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ABSTRACT 

AUTOMOTIVE SUSPENSION PARAMETER ESTIMATION
 

USING SMART WIRELESS SENSOR TECHNOLOGY
 

by
 

Samuel Chase Hoffman
 

This thesis project demonstrates the feasibility of using a smart sensor system to esti

mate vehicle parameters. It includes the development of the smart sensor system and 

the method for which vehicle parameters are estimated using this system. The smart 

sensor system is a wireless computer controlled sensor array that can be easily installed 

onto a vehicle. Parameter estimation was accomplished using grey box code in Matlab 

System Identification Toolbox, a software package from Mathworks. Front and rear 

suspension damping rates and pitch inertia were estimated on the 2008 Cal Poly SAE 

Baja Car with good accuracy during testing. 

IV 



CONTENTS 

List of Tables x
 

List ofFigures xi
 

Notation .... xiv
 

1. Introduction 

1.1 Overview 

1.2 Scope .. 2
 

2. Literature Review 3
 

2.1 Background........ 3
 

2.2 Common Vehicle Models . 4
 

2.3 Active vs Passive Suspension . 7
 

2.4 Parameter Estimation 8
 

3. Vebicle Model . . . . . . 10
 

4. Modal Analysis Approach 13
 

5. Controls Approach . . . . . . . . . . . . . 16
 

5.1 Introduction to Grey Box . 16
 

5.2 State Space Representation of the model 17
 

5.3 Grey Box Model Simulation . . . . . . 19
 

v 



5.4 Grey Box Data Requirements. . . . . . . . . . 21
 

5.4.1 Input Parameters Required for method. 21
 

5.4.2 Measured Data Required for method. 22
 

6. Smart Sensor System . 23
 

6.1 Design Requirements 23
 

6.2 Components . 23
 

6.2.1 Sensors 27
 

6.2.2 Microcontrollers 28
 

6.2.3 Radios 31
 

6.3 Operation 31
 

6.3.1 Event Triggering 33
 

6.3.2 Synchronization 34
 

6.3.3 Data Acquisition 36
 

6.3.4 Wifeless Transmission 40
 

6.3.5 "Smarts" 41
 

7. Testing. 42
 

7.1 Test Vehicle 42
 

7.2 Test#l . 45
 

7.3 Test #2. 45
 

7.4 Test #3 . 46
 

7.5 Test #4 . 47
 

8. Results. 48
 

8.1 Data Processing . 48
 

8.2 Grey Box Estimation 51
 

8.3 Sources of Error . 53
 

8.3.1 Errors due to Presence of Non-Linearities 53
 

vi 



8.3.2 Errors due to insufficient model degrees of freedom. 54
 

8.3.3 Errors due to Data Acquisition 57
 

9. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59
 

Bibliograpby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61
 

}\ppenctix 62
 

A Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63
 

B. Software ......... . . . . . . . . . ........... 68
 

B.l ASV Hierarchical Index 70
 

B.2 ASV Class Hierarchy 70
 

B.3 ASV Class Index 70
 

B.4 ASV Class List 70
 

B.5 ASV File Index 70
 

B.6 ASV File List . 70
 

B.7 ASV Class Documentation 71
 

B.8 arraylObits Class Reference 71
 

B.8.1 Detailed Description 72
 

B.8.2 Constructor & Destructor Documentation 72
 

B.8.3 Member Function Documentation 72
 

B.9 avr_9xstream Class Reference 75
 

B.9.1 Detailed Description . 76
 

B.9.2 Constructor & Destructor Documentation 76
 

B.9.3 Member Function Documentation 76
 

B.1O nb_uart Class Reference 82
 

vii 



B.lO.l Detailed Description . . . . . . . . . . . 82
 

RlO.2 Constructor & Destructor Documentation 82
 

RIO.3 Member Function Documentation 82
 

B.ll packit_uart Class Reference 84
 

RILl Detailed Description 84
 

B.ll.2 Constructor & Destructor Documentation 84
 

B.ll.3 Member Function Documentation 84
 

B.12 spi_bb_port Class Reference 85
 

B.12.1 Detailed Description 85
 

B.12.2 Constructor & Destructor Documentation 85
 

B.12.3 Member Function Documentation 86
 

B.13 uart Class Reference .... 88
 

B.13.1 Detailed Description 89
 

B.13.2 Constructor & Destructor Documentation 89
 

B.13.3 Member Function Documentation 89
 

B.14 ASV File Documentation . 95
 

Rl5 Desktop/ASV/Code/ASV.cpp File Reference 95
 

B.15.1 Detailed Description . 96
 

B.15.2 Define Documentation 96
 

B.15.3 Function Documentation 97
 

B.15.4 Variable Documentation 97
 

B.16 Desktop/ASV/Code/avc9xstream.h File Reference 98
 

B.16.1 Detailed Description . 98
 

B.17 DesktoplASVICode/avr_a2d.h File Reference 99
 

B.17.1 Detailed Description .. 99
 

B.l7.2 Function Documentation 100
 

B.18 Desktop/ASV/Code/avcserial.h File Reference 102
 

viii 



B.18.! Detailed Description . 102
 

B.19 Desktop/ASV/Code/avr_spi_bb.b File Reference 103
 

B.19.1 DetailedDescription . 103
 

B.20 Desktop/ASV/Code/interval.cpp File Reference 104
 

B.20.1 Detailed Description . . 104
 

B.20.2 Function Documentation 105
 

B.21 DesktoplASVICode/interval.h File Reference 106
 

B.21.1 Detailed Description . . 106
 

B.21.2 Function Documentation 106
 

B.22 Desktop/ASV/Code/nRF24LOl.h File Reference 108
 

B.22.1 Detailed Description . 108
 

B.22.2 Define Documentation 108
 

B.23 DesktoplASVICode/packed_arrays.cpp File Reference 109
 

B.23.1 Detailed Description . . . . . . . . . . . . . 109
 

B.24 Desktop/ASV/Code/packed_arrays.h File Reference. 110
 

B.24.1 Detailed Description . 110
 

B.25 Desktop/ASV/Code/packit.h File Reference 111
 

B.25.1 Detailed Description . 111
 

B.25.2 Desktop/ASV/Code/synch_data.h File Reference 112
 

C. MatJab Code . . . . . . . . . . . . . . . 113
 

C.1 FFf approach . . . . . . . . . . 114
 

C.2 Grey Box Theory Matlab Code . 119
 

ix 



LIST OF TABLES 

4.1	 Car parameters used used to test FFf . . . . . . . . . . . . _ 14
 

4.2	 Modal Analysis of using vehicle parameters presented in 4.1 15
 

5.1	 Car parameters inputted into model then compared to grey box pre

dicted parameters of same model . . . . . . . . . . . . . . . . . . .. 20
 

6.1	 Status LED States . . . . . . . . . . . . . 34
 

7.1	 2008 Cal Poly SAE Baja Competition Car 43
 

8.1	 Grey Box Estimated Parameters ..... 53
 

A.I	 Main hardware components of smart sensor systems 1 and 2 63
 

x 



LIST OF FIGURES 

2.1	 Quarter car model with 2 degrees of freedom .. 5
 

2.2	 7 degrees of freedom car model; After Holen [1] . 6
 

2.3	 Main vehicle modes using a 7 degree of freedom model; After Holen [I] 7
 

3.1	 2 Degree of Freedom(B, x ca7·) Half Car Vehicle Model Used 11
 

3.2	 Free body diagram of vehicle model . . . . 11
 

3.3	 Mass acceleration diagram of vehicle model 12
 

4.1	 Magnitude of frequency content of car with 10% damping of critical 15
 

5.1	 Representation of the error function in PEM . . . . . . . . . . . . .. 17
 

5.2	 Input and output data of simulation, Note that the left graphs refer to the
 

input variables and the right graphs to the state variables AKA output
 

variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21
 

6.1	 Smart System 1 hardware design 25
 

6.2	 Smart System 2 hardware design 26
 

6.3	 The accelerometer chip mounted on a board for easy wiring. 29
 

6.4	 Size comparison of 40 pin DIP to 44 pin surface mount package. Note:
 

These chips are ATMEGA32 which are the same externally as the AT

MEGA644V. ..... 30
 

6.5	 Radios used in project. 32
 

XI 



6.6	 Test Graph of Data Acquisition Syslem at 800 hz. All channels are
 

connected to the same input. . . . . . . . . . . . . . . . . . . . . .. 39
 

7.1	 The Vehicle used for testing the system: 2008 Cal Poly SAE Baja Com

petition vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42
 

7.2	 Engine noise data for the 2008 Baja Car, Data is taken at 200 Hz with
 

car not moving and engine revving randomly 46
 

8.1	 400 Hz Data Acceleration Data scaled with linear trend removed, taken
 

at 400 hz with 800 points per channel 49
 

8.2	 400 Hz Data State Space Input Output Actual Data;Output dala com

pared to theoretical car model data generated from actual input data
 

shown to the left. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50
 

8.3	 800 Hz Data Acceleration Data scaled with constant removed, taken at
 

800 hz with 800 points per channel . . . . . . . . . . . . . . . . . .. 51
 

804	 800 Hz Data State Space Input Output Actual Data;Output data com

pared to theoretical car model data generated from actual input data
 

shown to the left. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52
 

8.5	 The estimated suspension travel from 400 Hz Data and 800 Hz Data
 

data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55
 

A.1	 Slave 1 MCV wiring diagram. 64
 

A.2	 Slave 2 MCV wiring diagram. 65
 

A.3 Master MCV wiring diagram . 66
 

AA Maxstream Radio interface with Laptop 67
 

C.l	 2 Degree of freedom simulink model: "ridepitch.mdl" used with
 

FFf2DOF.m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 116
 

xu 



C.2 'ridepitch.mdl' Simulink file for integrating raw accelerometerdata into 

displacement and velocity. Creates the input output data specified in 

section 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 

C.3 'ridepitch_ss3' Simulink file for using actual input data to create a 

model output data. Uses 'state_space.m' for model structure ..... 126 

Xlll 



NOTATION 

Units 

lb pounds force 

in inches 

s seconds 

Tenns 

m sprung mass of vehicle 

CG center of gravity of Ibe vehicle's sprung mass 

X car heave or bounce of vehicle CG 

() pitch angle of vehicle 

kf spring rate/stiffness of front suspension 

k,. spring rate/stiffness of rear suspension 

Cf damping rate of front suspension 

czf damping ratio of front suspension 

Cr damping rate of rear suspension 

CZ,. damping ratio of rear suspension 

wheel base of vehicle 

'Wdf weight ratio on the front axle 

l f fore-aft distance from the CG to the front axle 

xiv 



lr fore-aft distance from the CG to the rear axle 

xv
 



1. INTRODUCTION 

1.1 Overview 

This thesis project investigates estimation of vehicle parameters using a smart sensor 

system mounted on a vehicle. The idea of the system is to estimate vehicle parameters 

in a way transparent to the driver while the vehicle is operated normally. The parame

ters this system would estimate are ones that can only be dynamically measured such 

as inertia and damping. This parameter estimation could then be used to calibrate an 

on-board control system or simply alert the vehicle operator. 

To be smart, the sensors are controlled by multiple microcontrollers. This allows 

them to do smart things such as self calibration, automatic triggering, and pre and post 

data processing. The smart sensor system is designed to be completely wireless for 

ease of integration into existing vehicles. 

Parameter estimation is very similar to measuring properties of mechanical sys

tems, except that parameter estimation generally applies to systems rather then indi

vidual components. Parameter estimation is used to define a model that will represent 

the system under a chosen set of conditions. The parameter estimation part of this the

sis project was approached two different ways: the vibrations approach (chapter 4) and 

the controls approach (chapter 5). 

The second part of this thesis project is the smart sensor system which falls under 

the category of mechatronics. Mechatronics is the combination of mechanics, elec

tronics, software, and controls to accomplish a goal. In this project, the mechanical 

system is the vehicle. Then software and electronic hardware are used to provide the 



information necessary for parameter estimation. Although it is hinted that this system 

could eventually be used to control the vehicle mechanical system, it is not developed 

in this thesis project. 

1.2 Scope 

The scope of this project is to develop a system to estimate vehicle suspension parame

ters with reasonable accuracy using an array of microcontroller based sensors or smart 

sensors. This system is designed to work on a passively suspended vehicle. The smart 

sensors will measure vehicle variables with respect to time and wirelessly transmit 

them to a laptop PC for final parameter estimation. The parameters that are estimated 

from this system are the pitch inertia, (i), and front and rear damping rates, (cf and cr ). 

To estimate these parameters, the mass, weight distribution front and rear, and the front 

and rear spring rates of the vehicle must be known and inputted into the model. 

2 



2. LITERATURE REVIEW 

2.1 Background 

A challenge in designing passenger vehicles is huge variability of certain key parame

ters that could happen during the vehicles service life. Parameters such as vehicle mass 

and inertias can vary greatly with the variety of loads of both people and cargo. Shock 

absorbers wear out, leak, or get hot, resulting in loss of damping and possibly vehicle 

control. Because of the variability of many different vehicle parameters, big compro

mises for vehicle ride and handling are made to make sure the vehicle remains safe for 

the average consumer. Sometimes, no matter how the car is designed, improper loading 

or vehicle maintenance can lead to an unstable or poor riding vehicle. With the advent 

of sensor technologies that alert vehicle operators to unsafe operating conditions such 

as tire pressure monitoring systems and slipping tires, it is only logical for new sensor 

technologies to be developed that would alert the driver to improper vehicle loading, 

worn out shock absorbers etc. 

Vehicle dynamic control technology is becoming more common on passenger ve

hicles every year. It started with anti-lock braking systems that were then developed 

into traction and stability control systems. Now suspension controllers are becoming 

more common and advanced enough to offer fully active damping control for vehicles. 

These control systems are all designed to handle the same variability of vehicle param

eters mentioned previously, and therefore are compromised in performance because 

they have not been fully optimized for a static parameter set, but rather for a variable 

one. If these parameters were better known, there could be much improvement in the 
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performance of these control systems and the vehicles they are in. 

2.2 Common Vehicle Models 

Many different vehicle models are used for different applications. The common mod

els used for vehicle ride have degrees of freedom that range from 2 to 7. Vehicle ride 

models focus mainly on vertical motions of vehicle components plus rotational axes 

that affect vertical motion such as pitch and roll. It is common to assume chassis stiff

ness is much greater then suspension, therefore resulting in the chassis being modeled 

as a rigid body. Most models also are linear for computation ease. Sometimes the mod

els are not of entire cars, but of parts of one, like the quarter car and half car bicycle 

models. Since models are only estimations of actual vehicles the correct model must 

be chosen to accomplish the objective or task at hand. 

The simplest cornmon vehicle suspension model is the quarter car model shown in 

figure 2.1. It has 2 degrees of freedom; the sprung body, and intermediate suspension 

body. This model allows for two modes, the ride mode and wheel hop mode. Since 

it is only a 2 degrees of freedom linear model, all parameters of the real suspension 

must be lumped together and linearized to make equivalent parameters. The lumping 

together of parameters can introduce some inaccuracies that are explained in Kim and 

Ro [5]. To remedy the inaccuracies, the article introduces the process of starting with 

a complete model of the suspension and reducing the model order to a 2 degree of 

freedom model. According to Kim and Ro [5], the reduced order model is much more 

accurate then the lumped parameter model. Using the reduced order model, equivalent 

parameters can be extracted for comparison of lumped parameters. 

Another common model is the 2 and 4 degree of freedom bicycle model. This 

model is also known as the half car model because it models the car in 2 dimensions 

by lumping left and right sides together. For suspension modeling it is the simplest 

model for seeing the relationship between the front and rear of the vehicle to find pitch 
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Fig. 2.1: Quarter car model with 2 degrees of freedom 

reactions. In Iannce [2] a 2 degree of freedom half car model is used to examine 

ride qualities of the vehicle. With 2 degrees of freedom there are two vehicle modes, 

usually considered the bounce mode and pitch mode, although both modes could have 

a combination of pitch and bounce. Using this model Iannce [2] was able to identify 

important aspects of vehicle ride such as the center of percussion ratio which quantifies 

how decoupled the front and rear suspensions are. Also this model can illustrate the 

concept of level ride which reduces pitch of the vehicle when hitting a bump. With only 

2 degrees of freedom, the model is limited because it does not include the tire stiffness 

and unsprung mass, which is why the 4 degree of freedom half car model would be 

used instead. The 4 degree of freedom half car model is a combination of 2 quarter car 

models. 

Kasprzak and Floyd [3] uses the 4 degree of freedom half car model to tune race 

car suspension through damper selection. This model is used to predict performance of 
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Fig. 2.2: 7 degrees of freedom car model; After Holen [1] 

the vehicle before it is driven, or put on test stands. It is shown that through simulation, 

the vehicle performance can be estimated accurately and efficiently using a 4 degree of 

freedom model. This method greatly reduces the cost and time of tuning the vehicle by 

testing. 

For ride quality, the 4 degree of freedom half car model does well modeling the 

vehicle for symmetrical terrain and straight line performance. Once the terrain becomes 

unsymmetrical, which is common, more degrees of freedom are needed to fully model 

the car. Holen [1] uses a 7 degree of freedoms model (Figure 2.2) to investigate ride 

quality in heavy trucks. The 7 degrees of freedom are bounce, pitch, and roll of the 

sprung mass plus the bounce and roll of the axle unsprung masses. For a ride model, 

this is the maximum degrees of freedom needed, assuming rigid chassis and suspension 

components. This model allows all 4 major chassis modes of the vehicle to be realized 

according to Holen [1]; Bounce, Pitch, Roll, Warp. The first three modes have mode 

shapes that are selfexplanatory, but the warp mode is where the front and rear unsprung 

masses are 180 degree out of phase with each other in roll. The modes can be seen in 

figure 2.3. 
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(a) Bounce Mode (b) Pitch Mode 

(c) Roll Mode (d) Warp Mode 

Fig. 2.3: Main vehicle modes using a 7 degree of freedom model; After Holen [1] 

2.3 Active vs Passive Suspension 

The difference between an active and passive system is that the active system can re

act to inputs where a passive system cannot. For suspension systems, the definition 

between passive and active systems still holds, although there can be many degrees 

between passive and fully active suspensions. The classic automotive passive suspen

sian uses a spring and damper. The spring depends only on position, and the damper 

only on velocity. These suspension systems have to be tuned for a variety of responses 

and therefore are a compromise for many different performance goals. If the suspen

sion system could react to input, it could be better optimized for that input. When a 

suspension system reacts, it starts becoming active. 

For a suspension to be fully active, the position, velocity and acceleration of the 

suspension system must be controlled. This system could theoretically make the ve

hicle ride motions fully controllable no matter what the input is. Like most control 

systems, active suspension systems are subject to travel and power limits which can 
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prevent full control of suspensions to be realized. Another problem with fully active 

suspensions is that a complete failure can cause unsafe operating conditions for the en

tire vehicle. This system is also very complex and relies on many sensors. It is because 

of these obstacles that semi-active suspensions are much more common. 

The most common semi-active suspension system today is a system where the 

damper or shock absorber damping coefficient is controlled. This system is semi-active 

because dampers can only exert force in direction opposite the direction of their veloc

ity. According to Holen [I] there are primarily two ways the damping coefficient can 

be changed in a hydraulic damper. The first way is to change the valving in the shock 

by varying the size of the orifice that the hydraulic fluid flows through. The second is 

through a variable viscosity hydraulic fluid known as magnetomeological fluid or MR 

fluid. The MR fluid's viscosity can be varied by passing a magnetic field through it. The 

viscosity determines how the fluid flows through an orifice. In a damper the magnetic 

field is applied to the fluid at damper's piston orifice to vary damping characteristics. 

There are also many other types of active and passive suspensions that are covered 

in detail in Holen [1]. A type of particular interest are connected suspensions systems. 

These systems connect the 4 wheels of the vehicle with hydraulics or springs and allow 

different vehicle modes to be more individually tuned. With the use many valves and 

levers these systems have performance characteristics of active suspensions. 

2.4 Parameter Estimation 

According to Keun [4], real-time parameter estimation is a mature study. But to apply 

parameter estimation to a vehicle requires a model that includes parameters that are 

being estimated and is representative of the actual vehicle. Keun [4] uses parameter 

estimation theory to measure tire cornering stiffnesses and the understeer gradient. 

After developing a model and equations Keun [4] uses VehSim, a vehicle dynamics 

software package, to simulate a car with sensor inputs. Using the simulation he was 
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successful at estimating the parameters. 

Holen [I] used Matlab's System Identification Toolbox to estimate modal coordi

nates using a multiple input single output or MISO model. The modal coordinates 

describe the amplitude of their particular vehicle mode shape. This was done with pre

viously collected heavy truck data using displacement sensors on the dampers, and a 

gyroscopic pitch sensor. Holen [1] also talks about difficulty measuring modal coordi

nates geometrically using only displacement sensors. The problem with displacement 

sensors is that they have no reference to ground, which why accelerometers need to be 

used in addition to the displacement sensors. 

Using things learned from authors of these papers allowed a more efficient ap

proach to this thesis project. The model used in chapter 3 was used by Iannce [2] for 

vehicle ride. Holen [1] provided good overview of modeling vehicles for ride. Keun 

[4] attempted a very similar project that estimated parameters relating to vehicle han

dling and understeer, instead of vehicle ride. Kim and Ro [5] illustrated errors that 

can occur with lumped parameters in modeling. Kasprzak and Floyd [3] shows how 

vehicle simulation with a 4 degree of freedom half car model can predict the vehicle 

response. The literature review provided a good starting point for the direction of this 

thesis project. 
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3. VEHICLE MODEL 

To determine vehicle parameters. a vehicle model needed to be developed first. The 

model's purpose is to show the relationship between the entire vehicle and the param

eters being sought, which were specified in the scope(l.2). These parameters are front 

and rear damping rates (cf and cr ), and the pitch inertia (i). This necessitated the use 

of a half car model which includes front and rear suspensions. Only linear models were 

considered for simplicity. A typical half car model has 4 degrees of freedom: bounce 

and pitch of chassislbody and bounce of unsprung mass l front and rear. Because the 

parameters being sought do not include tire stiffness and damping, front and rear un

sprung masses were omitted in favor of a simpler 2 degree of freedom model shown in 

Fig 3.1. 

This half car model uses the wheel position as input to the system rather then the 

road or terrain surface. The wheel position input are denoted as U f and U r in figure 3.1. 

By using the wheel displacement instead of road surface input, the unsprung suspen

sion/wheel mass is eliminated from the system. Therefore, to properly use this model, 

the input to the system has to be wheel displacement and not the road surface. The 

parameters being estimated are already included in the 2 degree of freedom model so 

going to 4 degree of freedom half car model would needlessly complicate the project. 

A number of assumptions have to be made to use this model. The first is that the 

chassis is reasonably stiff compared to the suspension, that way it can be modeled as 

a rigid body. Second, the suspension spring and damping rates are reasonably linear 

1 Unsprung mass is mass that is on the wheel side of the primary vehicle suspension but still suspended 
from the road through the tire stiffness and damping 
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Fig. 3.1: 2 Degree of Freedom(9, Xcar) Half Car Vehicle Model Used 

throughout the travel of the suspension. The third is that the pitch angle () is small and 

therefore sin () = () and cos () = O. Finally, the left and right sides of the vehicle are 

symmetrical and can be lumped together. If these assumptions are reasonable for a 

vehicle, then this model should be able to accurately represent the vehicle. 

Fronf 

e.G. 

Fr 
Ff = -kf(::rm ,. - ll.t - If . &) - er(:i:w ,. -hf - If ·0) 

F, = -h:,.(J;""r -ll,. + If . &) - cr(i;eo.r - iI,. + If' B) 

Fig. 3.2: Free body diagram of vehicle model 
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i· e 
Fig. 3.3: Mass acceleration diagram of vehicle model 

Using the free body diagram shown in figure 3.2, and mass acceleration diagram 

in figure 3.3 the equations of motion can be formulated jn equation 3.1. 

i . (j = Fr . lr - Ff . l f 
(3.1) 

m . xcar = Ff + Fr 

More complicated models can more accurately represent a vehicle for this project 

but would add a great amount of complexity. Therefore, the simplest car model was 

used to achieve the goals set forth in the scope, found in section 1.2. A 2 degree of 

freedom model proved to be sufficient throughout the project and djd not need to be 

changed. 
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4. MODAL ANALYSIS APPROACH 

The original approach attempted in this thesis used modal analysis to calculate vehicle 

parameters. It failed due to reasons explained below, so this section does not go into 

depth on mathematical details of this approach. 

The chosen 2 degree of freedom model bas 2 modal frequencies(eigenvalues) and 

2 corresponding mode shapes(eigenvectors). If these modal frequencies and shapes 

could be found using experimental analysis, they could be used to estimate parameters 

of the vehicle. 

The Fast Fourier Transform (FFT) is used to transform time domain vibrational 

data into the frequency domain. If an FFT is performed on vibrational data of an object, 

then the modal frequencies should show up as an increased amplitude at their respective 

frequencies. The object would have to be forced to vibrate equally at all frequencies so 

the displacements at the mode frequencies would be accurate. The relative magnitudes 

of the modal frequencies and the phase angles (also found with an FFT) can be used to 

estimate the mode shapes. 

The problem with this approach is that if the vehicle has a large damping ratio, the 

FFT's effectiveness at identifying modes is significantly reduced. The damping ratio is 

the ratio of the system's damping coefficient to system's critical damping coefficient. 

When the system's damping coefficient is equal to or greater then its critical damping 

coefficient, (which is when the damping ratio is equal to ~ 1), the system can be said to 

be critically or over damped. When the system is critically or over damped, it will not 

oscillate. CZj and CZr notate damping ratios for the front and rear respectively. Damp
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ing on vehicles can range close to and above critical damping. If a vehicle has a large 

damping ratio then the number of oscillations are reduced. The number of oscillations 

are critical for the FFf to pick out the frequencies of oscillations. A critically damped 

vehicle mode will not oscillate at all and therefore not show up on a FFf. 

Tab. 4.1: Car parameters used used to test FFf 

Parameter Input Value 

mass m 2lb-s2/in 

radius of gyration kg 20 in 

weight distribution front wdf .4 

wheel base 1 60 in 

spring rate front kj 60lb/in 

spring rate rear k r 60 lblin 

damping ratio front CZj .1 

damping ratio rear CZr .1 

A simulation was done in Matlab and Simulink to test whether the FFf approach 

could be used to identify the vehicle modes despite their large damping ratios. The 

vehicle model from chapter 3 with parameters listed in table 4.1 was simulated going 

over terrain that caused white noise input l to the vehicle chassis due by movement of 

the wheels. The simulated vehicle is very lightly damped at 10% of critical to test if the 

Frl can easily identify modes. Shown in figure 4.1, there are not two easily identifiable 

modes, even on a vehicle with low damping. The first mode can possibly be estimated 

close to 1.1 Hz, but the second mode can be any of the three peaks shown from 1.3 to 

1.7 Hz. This is most likely due to too few oscillations at the modal frequencies. Table 

4.2 shows the actual modes obtained by solving the eigenvalue problem of the car. 

The values for damped natural frequency listed in table 4.2 correlate to peaks in figure 

4.1 that are not well defined. Once the damping ratio is increased from only 10%(.1) 

to 30%(.3) for front and rear the mode frequencies are even harder to distinguish. If 

the damping ratio is increased to 70%(.7) for front and rear the second mode shape is 

1 White noise contains all frequencies equally 
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critically damped, which means it will never oscillate or show up in an FFT. 

x 104 Frequency content of Car 
9 r'--'-=-----,----,-----r-----r----r-----,--------r---,-r==~ 

2 

0,'-------1."-1--1."-2------.J'."-3---',.-4--1.'-5---'1.6---'1.7---',.8~--',.9-"--"';2 

frequency (Hz) 

Fig. 4.1: Magnitude of frequency content of car with 10% damping of critical 

Tab. 4.2: Modal Analysis of using vehicle parameters presented in 4.1 

1st Mode 2nd Mode Units 

Damped Natural Frequency 1.11 1.57 Hz 

Damping Ratio .099 .149 

Natural Frequency 1.23 1.85 Hz 

In conclusion, the FFT is not effective on vehicles with damping ratios greater 

then 10%(.1) of critical damping. Therefore, a new approach is needed to estimate 

parmeters. Control theory is the next logical option for this thesis project because it 

does not rely on vehicle oscillations or the FFT. An approach involving controls theory 

is examined in chapter 5. 
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5. CONTROLS APPROACH 

5.1 Introduction to Grey Box 

The next approach to parameter estimation involved grey box control theory. The grey 

box represents a transfer function with known internal structure that can be estimated 

with input and output data. Grey box is similar to black box except with a black box, 

the structure is not known. This advantage of grey box will allow a more accurate esti

mation of a model then black box simply because the structure is known. By using the 

chosen structure of the model described in chapter 3, grey box would allow estimation 

of the parameters in the model and allow the rest to be manually inputted. 

Matlab System Identification Toolbox was planned to be used for grey box cal

culations from the beginning. It has functions that do all grey box calculations. The 

user is simply required to learn the notation to input the model and input/output (110) 

data. The Matlab Grey Box code is operated by first creating an 'idgrey' object using 

the state space form of control system. It is here that parameters are defined as being 

fixed or in need of estimation. Then I/O data is inputted into a 'iddata' object in the 

time domain. The objects 'idgrey' and 'iddata' are inputted into a the Matlab PEM 

function for parameter estimation. Initial values are defined for the parameters being 

estimated and are the starting points for the optimization routine in PEM function. If 

the initial values are not close initially, the system may find a different set of optimized 

parameters 

The PEM function stands for 'prediction error measuring' and is a function that 

minimizes the cost function in equation 5.1 by optimizing specified parameters in the 
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'idgrey' object. The optimum specified parameters that minimize equation 5.1 are the 

estimated parameters for the grey box system. 

N 

VN(G, H) = L>2(t) (5.1) 
t=l 

The error function is defined by: 

e(t) = H-1(q)[y(t) - G(q)u(t)] (5.2) 

These equations are visualized by figure 5.1. 

l 

ye ) 1-;-. 
lI(l) -j'--G-(q-)-- ------.1.~.----f-l(-q-rj---,~eel) 

Fig. 5.1: Representation of the error function in PEM 

G(q) is the discretized version of G(s), which is the system transfer function de

fined by the 'idgrey' object. H(q) is a discretized version weighting function for the 

error and is controled by Matlab. u(t) and y(t) are the input and output data functions 

respectively. The parameters being optimized are contained in G(q) and the goal would 

be that y(t) = G(q) . u(t). The equations 5.1 and 5.2 are for a single input, single out

put (SISO) system which means that they will be more complex for a multiple input, 

multiple output (MIMO) system used in tltis thesis project. 

5.2 State Space Representation of the model 

Considering the vehicle model is a multiple input, multiple output(MIMO) system, rep

resentation in state space makes sense. Matlab System Identification Toolbox handles 
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MIMO state space described systems - another essential reason for choosing the grey 

box theory route. 

To formulate a state space description of a model, a set of state variables need to 

be chosen that will completely describe the model and be linearly independent. The 

model has 2 degrees of freedom so a nonnal choice of state variable would be the 2 

degrees of freedom and their derivatives. Therefore the state variables are shown in 

equation (5.3). 

e 

() 

x= (5.3) 

X car 

:rear 

The inputs were decided upon by starting with the displacement inputs of the front 

and rear wheel suspension uf wheel, U r wheel. Because the damper depends on 

velocity, the derivatives of the road input U! wheel, Ur wheel are also needed. The 

input is therefore defined in equation (5.4). 

Uf wheel 

Uf wheel
0= (5.4) 

Ur wheel 

Ur wheel 

Using the chosen state variables and the previously defined model, the state space 

description was fonnulated in equation (5.5). The output is all four state variables for 

simplicity and because they are easily measurable. All matrices are linearly indepen
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dent, which validates the chosen inputs and state variables. 

0 1 0 0 

-(krl~HfI7) -(Crl~+cfll) krlr-kflf crlr-cflf 

X= i X 
0 0 0 1 

krlr-kflf Crlr-cflJ -(k,Hf) -(Cr+Cf) 
m m m m 

(5.5) 

0 0 0 0 

!:.i.!..t. ~ ::::..!.x.h .=..!.r.s:. 
i i ii [r+ 
0 0 0 0 

~ ~ & 0:
m m m m 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 
y= X+ [r (5.6) 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

These state space matrices were defined in 'idgrey' object. All parameters were defined 

except the parameters specified for estimation: Cf, Cr , and i. 

5.3 Grey Box Model Simulation 

A simulation in Matlab was performed to evaluate the performance of the grey box 

Matlab code before actually testing its performance on a real car. The idea behind the 

simulation is to input terrain into the state space model and see if the grey box can 

predict the parameters used in the state space model. To do this simulation, vehicle 

parameters first needed to be defined. The parameters chosen are shown in table 5.1 

and were loosely based on 2006 Cal Poly SAE Baja Car Parameters. 
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After inputting these parameters into the state space matrices the model was run 

with a simulated bump input shown in figure 5.2. Based on the input and output data, 

the grey box estimated the parameters shown in the third column of table 5.1. The other 

variables in the grey box were inputted as part of the grey box structure. This shows 

that the grey box estimation was accurate even with only 300 points of data, which is 

important considering limitations on the amount of data that can be collected and used 

in the mechatronics side of the project in chapter 6. 

Tab. 5.1: Car parameters inputted into model then compared to grey box predicted parameters of 
same model 

Parameter Input Value Predicted Value Units 

sprung mass m 1.3587 inputted Ib-s2/in 

weight distribution front wdf .47 inputted N/A 
wheel base l 66 inputted III 

spring rate front kf 100 inputted lb/in 

spring rate rear kr 100 inputted lb/in 

radius of gyration kg 10 9.985 in 

damping ratio front CZt .7 .7176 N/A 
damping ratio rear CZr .5 .5108 N/A 

The parameters were inputted into a model with identical structure to the 'idgrey' 

object. This structure is listed in equations 5.5 and 5.6. Therefore, this simulation tested 

how well Matlab grey box code could identify the same parameters used in an identical 

model. This will not be the case in a real test because the vehicle being tested does not 

necessarily match the model structure defined in equations 5.5 and 5.6. Therefore, this 

simulation does not test how well the vehicle model used will actually match a vehicle. 

The assumptions made that allow an actual vehicle to be accurately represented by this 

model were presented in chapter 3 on page 10, and further explored in relation to actual 

testing in section 8.3 on page 53. 
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Fig. 5.2: Input and output data of simulation, Note that the left graphs refer to the input variables 
and the right graphs to the state variables AKA output variables 

5.4 Grey Box Data Requirements 

Due to the success of the grey box simulation, it was the chosen method to estimate 

parameters on an actual vehicle with real data. It is therefore important to make a set 

requirements for the sensor system described in chapter 6. 

5.4.1 Input Parameters Required for method 

The grey box method requires parameters to be known and inputted into the model 

prior to parameter estimation, these parameters are: 

• m or sprung mass of vehicle 

• I or wheel base of vehicle 
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• wdf or weight distribution front 

• kf or front spring rate 

• kr or rear spring rate 

5.4.2 Measured Data Required for method 

To estimate the parameters, the grey box method requires sensors to make multiple 

measurements of vehicle variables with respect to time. The data does not have to be 

taken at constant time intervals as long as the time is known. The required vehicle 

variables are: 

• State Variables also known as Output Variables 

- x

- Xca.r or heave displacement of car
 

car or heave velocity of car
 

- fJ or pitch angle of car
 

- iJ or angular pitch velocity of car
 

• Input Variables 

- U f wheel or front wheel displacement
 

- itf wheel or front wheel velocity
 

- U r wheel or rear wheel displacement
 

- itr wheel or rear wheel velocity
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6. SMART SENSOR SYSTEM 

6.1 Design Requirements 

The purpose of the smart system is to collect data at a specified time intervals from the 

vehicle. The design requirements for the smart system are listed below. 

•	 Take measurements at known accurate time intervals of all output and input ve

hicle variables listed in section 5.4.2 

•	 Ability to take data as fast as 800 hz 

•	 Hold 800 points of data per channel 

•	 Transfer data wirelessly for further analysis on laptop computer 

•	 Be relatively easy to install with minimal vehicle modification 

•	 Have the ability to be 'smart' by having logical controls and processing ability 

•	 Be able to be controlled remotely 

6.2 Components 

There are three major components that make up this system: sensors, microcontrollers, 

(MCUs), and radios. They are gone over in detail in the following sections. 

The smart system temporarily stores the data on board until it can be sent to a laptop 

computer over a wireless connection. To make this system easy to install, there were 
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two MCUs---one for the back of the vehicle and one for the front. The two MCUs 

would collect data [Tom four total sensors, two per controller. 

2 smart sensor systems were developed each with their own strengths and weak

nesses. These are labeled System I and System 2 and are represented in the figures 6.1 

and 6.2. The operation of these systems are explained in detail in section 6.3. 
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System 1 

( Slave 1 ) 

( nRF24L01 ) 
radIo 

( Synch WIre ) 

(Atmega644V) (Atmega644V) 

accelerometers 

( Master ) r--....~... 

4LMO'"'ii:'l'R...F""Zr.t1 ....' .....)
C_ radIo . 

(Almega644V) 

Fig. 6.1: Smart System 1 hardware design 
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System 2 

( Slave 1 ) (Slave 2 ) 

Slatus LED 

( nRF24[01 )
Button Trigger radio 

( Synch wire) 

( Master) 

Fig. 6.2: Smart System 2 hardware design 
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6.2.1 Sensors 

In chapter 5 the variables that needed to be collected were decided upon and labeled the 

input and output variables. The output variables, (also known as the state variables), 

are the pitch (0), heave (xear ) and the first derivatives (0, x~r), of the vehicle's CG, 

and are shown in equation 5.3. The output variables are the displacement and velocity 

of the front and rear axles, (u I wheel, UI wheel, Ur wheel, Ur wheel). To measure 

these variables, only four sensors are needed because derivatives or integrals of the data 

can be found in post process. In order to fulfill the requirement that this sensor system 

is easy to install, the option of a displacement sensitive sensors such as a potentiometer 

or global positioning signal are ruled out because they require additional components 

and hardware to install and operate. A common velocity sensor is the vibrometer, also 

known as a velocity coil, but these were ruled out due to the fact they need to be as long 

as the displacement that they measure, which would make them bulky for installing on a 

vehicle that will displace more than a couple inches. This leaves accelerometers, which 

currently are smaller and cheaper than a comparable displacement or velocity sensor. 

Accelerometers measure acceleration and are not displacement limited. A downside of 

accelerometers is that their output must be integrated to get the measurement data in the 

required form of displacement and velocity. This integration can introduce drift errors 

into the system which is when the displacement and velocity become offset from actual. 

Drift is caused by numerical integration of signals, and can be equated to integration of 

an error. Drift error can be compounded through multiple integrations. 

The two accelerometers that would measure the state variables were mounted on 

the chassis at the points of the axles. Using equation 6.1 derived from geometry and 

assuming small angles, the pitch angle (0), can be estimated. 

0= XI-·7:,· (6.1)
l 
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Where () is the pitch angle and x f and X r are the front and rear displacements respec

tively. The same is true for heave (X car), which is shown in equation 6.2. 

wdf . x f + (1 - wdf) . x, 
(6.2)X car = I 

Where wdf is the weight distribution in the front. Both equations 6.1 and 6.2 can be 

differentiated to find the derivatives of () and X car required for the state variables. 

To measure input variables, the accelerometers were mounted to the front and rear 

suspensions. Given that the model in chapter 3 lumps the left and right sides of the car 

together, the side of the car that the accelerometers are mounted on does not matter. 

This will be accounted for by testing the vehicle on symmetrical terrain. 

The accelerometers chosen are shown in figure 6.3. They are a 2 axis accelerome

ter mounted on a break out board, allowing them to be easily connected to wires. The 

ADXL322 version, which is a two axis ±2g version, was mounted on the chassis while 

the ADXL320 two axis ±5g was mounted on the suspension at the wheel. This was 

done because higher acceleration amplitudes were expected on the suspension com

pared to the chassis. These chips are powered on voltage ranging from 2.4-5.25 volts 

and will output an analog voltage signal, per axis, proportional to acceleration in the 

range of 0 volts to supply voltage. Only one channel or axis of the accelerometer 

needed to be used per accelerometer. The accelerometer chips are set up for a 50 hz 

analog bandwidth according to the data sheet and boards they are mounted on. The 

highest mode of the vehicle model in section 7.1 on page 42 is not greater then half the 

accelerometer bandwidth, making the bandwidth sufficient for most cases. 

6.2.2 Microcontrollers 

The microcontrollers (MCUs) used for this project are ATMEGA644V which are man

ufactured by Atmel. They operate on a 8 bit RISC, (Reduced Instruction Set Com

puter), architecture. They were picked for their low cost and large memory. They were 
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Fig. 6.3: The accelerometer chip mounted on a board for easy wiring 

clocked at 4mhz, but could be clocked up to 20mhz1 if needed. They have 32 digi

tal I/O pins that have special functions such as serial ports, analog to digital (ADC) 

conversion, input capture etc. They are also available in a 40 pin DIP package which 

has .1 inch pitch between pins that make it able to fit on a prototyping bread board. 

Smaller surface mount packages can be used for permanent circuit boards and offer 

significantly reduced size as shown in figure 6.4. 

The ADC function of the chip is important for measuring voltage signals from the 

chosen accelerometers. This chip has one channel ADC circuitry that can be connected 

to 8 I/O pins through internal hardware. Once the voltage is read in to the chip, it is 

I The high power ATMEGA644 can be clocked to 20rnhz with same architecture and similar cost 
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Fig. 6.4: Size comparison of 40 pin DIP to 44 pin surface mount package. Note: These chips are 
ATMEGA32 which are the same externally as the ATMEGA644Y. 

converted to a 10 bit analog number based on the voltage reference by using 

N = Yin ·1024 
Vref 

where N is the 10 bit reading number and Yin and Vref are the voltage in and voltage 

reference respectively. The voltage reference is inputted through an external pin or 

selected from supply voltages. The ADC clock runs off the CPU clock and has options 

to be prescaled to run slower. 

Because there is only one ADC channel, there cannot be truly simultaneous mea

suring of two voltage sources connected to the MCU. This can cause data calculation 

errors if not accounted for. 
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6.2.3 Radios 

Radio communication allowed this project to be wireless, which was important for 

installation and ease of use. The project started out using exclusively the nRF24LOl 

radios that were mounted on a break out board for easy prototyping connections. These 

radios operated on the 2.4Ghz frequency and, with high gain antennas, should have a 

range of 100 meters by independent tests. Their data rates of 2Mbps, (2 Mega bits per 

second), made them very fast for the relative sizes of data being sent. They also offered 

hardware error checking, which was used for extra reliability on top of a software 

based error checking. These radios required a MCV to handle data processing to a 

known interface such as RS232 serial data. 

Due to range issues explained in chapter 7 with the nRF24LOI radio, Maxstream 

radio modems were eventually used for communication from vehicle to laptop PC. 

Maxstream radios are stand alone RS232 serial modems and do not require a separate 

controller; i.e. they can be directly connected to a laptop PC. They operate on a 900mhz 

band and offer miles of range depending on the antenna used. The reason they were not 

used from the start was because they are based on a 9600 baud, (9600 bits per second), 

asynchronous serial interface, (RS232), which made them significantly slower then the 

nRF24LOI radios. Maxstream can be used as standalone without a controller while 

nRF24LO 1 radios cannot. Maxstream radios are also over 7 times more expensive then 

the nRF24LOI radios. 

6.3 Operation 

The operation of the MCV sensor system is governed by software design which is 

designed for a specific component setup. Two different component setups were used

labeled System I and System 2 for ease of reference. System I was the first system 

design, using all short range nRF24LOl radios and remote triggering. System 2 was 

a branch of system I to use the long range Maxstream radios and vehicle operator 
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(a) nRF24LOl radio (b) Maxstream radio 

Fig. 6.5: Radios used in project 

triggering. System 2 is the one used for all data acquisition of this project. It is also 

important to note that the main reason for the transition from System I to System 2 was 

poor range of the nRF24LOI radios, which might have been remedied with high gain 

antennas which were never tested with System 1 due to success of System 2. These 

systems are illustrated in figures 6.1 and 6.2. 

System 1 has three different MCUs: Master, Slave 1, Slave 2. The Master MCU 

controls Slave I and Slave 2 and is connected to the laptop computer. It does not 

take data, merely creates the interface between the laptop operator and the slave chips 

mounted on the vehicle. Slave 1 and Slave 2 MCUs are mounted on the vehicle and 

take data from the accelerometers. 

System 2 does not use a Master MCU and instead adds user controls on board the 

vehicle connected to Slave 1. The link to the laptop is handled by the more powerful 

and longer range Maxstream radio. A frequency controller is also on board Slave 1 but 

is not shown in figure 6.2, it is further explained in section 6.3.3. 

All systems were assembled on breadboard for rapid prototyping ability. 
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6.3.1 Event Triggering 

The triggering of the system is defined in this report as how the data taking event is 

triggered for data acquisition. Three different types of triggering were considered for 

this project: remote, on-board, smart/auto. Smart/auto triggering were not actually 

used during this project but are further discussed in section 6.3.5. 

System I used remote triggering for data taking event. An advantage to remote 

triggering is that the vehicle operator is left out of the picture and someone watching 

the vehicle could remotely trigger the system over different terrain. Due to range issues, 

this proved to be very difficult. The laptop with remote controller had to be within 10 

feet of the car to work, and the vehicle operator proved too unpredictable for the person 

operating the remote trigger. Because of range issues the trigger was not very instant 

which made it more impossible to trigger at the correct time. 

It is because of these downfalls that the triggering of the system was changed from 

remote to on-board triggering in System 2. On-board triggering means that the vehicle 

operator will trigger the data acquisition on-board the vehicle. The triggering interface 

for the vehicle operator uses a tactile pushbutton switch with a status led light mounted 

within reach and sight. To trigger the data acquisition event the vehicle operator would 

push the button trigger with the status led off or status led state 1 in table 6.1. When 

data started recording the status led would progress to state 2. If the process did not 

self terminate due to accelerometer saturation2 , the system would hang in state 3 until 

the vehicle operator would hit the trigger button again to trigger a download. Then the 

unit will cycle from state 4 to state 5 and finally back to state 4. 

Ideally, the trigger would be close to instantaneous for starting the data acquisi

tion. In reality, there was fraction of a second delay as preparations were made for 

synchronizing and data acquisition on Slave 1 and Slave 2 MCUs, which are explained 

in detail in sections 6.3.2 and 6.3.3. For future versions it would be important to reduce 

2 see section 6.3.5 for details on saturation checking 
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the time of this delay when taking data in the 400 hz + range because of the short time 

the system actually takes data. The total time data is taken for 400 hz is 2 seconds to 

fill up the designed 800 data point memory. With a delay of .5 second a quarter of the 

data could be missed if the delay is not estimated correctly by the vehicle operator. The 

best way to reduce the delay is to have the system continually update and synchronize 

Slave 1 and Slave 2 MCUs so that when triggered they would be ready to start taking 

data. 

Tab. 6.1: Status LED States 

State No. Status LED State State of System 

1 Off Standby, ready to take data 

2 Constant On Taking Data 

3 Short Long Waiting for user to trigger data 
transfer 

4 Slow Flash Transferring data from Slave 1 to 
laptop over Maxstream Radio 

5 Fast Flash Transferring data from Slave 2 to 
Slave 1 over nRF24L01 Radios 

6.3.2 Synchronization 

Synchronization of Slave 1 and Slave 2 is important for getting data from both of them 

that will correlate together. As mentioned previously in section 6.2.1, a sensor front and 

back will measure state or output variables, and another set of sensors front and back 

will measure input variables. Since in both cases the sensors are connected to separate 

MCUs, they have to be synchronized. The synchronization process is identical for 

System 1 and System 2. 

The synchronization software class is written to be expandable to multiple MCUs 

though only two are used for this system. The two MCUs used are Slave 1 and Slave 2, 

which are specified Master Slave and Slave Slave respectively. Master Slave, (Slave 1), 

is the controller of the synchronization process. The synchronization process is started 
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by the trigger and will automatically trigger the data acquisition. It is written to utilize 

the nRF24LOI radios and a Synch-wire3 connected between the MCUs. Though it was 

the original intention to keep the system completely wireless, the extra wire simplified 

the synchronization process. More testing would need to be done to synchronize using 

only the nRF24LOI radios.The synchronization is accomplished multiple steps: 

1.	 The synchronization is triggered and Slave I sends Slave 2 a radio command to 

get ready for a high pulse on the Synch-wire to reset the data acquisition system's 

timer clock. 

2.	 Slave 2 responds to Slave I command to say it is ready for the pulse. Slave I 

will then pulse the Synch-wire, which through hardware copies the timer clock 

to a hardware register using the input capture of the MCU. Both Slave I and 

Slave 2 capture the timer during the pulse, this capture is then subtracted from 

the both timer clocks, effectively reseting and synchronizing the timer clocks on 

both Slave I and Slave 2 MCUs. 

3.	 Slave I sends a radio command to check the time difference between the MCUs 

using the Synch-wire. 

4.	 Slave 2 responds signifying it is ready to receive the command and Slave I pulses 

the Synch-wire. The time is store on both MCUs and Slave 2 sends the time back 

to Slave 1. Slave I will find the difference in time between the two MCUs and 

store it for later retrieval. 

5.	 Slave I then issues another radio command telling Slave 2 to get ready for an

other high pulse on the Synch-wire, which will trigger the data acquisition sys

tem. 

6. Slave 2 responds to Slave 1 with a radio command signifying it is ready to accept 

the pulse. Slave I pulses the Synch-wire triggering the data acquisition on both 

3 See figures 6.1 and 6.2 for Synch-wire 
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Slave 1 and Slave 2. 

In reality, steps 1 and 2 could be combined with steps 5 and 6 to create a much faster 

synchronization process. They were simply kept separate to allow steps 3 and 4, which 

would allow some feedback on to how well the synchronization process was working. 

As mentioned previously in section 6.3.1, the trigger delay was too long, so one of the 

first things to do is eliminate steps 3 and 4 and combine steps 1,2 with steps 5,6 for a 

significant reduction in the delay. 

6.3.3 Data Acquisition 

The data acquisition system is designed to take data at different intervals or frequencies 

set by the user. The system also remained the same in the transition from System 1 to 

System 2. The data acquisition runs off Timer I of the ATMEGA644v MCV. This 

timer is 16 bit and is clocked or prescaled from the MCV clock which runs at 4 million 

hertz or Mhz. The data acquisition also uses the ADC function of the chip to convert 

an analog voltage signal from the accelerometers into a digital signal that can be stored 

by the MCVs. 

The data acquisition system as mentioned in section 6.3.2 is triggered by the syn

chronization function of the controller to make sure that both Slave I and Slave 2 start 

data acquisition close to the same time. Prior to the actual trigger, Slave 1 sends Slave 

2 the required frequency of the data to be taken then both Slave 1 and 2 update their 

data taking intervals. The frequency in System I is set by the Master MCV which is set 

by the laptop user. Due to the trigger control moving from laptop to vehicle operator 

in System 2, the frequency control moved as well. The frequency control of System 2 

has 5 preset levels indicated by an LED array on board Slave 1. The frequency was set 

by the rotating a potentiometer mounted on Slave 1 until the corresponding frequency 

light would light up. 

It is important that the interval remain constant and accurate in order for the col
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lected data to have meaning. Therefore, the data acquisition uses an interrupt function 

of the ATMEGA644v chip. The interrupt function allows the software execution of 

the MCV to be interrupted by a programmed hardware state change. The advantage of 

this method is that hardware state changes have repeatable response times and do not 

depend on where in the execution of code the MCV is. When the interrupt happens, 

the processor is interrupted and the code is run to save the state of the processor at 

the time of interruption. The processor will then run code in the interrupt, then reload 

the state and continue on execution of code that was interrupted. What this means is 

that when an interrupt happens, there is a repeatable and predictable time for execu

tion of the interrupt code, which is what is needed for consistent data. An interrupt is 

not instantaneous or does not necessarily offer the fastest response time; it only allows 

for repeatability and predictability. This means that measurements will be taken at the 

same accurate time apart which were the goals of the data acquisition program. 

The hardware that triggers the interrupt is caused by the compare match of Timer I 

to specified number in OCRIA hardware register on the MCV. After the timer matches, 

it is reset and starts from zero. The number of clock cycles Timer I processes between 

interrupts is equal to OCRIA minus I because of the extra transition from OCRIA to 

zero. Therefore the interval time can be calculated using the following equation. 

. OCRIA-l
Interval TIme = ----

freqtimer 

The interval is not affected by the interrupt action time because it remains constant for 

reasons explained above. 

By using a 16 bit timer, higher precision of the interval time is possible, compared 

to an 8 bit timer. But if a period is selected that is not a multiple of the MCV clock 

period, the interval will never be an exact number of MCV cycles. The software uses 

a simple algorithm that minimizes Timer I's periods using different prescale values of 

the MCV clock. By minimizing Timer I's periods, the closer Timer I can match a 
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desired frequency. To account for precision errors, the software prints out the actual 

frequency when data is downloaded so the actual frequency can be used instead of the 

desired frequency. It is for the end user to decide whether the desired frequency is close 

enough to the actual frequency, considering all tolerances involved. 

The purpose of the interrupt is to trigger the ADC reading of the accelerometers. 

As mentioned previously in section 6.2.2, the ADC can only read one thing at a time. 

Therefore, two accelerometer readings are read one after another. Since the readings 

cannot happen simultaneously, they should be closer together then the interval. There

fore, the ADC clock is run fast and the estimated time difference is kept well below 1 

percent of the period at 1000 hz. For accuracy, multiple ADC readings are taken and 

averaged for every one reading. This approach was chosen over running the ADC at 

slower frequencies for redundancy 

The memory of the MCU where the measured data would be stored is 4000 bytes 

in size. This memory is used for program operation so all of it cannot be used for 

storing data. 2000 bytes were chosen to he set aside for storing measurement data. 

With two channels and measurements that are 10 bits long, it works out to 800 data 

points per channel of data that could be stored. The grey box simulation conducted in 

section 5.3 indicated that 800 points would be sufficient which is why it is listed as a 

requirement in section 6.1. More memory could possibly be set aside for storing data 

if the exact amount of memory needed for processor operation was calculated, but it 

was not deemed necessary. 

The maximum speed of the data acquisition has not been tested but the system bas 

been successfully tested at 800 hz, which was specified by the smart system design 

requirements in section 6.1. To test the data acquisition system at 800 hz the same 

accelerometer was connected to both channels of Slave 1 and Slave 2. Then the system 

was triggered while the accelerometer was subjected to arbitrary motion to see how 

well all 4 channels matched together. The 4 channels are graphed in figure 6.6 with a 
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very small vertical scale for detail. The total vertical scale for the ADC ranges from 0 to 

1023, which is from zero volts to voltage supply respectively. Ideally, the points should 

be right on top of each other, but due to the time difference between measuring channel 

1 and channel 2 on both MCV slaves, the points deviate a little. The synchronization 

of both slaves is accurate, shown by channel 1 of Slave 1 and Slave 2 being the same 

for or very close to the same. The same can be said for both channel 2s. The system 

is capable of more speed, especially with faster MCV clocks, but no attempt was made 

at testing the maximum speed. Even though a faster MCV chip could make the system 

faster, accuracy of accelerometer measurements may be reduced due to running the 

ADC too fast. 
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Fig. 6.6: Test Graph of Data Acquisition System at 800 hz. All channels are connected to the 
same input. 
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6.3.4 Wireless Transmission 

The smart sensor systems transfer all data wirelessly using radios. In order to make 

the data transfer reliable, error checking is needed. The nRF24LOl radios themselves 

have hardware error checking, but another level of control is needed to make sure 

the data is transferred accurately in the system. Without this level of control, data 

could be frequently be lost in transmission because the hardware error checking will 

automatically reset after so many transmission errors. The software level of control 

also has checksum error checking for extra consistency, but this function is secondary 

to controlling data transmission of the system. 

The radio control software was originally developed by the author during MES07 in 

Spring Quarter of 2007 at Cal Poly. This software was tweaked for performance in this 

project and became very important to the success of this project. This software, once 

set up, would allow data to be written by one MCV onto another that was connected to 

radio interface. The software would try until successful or until it was reset. It allowed 

very easy integration into the data acquisition system once setup properly. It was only 

used for the nRF24LOl radios in System 1 and System 2 and was not adapted or tested 

with the Maxstream radios. 

The Maxstream radios were used to fix the range issue occurring with the 

nRF24LOl radios between the laptop and vehicle. Control software was not developed 

for them because they act as standalone asynchronous serial data or RS232 modems. 

The Maxstream radios solved range problem in System 2 because they were much 

more powerful then the nRF24LOI radios. But while they were more powerful, after 

testing with them in Test #2, (section 7.3), it was found out that they skipped lines of 

data due to transmission errors. Instead of developing the same software control for 

them as used with the nRF23LOI radios, a quick tweak to software made them hold 

transmission until the radio on the vehicle and the laptop were in close proximity of 

each other. This extra state is shown in table 6.1 and required the vehicle operator to 
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press the trigger button to start the transmission. This process, though not ideal, made 

the system successful in data transmission from vehicle to laptop. 

6.3.5 "Smarts" 

This system can be considered smart because of all aspects explained under section 6.3. 

One aspect that was not previously mentioned that is considered smart is the system's 

ability to detect accelerometer saturation and throw out the data. This works by check

ing accelerometer readings-if the accelerometer reaches max or min value, (1023 and 

orespectively), 10 times, the data is thrown out as saturated. It then sends a message 

to the laptop saying the data is saturated and on which MCV. This was an important 

time saving device that would let you know of bad data and throw it out before time is 

wasted analyzing it. 

An obvious smart feature not implemented is a smart trigger. This trigger could be 

configured to find what it thinks is good data and store it. It might work by having the 

MCV looking for signs of good data while taking data all the time and storing it in a 

looped buffer. It might look for consistent large variations in amplitude as an indication 

of good data. If it found what it thought to be good data it would decide how far back 

in the data buffer to set aside as actual data for transmission to the laptop. 

More smart features are easily integrated into the system. The MCVs were not 

maxed out in this project, and a simple increase in clock speed could more then dou

ble processing power. Smart features such as data pre-processing could provide very 

useful information as to the quality of the data before actual parameter estimation is 

performed. The ease of use and performance of parameter estimation can be improved 

by addition of more smart features. 
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7. TESTING 

Fig. 7.1: The Vehicle used for testing the system: 2008 Cal Poly SAE Baja Competition vehicle 

7.1 Test Vehicle 

To test this project, the 2008 Mini Baja Competition Vehicle pictured in figure 7.1 

was used. This vehicle is a small single occupant off-road car made for the SAE Baja 

Collegiate Competition. This vehicle has a full roll cage and durable long travel sus

pension. This vehicle was ideally suited for this test because most parameters were 
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already known. In addition, the vehicles small scale and tube frame allowed easy inte

gration of sensor and computers. The known parameters that relate to this project are 

listed in table 7.1. The parameter data listed for the baja car is not guaranteed to be 

accurate, and in most cases, is the best educated guess. The mass for the car includes 

the test driver but the estimated unsprung mass has been subtracted to get the sprung 

mass. The spring rates should be within 5% because they are cataloged and calcula

tion is based merely on geometry. Damping rates were estimated using manufactured 

supplied numbers for bound and rebound in the front, which were 5 and 15 Ib-s1in re

spectively. These numbers were averaged to 10 Ib-s/in, then made effective through the 

suspension motion ratio. The manufacturer did not supply numbers for the rear damper 

but they were known to use the next greater damping rate setup compared to the front 

damper. 

Tab. 7.1: 2008 Cal Poly SAE Baja Competition Car 

Parameter 2008 Baja Car 

sprung mass m 1.294 Ib-s2/in 

radius of gyration kg 22 in 

pitch inertia 626 Ib-s2-in 

weight distribution front wdf .47 

wheel base l 68 in 

spring rate front kf 100 Ib/in 

spring rate rear kr. 100 lb/in 

damping rate front Cf 7.2 Ib-s/in 

damping rate rear Cr 10 Ib-s/in 

damping ratio front czf .461 

damping ration rear CZr .603 

It should be noted that the baja car parameters are not necessarily accurate for a few 

reasons listed below, but the goal of this project was not necessarily absolute parameter 

accuracy. It was merely to see if it might be possible to use a system such as this 

to estimate parameters with reasonable accuracy. Therefore, not very much time was 

spent measuring the car and perfecting the lumped parameters of the model like that 
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which was done in Kim and Ro [5]. 

The cars mass and inertial properties changed with each driver and many different 

setups so it was not static and changed from day to day as the team added and subtracted 

components. These changed the mass and inertial properties, which necessitated the 

weighing of the car with driver before every run. 

Dampers were never put on a shock dynamometer and the only numbers the team 

has are numbers for are the lowest damping setting from the manufacturer. This is un

fortunate because the non-linearity or curvature of the damping curves was not known. 

The actual estimated damping rate should depend on how the damper is cycled up and 

down during the test. 

The pitch inertia of the car was estimated using known and estimated masses of 

components. A proper swinging pendulum setup or some other apparatus would need 

to be constructed to actually measure the inertia. A 4 post testing rig was not available 

to optimize lumped parameters. How the parameters are lumped, such as what mass is 

unsprung versus sprung, can affect how close the model will match the vehicle. 

The 2008 Baja Car was instrumented with 4 accelerometers in the way described 

in section 6.2.1. Small aluminum brackets were made and mounted on the car in the 

prescribed locations to make vertical surfaces for accelerometers. The sensors were 

mounted on the car using Scotch Mounting Squares, which are double stick foam tape 

squares. Foam mounting of accelerometers was used in the hopes that the foam would 

damp high frequency vibrations. The accelerometers were aligned vertical by hand 

which means that they were within 5 degrees from vertical. Shielded wire was used 

to minimize electrical noise between the accelerometer and MCV. The MCUs were 

powered by two 9 volt batteries in parallel that were regulated to 5 volts with a voltage 

regulator. 
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7.2 Test #1 

The first test used sensor System 1 with very limited success. The test was conducted 

on a relatively smooth farm field used for tractor training at Cal Poly University. Even 

though the field was smooth, it had berms and elevation changes that separated the field 

[TOm the adjoining road and fann field. Due to the model and this project's design, 

symmetrical inputs to both left and right sides of the vehicle were required. The only 

clearly symmetrical terrain would be hitting the berms head on. But due to the failure 

of System I to get data, the terrain input at this field was not tested. 

System 1 as mentioned previously in section 6.3 has range issues that caused the 

remote trigger and data transfer function to be useless. The system would work with 

the car off and the laptop within a few feet, but once the engine was running it was 

impossible to control the system. Causes for poor range could be magneto ignition 

system of the 2008 Baja Car's Engine, and to low gain antennas. Due to these issues, 

System 1 was modified to System 2 which moved the trigger on board the car and used 

more powerful radios for the wireless link to the laptop computer. 

7.3 Test#2 

Trying to remedy the failures of test # I, this test had many changes. The course was 

now made up parking stops that made 2 bumps wide enough for both left and right 

sides of the car to contact at the same time. The 2 bumps were set approximately 12 

inches apart and the car was driven over them at speed. This test was the first to use 

an early version of System 2. This system did not include the feature that delayed 

transmission to the laptop, so the data collected was missing measurements. The data 

also had significant amount of noise due to engine vibration. The engine in the vehicle 

is a single cylinder 4 stroke engine with no counter balancer and is mounted directly 

to the frame with no built-in compliance such as rubber mounts. Therefore by itself it 

would vibrate the chassis mounted accelerometer as shown in figure 7.2. 
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Fig. 7.2: Engine noise data for the 2008 Baja Car, Data is taken at 200 Hz with car not moving 
and engine revving randomly 

7.4 Test#3 

This was the first test from which successful data was collected. To eliminate the 

engine vibration the car was manually pushed over the same parking stop bumps at 

around 7-12mph. Before the car hit the bumps, the pushing of the car stopped to avoid 

extra chassis forces. This speed was just slow enough to not saturate or max out the 

accelerometers. 

Though the data taking was successful, problems arose during analyzing the data 

afterwards. Due to the trigger delay the data was taken mid bump which means that the 

initial states of the suspension and chassis are unknown and non zero. Another problem 

was the car was setup with multiple rate springs and inconsistent damping settings. The 
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grey box code was not able to estimate realistic parameters using this data, which may 

have been due to the unknown initial states and highly nonlinear suspension. 

7.5 Test#4 

This final test gave successful data listed in chapter 8. The issues in test #3 were taken 

care of by fitting linear single rate springs to the suspension and having the driver 

predict the bump and hit the trigger early to get a steady state data before the bump. 

The adjustable dampers were softened to their lowest settings for which the damping 

was specified but not verified for the front dampers. The car was still manually pushed 

over parking stops as described in test #3. 
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8. RESULTS 

8.1 Data Processing 

The results for this project are from data obtained in the fourth and final test which is in 

section 7.5. Two successful data sets were taken. The data was determined successful 

if the system was triggered early enough to get steady state data but not too early that 

the session was terminated before hitting the obstacles. For ease of reference the data 

sets will be named 400 Hz Data and 800 Hz Data. 400 Hz Data was taken at 400hz and 

800 Hz Data was at 800hz. 

The 400 Hz Data raw data was first scaled using calibration data for each of the 

accelerometers. Each sensor had its static value subtracted and was multiplied by a 

constant to convert the units to in/s2 . The linear trend was also subtracted from the 

now scaled 400 Hz Data to remove possible accelerometer drift. The 400 Hz Data 

accelerometer data is shown in figure 8.l. 

Using Matlab and Simulink, 400 Hz Data was then integrated twice to get velocity 

and displacement input output data listed in section 5.4.2. This data is graphed in 

figure 8.2 which shows the input data on the left side, and the output data on the right. 

It is important to note that the input data is not the road position, but the wheel hub 

movement. This model does not include the tire and the tires interface with the ground, 

which is explained in chapter 3. The front and rear wheel displacements indicate that 

there were two bumps. Figure 8.2 compares the model with estimated parameters by 

running the input data through the state space car model (equation 5.5) to get output 

data which is then graphed along side the actual output data. The model fits what is 
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Fig. 8. J: 400 Hz Data Acceleration Data scaled with linear trend removed, taken at 400 hz with 
800 points per channel 

observed fairly well in this case, although reasons are offered for the inaccuracies in 

section 8.3. 

800 Hz Data was handled the same way 400 Hz Data was handled with the scal

ing and subtracting the linear trend from the data. The problems arose when 800 Hz 

Data was run through the grey box parameter estimation explained in section 8.2. The 

parameters estimated using 800 Hz Data were many orders of magnitude off from the 

estimated values. 800 Hz Data was processed again, but the linear trend was not sub

tracted. This resulted in the accelerometer drift not being filtered out, but gave better 

grey box parameter estimation values. Therefore, subtracting the linear trend from 800 

Hz Data corrupted the data, which did not happen in 400 Hz Data. 

Without subtracting the linear trend from 800 Hz Data, there was a lot of accelerom
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Fig. 8.2: 400 Hz Data State Space Input Output Actual Data;Output data compared to theoretical 
car model data generated from actual input data shown to the left 

eter drift or constant errors that caused the second derivative (position) to go out of 

reasonable bounds. To get rid of this error, a constant was manually subtracted from 

800 Hz Data acceleration data until the second anti derivative of the data ended on zero. 

Figure 8.3 shows 800 Hz Data acceleration data after the constant was subtracted. 

800 Hz Data was integrated the same as 400 Hz Data using Simulink to get input 

and output data needed for grey box parameter estimation. Figure 8.4 shows 800 Hz 

Data after being integrated. The same vehicle model that was compared to 400 Hz Data 
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Fig. 8.3: 800 Hz Data Acceleration Data scaled with constant removed, taken at 800 hz with 800 
points per channel 

in figure 8.2, is compared to 800 Hz Data in figure 8.4 as well. 

8.2 Grey Box Estimation 

The input output data is then run tbrough the grey box system identification tool func

tion in Matlab to identify i, Cf and c,.. using both 400 Hz Data and 800 Hz Data. The 

results of this simulation are in table 8.1 and are compared to the 2008 parameters first 

presented in section 7.1 on page 42. These parameters are also the same used for the 

comparison model in the right sides of figures 8.2 and 8.4. As seen in the table, the 
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parameters match fairly well. The vehicle pitch inertia seems to be off by the most but 

if you examine the radius of gyration, (kg), you will find the smaller variations from a 

very roughly estimated car inertia explained in section 7.1. The variations are smaller 

because inertia (i) depends on kg 2 • 

Tab. 8.1: Grey Box Estimated Parameters 

Parameter Estimated Grey Box Using 2008 Baja Car Units 

400 Hz Data 800 Hz Data 

796 667 626 Ib-s2-in 

cf 9.2 8.3 7.2 lb-s/in 

Cr 10.4 12.4 10 lb-s/in 

kg 24.8 22.7 22 in 

8.3 Sources ofError 

A major source of error could be related to the model used to describe the vehicle. 

The errors due to this model can be broken up into two categories, errors due to non

linearities of the system and errors due to inadequate degrees of freedom. These two 

sources of error are examined in this section separately under in this section. 

Other sources of error are signal processing and sensor errors which are also exam

ined separately in this section. 

8.3.1 Errors due to Presence ofNon-Linearities 

Errors due to non-linearities are one of the downsides of using a linear model. The 

known non-linearities present during the testing phase are the different rebound and 

bound damping rates of the dampers, and possible suspension travellirnits of the vehi

cle. For the damper settings used during test #4, the rebound rate was three times the 

rate as mentioned in section 7.1. The reason that this was not remedied is because the 

damping rates were only known for these settings. 
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The suspension travel limits of the suspension are non-linear because the spring or 

stiffness characteristics change when the suspension contact the travel limiting devices. 

This non-linearity can be avoided by not going over rough enough terrain to bottom 

out the suspension. Using the second integral of 400 Hz Data and 800 Hz Data, the 

suspension travel can be estimated and is shown in figure 8.5. Upon inspection of the 

estimated suspension travel it shows that the suspension did hit the limits of its travel 

for 400 Hz Data data set in the rear shown in figure 8.5(a). The limits for the rear 

suspension are close to 4 up and 6 down. This is the only travel limitation suggested by 

figure 8.5. The suspension travel shown is very fragile data because it depends on the 

second integral of 400 Hz Data and 800 Hz Data. The second integral depends greatly 

on how accelerometer drift l was filtered out of the raw acceleration data. 

Using a non-linear model adds many complexity issues and greatly reduces the 

amount of engineering tools available for this project, which is why the model is lin

ear. The grey box parameter estimation could not handle a non-linear model for the 

functions used. 

Since the model does not include the tire and the tire's interface to the ground, this 

linear system should be robust from non-linearities such as when the tire comes off the 

ground. The motion ratio variation is known to be small on the test vehicle, so it is not 

a major source of non-linearity. 

8.3.2 Errors due to insufficient model degrees offreedom 

The most obvious crux of the 2 degree of freedom bicycle type model is that it depends 

on symmetry of both the vehicle and the inputs. This symmetry is not always present 

and never perfect, so when using a model that depends on symmetry, there will always 

be sources of error. If left or right weight transfer occurs, the vehicle is not symmetrical 

for that test. 400 Hz Data and 800 Hz Data data sets were both collected by running 

the vehicle over very symmetricallerrain, which was required by the model choice. To 

I See sections 6.2.1 and 8.3.3 for further explanation of accelerometer drift 
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Fig. 8.5: The estimated suspension travel from 400 Hz Data and 800 Hz Data data sets 

eliminate the symmetry constraint for more variety of inputs, the model would have 

to be expanded to something similar to the 7 degree of model used by Holen [1]. The 

7 degree of freedom model includes degrees of freedom for all wheels, so the input 

of the system is at the tire road interface, which is hard to measure. A better model 

would be to add roll of the vehicle chassis to the current model, making it 3 degree of 

freedom. With the addition of roll there would now be 8 possible inputs-the positions 
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and velocities of all 4 wheels. This adds a great deal more complexity to the system, 

like increasing the accelerometer sensor count from 4 to 7, but would eliminate the 

symmetrical constraint of this project. 

The vehicle chassis is modeled as a rigid body even though theoretically it has in

finite degrees of freedom. The assumption that allows this is that the chassis is very 

stiff compared to the stiffness of vehicle suspension. This assumption also has to be 

made for suspension links in the system. Vehicle chassis and suspension flex or vibra

tion are probably not a major source of error during testing of this project because the 

assumptions apply to the test vehicle. 

Another issue of concern is how the suspension geometry relates to this model. The 

spring and damper of the suspension exert most of the vertical force that this project is 

concerned with, but the suspension links can also exert force in the vertical direction. 

This can cause discrepancies in the estimation of the pitch inertia because the model 

assumes that point of rotation of the vehicle is at the CG location, but if the vehicle 

suspension geometry forces it to rotate about a different point, then pitch inertia is 

artificially increased due by m . r 2 where m is the sprung mass and r the distance from 

the point of rotation to the CG. This error might have easily contributed to the variation 

of i and hence kg in table 8.1. 

How the suspension geometry affects pitch of vehicle is similar to how suspension 

geometry affects roll of the vehicle. Suspension geometry determines the roll center, 

which is the point about which a vehicle will roll and a common design aspect in 

vehicle dynamics. There is also a pitch center caused by suspension geometry that can 

force the vehicle to rotate about a pitch center in the same way a vehicle will roll about 

a roll center. 

The suspension geometry design of the 2008 Baja car causes its wheel movement 

to not be vertical with respect to ground and in the case of the rear the wheel movement 

is in an arc. During testing the front tires would leave the ground therefore the pitch 
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center would likely move closer to the rear of the car. When the rear tires left the 

ground, the pitch center would likely move toward the front of the car. This means that 

the pitch center can vary depending on the state of the vehicle similar to the roll center. 

Another area where suspension can affect the model is when a lateral load is applied 

at the tire, causing a jacking force to be applied to the vehicle body through suspen

sion links. This lateral force can be generated even when the vehicle is not cornering 

through tire scrub, which is the lateral movement of the tire on the ground when the 

suspension travels up and down. This force can affect the entire model results and may 

act as a coulomb friction damping source. 

This model only accounts for vertical accelerations and rotations of the chassis-no 

horizontal or lateral accelerations are included. Instead of adding many more degrees 

of freedom to account for these motions, this source of error can be reduced by making 

sure that the vehicle is not experiencing very high horizontal and lateral accelerations 

when data is taken. This is likely a small source of error because care was made to 

make sure the vehicle was not braking, accelerating and going straight when 400 Hz 

Data and 800 Hz Data was gathered in test #4. 

8.3.3 Errors due to Data Acquisition 

Data acquisition errors are present because the type of data filtering done before grey 

box parameter estimation greatly affected the estimated parameters. The major er

ror that required filtering is accelerometer drift. This happens with integration of ac

celerometer errors that will compound over time, especially if multiple integrations are 

taken. Accuracy of estimated parameters therefore can be improved if accelerometer 

drift errors can be reduced using more sophisticated filters or different sensors. 

The accelerometer analog bandwidth is 50 hz, which might not be sufficient for 

very fast suspension motions even though the suspension modal frequencies are gener

ally less then half of 50 hz. The data was sampled in 400 Hz Data and 800 Hz Data at 
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much higher frequencies, so aliasing is not a major contributer. 
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9. CONCLUSION 

The methods presented in this project are shown to estimate vehicle parameters with 

reasonable accuracy. A smart data acquisition system has been developed and tested to 

be accurate and easy to install on a common vehicle for parameter estimation. Since 

the smart system is almost completely wireless, the installation and use of the system 

is simplified. The grey box approach is a good option for parameter estimation for a 

vehicle. Using Matlab's System Identification Toolbox the grey box estimation code 

was easily implemented and tested for viability in estimating vehicle parameters. 

This thesis project is an investigation, or proof of concept, that suspension param

eter estimation is possible using methods discussed in this report. There are, however, 

many recommendations for how to build on this thesis project to make this system 

more robust. 

AJI the sources of error listed in section 8.3 need to be further researched and tested 

so they can be minimized and possibly eliminated. Depending on the application of 

this project, some errors may not need to be eliminated. For example if this system is 

used to calibrate a vehicle dynamics active control system, then estimated pitch might 

be more valuable with the effects of suspension geometry explained in section 8.3.2, 

because that is the how the vehicle reacts. The pitch inertia about the CG might only be 

important to an active control system if the vehicle rotates about the CG which might 

not necessarily be the case. 

The electronics packaging for the mechatronics system needs to be further devel

oped from a bread board to a printed circuit board (PCB) with enclosure. It might be 

59 



best to integrate the accelerometer with each MeU unit so wires to accelerometers are 

limited and mounting of components is minimized. The synchronization of the system 

could be further developed to not use any wires for a completely wireless system. 

The grey box estimation code could be further expanded to use a non-linear model. 

This would make it more applicable to the non-linearities present in most vehicles. The 

integration of grey box code on-board the vehicle would allow parameter estimation to 

happen real-time. Real-time parameter estimation could be coupled with a vehicle 

control system allowing the control system to react to varying suspension parameters. 

This thesis project provides a good start for a vehicle suspension parameter estima

tion using a smart sensor system. Using the recommendations listed above, this thesis 

project might be expanded to be used for a wider variety of applications with more 

robust results and performance. 
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A. HARDWARE 

The main hardware parts and locations of data sheets are listed in table A. Some hard

ware components were mounted on breakout boards by an independent company for 

easier prototyping. The independent company will be listed in table A under assem

bler. Breakout boards are printed circuit boards designed for mounting of small surface 

mount chips for ease of electrically connecting wires and pins to the chip. 

All smaller common hardware components such as resistors, capacitors, LEDs will 

not be listed but are required for this project. 

.:~. A..:: ~~-....: curuPUi"..mts of smart seosor systems 1 and 2 

Name Part Number Manufacturer Asscmbier Vcndor Cost 

MicrocoIlIroller ATMOOAM4V-1OPU Amlel N/A IligiUy.wm ';,7. 7 

Accelerometer ADXL322 Analog Devices sparkfun.com sparkfun.com $29.95 

mu-24U)1 Nvnac ~- sparld"un.t:Om sparld"UD.com $19.95 
ductor 

Radio X09-OO9WNC Max~'treamll1C N/A digikey.com $166.94 

RS232 to USB FT232RL FfDIChip sparkfuo .com sparkfun.com $14.95 

Figures A.I through A.4 show the how the systems are wired. They do not include 

wiring for programming which is covered in the ATMEGA644V data sheet. All proto

typing was done on a breadboard which is a solder-less prototyping board. More info 

can be found bttp:/len.wikipedia.org/wikilBreadboard 
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B. SOFTWARE 

All software files can be found here:
 

http://me.me.calpoly.edu: 1280/svnlsuspension/tagsl
 

or on the supplemental compact-disc (CD) under directory "Smart System Control".
 

The documentation is on the following pages for ASV, or Automotive Suspension Vi


bration, which is name of the software used in this thesis.
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ASV Reference Manual 

v.8 

Generated by Doxygen 1.5.2 

Fri Apr 25 12:03:552008 

69 



B.l ASV Hierarchical Index 

B.2 ASV Class Hierarchy 

This inheritance list is sorted roughly, but not completely, alphabetical1y: 

array lObits . 71 

packicuart . 84 

spi_bb_port 85 

uart .... 88 

avr_9xstream 75 

nb_uart 82 

B.3 ASV Class Index 

B.4 ASV Class List 

Here are the classes, structs, unions and interfaces with brief descriptions: 

arraylObits . . 71 

avr_9xstream 75 

nb_uart . . . 82 

packiCuart 84 

spCbb_port (Define this to enable debugging features) . 85 

uart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

B.5 ASV File Index 

B.6 ASV File List 

Here is a list of all docwnented files with brief descriptions: 

Desktop/ASV/Code/ASV.cpp (Main run file for all MCU devices) . . . . . . 95 
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Desktop/ASV/Code/avc9xstrearn.h 98 

Desktop/ASV/Code/avca2d.h (This file is the header for using the AID con

verters on an AVR processor. It is designed to contain code which 

can be used on several processor versions: ) 99 

Desktop/ASV/Code/avr_seriaI.h .102 

Desktop/ASV/Code/avr_spCbb.h · 103 

Desktop/ASV/Code/interval.cpp · 104 

Desktop/ASV/Code/interval.h . . · 106 

Desktop/ASV/Code/nRF24LOl.h · 108 

Desktop/ASV/CodelpackecCarrays.cpp .109 

Desktop/ASV/Code/packecCarrays.h · 110 

Desktop/ASV/Code/packit.h · 111 

Desktop/ASV/Code/syncb_data.h (Files used to synchronize one micorcon

trollers data taking with another) . . . . . . . . . . . . . . . . . . . 112 

B.7 ASV Class Documentation 

B.8 arraylObits Class Reference 

#include <packed_arrays.h> 

Public Member Functions 

• arraylObits (int) 

• int get (int) 

• bool put (int index, int data) 

• unsigned char geCdata_byte (int idx) 

• int size (void) 

• int bytes (void) 
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B.B.l Detailed Description 

This class implements an array of lO-bit numbers, storing them by "packing" them into 

memory so as to not waste bits. Putting each lO-bit number into a l6-bit int would 

waste about 37% of the memory used. The numbers which are given to, and taken 

from, the array are in integers (the next convenient size up). This class implements 

very crude bounds checking, making sure nobody tries to manipulate data from outside 

the array's bounds. As this is C++, indexes begin at zero. 

B.B.2 Constructor & Destructor Documentation 

B.B.2.1 arraylObits::arraylObits (intnew_size) 

lbis constructor creates an array object to efficiently hold a bunch of lO-bit numbers
 

in memory.
 

Parameters:
 

new_size This is the number of lO-bit numbers which the new array can store. 

B.B.3 Member Function Documentation 

B.B.3.1 int arraylObits::get (jnt index) 

This method returns a lO-bit number from the given index location in the array. If an 

out-of-range index is given, the number Ox8000 is returned. This is a reliable error code 

because it's not a valid lO-bit number. The error code can be conveniently checked by 

looking at the highest bit in the returned number. 

Parameters: 

index The location from which the data is to be retreived 

Returns: 

The number from the array, or Ox8000 if that data can't be retreived 

72 



B.8.3.2 boo! arraylObits::put (int index, int data) 

This method inserts a lO-bit number into the array at the given index location. If the 

index is out of bounds, the function returns false; if things work out okay, it returns 

true. 

Parameters: 

index The location from which the data is to be retreived 

Returns: 

True if the data was stored, false if not 

B.8.3.3 unsigned char array1Obits::geCdata_byte (int idx) [ in1 i n e ] 

This method returns a byte from the data storage array. It is intended to be used for 

testing purposes, but it will probably be useful when sending data over a link such as 

serial or radio, or when storing data in some mass storage device. 

Parameters: 

byte_num The index into the array of bytes from which to get data 

Returns: 

The data byte from the array 

B.8.3.4 int arraylObits::size (void) [inline] 

This method returns the number of lO-bit items in the array. 

Returns: 

The number of items in the array 

B.8.3.5 intarraylObits::bytes(void) [inline] 

This method returns the number of bytes used to store the data. 
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Returns: 

How many bytes are used to store the data 

The documentation for this class was generated from the following files: 

• DesktoplASVICode/packe(Carrays.h 

• Desktop/ASVICode/packe(Carrays.cpp 
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B.9 avc9xstream Class Reference 

#include <avr_9xstream.h> 

Inheritance diagram for avc9xstream:: 

Public Member Functions 

• avr_9xstream (bool) 

• void sleep (void) 

• void wake_up (void) 

• bool putchar (char) 

• void puts (char *) 

• unsigned char timeouts (void) 

• void write_bin (unsigned char) 

• void write_hex (unsigned char) 

• void write (unsigned char) 

• void write (char num) 

• void write_bin (unsigned int) 

• void write_hex (unsigned int) 

• void write (unsigned int) 

• void write (int) 

• void write_hex (unsigned long) 

• void write (unsigned long) 

• void write (long) 
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Protected Member Functions 

• bool waiCfocCTS (void) 

B.9.1 Detailed Description 

This class communicates with the 9XStream radio. It is a descendent of the uart (p. 88) 

class from avr_serial.*. The radio adds support for the CTS and sleep pins, and it 

operates the serial port with a baud rate which is set in avr_9xstream.h (p. 98). 

B.9.2 Constructor & Destructor Documentation 

B.9.2.1 avc9xstream::avc9xstream (bool setup) 

This constructor creates a radio modem object by calling the serial port constructor 

setting up the input and output pins for CTS and sleep mode, and sending the correct 

setup codes to the radio modem. Due to the need for dumb delay loops to satisfy the 

radio's timing requirements, this constructor takes several seconds to execute. 

B.9.3 Member Function Documentation 

B.9.3.1 boo1 avc9xstream::waitJor_CTS (void) [protected] 

This method waits for the modem's CTS line to become low, indicating that the modem 

is ready to send data. There's a timeout in case the modem is never ready. 

Returns: 

True if the radio is ready to send, false jf there was a timeout 

B.9.3.2 void avc9xstream::sleep (void) 

This method causes the radio to enter sleep mode. The sleep mode used is "pin sleep", 

in which the radio consumes about 25 uA of current and wakes up only when its sleep 

pin (pin 2) is set to O. 
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B.9.3.3 void aVT_9xstream::wake_up (void) 

This method awakens the radio from sleep mode by de-asserting the sleep pin. 

B.9.3.4 bool avc9xstream::putcbar (char the_char) 

This method writes one character to the radio modem throgh the associated serial port. 

Before doing so, it checks to ensure that the Clear To Send line is active. If the CTS 

line doesn't become active and times out, the character is not sent and this function 

returns false. 

Parameters: 

the_char The character which is to be sent 

Returns: 

True if the character was successfully sent out, false otherwise 

Reimplemented from uart (p.89). 

B.9.3.5 void aVT_9xstream::puts (char * str) 

This method writes a string to the radio modem. It writes one character at a time until 

the null character at the end of the string is reached. Note that this method can block 

the processor's execution and take an awful lot of time. 

Reimplemented from uart (p.90). 

B.9.3.6 unsigned char aVT_9xstream::timeouts (void) [inline] 

This method returns the number of timeout errors which have occurred. 

B.9.3.7 void avc9xstream::write_bin (unsigned cbar num) 

This method writes an unsigned character to the radio modem in binary format. It 

overrides the serial port method of the same name. 
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Parameters: 

num The number to be written 

Reimplemented from oart (p.91). 

B.9.3.8 void avr_9xstream::write_hex (unsigned charnum) 

This method writes a character to the serial port as a text string showing the 8-bit 

unsigned number in that character in hexadecimal form. 

Parameters: 

num The 8-bit number to be sent out
 

Reimplemented from Dart (p.91).
 

B.9.3.9 void avc9xstream::write (unsigned char num) 

This method writes a character to the serial port as a text string showing the 8-bit 

unsigned number in that character. 

Parameters: 

num The 8-bit number to be sent out
 

Reimplemented from Dart (p.92).
 

B.9.3.1O void avc9xstream::write (charnum) 

This method writes a character to the serial port as a text string showing the 8-bit signed 

number in that character. 

Parameters: 

num The 8-bit number to be sent out 

Reimplemented from Dart (p.92). 
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B.9.3.11 void avc9xstream::write_bin (unsigned int num) 

This method writes an integer to the serial port as a text string showing the 16-bit 

unsigned number in that character in binary form. 

Parameters: 

num The 16-bit number to be sent out 

Reimplemented from uart (p.92). 

B.9.3.12 void avc9xstream::write_hex (unsigned int num) 

This method writes an integer to the serial port as a text string showing the l6-bit 

unsigned number in that integer in hexadecimal notation. 

Parameters: 

num The 16-bit number to be sent out 

Reimplemented from uart (p.92). 

B.9.3.13 void avc9xstream::write (unsigned intnum) 

This method writes an integer to the serial port as a text string showing the 16-bit 

unsigned number in that integer. 

Parameters: 

num The 16-bit number to be sent out 

Reimplemented from uart (p.93). 

B.9.3.14 void avc9xstream::write (intnum) 

This method writes an integer to the serial port as a text string showing the 16-bit signed 

number in that integer. 
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Parameters: 

num The 16-bit number to be sent out
 

Reimplemented from oart (p.93).
 

B.9.3.15 void avc9xstream::write_hex (unsigned long num) 

This method writes a long integer to the serial port as a text string showing the 32-bit
 

unsigned number in that long integer.
 

Parameters:
 

num The 32-bit number to be sent out
 

Reimplemented from oart (p.93).
 

B.9.3.16 void avc9xstream::write (unsigned long num) 

This method writes an unsigned long integer to the serial port as a text string showing
 

the 32-bit unsigned number in that long integer.
 

Parameters:
 

num The 32-bit number to be sent out 

B.9.3.17 void avc9xstream::write (long num) 

This method writes a long integer to the serial port as a text string showing the 32-bit
 

signed number in that long integer.
 

Parameters:
 

num The 32-bit number to be sent out
 

Reimplemented from oart (p.94).
 

The documentation for this class was generated from the following files:
 

•	 Desktop/ASV/Code/avc9xstream.h
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• DesktoplASVICode/avc9xstream.cpp 

81
 



RIO nb_uart Class Reference 

#include <avr_serialnb.h> 

Inheritance diagram for nb_uart:: 

Public Member Functions 

• nb_oart (unsigned char) 

• char run (void) 

B.lO.l Detailed Description 

File avcseriaLnb.h Inherited from avcserial driver by JRR Expands functionality of 

class avcserial to make the puts function non_blocking By Samuel Hoffman 6-3-07 

B.1O.2 Constructor & Destructor Documentation 

B.1O.2.1 nb_uart::nb_uart (unsigned cbardivisor) 

Constructor no setup except starting the serial port using original avcserial class object 

"uart" 

B.1O.3 Member Function Documentation 

R 10.3. 1 cbar nb_uart::run (void) 

run service function, must be called with no particular time constraints until string has 

heen sent returns 0 when still string to he sent, function requires the null (OxOO) at the 
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end of string 

B.1O.3.2 void nb_uart::puts_nb (char * strin~data2) 

function call to send string of data over the serial port in a non blocking way string 

must be followed by the null character (OxOO) 

The documentation for this class was generated from the following files: 

• Desktop/ASV/Code/avcserialnb.h 

• Desktop/ASV/Code/avr_serialnb.cpp 
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B.ll packiCuart Class Reference 

#include <packit.h> 

Public Member Functions 

• packiCuart (avr_9xstream *, unsigned char) 

• void packiCclear (void) 

B.11.1 Detailed Description 

Not tested or operational 

B.11.2 Constructor & Destructor Documentation 

B.11.2.1	 packiCuart::packiCuart (avr_9xstream * ser_ptr2, unsigned char 

dev_addr) 

Constructor for child class that uses the serial port -This class uses the usart to transmit 

data packets with its own checksum -Can't transmit at the same time as other micro

controllers, not tested 

B.11.3 Member Function Documentation 

B.11.3.1 void packicuart::packiCclear(void) 

This function clears the packit job list to stop it from sending data, use this function 

call, to clear all command and data jobs. 

The documentation for this class was generated from the following files: 

• DesktoplASVICode/packit.h 

• DesktoplASVICode/packit.cpp 
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B.12 spCbb_port Class Reference 

Define this to enable debugging features. 

#include <avr_spi_bb.h> 

Public Member Functions 

•	 spi_bb_port (volatile unsigned char *, volatile unsigned char *, volatile un

signed char *, char, char, char) 

•	 void add_slave (char, char) 

•	 char transfecbytes (char *, char, char) 

B.12.1 Detailed Description 

Define this to enable debugging features. 

This class holds the parameters and methods necessary to operate a bit-banged SPI 

port. The parameters include the addresses of the input, output, and data direction 

registers used as well as bitmasks that allow manipulation of the I/O pins which are 

used to communicate with the SPI chip(s) to which the bit-banged SPI port is attached. 

B.12.2 Constructor & Destructor Documentation 

B.12.2.1 spi_bb_port::spCbb_port (volatile unsigned char * inpt, volatile unsigned 

char * outpt, volatile unsigned char * ddrpt, char sck_msk, char mosi_msk, 

char rniso_msk) 

This constructor sets up a bit-banged SPI port. Such a port uses regular I/O pins, 

manipulated by software, to communicate with SPI peripherals. Each port needs the 

pins SCK, MOSI, and MISO (clock, master out, master in) as well as one or more slave 

select pins, which are configured in add_slaveO (p. 86). 
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Parameters: 

inpt The address of the input port, such as &PIND 

outpt Address of the output port, as &PORTD (must be same port as inpt) 

ddrpt The address of the data direction register, such as &DDRD 

sck_msk Bitmask for the SCK serial clock pin 

miso_msk Bitmask for the MISO data pin 

mosi_fisk Bitmask for the MOSI data pin 

B.12.3 Member Function Documentation 

B.12.3.1 void spi_bb_port::add_sJave (char ss_msk, char s_num) 

This method adds an SPI slave to a bit-banged SPI port. It does so by adding an entry 

into the array of slave masks. This entry should be one unique bitmask that identifies 

one pin connected to the 110 port which is used for the other SPI pins (SCK, MISO, 

and MOSI). That pin is connected to the CS' (or SS') pin of the slave chip. 

Parameters: 

aport The bit-banged port data structure 

ss_msk The mask for the Slave Select (aka Chip Select) pin on slave chip 

s_nUfi The number of the slave whose bitmask is to be set 

B.12.3.2 char spCbb_port::transfer_bytes (char * bytes, char size, char slave_num) 

This method transfers bytes to and from a chip which is attached to a bit-banged SPI 

port. The bytes in the given array are sent to the receiving chip, and at the same time 

bytes are received from the other chip. The received bytes are put into the array which 

held the bytes that were sent out. 
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Parameters: 

bytes A pointer to an array holding bytes sent to and received from the device 

size The number of bytes to be sent and received 

slave_num Which slave is to be selected and data exchanged with 

Returns: 

A result code - zero for success, nonzero for failure such as timeout 

The documentation for this class was generated from the following files: 

• Desktop/ASV/Code/avr_spi_bb.h 

• Desktop/ASV/Code/avr_spi_bb.cpp 
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B.13 uart Class Reference 

#include <avr_serial.h> 

Inheritance diagram for uart:: 

Public Member Functions 

• uart (unsigned char) 

• char putchar (char) 

• void puts (char *) 

• char check_focchar (void) 

• char getchar (void) 

• char transmitter_empty (void) 

• void write_bin (unsigned char) 

• void write_hex (unsigned char) 

• void write (unsigned char) 

• void write (char num) 

• void write_bin (unsigned int) 

• void write_hex (unsigned int) 

• void write (unsigned int) 

• void write (int) 

• void write_hex (unsigned long) 

• void write (long) 
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B.13.l Detailed Description 

This class controls a DART (Universal Asynchronous Receiver Transmitter), a com

mon serial interface. It talks to old-style RS232 serial ports (through a voltage con

verter chip such as a MAX232) or through a DSB to serial converter such as a Ff232RL 

chip. The DART is also sometimes used to communicate directly with other microcon

trollers, sensors, or wireless modems. 

This class has originally been written for AVR processors which have only one 

DART, but it should be extendable for use with processors which have dual DARTs. 

B.13.2 Constructor & Destructor Documentation 

B.13.2.1 uart::uart (unsigned cbar divisor) 

This method sets up the AVR DART for communications. It enables the appropriate
 

inputs and outputs and sets the baud rate divisor.
 

Parameters:
 

divisor The baud rate divisor to be used for controlling the rate of communication. 

See the *.h file in which various values of the divisor are defined as macros. 

B.13.3 Member Function Documentation 

B.13.3.l char uart::putchar (char chout) 

This method sends one character to the serial port. It waits until the port is ready, 

so it can hold up the system for a while. It times out if it waits too long to send the 

character; you can check the return value to see if the character was successfully sent, 

or just cross your fingers and ignore the return value. Note: It's possible that at slower 

baud rates and/or higher processor speeds, this routine might time out even when the 

port is working fine. A solution would be to change the count variable to an integer and 

use a larger starting number. Note 2: Fixed! The count is now an integer and it works 
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at lower baud rates. 

Parameters: 

chout The character to be sent out 

Returns: 

oif everything was OK and (char)(-l) if there was a timeout 

Reimplemented in avr_9xstream (p.77). 

B.13.3.2 void uart::puts (char * str) 

This is the usual.. .it just writes all the characters in a string until it gets to the' \0' at 

the end. Warning: By repeatedly calling putcharO (p. 89), this method can hold up the 

program while it's running, and so it shouldn't be used when the program has to meet 

timing constraints. 

Parameters: 

str The string to be written 

Reimplemented in avr_9xstream (p.77). 

B.13.3.3 char uart::checkJocchar (void) 

This function checks if there is a character in the serial port's receiver buffer. It returns
 

1 if there's a character available, and 0 if not.
 

Returns:
 

1 for character available, 0 for no character available 

B.13.3.4 char uart::getcbar (void) 

This method gets one character from the serial port, if one is there. If not, it waits 

until there is a character available. This can sometimes take a long time (even forever), 
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so use this function carefully. It's generally safer to use check_for3harO (p.90) to
 

ensure that there's data available first.
 

Returns:
 

The character which was found in the serial port receive buffer 

B.13.3.5 char uart::transmitter3mpty (void) 

This function checks if the serial port transmitter is ready to send data. It simply tests 

the bit in the serial port status register which indicates that the transmitter buffer is 

empty. 

Returns: 

oif the transmitter is empty and ready to send, and 1 if not 

B.13.3.6 void uart::write_bin (unsigned charnum) 

This method writes a character to the serial port as a text string showing tbe 8-bit
 

unsigned number in that character in binary form.
 

Parameters:
 

num The 8-bit number to be sent out 

Reimplemented in avr_9xstream (p.77). 

B.13.3.7 void uart::write_hex (unsigned char num) 

This method writes a character to the serial port as a text string showing the 8-bit
 

unsigned number in that character in hexadecimal form.
 

Parameters:
 

nUID The 8-bit number to be sent out 

Reimplemented in avr_9xstrearn (p. 78). 
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B.13.3.8 void uart::write (unsigned char num) 

This method writes a character to the serial port as a text string showing the 8-bit 

unsigned number in that character. 

Parameters: 

num The 8-bit number to be sent out
 

Reimplemented in avr_9xstream (p.78).
 

B.13.3.9 void uart::write (char num) 

This method writes a character to the serial port as a text string showing the 8-bit signed 

number in that character. 

Parameters: 

num The 8-bit number to be sent out
 

Reimplemented in avr_9xstream (p.78).
 

B.13.3.1O void uart::write_bin (unsigned rot num) 

This method writes an integer to the serial port as a text string showing the 16-bit 

unsigned number in that character in binary form. 

Parameters: 

num The 16-bit number to be sent out 

Reimplemented in avr_9xstream (p.79). 

B.13.3.11 void uart::write_hex (unsigned int num) 

This method writes an integer to the serial port as a text string showing the 16-bit 

unsigned number in that integer in hexadecimal notation. 
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Parameters: 

num The 16-bit number to be sent out 

Reimplemented in avr_9xstream (p. 79). 

B.13.3.12 void uart::write (unsigned intnum) 

This method writes an integer to the serial port as a text string showing the 16-bit 

unsigned number in that integer. 

Parameters: 

num The 16-bit number to be sent out
 

Reimplemented in avr_9xstream (p.79).
 

B.13.3.13 void uart::write (intnum) 

This method writes an integer to the serial port as a text string showing the l6-bit signed 

number in that integer. 

Parameters: 

num The 16-bit number to be sent out
 

Reimplemented in avr_9xstream (p.79).
 

B.13.3.14 void uart::write_hex (unsigned long num) 

This method writes a long integer to the serial port as a text string showing the 32-bit 

unsigned number in that long integer. 

Parameters: 

num The 32-bit number to be sent out
 

Reimplemented in avr_9xstream (p.80).
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B.13.3.15 void uart::write (longnum) 

This method writes a long integer to the serial port as a text string showing the 32-bit 

signed number in that long integer. 

Parameters: 

num The 32-bit number to be sent out 

Reimplemented in avr_9xstream (p. 80). 

The documentation for this class was generated from the following files: 

• Desktop/ASV/Code/avr_serial.h 

• Desktop/ASV/Code/avr_serial.cpp 
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B.14 ASV File Documentation 

B.l5 Desktop/ASV/Code/ASV.cppFile Reference 

Main run file for all MCU devices. 

#include <stdlib.h> 

#include <avr/io.h> 

#include <stdint .h> 

#include <avr/interrupt.h> 

#include "avr- serial.h" 

#include "avr- serialnb.h" 

#include "avr- 9xstream.h" 

#include "avr_spi_bb.h" 

#include "nRF24LOl.h" 

#include "packit.h" 

#include "avr- a2d.h" 

#include "packed_arrays.h" 

#include "interval.h" 

#include "synch_data.h" 

Defines 

• #define MY_DIVISOR 26 

• #define _SLAVE_l 

• #define SLAVE_DATA_FREQ-4 

Functions 

• inl main (void) 

• ISR (TIMl_COMP_VECT) 
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Variables 

• unsigned int data30unter 

• synch * syncb-ptr 

• char check_saturation 

B.IS.I Detailed Description 

Main run file for all MCU devices. 

Revisions: 

• 10-13-07 SCH Orginal file 

• 02-15-08 SCH Revised for System 2 

This File using defines can be compiled to give three different program codes for the 

different MCUs 

License: This file is released under the Lesser GNU Public License. 

B.15.2 Define Documentation 

Device Selection Pick Slave 1, Slave 2, or Master to program each device 

Master is not used in System 2 wbile both slaves are 

B.15.2.2 Hdefine MY_DIVISOR 26 

This is the baud rate divisor for the UART. Values wbich have worked: 26: 9600 baud, 

4 MHz crystal osc., works with FT232RL RS232-USB cbip 

For packit class data label 

96 



B.15.3 Function Documentation 

B. 15.3.1 ISR (TlMCCOMP_VECT) 

The interrup routine for taking data Frequency of interval is controled by interval class 

B.15.3.2 int main (void) 

Main Run Function for Slave 1 

This is where the preset frequencys need to be set 

Where saturation is checked for in the data, if found will terminate data taking 

B.15.4 Variable Documentation 

B.15.4.1 char check_saturation 

Variable to allow ISRO (p.97) to tell mainO (p. 97) to check for saturation on the 

readings that were just taken 

B.15.4.2 unsigned int data30unter 

Variable to hold how many data points have been taken 

B.15.4.] synch* synch_ptr 

Code needed for synch class to work 
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B.16 Desktop/ASV/Code/avc9xstream.h File Reference
 

Classes
 

B.16.1 Detailed Description 

TIlis file contains a cla<;s which extends the AVR serial port object to operate a 

MaxStrearn 9XStream(tro) radio modem connected to the serial port. 

Revised: 

• 07-19-07 JRR Created this file 
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B.17 Desktop/ASV/Code/avca2d.h File Reference 

This file is the header for using the NO converters on an AVR processor. It is designed 

to contain code which can be used on several processor versions:. 

Functions 

•	 void A2D_iniCdefault (void) 

•	 short int A2DJead_once (unsigned char channel) 

•	 short int A2DJcad_oversampled (unsigned char channel, unsigned char sam

ples) 

•	 void A2D_off (void) 

B.17.l Detailed Description 

This file is the header for using the NO converters on an AVR processor. It is designed 

to contain code which can be used on several processor versions:. 

•	 ATmega8535 (not supported yet) 

•	 ATmega8 (tested and works) 

•	 ATmega32 (tested and works) 

•	 ATmega644 (working on it - using 645 for compatibility) 

Not all versions are supported yet. 

Revisions: 

•	 06-18-06 JRR Original program 

• 03-02-07 JRR Compatibility code for mega644/645 

This file released under the Lesser GNU Public License. The program is for educational 

use only. 
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B.17.2 Function Documentation 

B. 17.2. 1 void A2D_iniLdefault (void) 

This function initializes the NO converter for single readings. 

Power on off pin for turning on resistive load for measureing 

B.17.2.2 void A2D_off(void) 

This function turns off the A2D to conserve power It will have to turned on again to 

get conversions 

B.17.2.3 short int A2DJead_once (unsigned char channel) 

This function takes one AID reading from the given channel. It sets the NO multi

plexer, then reads that channel once and returns the result in an integer. The function 

waits for the NO conversion to be complete before returning. 

Parameters: 

channel The NO channel which is being read must be from 0 to 7 

Returns: 

The result of the NO conversion, or -1 if there was a timeout 

B.17.2.4	 short int A2DJead_oversampled (unsigned char channel, unsigned char 

samples) 

This function sets the NO multiplexer to read from the given channel, then reads that 

channel the given number of times (up to a maximum of 32) and computes the average 

of the readings. This can help reduce noise. Note that there are many ways to digitally 

filter a signal; this is just one very crude, simple way. 

Parameters: 

channel The NO channel which is being read must be from 0 to 7 
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samples The number of samples to be taken and averaged 

Returns: 

The averaged result of the NO conversions, or -1 jf a timeout occurred 
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B.18 Desktop/ASV/Code/avcserial.h File Reference 

Classes 

•	 class uart 

B.18.1 Detailed Description 

This file contains functions which allow the use of a serial port on an AVR microcon

troller. Compatibility macros are provided to isolate the names of various registers 

from the many specific AVR device types. 

This code is designed to work for low-performance applications without requiring 

the use of interrupts. Interrupt based receiving code has not been completed or tested. 

Revised: 

•	 04-03-06 JRR For updated version of compiler 

•	 06-10-06 JRR Ported from C++ to C for use with some C-only projects; also the 

serial_avr.h header has been stuffed with defines for compatibility among lots of 

AVR variants 

•	 08-11-06 JRR Some bug fixes 

•	 03-02-07 JRR Ported back to C++. I've had it with the liIllitations of C. 
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B.19 Desktop/ASV/Code/avcspi_bb.h File Reference 

Classes 

• class spCbb_port 

Define Ihis 10 enable debugging fealures. 

B.19.1 Detailed Description 

This file contains a class which allows the use of a bit-banged SPI port on an AVR 

microcontroller. This allows several SPI ports on one chip, none of which has to be 

shared with the SPI port which is used for in-ssytem program downloading. Compati

bility macros are provided to isolate the names of the various registers from the many 

specific AVR device types. 

This code is designed to work for low-performance applications without requiring 

the use of interrupts. Interrupt based SPI port code has not been completed or tested. 

Revisions: 

• 03-23-07 JRR Original file 

• 04-23-07 MNL Added functions to get I/O ports from the SPCBB]ORT object 
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B.20 Desktop/ASV/Code/interval.cpp File Reference 

#include <stdlib.h> 

#include <avr/io.h> 

#include <avr/interrupt.h> 

#include "avr_serial.h" 

#include "avr_serialnb.h" 

#include "avr_9xstream.h" 

#include "interval.h" 

Functions 

• void interval_setup (int freq) 

• unsigned int interval_timer_cycles (void) 

• unsigned int interval_timer_prescale (void) 

• void interval_interrupCon (void) 

• void interval_interrupCoff (void) 

• void print_freq (int freq, avr_9xstream *secptr) 

• bool interval_interrupt_status (void) 

B.20.1 Detailed Description 

This file sets up the timer compare routine to take A2D data at certain intevals and 

packs it into an array external array 

Revisions: 

• 7-13-07 SCH initial file 

License This file released under the Lesser GNU Public License. Use it as you like; the 

author(s) cannot be responsible for any use to which this file is put by others. 
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B.20.2 Function Documentation 

B.20.2.1 void in tervaUn terrupLof[ (void) 

This function disable the interupt on the output compare 

B.20.2.2 void interval_interrupcon (void) 

This function enables the interupt on the output compare 

B.20.2.3 bool interval_interrupcstatus (void) 

This function checks to see if the interval interrupt is on returns false if it is on; and 

true if it is off 

B.20.2.4 void interval_setup (int freq) 

This function setups up the interval frequency and time on timer 0 It doesn't enable the 

interupt 

B.20.2.5 unsigned int intervaLtimeccycles (void) 

This function returns the ouput compare value in which the frequency can be used to 

calculate the actual freq It would be nice to actually print floats out on the serial port 

B.20.2.6 unsigned int inrerval_timecprescale (void) 

This function returns prescale value of timer I 

B.20.2.7 void printJreq (int freq, avr_9xstream * ser_ptr) 

This function prints the freq to the serial port 
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B.21 Desktop/ASV/Code/interva1.h File Reference 

Functions 

• void interval_setup (int freq) 

• unsigned int interval_timer_cycles (void) 

• unsigned int interval_timer_prescale (void) 

• void intervaCinterrupCon (void) 

• void interval_interrupCotT (void) 

• void print_freq (int freq, avr_9xstream *) 

• bool interval_interrupCstatus (void) 

B.2l.l Detailed Description 

This file contains classes which set allow data to be taken at certain intervals using an 

intenupt service routine. These set of functions merely set up TimerO for taking data. 

Revisions: 

• 07-13-07 SCH initital file 

• 10-30-07 SCH made to run on 16 bit timer 

License This file released under the Lesser GNU Public License. This program is for 

educational use only. 

B.21.2 Function Documentation 

B.2l.2.1 void intervaUnterrupLoff (void) 

This function disable the interupt on the output compare 

B.2l.2.2 void interval_interrupLon (void) 

This function enables the interupt on the output compare 
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B.2I.2.3 baoI intervaUnterrupCstatus (void) 

This function checks to see if the interval interrupt is on returns false if it is on; and 

true if it is off 

B.21.2.4 void interval_setup (int freq) 

This function setups up the interval frequency and time on timer 0 It doesn't enable the 

interupt 

B.2I.2.5 unsigned int intervaCtimeccycles (void) 

This function returns the ouput compare value in which the frequency can be used to 

calculate the actual freq It would be nice to actually print floats out on the serial port 

B.2I.2.6 unsigned int intervaCtimecprescale (void) 

This function returns prescale value of timer 1 

B.2I.2.7 void printJreq (int freq, avr_9xstream * ser_ptr) 

This function prints the freq to the serial port 
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B.22 Desktop/ASV/Code/nRF24LOl.h File Reference 

Defines 

B.22.1 Detailed Description 

This file contains a class that interfaces to the nRF24LOI radio module. It uses the 

bit banged SPI class to simplify communications and to encapsulate the objects. It 

also uses a serial port for debugging information. This will likely to stay in future 

revisions unless there is an absolute need to remove it from memory for some reason. 

The definitions for the MeU's pins and ports connected to the radio are mostly through 

the SPI port with a few others set through here. See the constructor for more details. 

Revisions: 

•	 04-22-07 MNL Original file 

•	 04-26-07 MNL Added a bunch of functions. Transfer verified working 

•	 05-09-07 MNL Added virtual interrupt handler 

•	 05-14-07 MNL Removed virtual interrupt handler and implemented setup re

transmit function 

B.22.2 Define Documenrarion 

B.22.2.1 #define MAJCPACKET_SIZE 32 

These defines are macros for the various settings and such relevant to the radio unit. 

This allows a transparency for the user so they don't have to enter binary numbers 

all the time, and the code doesn't have to waste precious processing power trying to 

decipher what the heck it is the user wants. 
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B.23 Desktop/ASV/Code/packed_arrays.cpp File Reference 

#include <stdlib.h> 

#include "packed_arrays.h" 

B.23.1 Detailed Description 

This file contains classes which efficiently maintain arrays of data which aren't of the 

standard sizes (8, 16, or 32 bits). 

Supported fonnats: 

• lO-bit unsigned integers stored in arrays of bytes 

Revisions: 

• 07-08-07 JRR Original file stores IO-bit AID conversion results 

License This file released under the Lesser GNU Public License. Use it as you like; the 

author(s) cannot be responsible for any use to which this file is put by others. 
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B.24 Desktop/ASV/Code/packed_arrays.h File Reference
 

Classes
 

• class arraylObits 

B.24.1 Detailed Description 

This tile contains classes which efficiently maintain arrays of data which aren't of the 

standard sizes (8, 16, or 32 bits). 

Revisions: 

• 07-08-07 JRR Original of this file 

• 10-15-07 SCH Modified to add function to return a pointer to the data 

License This file released under the Lesser GNU Public License. This program is for 

educational use only. 
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B.25 Desktop/ASV/Code/packit.h File Reference 

Classes 

• class packiCuart 

B.25.1 Detailed Description 

TIlis file contains functions which allow the user to tranfer large amounts of data over 

a serial port or radio link. 

This code is designed to work for low-perfonnance applications without requiring 

the use of interrupts. Interrupt based receiving code has not been completed or tested. 
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B.25.2 Desktop/ASVlCode/syncb_data.b File Reference 

Files used to synchronize one micorcontrollers data taking with another. 

Defines 

• #define SY_PUTS(y) 

B.25.2.1 Detailed Description 

Files used to synchronize one micorcontrollers data taking with another. 

This Method Relies on the Input Capture Pin of the Microcontroller for timing It 

uses 1 wire connected between microcontrollers to pulse the input capture pin 

Revisions: 

• 10-21-07 SCH Initial file created 

License: This file is released under the Lesser GNU Publie License. 

B.25.2.2 Define Documentation 

#define SY_PUTS(y) Used to turn on or off debugging mode define to turn on and 

undef to tum off 
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C. MATLAB CODE 

This section displays Matlab code written for this project that can be found on the 

supplemental compact-disc (CD) under "Matlab". 

List of files included on CD: 

• Matlab 

- FFT_Approach 

* FFT2DOF.m 

* ridepitch .mdl 

* ModeFinder_Lagrange.m 

* car2dof.m 

* integrate_data.mdl 

* state_space.m 

* ridepitch_ss3.mdl 

113 



C.l FFT approach 

The fft approach was investigated using Matlab and Simulink. The FFT was perfonned 

on data created in Matlab. The first file is FFT2DOF which perfonns the FFT on data 

created with a Simulink simulation "ridepitch.mdl" shown in figure C.l. The second 

file' 'ModeFinder_Lagrange" solves the eigenvalue problem for the 2 degree 

of freedom model from chapter 3. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%FFT2DOF.m 
%Matlab file 
%This code performs and FFT on the data created from the ridepitch 
%simulink model 
%The ride pitch uses simulates a two degree of freedom car and is where all 
%car parameters are inputted 
%The fft is then plotted 

clear %Clears the workspace
 
sim('ridepitch') %Runs the simulation
 

timestep~tout(2)-tout(I); %finds the time step of the data 
timedivider~20; %decreases the number of points sent to the FFT 
FFT_Freq~l/(timestep*timedivider); %Finds new freq of data 
Data_Freq~l/timestep; %Finds original freq of data 
Graph_Start~l; %Hz start value 
Graph_Range~2; %Hz high value 
Range_Value~Graph_Range/FFT_Freq;%Ratio to know how many terms of FFT to look at 
Range_Start=Graph_Start/FFT_Freq; %Ratio to know how many terms of 

%The FFT ranges from 0 to .5*FFT Frequency, 
%only half the terms are needed since 
%they are repeated 

t_i~.l; %Start Time 
t_f~20; %End time 

front~Car(Data_Freq*t_i:Data_Freq*t_f,I);%grab data from the simulation 
s~size(front)/timedivider; 

%Loop to build the data at the FFT_freq rather then the Data_Freq 
for n~l:s 

front2(n)~front(n*timedivider); 

end 

k=100000; %number of FFT p01nts 
F fft(front2,k); %Fast fourier transform with k terms 

%Finds the power by squareing the absolute value 
magF = abs(F(k*Range_Start+l:k*Range_Value+I)) ./f. A 2; 
phF ~ unwrap(angle(F(k*Range_Start+l:k*Range_Value+I))); 
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for n=l:s %Loop to build the data at the FFT_freq rather then the Data_Freq 
rear2(n)~rear(n*timedivider); 

end 

R = fft (rear2, k); ,ftt for rear 
magR = abs(R(k*Range_Start+1:k*Range_Value+1» .If. A 2;% R.* conj(R) 1 k; %power for rear 
pnR = unwrap(angle(R(k*Range_Start+1:k*Range_Value+1»); 

phase_diff~(phF-phR)./3.14159; 
figure(l);
 
%subplot(2,1,1);
 
plot (f,magF, '-',f,magR, 'linewidth',3); %plots power and freq in the range wanted
 
title ('Frequency content of Car', 'font size', 14)
 
xlabe1 (' frequency (Hz)',' fontsize', 14)
 
ylabel('magnitude of freq', 'fontsize',14)
 
legend('?ront', 'Rear', 'fontsize ' ,14) 

subplot (2, 1, 2) ;
 
plot (f,phase_diff) ;%plots power ana freq in tne range wanted
 
title( 'Frequency content of 'ar')
 
xlabel (' frequency (Hz)')
 
ylabel('phase difference (front-rear (rads» ')
 

%End Matlab File
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Fig. C.l: 2 Degree of freedom simulink model: "ridepitch.mdl" used with FFT2DOEm It simu
lates the 2 degree of freedom car from 3 with a band limited white noise input. This is 
random noise that should contain all frequencies equally up to the user specified band 
limited frequency. 
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%File: ModeFinder_Lagrange.m
 
%Solves the eigenvalue problem for a 2 degree of freedom halfcar
 
%Finds natural frequencies, damped natural frequencies and the damping
 
%ratio for both vehicle modes
 
%Equations of motion are derived using a Lagrange enery method
 

format short
 

m=2;~ mass of car (snails)
 
k_g=20; radius of gyration (in)
 
wdf=.4;% weight distribution front
 
1=60;% wheel base (in)
 
k_f=60;% effective spring rate front (both sides combined) (lb/in)
 
k_r~60;% effective spring rate rear (both sides combines) (lb/in)
 
cz_f=.l;% damping percentage front (zeta) (%)
 
cz_r=.l;% dampning percentage rear (zeat) (%)
 
x_f~O;% displacement front car (in)
 
x_fdot=O;% displacement velocity front car (in/s)
 
x_r~O;% displacement rear carlin)
 
x_rdot=O;% displacement velocity rear car (in/s)
 
z_f=O;% displacement front wheel (in)
 
z_fdot=O;% displacement velocity front wheel (in/s)
 
z_r=O;% displacement rear wheel(in)
 
z_rdot~O;% displacement velocity rear wheel (in/s)
 

l_r~l*wdf; .length from cG to rear
 
l_f=l-l_r; %length from CG to front
 
m_f=wdf*m; %mass on front of the car
 
m_r=m-m_f; %mass on rear of the car
 

c_f=2*cz_f*sqrt(k_f*m_f); $Oamplng on the front
 
c_r=2*cz_r*sqrt(k_r*m_r); %damping on the rear
 

%kk=[ (k_r+k_f)/4+(1_f*k_f+l_r*k_r)/1'2, (k_r+k_f)/4-(1_f*k_f+l_r*k_r)/1'2;
 
% (K_r+k_f)/4-(1_f*k_f+l_r*k_r)/1'2, (k_r+k_f)/4+(1_f*k_f+l_r*k_r)/1'2];
 
kk=[k_f,O;O,k_r];
 

[v,d]=eig(kk,mm);
 

%Normaillzing
 
v(1:2,1)=v(1:2,1)/sqrt(v(1,1)A2+v(2,1)A2);
 
v(1:2,2)=v(1:2,2)/sqrt(v(1,2)A2+v(2,2)A2);
 
v=-l*Vi 
M=v'*mm*vi 
K=v'*kk*Vi 
C=v 1 *CC*Vi 

%Normailizing 
K(2,2)=K(2,2)/M(2,2); 
C(2,2)=C(2,2)/M(2,2); 
M(2,2)~1; 
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--------------------

zl=C(l,l)/(2*sqrt(K(l,l»); 
z2=C (2, 2) / (2*sqrt (K (2, 2)); 

%New seperate EON 
disp('~epelate OaF EOM') 
M~M 

C=C 
K~K 

%Frequencies 
wl=sqrt(K(l,l»; 
w2=sqrt(K(2,2»; 
wdl=sqrt(l-zlA2)*wl; 
wd2~sqrt(l-z2A2)*w2; 

fl=wl/ (2*pi () ); 
fdl=wdl/(2*pi(»; 
f2=w21 (2*pi () ) ; 
fd2=wd2/(2*pi(); 
~-----------------------------------------------------

%Complex modes 

%Sets up state space eigenvalue problem 
A=[cc,mm;mm,zeros(2,2l); 
B=[kk,zeros(2,2l;zeros(2,2),-mm); 
F=[zeros(4,ll); 
[w,e]=eig(B,-Al; 

%Using code from example problem in Fundamentals of Structural Dynam1cs 
alp~real(diag(el); 

bet~imag(diag(el); 

omega=sqrt (alp.*alp+bet. *bet) ; %Finds magnitude of natural freq 
zeta=-alp./omega; 

disp( 'Angle ditference of tir~t moae (real and angle) ') 
natural_freq~omega(3)/2/pi 

damping_zeta~zeta(3l
 

damped_freq=omega(3l/2/pi*sqrt(l-zeta(3))'2
 
dofl=w(1,3)/w(1,3)
 
dof2=w(2,3)/w(l,3)
 
andlediff=angle(dofl)-angle(dof2)
 

disp(',\ngle ditference of 2na mode (real and angle) ')
 
natural_freq=omega(1)f2/pi
 
damping_zeta~zeta(l)
 

damped_freq=omega(l)/2fpi*sqrt(l-zeta(l»'2
 
dofl=w(l,l)/w(l,l)
 
dof2=w(2,l)/w(l,l)
 
andlediff~angle(dofl)-angle(dof2) 

%End ModeFinder_Lagrange.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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C.2 Grey Box Theory Matlab Code 

To use the following code requires Matlab System Identification Tool Box. All files 

found on CD under' Grey_Box_Approach' are required to run this code. Data 

needs to be imported into Matlab using a text file of the following form arranged in 

columns. The columns contained data point number, front suspension accelerometer 

reading, front Chassis accelerometer reading, rear suspension accelerometer reading, 

and rear chassis accelerometer reading from left to right. 

~By Samuel Hoffman
 
%Takes data from workspace and prepares it for grey box identification
 
%Uses integrate_data.rndl to inegrate the data
 
%Uses car2dof.m for grey box 'idgrey' function
 
%Uses state_space.rn in conjunction with ridepitch_ss3.mdl to compare to
 
%actual data
 

%Puts results of grey box estimation in stuctures: 'actual' and 'model' on
 
%the workspace
 

%Converts the data to in/s~2 ana subtracts statlc value
 
actual.real_data=CS; % The Data
 
actual.sarnple_frequency=800; % Data Property
 
actual.sarnple-period=l/actual.sample_frequency;
 

simul_time=800/actual.sarnple_frequency;
 

actual.time=(actual.real_data(:,l)-l)/actual.sample_frequency;
 

%Constant, includes accel due to gravity in incnes
 
actual.scaling=32.2*2*12/l023;
 

%Front Suspension (FS)
 
actual.real_data(:,2) = (actual.real_data(:,2)-S69.S)*7.87*actual.scaling;
 

%Front Chassis (FC)
 
actual.real_data(:,3) = (actual.real_data(:,3)-641)*3.27*actual.scaling;
 

%Rear Suspension (RS)
 
actual.real_data(:,4) = (actual.real_data(:,4)-S8l.S)*7.93*actual.scaling;
 

%Rear Cnassis (RC)
 
actual.real_data(:,S) = (actual.real_data(:,S)-636)*3.2S*actual.scaling;
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% Following Code Subtracts the linear trend from the data
 
%actual.real_data(:,21 detrend(actual.real_data(:,2»; %Front Suspension (FS)
 
%actual.real_data(:,3) detrend(actua1.real_data(:,3»; %Front Chassis
 
(FC)
 
%actual.real_data(:,4) detrend(actual.real_data(:,4»; %Rear
 
Suspension (RS)
 
%actual.real_data(:,5) detrend(actual.real_data(:,5»; %Rear
 
Chassis (RC)
 

%=======================================================================~== 

%=~=~~===~==== =====~==~=~====~=~=~~~~=~========================~=~==~~~~~~ 

%Adds time difference in measurlng the points 
front_car=[actual.time+.000675 actual.real_data(:,3)]; 
rear_car~[actual.time+.000675actual.real_data(:,S)]; 
:ront_susp~[actual.timeactual.real_data(:,2)]; 
rear_susp~[actual.timeactual.rea1_data(:,4)]; 

% front_car(:,2)=detrend(front_car(:,2»; 
% rear_car(:,2)=detrend(rear_car(:,2»; 
% front_susp(:,2)=detrend(front_susp(:,2»; 
% rear_susp(:,2)=detrend(rear_susp(:,2»; 

%=========, = ======= == ==========~===========- =========="================= 
%~========================~==~~===~==~===================================== 

%Runs Simulations
 
state_space;
 
clear y_m u_m y u;
 
sim( integrate_oata');
 
sim( 'ridepitcn_ss3');
 

!=========== ==- = 
%========== ======-================ =======================================
 
%Plots t~e input output variables for the State Space Model
 
figure (l)
 

subplot(4,2,2);
 
plot (y ( : , 1) , Y ( : , 2) , 't.' , y_m ( : , 1) , Y_m ( : , 2) , ' ) ;
 
ylabel('PitCh Angle(rao) ');
 
xlabel ( 'Time (s) ') ;
 
legend (' Actual', 'Model');
 
title ('Output (Y)');
 

subplot(4,2,4);
 
plot(y(:,1),y(:,3), 'b',y_m(:,l),y_m(:,3), <");
 

ylabel('Pitch Angle Velocity (rad/s) ');
 
xlabel ('Time (s) ');
 

subp1ot(4,2,6);
 
plot (y (:,1), y (:,4) , ',y_m (:,1) ,y_m (:,4) , ' _ ') ;
 
ylabel('CG P ::sition(in) ');
 
xlabel('Time(sl ');
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subplot (4, 2, 8);
 
plot(y(:,I),y(:,5), 'b',y_m(:,I),y_m(:,5), '_');
 
ylabel (' ~J Velocity (i,., <)');
 

xlabel('Timels) ');
 

subplot(4,2,1)
 
plot(y_m(:,l),u_m(:,l»;
 
ylabel (' ront Wheel Displacement \ In) ') ;
 
xlabel('Time (s)');
 
title('Input (u) ');
 

subplot(4,2,3)
 
plot(y_m(:,1),u_m(:,2»;
 
ylabel('::-ront Wheel Velocity lin/s) ');
 
xlabel('Time (s)');
 

subplot(4,2,5)
 
plot (y_m(:, 1) ,u_m(:, 3»;
 
ylabel ( 'Read Wheel Posi ton (in)');
 
xlabel (' Time Is)');
 

subplot(4,2,7)
 
plot (y_m (:,1) ,u_m (:,4) ) ;
 
ylabel('Kear Wheel Velor-ity lin/s) ');
 
xlabel('Time (s)');
 
%==============================================~======================== 

model.timestep=y_m(2,1) - y_m(l,l); ~finas the tlme step of the aata
 
model.timedivider=20; %decreases the number of points sent to the FFT
 

model.s=size(y_m)/model.timedivider;
 

hf(mdlp.s(l) > 800)
 
% mdlp.s(1)=800;
 
tend;
 
clear yy uu;
 
~Loop to build the data at the FFT_freq rather then the Data_Freq
 
for n=l:model.s(l)
 

for c=1:4
 
yy(n,c)=y_m(n*model.timedivider,c+1);
 
uu(n,c)=u_m(n*model.timedivider,c);
 
end
 

end 

model.Ts=model.timestep*model.timedivider; 
data = iddata(yy,uu,model.Ts); %model input data 
%data.int= {'foh'; Itoh' i Ifah'; 'foh'}; 

data2=iddata (y(: ,2:5) ,u, (y(lO, l)-y(l, 1» /9); tmeasured data lnput 
I%data2. int= {' foh I; I foh I ; foh I; I foh'} i 

• % The idgrey object definition, used for estimation mocel and actual 
% parameters 
%Has the initial estimated parameters as second option in [] 's, three parameters 
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%correspond to par(l), par(2), and par(3) respectlvely 
mm = idgrey(' ar~dof',[lO 14 800],' ',[J);
 

% %
 
%Estimatlng Parameters from state space, note state_space.m parameters have
 
%to agree with car2dof.m for correct estimation
 
mdl=pem(data,mm); 

%Iterative function for Estimating parameters for actual data 
act~pem(data2,mm); 

%Outputs selected parameters on Matlab 
model.k_f=rndl.b(4,1)*ss.m; 
model.k_r=rndl.b(4,3)*ss.m; 
model.c_f=mdl.b(4,2)*ss.m; 
model.c_r=rndl.b(4,4)*ss.rn; 
model.cz_f~rnodel.c_f/2/sqrt(rnodel.k_f*ss.rn_f); 

rnodel.cz_r~rnodel.c_r/2/sqrt(rnodel.k_r*ss.rn_r); 

model.I=model.k_f*ss.1_f/mdl.b(2,1); 
rnodel.k_g=sqrt(model.I/ss.m) 

actual.k_f=act.b(4,1)*ss.m;
 
actual.k_r=act.b(4,3)*ss.m;
 
actual.c_f=act.b(4,2)*ss.m;
 
actual.c_r~act.b(4,4)*ss.m; 

actual.cz_f=actual.c_f/2/sqrt(actual.k_f*ss.m_f);
 
actual.cz_r=actual.c_r/2/sqrt(actual.k_r*ss.rn_r);
 
actual.I=actual.k_f*ss.1_f/act.b(2,1);
 
actual.k_g=sqrt(actual.I/ss.m)
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% state_space.m 
% By Samuel Hoffman 
% Automotive Suspension Vibration Thesis Project 
% Description: State space form of car parameters used in ridepitch_ss3 
% state space block 

ss.m=500/32.2/l2;% mass of car (snails) 
ss.k_g=22;% radius of gyration (in) 
ss.wdf=.47;% weight distribution front 
ss.1~68;% wheel base (in) 
ss.k_f~ 100;% effective spring rate front (both sides combined) (lb/in) 
ss.k_r= 100;% effective spring rate rear (both sides combines) (lb/in)
 
ss. cz_f=. 7182; % damping percentage front (zeta) (%)
 
ss. cz_r=. 4 919; % damping percentage rear (zeat) (%)
 
ss.x_f=O;% displacement front car (in)
 
ss.x_fdot=O;% displacement velocity front car (in/s)
 
ss.x_r=O;% displacement rear carlin)
 
ss.x_rdot=O;% displacement velocity rear car (in/s)
 
ss.z_f~O;% displacement front wheel (in)
 
ss.z_fdot=O;% displacement velocity front wheel (in/s)
 
ss.z_r=O;% displacement rear wheel(in)
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ss.z_rdot~O;% displacement velocity rear wheel (in/s) 

ss.l_r=ss.l*ss.wdf; ~lengrh from CG rO rear 
ss.l_f~ss.l-ss.l_r; %length from CG to front 
ss.m_f~ss.wdf*ss.m; %mass on front of the car 
ss.m_r=ss.m-ss.m_f; %mass on rear of the car 

ss.c_f=7.2;·,2*ss.cz_f*sqrt(ss.K_f*ss.m_f); %damping on the fronr 
ss.c_r=10;%2*ss.cz_r*sqrt(ss.k_r*ss.m_r); %damping on the rear 

ss.i=ss.m*ss.k_g A 2; 
ss.A ~ [0 1 0 0; 

-(ss.k_r*ss.1_r A 2+ss.k_f*ss.l_f A 2)/ss.i -(ss.c_r*ss.l_r A 2+ss.c_f*ss.l_f A 2l/ss.i 
(ss.k_r*ss.l_r-ss.k_f*ss.l_fl/ss.i (ss.c_r*ss.l_r-ss.c_f*ss.l_fl/ss.i; 

o 0 0 1; 
(ss.k_r*ss.l_r-ss.k_f*ss.l_fl/ss.m	 (ss.c_r*ss.l_r-ss.c_f*ss.l_f)/ss.m
 

-(ss.k_r+ss.k_f)/ss.m -(ss.c_r+ss.c_f)/ss.m];
 

ss.B = [0 0 0 0; 
ss.l_f*ss.k_f/ss.i ss.l_f*ss.c_f/ss.i 

-ss.l_r*ss.k_rlss.i -ss.l_r*ss.c_rlss.i; 
o 0 0 0;
 
ss.k_f/ss.m ss.c f/ss.m ss.k_rlss.m ss.c_rlss.m];
 

ss.C	 eye(4l; 

ss.D	 zeros(4,4); 

ss.K	 zeros(4,4l; 

ss.xO = zeros(4,l); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% car2dof.m 
% By Samuel Hoffman 
% Automotive Suspension Vibration Thesis Project 
% Description: Defines the Grey Box model 

function [A,B,C,D,K,xO] = car2dof(par,T,aux)
 

m~500/32.2/12;, mass of car (snails)
 
k_g~lO;% radius of gyration (in)
 
wdf~.47;% weight distribution front
 
1~68;% wheel base (in)
 
k_f~ 100;% effective spring rate front (both sides combined) (lb/in)
 
k_r~ 100;% effective spring rate rear (both sides combines) (lb/in)
 
cz_f~O.l;% damping percentage front (zeta) (%)
 
cz_r=O.l;% damping percentage rear (zeat) (%)
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C 

x_f~O;% displacement front car (in)
 
x_fdot=O;% displacement velocity front car (in/s)
 
x_r=O;% displacement rear carlin)
 
x_rdot=O;% displacement velocity rear car (in/s)
 
z_f=O;% displacement front wheel (in)
 
z_fdot=O;% displacement velocity front wheel (in/s)
 
z_r=O;% displacement rear wheel (in)
 
z_rdot~O;% displacement velocity rear wheel (in/s)
 

l_r=l*wdf; ilength from CG cO rear
 
l_f~l-l_r; %length from CG to front
 
m_f=wdf*m; %mass on front of the car
 
m_r~m-m_f; %mass on rear of the car
 

c_f= par(l);%Z*cz_f*sqrt(k_f*m_f);%par(Z); %damping on the front
 
c_r~ par(Z);%Z*cz_r*sqrt(k_r*m_r);%par(3); %damping on the rear
 

i~ par(3);%m*k_g AZ; 
A = [0 1 0 0; 

-(k_r*l_rAZ+k_f*l_fAZ)/i -(c_r*l_rAZ+c_f*l_fAZ)/i 
(k_r*l_r-k_f*l_f)/i (c_r*l_r-c_f*l_f)/i; 

o 0	 0 1; 
«k_Hl_r/m) - (k_f*l_flm)) «c_r>l_r) - (c_f*l_f)) /m
 

-(k_r+k_f)/m -(c_r+c_f)/m];
 

B	 [0 0 0 0; 
l_f*k_f/i l_f*c_f/i -l_r*k_r/i -l_r*c_r/i; 
o 0 0 0;
 
k_f/m c_f/m k_r/m c_r/m];
 

eye (4) ; 

o	 zeros(4,4); 

K	 zeros(4,4); 

xO ~ zeros(4,1); 
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Fig. C.2:	 'ridepitch.md]' Simulink file for integrating raw accelerometerdata into displacement 
and velocity. Creates the input output data specified in section 5.4.2 
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Fig. C.3: 'ridepitch_ss3' Simulink file for using actual input data to create a model output data. 
Uses 'state_space.m' for model structure 
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