects. 5 and 6, where a theory of poorly
convex functions is developed. The first two theorems generalize Theorems B and C.

Theorem 1 Assume that the payoff functions F1(x1, x2) and F2(x1, x2) are contin-
uous on the unit square [0, 1]2, and {F1( · , x2) : x2 ∈ [0, 1]} is a pairwise poorly
concave family of functions on [0, 1]. Then game � possesses a Nash equilibrium of
the form (δa, βδc + (1 − β)δd), for some 0 ≤ β, a, c, d ≤ 1.

Theorem 2 Assume for a = 0, 1 that the payoff functions F1(a, · ) and F2(a, · )
are continuous, and {F1( · , x2) : x2 ∈ [0, 1]} is a pairwise poorly convex family of

1 The first part of this remark belongs to an anonymous referee.
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176 T. Radzik

functions on [0, 1]. Then game � possesses a Nash equilibrium of the form (αδ0 +
(1 − α)δ1, βδc + (1 − β)δd), for some 0 ≤ α, β, c, d ≤ 1.

The next two results can be seen as a completion of Theorem 1. They show that
players’ “simple strategies” (with two-point supports) arising in Theorems 1 and 2 are
quite satisfactory for them in many game cases.

Theorem 3 Assume that F2(x1, x2) is continuous on the unit square [0, 1]2, and
{F1( · , x2) : x2 ∈ [0, 1]} is a pairwise poorly concave family of continuous functions
on [0, 1]. If game � possesses a Nash equilibrium (μ, ν) with a payoff vector ( f1, f2)

then it also has a Nash equilibrium of the form (μ , βδc + (1 − β)δd) for some 0 ≤
β, c, d ≤ 1, with a payoff vector ( f

′
1, f

′
2) having the same second component f

′
2 = f2.

Remark 6 We do not know if the assumptions of Theorem 3 guarantee the existence
of a Nash equilibrium in game �. However, it can facilitate solving this problem in
concrete cases of �.

Theorem 3 leads immediately to the next one.

Theorem 4 Assume that the payoff functions F1(x1, x2) and F2(x1, x2) are contin-
uous on the unit square [0, 1]2, and {F1( · , x2) : x2 ∈ [0, 1]} and {F2(x1 , ·) :
x1 ∈ [0, 1]} are pairwise poorly concave families of functions on [0, 1]. Then
for any Nash equilibrium in game � there is also a Nash equilibrium of the form
(αδa + (1 − α)δb , βδc + (1 − β)δd) for some 0 ≤ α, β, a, b, c, d ≤ 1, with the same
payoff vector.

Remark 7 Theorem D from Sect. 2 implies that under the assumption of Theorem
4, game � always has a Nash equilibrium in mixed strategies. Hence, the result of
Theorem 4 can be interpreted that any Nash equilibrium in mixed strategies has an
“equivalent” Nash equilibrium in two-point strategies in this game.

The last theorem is a “discontinuous modification” of Theorem 2.

Theorem 5 Assume that {F1( · , x2) : x2 ∈ [0, 1]} and {F2(x1 , ·) : x1 ∈ [0, 1]}
are pairwise poorly convex families of functions on [0, 1]. Then game � has a Nash
equilibrium of the form (αδ0 + (1 − α)δ1 , βδ0 + (1 − β)δ1) with 0 ≤ α, β ≤ 1.

Remark 8 In general, Theorems 1 and 2 are no longer true when we admit for payoff
functions F1 and F2 to be discontinuous (the same was shown for Theorems B and C
in Example 1 in Sect. 2). Moreover, it may happen then that there are no Nash equi-
libria at all. However the author does not know whether after removing the continuity
assumption in Theorems 1 and 2, the games still have ε-Nash equilibria for all ε > 0
[we recall that this is true for Theorems B and C (see Remark 2)]. The next question
is whether Theorems 3 and 4 still remain true after changing “poorly concave” with
“poorly convex”.

Remark 9 Some “discrete” versions of poorly concave games considered in this paper
have been also studied in the literature, where the spaces of players’ pure strategies are
finite, and payoff functions are assumed to satisfy a discrete version of the pairwise
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poor concavity property. In paper Radzik (2000) some counterparts of Theorems 1–4
are presented for matrix games, while in Połowczuk (2006) for bimatrix games. A
discrete versions of these theorems for poorly concave n-person games can be found
in Połowczuk et al. (2007).

5 Theory of poorly convex functions

Pairwise poor convexity and poor concavity are basic properties of families of functions
considered in the assumptions of our main Theorems 1–5. Having this in mind, we
devote this section to develop a basic theory of such functions. Among other things,
we find necessary and sufficient conditions for families of continuous functions to be
pairwise poorly convex. This gives us tools for constructing pairwise poorly convex
families and thereby to show that the class of such families is substantially richer than
the family of convex functions (Examples 3 and 4 in Sect. 6). We mainly study poorly
convex functions, because the results obtained can be trivially modified to analogous
ones for poorly concave functions. We do it in Propositions 2–7.

In the first proposition, functions f and g are considered to be defined on an interval
[a, b]. We list here five basic properties of poorly convex functions. Obviously, the
proposition remains true after replacing “convex” by “concave” in it.

Proposition 2 The following statements hold:

(a) a function f is poorly convex if and only if − f is poorly concave;
(b) every convex function f is poorly convex;
(c) every poorly convex function f is quasi-convex;
(d) if f is T1- and T2-convex then f is (αT1 +βT2)-convex for all α, β ≥ 0 with

α + β = 1;
(e) if f and g are T -convex functions then for every α, β ≥ 0 the function α f + βg

is also T -convex.

Proof Statements (a), (d) and (e) are simple consequences of Definition 1. Statement
(b) was justified in Remark 4. Therefore, it suffices to show statement (c).

By assumption, function f satisfies inequality (4). Let c ∈ R, a ≤ u1 < u2 <

u3 ≤ b, and assume that f (u1) ≤ c and f (u3) ≤ c. Hence, we can conclude with the
help of inequality (4) as follows:

f (u2)(1 + T (ū)) ≤ f (u1) + T (ū) f (u3) ≤ c + cT (ū) = c(1 + T (ū)),

and thereby f (u2) ≤ c, because T (ū) > 0. Therefore the set {u : f (u) ≤ c} is convex
which, in view of arbitrarity of c, implies that function f is quasi-convex. ��

The next proposition characterizes an arbitrary poorly convex continuous function.
To express it, we need to define the following two quantities for a function f on an
interval [a, b]:

τ f := sup{x ∈ [a, b] : f is strictly decreasing on [a, x]} (7)

and
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τ f := inf{x ∈ [a, b] : f is strictly increasing on[x, b]}. (8)

Obviously, τ f ≤ τ f . Both these quantities are basic for our subsequent considerations.

Proposition 3 A continuous function f on [a, b] is poorly convex if and only if there
are constants c ≤ d in [a, b] such that f is strictly decreasing on [a, c], strictly
increasing on [d, b], and constant on [c, d]. Then c = τ f and d = τ f .

Proof (⇒) Since this part of the proposition is obvious in the case τ f = τ f , we
can assume τ f < τ f . Suppose first that function f is not constant on [τ f , τ

f ]. Hence
there are u1 < u2 in the interval (τ f , τ

f ) such that f (u1) > f (u2) or f (u1) < f (u2).
We consider these two cases.

Case 1: f (u1) > f (u2).
By Definition 2, function f is T -convex for some positive function T defined on

the set Q[a,b]. Let a ≤ u′ < u′′ < u1 < u2 ≤ b and denote T1 := T (u′, u′′, u1) and
T2 := T (u′′, u1, u2). Then (4) implies that

f (u′′) − f (u′) ≤ T1[ f (u1) − f (u′′)] ≤ T1T2[ f (u2) − f (u1)],

whence we easily deduce that f (u′) > f (u′′) and f (u′′) > f (u1), because of f (u1) >

f (u2) and T1, T2 > 0. But this, in view of the arbitrarity of u′, u′′, proves that function
f is strictly decreasing in the interval [a, u1]. However this contradicts (7) because of
u1 ∈ (τ f , τ

f ). Therefore Case 1 cannot hold.
Case 2: f (u1) < f (u2).
This case is also impossible. To show it, it suffices to repeat the reasoning of Case

1, replacing parameters u′, u′′, u1 and u2 by u1, u2, u′ and u′′, respectively. The clear
details are omitted.

Therefore f (u1) = f (u2). But this, in view of the arbitrarity of u1, u2, proves that
function f is constant in the interval [τ f , τ

f ]. This completes the proof of part (⇒).
(⇐) We can directly verify that function f satisfies (4) for positive function T

defined on Q[a,b] in the following way:

T (ū) :=
{

f (u2)− f (u1)
f (u3)− f (u2)

if [ f (u2) − f (u1)][ f (u3) − f (u2)] > 0
1 otherwise.

This completes the proof of Proposition 3. ��
Now we give a proposition showing that poor convexity is a very minor strength-

ening of quasi-convexity.

Proposition 4 Any continuous quasi-convex function f on [a, b] can be approximated
by a sequence ( fn) of poorly convex continuous functions in the topology of uniform
convergence.

Proof For n = 1, 2, . . ., let us choose real numbers �n to satisfy: | f (x ′) − f (x ′′)| ≤
�n if |x ′ − x ′′| ≤ 1

n in [a, b]. Since every continuous function on an interval is also
uniformly continuous, we may choose �n → 0 as n → ∞.
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Let us fix c satisfying f (c) = minu∈[a,b] f (u), and firstly assume that a < c < b.
For a natural n, we define two sequences (x0, x1, . . . , xn) and (y0, y1, . . . , yn) by the
following:

xk = a + k
c − a

n
and yk = c − k

b − c

n
, k = 0, 1, . . . , n.

Note that a = x0 < x1 < . . . < xn = c = yn < yn−1 < . . . < y0 = b. Now, let fn

be a function on [a, b] determined by the following two conditions:

(i) fn(xk) = fn(yk) = f (xk) − ∑k
i=0

1
ni+1 for k = 0, 1, . . . , n , and

(ii) function fn is linear on all the intervals of the form [xk, xk+1] and [yk+1, yk], k =
0, 1, . . . , n − 1 .

By Proposition 3, function f is nonincreasing on [a, c] and nondecreasing on [c, b].
Hence, one can easily conclude with the help of conditions (i) and (ii) that function fn

is continuous on [a, b], strictly decreasing on [a, c] and strictly increasing on [c, b].
Therefore, Proposition 3 can be used again to conclude that function fn is poorly
convex on [a, b]. Besides we easily deduce that

max
u∈[a,b] | f (u) − fn(u)| ≤ �n +

n∑

i=0

1

ni+1 < �n +
∞∑

i=0

1

ni+1 = �n + 1

n − 1
,

which immediately completes the proof in the case a < c < b. When a = c or b = c,
the reasoning can be repeated with only the sequence {yk} or {xk}, respectively. ��

In the next three propositions we discuss the question of the conditions guarantee-
ing for a pair of continuous poorly convex functions to be pairwise poorly convex.
However, for their proofs, we need the following lemma.

Lemma 1 Let f and g be poorly convex functions on [a, b]. Then the pair { f, g} is
pairwise poorly convex if and only if for every ū ∈ Q[a,b] satisfying

f (u1) < f (u2) < f (u3) and g(u1) > g(u2) > g(u3) , (9)

or

f (u1) > f (u2) > f (u3) and g(u1) < g(u2) < g(u3) , (10)

there is an h > 0 such that

f (u2) − f (u1) ≤ h[ f (u3) − f (u2)] (11)

and

g(u2) − g(u1) ≤ h[g(u3) − g(u2)]. (12)
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Proof By Definition 2, there are some positive functions T1(ū) and T2(ū) on Q[a,b]
such that function f is T1-convex and function g is T2-convex on [a, b].

(⇒) In view of Definitions 2 and 3, this part of the lemma is obvious.
(⇐) Let us arbitrarily fix ū ∈ Q[a,b]. If (9) or (10) are satisfied, pairwise poor

convexity of the pair { f, g} follows by the assumption. Therefore, for the rest of our
considerations, we can assume that (9) and (10) do not hold. To complete the proof of
the lemma, it suffices to show that there is a number h > 0 for which (11) and (12)
hold. We consider several cases.

Case 1: f (u1) ≤ f (u2) and g(u1) ≤ g(u2).
Hence, with the help of (4), we can conclude as follows:

f (u3) − f (u2) ≥ 1

T1(ū)
[ f (u2) − f (u1)] ≥ 1

max{T1(ū), T2(ū)} [ f (u2) − f (u1)],

and thereby (11) follows for h = 1
max{T1(ū),T2(ū)} . Exactly in the same way, replacing

f and T1 by g and T2, respectively, we show (12) for the same h.
Case 2: f (u1) ≥ f (u2) and g(u1) ≥ g(u2).
Now we can repeat the reasoning of Case 1 to get the validity of (11) and (12) for

h = 1
min{T1(ū),T2(ū)} .

Case 3: f (u2) ≤ f (u3) and g(u2) ≤ g(u3).
Then we have:

f (u2) − f (u1) ≤ T1(ū)[ f (u3) − f (u2)] ≤ max{T1(ū), T2(ū)}[ f (u3) − f (u2)]

and

g(u2) − g(u1) ≤ T2(ū)[g(u3) − g(u2)] ≤ max{T1(ū), T2(ū)}[g(u3) − g(u2)].

Consequently, (11) and (12) hold for h = max{T1(ū), T2(ū)}.
Case 4: f (u2) ≥ f (u3) and g(u2) ≥ g(u3).
Now we can repeat the reasoning of Case 3 to get the validity of (11) and (12) for

h = min{T1(ū), T2(ū)}.
Case 5: f (u1) ≥ f (u2) ≤ f (u3).
Then (11) and (12) hold for h = T2(ū).
Case 6: g(u1) ≥ g(u2) ≤ g(u3).
Then (11) and (12) hold for h = T1(ū).
One can easily deduce that if (9) and (10) do not hold, then one of cases 1–6 must

hold. This ends the proof of the lemma. ��
Proposition 5 Let f and g be continuous and poorly convex functions on [a, b],
satisfying [τ f , τ

f ] ∩ [τg, τ
g] �= ∅. Then the pair { f, g} is pairwise poorly convex on

[a, b].
Proof Let ū ∈ Q[a,b] and suppose that (9) holds. Then Proposition 3 applied to
functions f and g implies that u2 > τ f and u2 < τg , whence τ f < τg . But this
contradicts the assumption [τ f , τ

f ] ∩ [τg, τ
g] �= ∅.
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On the other hand, when we suppose that (10) holds, in a similar way we get
τ g < τ f , contradicting the assumption again. Therefore, (9) and (10) do not hold for
ū ∈ Q[a,b], which by Lemma 1 ends the proof. ��

The next proposition considers the second case [τ f , τ
f ] ∩ [τg, τ

g] = ∅. To formu-
late it, we need to introduce the following notation:

Q f
g := {ū : τ f ≤ u1 < u2 < u3 ≤ τg}.

Proposition 6 Let f and g be continuous and poorly convex functions on [a, b] with
τ f < τg. Then the pair { f, g} is pairwise poorly convex on [a, b] if and only if

f (u2) − f (u1)

f (u3) − f (u2)
≤ g(u2) − g(u1)

g(u3) − g(u2)
for ū ∈ Q f

g . (13)

Proof In view of τ f < τg , Proposition 3 implies that function f is strictly increasing
in [τ f , τg], and function g is strictly decreasing in [τ f , τg]. Hence, it follows that

f (u1) < f (u2) < f (u3) and g(u1) > g(u2) > g(u3) for ū ∈ Q f
g . (14)

(⇒) By Definitions 2 and 3, it follows that there is a positive function T on Q[a,b]
such that for ū ∈ Q[a,b]

f (u2) − f (u1) ≤ T (ū)[ f (u3) − f (u2)] (15)

and

g(u2) − g(u1) ≤ T (ū)[g(u3) − g(u2)], (16)

which, by (14), immediately implies (13).
(⇐) Assume now that (13) holds. To end the proof it suffices to show that there is

a positive function T defined on the set Q[a,b] such that inequalities (15) and 16) hold
for all ū ∈ Q[a,b].

Case 1: ū ∈ Q f
g .

Let us define T (ū) as any positive value satisfying the inequalities,

f (u2) − f (u1)

f (u3) − f (u2)
≤ T (ū) ≤ g(u2) − f (u1)

g(u3) − g(u2)
, (17)

which is possible because of (13). But this together with (14) imply (15) and (16).
Case 2: ū /∈ Q f

g , f (u1) < f (u2) < f (u3) and g(u1) > g(u2) > g(u3).
One can easily see with the help of Proposition 3 that

τ f < u2 < τg. (18)

However, this implies that

123



182 T. Radzik

u1 < τ f or u3 > τg ,

since otherwise, it would contradict ū /∈ Q f
g .

Consider now the first subcase

( A ) : u1 ≤ τ f and u3 ≥ τg , (19)

where one of the inequalities is strict. By Proposition 3 and the assumption τ f < τg ,
function f is nonincreasing on [u1, τ

f ] and strictly increasing on [τg, u3], and function
g is strictly decreasing on [u1, τ

f ] and nondecreasing on [τg, u3]. It implies that for
u

′
1 = τ f and u

′
3 = τg we have

f (u2) − f (u1) ≤ f (u2) − f (u
′
1) and g(u2) − g(u1) ≤ g(u2) − g(u

′
1), (20)

f (u3) − f (u2) ≥ f (u
′
3) − f (u2) and g(u3) − g(u2) ≥ g(u

′
3) − g(u2) , (21)

and u
′
1 < u2 < u

′
3, because of (18) and (19).

Therefore the vector ū∗ = (u
′
1, u2, u

′
3) satisfies ū∗ ∈ Q f

g and consequently, by
Case 1, for some T (ū∗) > 0,

f (u2) − f (u
′
1) ≤ T (ū∗)[ f (u

′
3) − f (u2)]

and

g(u2) − g(u
′
1) ≤ T (ū∗)[g(u

′
3) − g(u2)].

But this together with (20) and (21) imply that inequalities (15) and (16) hold for
T (ū) = T (ū∗) in the first subcase (19) considered.

The two remaining subcases can be described by the conditions, (B): u1 ≤ τ f <

u2 < u3 < τg , and (C): τ f < u1 < u2 < τg < u3. We can analyze them, by the exact
repetition of reasoning in subcase (A), changing only u

′
3 with u3 for subcase (B), and

u
′
1 with u1 for subcase (C). In both subcases, the results obtained will be the same as

in subcase (A). The clear details are omitted.
Case 3: ū /∈ Q f

g , f (u1) > f (u2) > f (u3) and g(u1) < g(u2) < g(u3).
This case cannot occur. Namely, then Proposition 3 would imply u1 < u2 ≤ τ f

and τg ≤ u2 < u3 which is impossible, because of the assumption τ f < τg .
Now, taking into account Lemma 1 and conditions describing Cases 1–3, we easily

deduce that the pair of functions { f, g} is pairwise poorly convex on [a, b], completing
the proof of the proposition. ��

One can see the verification of condition (13) as somewhat complex. The next
proposition is a special version of the previous one where verification of (13) is replaced
by a much easiercondition.
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Proposition 7 Let f and g be continuous and poorly convex functions on [a, b] with
τ f < τg. Assume that there are continuous derivatives f

′
and g

′
on (τ f , τg), with

g
′ �= 0. Then the pair of functions { f, g} is pairwise poorly convex on [a, b] if and

only if the function G(u) = f
′
(u)/g

′
(u) is nonincreasing on (τ f , τg).

Proof (⇒) Let τ f < u1 < u2 < u3 < u4 < τg . By Proposition 3, functions f and g
are strictly increasing and strictly decreasing in interval [τ f , τg], respectively. Hence,

f (u2) > f (u1), f (u4) > f (u3), g(u2) < g(u1) and g(u4) < g(u3). (22)

The assumption that the pair { f, g} is pairwise poorly convex on [a, b], implies that
for some positive numbers h and h′ we have

f (u2) − f (u1) ≤ h[ f (u3) − f (u2)] ≤ hh′[ f (u4) − f (u3)]

and, similarly, the inequality g(u2) − g(u1) ≤ hh′[g(u4) − g(u3)]. Hence, in view of
(22), we get f (u2)− f (u1)

f (u4)− f (u3)
≤ hh′ ≤ g(u2)−g(u1)

g(u4)−g(u3)
, and thereby, f (u2)− f (u1)

g(u2)−g(u1)
≥ f (u4)− f (u3)

g(u4)−g(u3)
.

But this, by the classical Cauchy’s theorem, leads to the inequality, f
′
(θ12)

g′
(θ12)

≥ f
′
(θ34)

g′
(θ34)

for

some θ12 ∈ (u1, u2) and θ34 ∈ (u3, u4). Hence, taking into account that θ12 → u1 as

u2 → u1, and θ34 → u4 as u3 → u4, we get f
′
(u1)

g′
(u1)

≥ f
′
(u4)

g′
(u4)

. In view of the arbitrarity

of u1 and u4, it follows that the function G(u) = f
′
(u)/g

′
(u) is nonincreasing on

interval (τ f , τg).
(⇐) Assume now that the function G(u) = f

′
(u)/g

′
(u) is nonincreasing in

(τ f , τg), and let us arbitrarily choose ū ∈ Q f
g . Then Proposition 3 implies that

f (u1) < f (u2) < f (u3) and g(u1) > g(u2) > g(u3).

Suppose now that inequality (13) does not hold. Then, in view of the above inequal-
ities, we would have f (u2)− f (u1)

g(u2)−g(u1)
<

f (u3)− f (u2)
g(u3)−g(u2)

. But this, by Cauchy’s theorem, leads

to the inequality f
′
(θ12)

g′
(θ12)

<
f
′
(θ23)

g′
(θ23)

for some θ12 ∈ (u1, u2) and θ23 ∈ (u2, u3), con-

tradicting the assumption that function G is nonincreasing in (τ f , τg). Therefore (13)
holds, which by Proposition 6 completes the proof. ��

6 On two properties of poorly convex functions

In this section we use the theory from the previous section to present two main results
describing some properties of poorly convex functions which are basic for the proofs
of Theorems 1–5. We also give two examples illustrating the fact that the family of
such functions are much richer than the class of convex functions.

In the first theorem we show that pairwise poor convexity of a finite family of
functions can be remarkably strengthened.
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Theorem 6 Let a finite family F = { fi : i = 1, 2, . . . , n} of functions on [a, b] be
pairwise poorly convex. Then there is a positive function T on Q[a,b] such that all the
functions fi , i = 1, . . . , n, are T -convex on [a, b].
Proof Let us arbitrarily fix ū = (u1, u2, u3) in Q[a,b]. It suffices to show that there is
an h > 0 such that

fi (u2) − fi (u1) ≤ h[ fi (u3) − fi (u2)], i = 1, 2, . . . , n. (23)

Now, let 1 ≤ k ≤ n. Since function fk is poorly convex, there is an hk > 0 such
that

fk(u2) − fk(u1) ≤ hk[ fk(u3) − fk(u2)]. (24)

On the other hand, one can easily see that if the inequality (24) holds for two positive
numbers hk = h

′
k and hk = h

′′
k , then it also holds for every convex combination

hk = αh
′
k +(1−α)h

′′
k , 0 ≤ α ≤ 1. Hence, it follows that all the sets

Ak = {hk : hk > 0 and inequality (24) holds } , k = 1, . . . , n ,

are nonempty and convex subsets of R1. Now, taking into account the assumption
about the pairwise poor convexity of family F , we easily conclude that the class
{A1, A2, . . . , An} of nonempty and convex subsets of R1 has as property that A j ∩
Ak �= ∅ for any 1 ≤ j, k ≤ n, j �= k. Hence, by Helly’s theorem (Eckhoff 1993),
∩n

i=1 Ai �= ∅. But this implies that there is an h > 0 such that (23) holds, completing
the proof. ��

The last theorem we give in this section completes our considerations about poorly
convex functions. It describes a nice property of families of such functions.

Theorem 7 Let T = { fα : α ∈ X } be a family of continuous functions on an
interval [a, b] such that every pair of functions in T is pairwise poorly convex. Let
supα∈X fα(u) > 0 for each u ∈ [a, b]. Then there exist α, β ∈ X and a vector (λ1, λ2)

with λ1, λ2 ≥ 0 and λ1 +λ2 = 1, such that λ1 fα(u)+λ2 fβ(u) > 0 for all u ∈ [a, b].
Proof Let Aα = {u ∈ [a, b] : fα(u) > 0} and Bα = {u ∈ [a, b] : fα(u) ≤ 0}. If
Bα′ = ∅ for some α′ ∈ X , then the theorem is satisfied by α = α′, λ1 = 1, λ2 = 0
and arbitrary β. Therefore, for the rest of the proof we can assume that Bα �= ∅ for
every α ∈ X

By assumption, every function fα in T is continuous and poorly convex on [a, b].
Therefore, we can easily deduce with the help of Proposition 3 that for every α ∈
X , Bα has the form of a nonempty closed interval, say Bα = [aα, bα], and thereby,
Aα = [a, aα) ∪ (bα, b].

The assumption of the theorem implies that ∪α∈X Aα = [a, b]. Since each Aα is an
open set in [a, b] (as a space), therefore there exists a finite cover Aα1 , Aα2 , . . . , Aαn

of interval [a, b] with minimal n. Consequently, for i = 1, 2, . . . , n we have

fαi (u) ≤ 0 for u ∈ [aαi , bαi ] (25)
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and

fαi (u) > 0 for u ∈ [a, aαi ) ∪ (bαi , b]. (26)

Without loss of generality we can assume that aα1 ≤ aα2 ≤ . . . ≤ aαn , and let bαq =
min1≤i≤n bαi . The case aαn ≤ bαq cannot occur because it would imply that fαi (u) ≤ 0
for u ∈ [aαn , bαq ] and i = 1, 2, . . . , n, contradicting the equality ∪n

i=1 Aαi = [a, b].
Therefore, bαq < aαn . We will show that the two functions fα = fαq and fβ = fαn

satisfy the theorem with some positive λ1 = λ∗ and λ2 = 1 − λ∗, 0 < λ∗ < 1.
One can easily deduce with the help of (25), (26) and Proposition 3 that contin-

uous functions fαq and fαn are strictly increasing and strictly decreasing on interval
[bαq , aαn ], respectively, and besides,

fαq (bαq ) = 0 and fαn (aαn ) = 0. (27)

Hence, one can easily deduce that there exists a c such that

bαq < c < aαn , fαq (c) = fαn (c) > 0, (28)

fαq (u) > 0 for u ∈ (bαq , c] and fαn (u) > 0 for u ∈ [bαq , c], (29)

and

fαn (bαq ) > fαn (c) and fαq (bαq ) < fαq (c). (30)

Consider now the continuous function G(u, λ) = λ fαq (u)+ (1−λ) fαn (u) defined
on rectangle: a ≤ u ≤ b, 0 ≤ λ ≤ 1. By assumption, the pair of functions { fαq , fαn }
is pairwise poorly convex. Therefore there is a positive function T on Q[a,b] such that
functions fαq and fαn are T -convex. Hence, by statement (e) of Proposition 2, for
any fixed 0 ≤ λ ≤ 1, G(u, λ) is a T -convex function of variable u, and thereby also
poorly convex on [a, b].

In view of inequalities (30), we have G(c, 0)−G(bαq , 0) = fαn (c)− fαn (bαq ) < 0
and G(c, 1)−G(bαq , 1) = fαq (c)− fαq (bαq ) > 0. Hence, by continuity of the function
F(λ) = G(c, λ) − G(bαq , λ), there exists a λ∗, 0 < λ∗ < 1, such that F(λ∗) = 0.
But this, with the help of (27), (28) and (29) implies that

G(bαq , λ
∗) = G(c, λ∗) > 0

and

G(u, λ∗) > 0 for u ∈ [bαq , c].

Hence, in view of the inequality bαq < c, Proposition 3 applied to function G(u, λ∗)
of variable u easily implies that for all u ∈ [a, b] we have G(u, λ∗) > 0. Thus we
have proved that λ∗ fαq (u) + (1 − λ∗) fαn (u) > 0 for all u ∈ [a, b], completing the
proof. ��
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Remark 10 Theorem 7 obviously holds for any family T of convex continuous func-
tions on interval [a, b] because every such family is pairwise poorly convex (with
respect to function T (ū) = u2−u1

u3−u2
(see Remark 4 in Section 3)). Moreover, in the

literature one can find the following more general result of Bohnenblust et al. (1950)
(applied by them in game theory): If T is a family of convex continuous functions
defined on a compact convex set K in Rn with the property that sup f ∈T f (u) > 0
for each u ∈ K , then there are n + 1 functions f1, . . . , fn+1 in T and a vector
(λ1, . . . , λn+1) with nonnegative components such that

∑n+1
i=1 λi fi (u) > 0 for all

u ∈ K . With this correlation, the natural question arises, if Theorem 7 can be general-
ized to families of poorly convex functions on Rn? Of course, this problem is closely
related with the theory of poorly convex functions on Rn which is not studied in this
paper.

Pairwise poorly convex and concave families of functions are essential in the
assumptions of Theorems 1–5. Therefore, we end this section with two examples
presenting some of such families consisting of non-convex functions described with
the help of very standard formulas. Proposition 7 appears to be a very useful tool in
the analysis of such families. It is worth mentioning here that these examples show
that the class of pairwise poorly convex functions is substantially richer than that of
convex ones.

Example 3 Consider the family F = { fα(x) : α ∈ [0,
√

2]} of non-convex continuous
functions with common domain x ∈ [0,

√
2], where fα(x) = − exp{−(x−α)2}. It

can be easily verified that each function fα(x) is strictly convex on interval [cα, dα] =
[0,

√
2]∩[α−

√
2

2 , α+
√

2
2 ] and strictly concave on interval [0, α−

√
2

2 ] or on [α+
√

2
2 ,

√
2]

if α ≥
√

2
2 or α <

√
2

2 , respectively. Besides, each function fα(x) is strictly decreasing
in [0, α] and strictly increasing in [α,

√
2]. Therefore, by Proposition 3, F is a family

of poorly convex functions on [0,
√

2].
Now, let us arbitrarily choose two different functions f (x) = fα1(x) and g(x) =

fα2(x) from F . So We assume that 0 ≤ α1 < α2 ≤ √
2. Obviously, τ f = α1 <

α2 = τg . By direct computation we get that

[
f

′
(x)/g

′
(x)

]′
= α2 − α1

(x − α2)2

[
2(x − α1)(α2 − x) − 1

]
e[(α2−α1)(α2+α1)−2x].

But 2(x − α1)(α2 − x) − 1 ≤ 0 for x ∈ (α1, α2) (because (α1, α2) ⊂ [0,
√

2]).
Therefore this implies that [ f

′
(x)/g

′
(x)]′ ≤ 0 for x ∈ (α1, α2), and thereby function

G(x) = f
′
(x)/g

′
(x) is nonincreasing in interval (τ f , τg). Hence, by Proposition 7,

every pair of functions on family F is pairwise poorly convex.

Example 4 Consider the family U = { fαβγ (x) : α ∈ R, β < 0, γ ∈ [−π
2 , π

2 ]}
of non-convex continuous functions with common domain −π

2 ≤ x ≤ π
2 , where

fαβγ (x) = α +β sin(x −γ ). The fact that each function in family U is poorly convex
easily follows from Proposition 3.

Let us arbitrarily choose two different functions f (x) = fα1β1γ1(x) and g(x) =
fα2β2γ2(x) from U . We easily deduce that τf = τ f = γ1 − π

2 and τg = τg = γ2 − π
2 .
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When γ1 = γ2, the pair of functions f (x) and g(x) are pairwise poorly convex because
of Proposition 5. For the second case we can assume that −π

2 ≤ γ1 < γ2 ≤ π
2 , whence

τ f < τg . Then we easily get

[
f

′
(x)/g

′
(x)

]′
= − β1 sin(γ2 − γ1)

β2 cos2(x − γ2)
.

Hence, [ f
′
(x)/g

′
(x)]′ ≤ 0 for x ∈ (τ f , τg), because of 0 < γ2 − γ1 ≤ π . Therefore,

by Proposition 7, every pair of functions in family U is pairwise poorly convex.

7 Proofs of the main theorems

In this section we prove our main Theorems 1–5 from Sect. 4.

Proof of Theorem 1 We construct two matrices An and Bn of dimension n × n with

their elements denoted by an
i j and bn

i j , and defined by the following: an
i j = F1

(
i
n ,

j
n

)

and bn
i j = F2

(
i
n ,

j
n

)
, i, j = 1, 2, . . . , n. Further, let �(An, Bn) be the bimatrix game

with payoff matrices An and Bn for Players 1 and 2, respectively.
Let n be a natural number and consider the finite family F = { fi (u) : i = 1, . . . , n}

of functions on [0, 1], where fi (u) = F1(u, i
n ) for 1 ≤ i ≤ n and 0 ≤ u ≤ 1. By

assumption, family F is pairwise poorly concave. Therefore Theorem 6 and statement
(a) of Proposition 2 imply that there is a positive function H(u1, u2, u3) on Q[0,1]
such that for all 0 ≤ u1 < u2 < u3 ≤ 1,

F1

(

u2,
i

n

)

− F1

(

u1,
i

n

)

≥ H(u1, u2, u3)[F1

(

u3,
i

n

)

− F1

(

u2,
i

n

)

] for i = 1, . . . , n.

But this implies that for the positive constants hi = H
( i

n , i+1
n , i+2

n

)
, 1 ≤ i ≤ n − 2,

and for all j, 1 ≤ j ≤ n, the inequalities hold: an
i+1, j − an

i j ≥ hi (an
i+2, j − an

i+1, j ) for
i = 1, 2, . . . , n −2. Hence, we can easily see that there is a sequence θ1, θ2, . . . , θn−1
of positive numbers such that for all j, 1 ≤ j ≤ n,

θ1(a
n
2 j − an

1 j ) ≥ θ2(a
n
3 j − an

2 j ) ≥ . . . ≥ θn−1(a
n
nj − an

n−1, j ).

Therefore the bimatrix game �(An, Bn) is column-concave [see Definition 1 and
Theorem 4 in Połowczuk (2006)], and consequently, it follows [by Theorem 7 in
Połowczuk (2006)] that game �(An, Bn) has a Nash equilibrium (μn, νn) of the form
μn = λnδsn +(1−λn)δsn+1 and νn = γnδrn +(1−γn)δun for some reals 0 ≤ λn, γn ≤ 1
and naturals 1 ≤ sn < n, 1 ≤ rn, un ≤ n. Therefore, by the Nash equilibrium
inequality,

λnγnasn ,rn + (1−λn)γnasn+1,rn+λn(1−γn)asn ,un + (1−λn)(1 − γn)asn+1,un

≥ γnai,rn + (1−γn)ai,un for i = 1, . . . , n,

and
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λnγnbsn ,rn + (1−λn)γnbsn+1,rn+λn(1−γn)bsn ,un + (1−λn)(1 − γn)bsn+1,un

≥ λnbsn , j + (1−λn)bsn+1, j for j = 1, . . . , n.

But these inequalities are equivalent to

λnγn F1

( sn

n
,

rn

n

)
+ (1 − λn)γn F1

(
sn + 1

n
,

rn

n

)

+ λn(1 − γn)F1

( sn

n
,

un

n

)

+(1 − λn)(1 − γn)F1

(
sn + 1

n
,

un

n

)

≥ γn F1

(
i

n
,

rn

n

)

+(1 − γn)F1

(
i

n
,

un

n

)

for i = 1, . . . , n,

and

λnγn F2

( sn

n
,

rn

n

)
+ (1 − λn)γn F2

(
sn + 1

n
,

rn

n

)

+ λn(1 − γn)F2

( sn

n
,

un

n

)

+(1 − λn)(1 − γn)F2

(
sn + 1

n
,

un

n

)

≥ λn F2

(
sn

n
,

j

n

)

+(1 − λn)F2

(
sn + 1

n
,

j

n

)

for i = 1, . . . , n.

Now, letting n → ∞, we can obviously choose a subsequence n
′ → ∞ to have the

convergence λn′ → α, γn′ → β, sn′ /n
′ → a, rn′ /n

′ → c and un′ /n
′ → d for some

0 ≤ α, β, a, c, d ≤ 1. Therefore also (sn′ + 1)/n
′ → a.

Further, let us arbitrarily choose 0 ≤ x, y ≤ 1. Of course, there are sequences
i
′
, j

′ → ∞ such that i
′
/n

′ → x and j
′
/n

′ → y.
Hence, taking into account the continuity of functions F1 and F2, the last two

inequalities imply (after taking n = n
′ → ∞) the following: for any 0 ≤ x, y ≤ 1

βF1(a, c) + (1 − β)F1(a, d) ≥ βF1(x, c) + (1 − β)F1(x, d)

and

βF2(a, c) + (1 − β)F2(a, d) ≥ F2(a, y).

After defining two strategies μ∗ = δa and ν∗ = βδc + (1 − β)δd for Players 1 and 2
in game �, respectively, the last inequalities can be equivalently rewritten as

F1(μ
∗, ν∗) ≥ F1(x, ν∗) and F2(μ

∗, ν∗) ≥ F2(μ
∗, y), 0 ≤ x, y ≤ 1.

Thus (μ∗, ν∗) is a Nash equilibrium in game �, which ends the proof of Theorem 1.
��
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Proof of Theorem 2 Let us define an auxiliary non-zero-sum two-person game �̃ on
the unit square with payoff functions F̃1 and F̃2 of the form

F̃1(p, x2) = pF1(0, x2) + (1 − p)F1(1, x2), 0 ≤ p, x2 ≤ 1,

and

F̃2(p, x2) = pF2(0, x2) + (1 − p)F2(1, x2). 0 ≤ p, x2 ≤ 1.

By assumption, F̃1(p, x2) and F̃2(p, x2) are continuous functions on [0, 1]2. Addi-
tionally, function F̃1(p, x2) is linear in variable p, and thereby concave in p. Hence,
the family of functions {F̃1(·, x2) : 0 ≤ x2 ≤ 1} is pairwise poorly concave (as stated
in Remark 4 in Sect. 3). Therefore game �̃ satisfies the assumptions of Theorem 1 and
consequently, there are 0 ≤ α, β, c, d ≤ 1 such that the pair of strategies μ0

1 = δα

and μ0
2 = βδc + (1 − β)δd creates a Nash equilibrium in game �̃. This implies the

following inequalities:

F̃1(x1, μ
0
2) ≤ F̃1(μ

0
1, μ

0
2) and F̃2(μ

0
1, x2) ≤ F̃2(μ

0
1, μ

0
2) for 0 ≤ x1, x2 ≤ 1.

(31)

We will show that the pair (μ∗
1, μ

∗
2) with μ∗

1 = αδ0 + (1 − α)δ1 and μ∗
2 = μ0

2 is a
Nash equilibrium in game �.

First notice that

F̃i (μ
0
1, μ

0
2) = Fi (μ

∗
1, μ

∗
2), i = 1, 2. (32)

By assumption, the family of functions {F1( · , x2) : 0 ≤ x2 ≤ 1} is pairwise poorly
convex. Hence, for every 0 < x1 < 1 there is a positive number h(x1) such that

F1(x1, c) − F1(0, c) ≤ h(x1)[F1(1, c) − F1(x1, c)] (33)

and

F1(x1, d) − F1(0, d) ≤ h(x1)[F1(1, d) − F1(x1, d)]. (34)

Using (33) and the definition of F̃1, for 0 < x1 < 1, we have

F1(x1, c) ≤ 1

1 + h(x1)
F1(0, c) + h(x1)

1 + h(x1)
F1(1, c) = F̃1

(
1

1 + h(x1)
, c

)

.

Besides, F1(0, c) = F̃1(1, c) and F1(1, c) = F̃1(0, c). Therefore, for any 0 ≤ x1 ≤ 1
there is a number px1 ∈ [0, 1] such that

F1(x1, c) ≤ F̃1(px1, c) for 0 ≤ x1 ≤ 1.

Exactly in the same way, using (34), we also get
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F1(x1, d) ≤ F̃1(px1, d) for 0 ≤ x1 ≤ 1.

But the last two inequalities imply that F1(x1, μ
0
2) ≤ F̃1(px1, μ

0
2) for 0 ≤ x1 ≤ 1.

Now, using this inequality, (31), (32) and the equality μ∗
2 = μ0

2, we can conclude
as follows:

F1(x1, μ
∗
2) = F1(x1, μ

0
2) ≤ F̃1(px1, μ

0
2) ≤ F̃1(μ

0
1, μ

0
2) = F1(μ

∗
1, μ

∗
2).

Consequently,

F1(x1, μ
∗
2) ≤ F1(μ

∗
1, μ

∗
2) for 0 ≤ x1 ≤ 1. (35)

Similarly, using (31), (32) and the definition of strategy μ∗
1, for all x2 ∈ [0, 1] we

have

F2(μ
∗
1, x2) = αF2(0, x2) + (1 − α)F2(1, x2) = F̃2(μ

0
1, x2) ≤ F̃2(μ

0
1, μ

0
2)

= F2(μ
∗
1, μ

∗
2).

Therefore, F2(μ
∗
1, x2) ≤ F2(μ

∗
1, μ

∗
2) for 0 ≤ x2 ≤ 1, which together with (35)

completes the proof of Theorem 2. ��
Proof of Theorem 3 Assume that (μ, ν) is a Nash equilibrium in game �. Let x1 ∈
[0, 1] and suppose that F1(μ, x

′
2) < F1(x1, x

′
2) for all x

′
2 ∈ supp (ν). But then this

inequality would imply that F1(μ, ν) < F1(x1, ν) which contradicts the fact that
(μ, ν) is a Nash equilibrium.

Let us fix ε > 0. Therefore for all x1 ∈ [0, 1]

sup
x2∈supp(ν)

[F1(μ, x2) − F1(x1, x2) + ε] > 0.

Let us denote Gx2(x1) = F1(μ, x2) − F1(x1, x2) + ε. By assumption, the family
of functions {F1( · , x2) : 0 ≤ x2 ≤ 1} is pairwise poorly concave. Hence, we can
easily state with the help of statement (a) of Proposition 2 that the family of functions
{Gx2(x1) : x2 ∈ supp (ν)} of variable x1 is pairwise poorly convex on [0, 1] and
satisfies the assumptions of Theorem 7. Therefore, there are c, d ∈ supp(ν) and a
probability vector (β, 1 − β) such that for all x1 ∈ [0, 1] we have βGc(x1) + (1 −
β)Gd(x1) > 0. But this, in view of the arbitrarity of ε, implies that for each x1 ∈ [0, 1]

βF1(μ, c) + (1 − β)F1(μ, d) ≥ βF1(x1, c) + (1 − β)F1(x1, d),

or equivalently,

F1(μ , βδc + (1 − β)δd) ≥ F1(x1, βδc + (1 − β)δd). (36)

On the other hand, since (μ, ν) is a Nash equilibrium,

F2(μ, ν) ≥ F2(μ, x2) for 0 ≤ x2 ≤ 1. (37)
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Besides, c, d ∈ supp(ν) and function F2(x1, x2) is continuous on [0, 1]2. This and
inequality (37) imply that F2(μ, c) = F2(μ, d) = F2(μ, ν), and consequently

F2(μ, ν) = F2(μ , βδc + (1 − β)δd).

Now, taking into account this equality, (37) and (36), we easily deduce that the pair
(μ , βδc + (1 − β)δd) is also a Nash equilibrium in game �, and it satisfies Theorem
3. Thus the proof has been completed. ��

Proof of Theorem 4 It is an immediate consequence of Theorem 3. ��

Proof of Theorem 5 Let us define an auxiliary non-zero-sum two-person game �̂ on
the unit square with payoff functions F̂1(p, q) and F̂2(p, q), 0 ≤ p, q ≤ 1, of the
form

F̂i (p, q) = pq Fi (0, 0) + (1 − p)q Fi (1, 0) + p(1 − q)Fi (0, 1)

+(1 − p)(1 − q)Fi (1, 1),

for i = 1, 2.
We easily see that payoff functions F̂1(p, q) and F̂2(p, q) are continuous on [0, 1]2

and linear in each variable. Therefore they satisfy the assumptions of Theorem A in
Sect. 2. Consequently, there are 0 ≤ α, β ≤ 1 such that the pair of strategies μ0

1 = δα

and μ0
2 = δβ is a Nash equilibrium in game �̂. We will show that the pair (μ∗

1, μ
∗
2)

with μ∗
1 = αδ0 + (1 − α)δ1 and μ∗

1 = βδ0 + (1 − β)δ1 is a Nash equilibrium in
game �.

First notice that

F̂i (μ
0
1, μ

0
2) = Fi (μ

∗
1, μ

∗
2), i = 1, 2. (38)

By assumption, the family of functions {F1( · , x2) : 0 ≤ x2 ≤ 1} is pairwise poorly
convex. Now, using this and (38), one can easily see that after changing F̃1 with F̂1, the
reasoning given between formulae (33) and (35) can be repeated with c = 0, d = 1 to
get that F1(x1, μ

∗
2) ≤ F1(μ

∗
1, μ

∗
2) for 0 ≤ x1 ≤ 1. On the other hand, since also the

family of functions {F2(x1, ·) : 0 ≤ x1 ≤ 1} is pairwise poorly convex, by the same
way F2(μ

∗
1, x2) ≤ F2(μ

∗
1, μ

∗
2) for 0 ≤ x2 ≤ 1. Therefore the pair (μ∗

1, μ
∗
2) is a Nash

equilibrium in game �, which completes the proof. ��
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