
DESIGN PATTERNS GO TO HOLLYWOOD: TEACHING PATTERNS

WITH MULrIME~jIA

A Ttesis

Presented to

the Faculty of Califo;-nia Polytechnic State University

San Luis Obispo

In Fartial F'ulfilJrn,:;nt

of the Requirements for the Degree

Master of Science in Computer Science

by

Adam Dukovich

June 2008

AUTHORIZATION FOR RFPROrYUC'~J.GNOF MASTER'S THESIS

1 reGe~ve the reproduction rights of this thesis for 3, p8riod of seven years from the

date 'Jf submission. I waive reprodllc~.;:cr.. rigMs aJter the time span ha.s expired.

.-_.- "'-.- -_.._----_.~-.------ ---------_.--­ -

Signatu'~e

11

APPROVAL PAGE

TITLE. Design Patterns Go To Hollywood: Teaching Patterns With Multimedia

AUTHOR: Adam Dukovich

DATE SUBMITTED: June 2008

Dr. David Janzen
Advisor or Committee Chair

Dr. Gene Fisher __..... _
Committee Member

Dr. Clark Turner
Committee Member

III

Abstract

Design Patterns Go To Hollywood? Teaching Patterns With Multimedia

by

Adam Dukovich

Design Patterns have insinuated themselves into the forefront of computer

science and software engineering practice. To this end, there has been much

scholarship about the proper way to introduce them into the classroom. Studies

indicate tha.t understanding the contexts in which design patterns are to be used is

one of the most (if not the most) difficult challenge in applying design patterns.

However, little research on the topic attempts to solve the problem of better

illuminating this context problem, preferring instead to focus on simplification of

the patterns and better examples to explain them, This paper discusses a new

paradigm through which the teaching of design patterns can be viewed, one which

focuses on conceptual examples and contexts as the key elements in teaching

design patterns. To better illustrate this new ideology, several short instructional

videos, each employing this approach with a different design pattern were created.

Their effectiveness was subsequently assessed, relative to traditional lecture that

focused more on teaching the structure of the patterns.

IV

Acknowledgeinents

Thanks to the Cal Poly Computer Science Department for providing funding

to create the videos, to Jimmy Hua, Michele Mayorga, and Bobby Kritzer for

acting in them, and to Gene Fisher for his cooperation with the experirhent.

Thanks also to John Dalbey for his cooperation.

Thanks also to Clark Turner, in whose graduate software engineering class

this whole idea started to germinate.

This thesis would not have been possible without the assistance of David

Janzen, who was an invaluable collaborator in making my thesis as good as

possible.

I have also benefited fnuch from the assistance of Heather Smith h'om the

Statistics Department, who was indispensable when it came to breaking down

the numbers.

I doubt that I could have completed all this were it not for the support of my

family: my parents, Sherell and David; my brother Aaron and my sister Laura.

v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

2 Related 'iVork

2.1 Placement In The Curriculurn
,...

Pitfalls to 'Teaching Design Patterns. o

kI _ PO'i':I;~,n;" ,c-t'- Dp"I'ern· (...iJU ··~-'eo>:. ff''''C''.Y··2.3 'i'L-J'l'roh,...J .. \...,lJ.u1ra]I'
d.·;,)

si. ~ ~ 1)." J.,~,v cJ ~,_ vO- L\ ped-t·.· "J'~;r'....... _.i'.... -~_.t>c."Jt-)"

2>4 Cot.textual PedagclgieE . .

2.5

2.6 Analysis of Pedagogies 10

3 Research Approach 13

3;1 Problem Statement 13

3.2 Creation Of Learning Modules 14

3.2.1 Deployability . 14

3.2.2 Pattern Selection 15

3.2.3 Video Organization 15

4 Evaluation 20

4.1 Assessment 20

4.1. 1 Design Pattern Questions 21

4.1.2. Final Questions . . . 24

4.2 First Classroom Experiment 26

4.3 Second Classroom Experiment 28

VI

404 Final Exam Questionf; for es.c 309 (ahd 30?)

4.5 Expected Outcom€&' .

5 Results

5.1 Analysis of Exp~riIncntuJ r{esulk~

5.2 Results for the Final/Midtnffi Q:lestJOrlS

5.3 Student~Reported Results .. , .

.504 Comparison to Text- based 1\itC/tJ·'1ls .

5.5 Threats to Validity ,

5.5.1 Threats to Internal Validity

5.5.2 Threats to External ValidEy

6 Conclusion

Bibliography

Appendix: Code and Exercises

29

29

31

34

35

38

39

40

40

42

43

46

52

Vll

List of Tables

4.1

4.2

4.3

Experiment design for esc 309

Experiment design fer esc 3U7

Differences between the different kinds of vjdeos.

27

29

5.1 ."..., . 'R 1 , f <.~ j, ~ (-,. t" 1"1 (,,' 1) "
t~,xpenmel1t tesufES or OllOf!,'.,Jues Jom" . 18 I/.: J el.'OC8S

~J \ /

Long Video sho'Nn in the Second Exper;mf:r:t (eSC 30,?). . .

bt "8

5.3

5.4

5.5

309 Final Exam Questions

307 Midterm QuestlOn"

Results from subjective que;s~ions in both experim.ents. 3!}

ViIi

List of Figures

;3"1 Still image from the Strategy video skit. .~..6

,17';3.2' Slide from the context portion of t1v::: Strategy v.ideo.

3.3 . Slide from the structure portion of the Adapter video. 18

3.4 Slide introd1::cing the exercise in the Observer vIdeo, . 19

4.1 This is the UML diagram provided ~,r) the ;309 students on
exa.m. ,.,.. ,

51 Results of Various Metnodsof Teach:rig th,e Stn:d~egy Design PattS!Il, ::12
t: 2 R 't fIT' M' . " n, 1 . ,1 j' , r-. • f" j1 h ,u. '" esuLs 0 vanous ler.n.oas 01 1€3C;Ulg tne 1-\.' apcer ueslgn. a:C;jefJl

53 Results of Various Methods of Teaching the Observer Design Patt{:;Tll. 33

IX

Chapter 1

Introduction

A design pattern is, fundamentally, a pi.iring between a common problem in.

software development and a proven solution for that problem [32]. The concepts

contained in the seminal book Design ?!!items Elements of Reusable Object­

Oriented Software (commonJy referred to as the Gang of Four, or GoF book). [15]

engendered a great deal of recognitionfrom industry, scholarship, and controversy,

often in equal measures. The GoF book prop(jsed twenty-three software design

patterns, whose implications are the focus of tIlis thesis. This book did not mark

the beginning of the concept of design patterns, as the idea of design patterns

originated in the field of architecture decades ago [6] and its emergence into

software development has long been in the making. Nor does the GoF book

mark the be-all and end-all of design patterns

There has been enduring criticism of the patterns in some circles, which in·

cludes the patterns' utilityand potential for misapplication [16]. However, it is

safe to say that such voices are on the fringes of this debate, and that the use

of design patterns is definitely mainstream. Tao [32] notes the pervasiveness

of design patterns in modern commercial software, something which is also at­

1

tested to by many other sources, such :is Astb:tchan [6j. It should be entirely

uncontroversial to say that design patterns have become a major force in profes­

siom,J software engineering when oheJurther corlsiders sever)),l surveys [20] [21]

of software professionals which indicate that a knbwledge of design patterns is an

essential skill in the field. Other squrces (lih) Beck [7]) note Lh3t the penetration'

of design. patterns into industrial practice is 80 profound that the patterns are

effectively a shorthand way of referring to complic:::>ted design ccr:ceptso A knowl­

edge of these patterns is therefore of paramount importance. Those who might

:3till be concerned about the potential downsides of the patterns should take heart

in the study by Prechelt [28]. Despite the previom:ly mentioned controversy over

the use of design patterns, it would appear that their \l2e is beneficial to the

practice of programming. Cooper states that, "Design patterns s,re a powerful

way, to structure the interadion b,etween classes in an 00 programming language

like Java" [11]. Design patterns have successfully insinua.ted themselves into the

professional practice of software development and engineering.

\Ve have discussed how deep design patterns have burrowed themselves into

the w.orld of professional software development, which places a mandate upon

educators to introduce patterns in the classroom. The popularity of the patterns

ultimately comes down to their power in helping to reduce software complex

ity a little bit by providing proven solutions for common recurrent problems in

programming, not unlike how standardized parts aided the Industrial Revolution.

Papers on design patterns range in approach from practical, industrial uses of the

patterns to how they ought to be taught in an undergraduate curriculum. The

study of designpattems pedagogy has proceeded slowly since the publication of

the Gang ofFour book-with over 13,000 citations in scholarly papers at the time

of this writing, there is no denying that the Gang of Four book has spurred an

2

enorm.ous amount of resea,rch.fmdesign P8.ttIP;'~11S; thoughUttle err:epirical rGsearch

on teaching the patt3rDS b<l,sbeei:lca.rd~8m.ltso far.

The popularity and wide3pl~ead uS~I)f d('3sjK;:~ patterns nas led some educators

to speculate about aDd experiment on different Ways to instruct student~ about

design patterns,. T.he imperative to know aIld u[,e, the patterns 18 spelled out by

Sterkin [30], who at.gue~ that design patterns are SiIl'1ply a better way to third",

a.bout software, and they mix well with the object· oriented pa,radigmbecaus8

design patterns encourage modularit.y and reuse. This line ofl3,rgument is further.

8,dvancedby Lang [19], who argues that the idea that design pa'tternsare a part

of 00 ideology is precisely bac~ward, and t,hat the two concepts are ultimately

inseparable. And, finally, there is some evidence tb.8,t design patt-~ms have an

incidental relation to how programming expertise is physically stored ,ilithin the

br2jn [10], He make", the assertion that pattern-oriented thinking is therefor~

tooted in the brain and thm: ought to haVE; a proLflinerrt role in computer science

education. There is no denying that there is a, sort of synchronicity between

design patten'l.s and 00 methodobgy, a,lld Lhese source serve tounderiine the

necessity of teaching design patterns.

However, this thesis sought to do more than just make a few observations. One

of the key insights that thIs thesis proposes is an enhanced focus on teaching the

contexts in which design patterns are to be used,'1n appro'1ch t.bat has genera,lly

not been favored by other researchers who ha,ve looked at mtr6ducing design

patterns into the classroom. Section 2 will examine prior attempts to teach

design patterns and their underlymg motivations. The thesis will then discuss

the shortcomings of the current state-of-the-a,rt jE S8ction 3, which vv'il1 lead

naturally into a, discussion of how the learning modules tbat became the lynchpin

of this project were devised. Section 4 will discuss the plans for assessing the

3

. learning modules creav::d jll t~us re2~atch ;"lJd t.he metrics developed t'e> aSG8Itain

the efficacy of tb,~ mcdule:-;-. ·Aft,,~r this; the th~S~3 will discuss the design of the

. {t h .. , ff' .,.'.. ' h······ .,'j 'T'1., .'. . '''1 1 h . . ,.... "
e£'pen;r~en,; 0 3ee ; ow e,eC1.~JV6 t B moq tltef:, WOrf. _. H8 paper WI! .~J en segu.e YXtto

a lc:ok at the resu.}t30f the expelimbnt,WI lowed by a cODclusionh1 sectIon 6.

4

Chapter 2

Related Work

This section discusses prior approaches to teaching design patterns. The

section coverspubHshed, scholarly, freelyavaJlablE. 'lv-ork. There E',r", approaches

to teaching design patterns that do not fit these cI3.tegorl'2s, irom the reputable

(such 8,s corporate training vldecs) to some that are less so (e.g. YouTube videos) ..

Such thIngs might be useful but are not Ie38:1rr;h.

2.1 Placement In The Curriculum

Despite the general agreement on the importance of design patterns, there

is still much disagreement about the particulars of how to teach them. Some

researchers, such as Rudolf Pecinovsky, insist on teaching the patterns as early

as possible in the curriculum. Pecinovsky's paper "Let's modify the objects-first

approach ip.to design-patterns-first" gives some indication about his views of this

subject. Other researchers propose putting the patterns :L1llich later into an un­

dergraduate curriculum. One of these is Johnson [18], who taught the patt€fns

in an intermediate-level software engineering course. The arguments for the re­

5

spective approacheD follow na6ital1y frorr~i theli'proponents' positions:. on the one

hand, advocates of "design pa,tterils early" irlsi~t that patterns, like objects) are of

such tremendous importance to industry thtit tea,chingther;J as early as possible,

and getting students to think in terms of patterns, is an importanta1J.d worthy

goal. Waiting too long, they argue, will :>Illy calcify bad programming habits

.in students [26]. On the :othethal1d, opponeritsnote that CSl is a notoriously

difficult class to teach, and tha1t objects early has not been such a smashing suc­

cess in and of itself [5]. Adding new"and sophisticated material to the mix, then,

might not bE: a good idea [34], especmlly wh~n one considers that Clancy [10]

and Dewan [13] both state that the point in the curriculum where design pat­

terns are used does not seem dispositive in determining the success of students'

use of them. And there have been some suggestions outside of these categories

(such as a proposal for a gradup,te-level course exclusively about teaching design

patterns) whose underlying assumptions seem flawed [31]-this proposal does not

ev"en discuss how undergraduate students are t~) learn patterns.

2.2 Pitfalls to Teaching Design Patterns

So, putting aside the preceding discussion of curriculum placement, how does

one go about teaching design patterns? A good starting place would probably

be the literature on past attempts to teach deSIgn patterns, which tends to be

less than voluminous. Perhaps this dearth is due to the novelty of the subject,

but also perhaps it is due to the difficulties of setting up effective experiments to

assess the effectiveness of teaching the patterDS 1271. One of the most sig:i1incant

papers on this subject, which tackles this very question, is the one by Lew Della

and David Clark [12]. This paper provided, in order, the two biggest stumbling

6

blocks to teaching design patterns:

1. The contexts in which thepa£ternsate to be used are difficult for students

to understand.

2. The examples used to help Jearn the patterns are overly complicated.

The ordering is significant here. Design patterns are unusual in that one can

understand the structure of a pattern, Its constituent parts and their uses, and

how they all fit together and still :not be able to apply it properly. The proper

context of a pattern is, as Della and Clark maintam, the most difficult part of a

design patter:q to master because it is often iilcumbent on having experience to

know when to apply the pattern. Sterkin [30] agrees on this point, that the ability

to understand the context in which a pattern is to be used is the key to success

in using design patterns. An interesting. experiment is d.escribed by Clancy [IO},

which showed that students who were just given text and diagram descriptions

of design patterns struggled to use them effectively, contributing further to the

evidence against the notion that giving such descriptions of design patterns to

students will be enough to actually get the students to learn the patterns.

2.3 Structuralist Notions ofDesign Patterns Ped­

agogy

Based on the preceding sources, a method of teaching design patterns that

focused primarily on illuminating the contexts would stand a better method of

success. And, yet, approaches of this sort are quite rare. Perhaps this is because

most researchers in this area are interested in introducing the patterns in a CSl­

7

· .,,

like i~Durse. Scholarship in t'nisBieii hasttmded t0 fOCQS on efforts to simplify

the strnctare of desi.gn patte:tris and tosimpllfy the conceptual exa,mples used to
" :'

tea.ch the patterns - in essence, to InHke thenl more user·fri8Ildly. These papers

(which include, among others, [26, 3,. 1, 2; 29; 36, 3'7, 22)) tend to unfold along

predictable lines: simplification, a stress Oli better exa~:nples as t!1e key element

to lmproving performance with d8sign patterns, and largely a.nEcdotal evidence

to back up the researchers' clalms. It is safe tC\ say tha.:" in terms of volume,

published articles on design patterns pedagogy that focus more on structure and

f';xamples3,re more prevalent thax! these thai; focus OD ':;0!l(;8Xts, BB a, perusal of

the ACM Digital Library will conBrrr:.

2.4 Contextual l)ed~gogies

Despite the prevalence of what I b.ave dubbed st:mctu.ralist m:.iti0I18 of design

pattern pedagogy, there have been some attempts tbat (iri mest cases, Ullwit­

tingly) have employed a conteyt-cerltered appFmdL In the textbook realm, the

book Head First Design Patterns [14) is an example of a 'vay of tBaching design

patterns that gives special emphasis on a (:onceptual understa,nd5.ng of design pat­

te:ms '1ud, in particular, their contexts. However, J1S was previously mentioned,

this is not the prevailing paradigm for teaching pa"tterns.

A method employed by Weiss [35] seems a bit more promising than some of

the structuralist pedagogies. Weiss's idea is ·~o teach patterns "by stealth", by

whjch he means without the knowledge of the r:;tudents; He proposes a multi­

stage project in which design patterns are added in successive stages. In this

way, patterns are introduced in a context with '.vhich students will be familiar

One problem with this approach IS that the creatio!l and deployment of learning

8

modules will necessarily be quite difficult to pllii t)ff-cstructurillg such an expan­

~ive project for the purpsose of using many design patterns makes the id.eaa

bit cumbersome--especiaHy when it comes to creating actlial learning modules.

Nevertheless, .it is an Idea that has a couple of devotees [41 [9] ... Nevison 1.25)

proposes another approach) ·wbich functions similarly to the "stealth" method as

previously described, but in w1JJch deeign patterns arB taught post hoc (i.e after

a project) as an alternative way of having done the proJect. Once again, I see an

attempt to attack the context problem by introducing the patterns in conjunction

ii"ith a project that students wiil already intuitivety understand. Howev.~l', th.lt>

method does not seem a sufficient way of teaching the patterns. The idea, that

.students could Jearn all. the subtleties of design patterns and their contexts by 8,

quick, after-the·.fact retrospective likf~ this seems inferior to having the· stlidents

actually write some code in conjunction with the patterns. Johnson's [J8] exp€ri~

T.nent seems to have some similarity with this approach: Johnson introduced sorrp,,:

llght, written homework on design patterns to the curric'JluD1 of an inter::media.te­

lev81 computer science cours~ and saw little d::::cng,; in the pass rate of his course

(it hadbeen 56% before the addItion of design pattern homeworks, it was 55%

;:;Jterward). This experiment proves that just a l:UJe bit of background on pat-­

terns does not seem to make much of an impact on students, although Johnson's

DbjectlVes ~lere different and the patterns were just one of many different changes

he tried with the class.

9

2.5 Miscellaneous but Notable Esoteric Peda­

.
gogles

It is also worth noting that there have been several attempts to teach design

patterns that do not fall neatly into either the explain-and.-simplify camp or

the focus-on-contexts camp. For example, there is the paper by Callahan [8]

that utilizes the Java3D package, coupled with hypertext, to facilitate interactive

visualizations of design patterns. In a similar vein, there has also been some

research into the idea of teaching design patterns through musical composition

by Hamer [17]. These approaches bring '1 great deal of novelty to the table,

i~ terms of their ambition to try to teach design patterns in ways that, to use

a cliche, can aptly be described as outside of the box. However, these papers

present .little in terms of follow through or concrete results to assess them, and

they are somewhat obtuse with regard to some of the important details to the

approaches they commend. It is difficult, fm example, ·1.,0 tell if Hamer's approach

even involves having students write any code.

2.6 Analysis of Pedagogies

To return to the question at hand, why is there such focus on simplifying

design patterns and coming up with better examples of their structure? Why

is there less of an emphasis, relatively speaking, on focusing on the contexts in

which patterns are supposed to be used, as the existing research seems to indicate

is the most difficult part of teaching design patterns? One reason might be that

trying to simplify design patterns is not very hard, relatively speaking. Coming

up with effective conceptual examples that capture the subtleties of the patterns

10

is substantially more difficult.

Another reason for the surfeit of strud-ur9Jist pedagogies is that much of the

scholarship in this field, as has been previo11sly discussed, has been focused on

introducing design patterns into CSl, toward the principle of teaching design

patterns alongside objects as early as possible, and at that level such measures

are needed. This assumes that teaching design patterns as early as possible

is a desirable practice, which would depend on whether teaching the patterns as

early as possible facilitates the benefits that its supporters claim. The proponents

of "design patterns-early" generally cite two reasons for teaching patterns early

in the t:;urriculum: first, they assert that pla,ciug design patterns early in the

curriculum will foster better coding skills [26] [30], and second, that teaching

design patterns and the idea of reuse will better prepare students for industry

[36] [37]. In their minds, the earlier design patterns are taught, the better. In any

event, such efforts to introduce design patterns as early as possible require not

only simplification but teaching of contextual material as '1velt From looking at

prior work in the field, it wo'tlld seem that targeting intermediate students would

be a better course of action, as they would undoubtably have more comfort

with the technical detail that these patterns present. Additionally, targeting the

contexts of design patterns-the most dIfficult part of understanding the patterns

according to Della and Clark [12]-is a better logical starting point than focusing

on the structure In a greater sense, though, what is stunning about the literature

about teaching design patterns is just how few of the artIcles and conference

proceedings cited in this section have any statistical weight behind them. Much

of the validation, such as it is, is anecdotal.

One important work to consider going forward is the framework, proposed

by Muller et al [23], which is entitled "'Pattern-oriented instruction (POI)" and

11

focuses particularly on how to teach coding patterns to find solutions to problems.

Among other things, POI seeks 'to introduce individual examples and abstract

the pattern from those examples, as well as to compare the results of using

0nepattern with another and, finally. focusing explicitly on how the contexts

of these particular patterns. The results of their study showed that students

who employed the POI method were more easily able to identify subtasks and

apply solutions than were students who did not use their paradigm, Unlike other

researchers who focus solely on the structural aspects of design patterns, Muller

actually acknowledges the importance of contexts, and the projects he discusses

in the paper are more centered on helping students understand where and how

to apply the patterns. While not all of his ideas 2,re used in this paper, Muller's

central insight-that through abstraction, cOD.ceptul3,1 examples, l3,nd a context··

first focus we can teach design patterns better than with other methodologies--­

l).nderlies the research in i.;his thesis.

12

Chapter 3

Research A pproa,ch

This chapter will discuss the context-oriented approach to teaching design

patterns.

3.1 Problem Statement

The goal of this project was to t~Ieate an easily-deployable set of context­

oriented design pattern learning modules thht would be just as effective, if not

more so, at teaching design patterns than would a method with a primary focus

on structure. Such a way of teaching design patterns has never before been

formalized or attempted, and such a method of delivery of design pattern material .

is not known to be tried.

These modules would be targeted at intermediate-leYel undergraduate stu~

dents. This was thought to be superior to efforts targeted at introductory CS

students, as students who have a more comprehensive background in concepts

such as the object-oriented paradigm would be more comfortable with the level

13

of technical detail associated with design patterns than students who have only

recently learned the function of a for.,.10(w. This base of knowledge would allow

more focus on teaching the pattern contexts, which as Dewan noted is among the

hardest (if not the hardest) elements of teaching design patterns.

Ideally, these modules will prove to be an effective way of teaching design

patterns, and could be useful to an instructor looking to teach design patterns

to his or her students; to a manager in mdustry looking for some quick training

for employees; and to researchers looking to enhance the selection of modules

available.

3.2 Creation Of Learning ~:1odules

This section discusses some of the key considerations that went into the cre­

ation of the learning modules that this resear~h hinged upon-'-the design patterns

videos.

3.2.1 Deployability

One of the most important metries in creating these learning modules was

deployability. I wanted to create learning modules that could easily be used by

instructors as part of an in-class lesson, a lab, or as homework. I ultimately

decided to create several short instructional videos that would be distributed

over the internet. I felt that this setup would most easily facilitate the fiexiblity

with respect to deployment that I sought for this project.

14

3.2.2 PatternSelection

We chose to create three videos which covd:'cd the Adapter, Qbserver, and

Strategy design patterns, as defined in [lb] These patterns were chosen be­

cause of their potential utIlity to student8 and because each one lent itself fairly

naturally to a conceptual exaniple.

3.2.3 Video Organization

These videos were intended to contain a combination of live-action segments

and static slides, which I hoped would make the videos dynamic, enjoyable, ~md

informative in. proper proportions. I chose to use non- professionaJactorsinthe

videos, preferring· instead to use upper-division CS sttdents with some industris,l
. , '.

experience who would alread.ybe f2,miliar with the pa,tle.rns.andterrriiX;lology.

The videos contain four main se;~tions (acts):

1 A skit that introduces the concept of the patt8rnina.\~ohtext entirely Un'·
I

related to computer science. For example, I used the iPod as a non-CS

example of the Strategy pattern, as it allows dynamic selecth:m of sm1gs,

videos, etc., in cornp&;rison to the static ordering Df only 8011gs on a tape

player. In the Adapter sketch, a tapeplayerada,pter was llsed as an8xam­

pIe of the Adapter design pattern, as a way of allowing two objects with

different interfaces to talk with one another. The Observer sketch used the

idea of a lookout for a group of studente performing aprank as an example

of that pattern, The idea here was to try to get students to understand the

most fundamental idea of the pattern first, and systematically introduce

more depth. Figure 3,1 shows a still from the intial section of the Strategy

15

Figure 3.1: Still image from the Strategy video skit.

video.

2. A section that explains the pattern's context specifically within computer

scienc8, and where it might be usedia a program that they migbt write.

Each of the sections of the video i3 progressively more concrete than those

that prE:cede it. The CS-specific corctext section i$ more concrete than the

opf~ning skit that precedes it, but less concrete than the following section

that d(~als with what the pattern looks like on a class leveL Both this

section and the opening skit are primarily focused upon the context in

which a design pattern is to be used, although they do this in different

ways.

Here is an example of how the CS-specific context section works: in the

Adapter pattern module, the video mentions the pattern's utility in code

reuse--i.e. two classes from code used from two different sources. Changing

all the references in both classes is simply not feasible, so an Adapter is

suggested as a better way of solving the problem. Strategy uses the idea of

different view classes in an application among which a user can select. And

16

Figure 3.2: Slide from the context portion of the Strategy video.

Observ,~r invokes (G.nd des.:;ribes) the JV1e3.el-View-Contro!Jer framework &,8

an eXG.mple of its use within co::npu~er science Figure 3.2 showti a s~ill from

this por;jiOfl of the Strate~y v,dl?c

3. A section that looks at the struc:llr~of the design pattern and how the parts

interact with one anoth~r. TJ.i~. section introduceE: the sho,';: problem for

the pattern. For the Strategy video, students have to match up classes from

a code 8x:1mple with cla"ses from the Str::.,tegy pattern. For the Adapter

video, students have to anSWH a few hart questioEs :1bout the re~atjonships

between the classes in the pattern, nd the ObsETver video asks s'cudents

to answer why some given code is j correct. Figure 3.3 shows part of this

section from the Adapter video.'

4. A section that introduces the longer roblem. Students are given a piece of

code and will have to refactor it S'J.C that it implements the pattern being

17

Adapter

• Adapter contains
an instance of
Adaptee

• The client can call
methodA, which
calls methodS

• The client contains
an instance of
Adapter

Figure 3.3: Slide from the structure portion of the Adapter video .

.taught A still from the Observer video is shown in Figure 34. Our struc­

ture stresses the contextual elements of the pattern first. As was previously

mentioned, most of the lesson will be context-oriented. Two-thirds of the

video aims to inform students of the context, while the other third teaches

the structure. This represents a reversal of most research on the subject

(which tends to emphasize examples and structure instead of contexts), and

whether such a focus turns out to be more effective is at the heart of this

project. Each video is about ten minutes in length, and they can be re­

trieved from http) /users.csc.calpoly.edu/ adukovic/DesignPatterns.html.

They are in QuickTime format, which was selected because of its popular­

ity and because the video editing software I used supported output in this

format.

18

Exercise

:: Main method contains for loop that calls
methods at a given iteration

:: Your task is to implement the observer pat­
tern on this code

::: Don't worry about threading

::: Hint: think about what your concrete ob­
servers should be and when they should _be
notified... =----~-:::-~

~i-~<-;J

Figure 3.4: Slide introducing the exercise in the Observer video.

19

Chapter 4

Evaluation

The Evaluation chapter summarizes how analyzing the performance of the

modules was done. Human Subjects approval was granted under minimal su­

pervision guidelines, and since this work was all anonymous there was no need

for signed consent forms. Students were handed a piece of paper containing the

pertinent information from the Human Subjects committee.

4.1 Assessment

In this section, assessment of the design patterns videos is discussed. This

took place in several phases. On one hand, I wanted to compare the videos to

a lecture on the same material to see how well the two methods compare. I

performed an experiment that involved instructing a class about three different

design patterns using two different types of videos-one which included a skit at

the beginning and one that did not-as well as a lecture. I was interested in seeing

the extent to which the skit had an effect upon the students' results, if at all.

Students answered questions about these patterns, which are described in Section

20

4.2, The students' scores on the,se .questions DOfistituted the rnetrles for the first

part of the experiment.

In addition, I created some bnefexercises fijr the esc 309 final exam. These

questions were designed to test students' r'etetltion of the material, a crucially im­

portant element of learning design patterns. S"',ction 4.2 will go over the thinking

behind these exercises.

Fmally; I performed a final ex.periment on a different but similar class (CSC

307) which sought to compare the performance of my context-oriented design

patterns with a more structuralist model. This, as well as tne other experiments,

will be further described in the next chapter,and this experiment used the same

exact questions as the initial experiment..

4.1.1 Design Pattern Questions

I developed two associatedtxercises for each pattern: a c-;h.ort exercise (either

multiple choice, true/false, or matching) to test students' basic comprehension of

the pattern, and a longer exercise to test students' ability to apply the pattern

by refactoring an existing piece of code to utHize the design pattern in question.

The short and long exercises are intended to take students approximately two

and five minutes, respectively.

My three primary objectives with the videcs were that the students be able

to comprehend the patterns, that they be able to apply them, and that they

be able to retain the basic knowledge of what patterns accomplish I assessed

the first two via the exercises previously discussed: comprehension is tested by

the student's performance on the shorter question, and application by the longer

question. Retention was tested after the fact, with a final exam question that

21

tested how well students retalneCltheccncepts of the design patterns they were

taught. The exercises themselves: can be found in the appendix. In brief, here's

what I asked students to do UPOil compIeti.ng the learning moduies:

1. For the Strategy design pattern, the short exercise involves matching the

parts of a given coding pattern t~) the elementsot the Strategy pattern.

The longer exercise involves refactoring I'l, calculatDr-like program to aJlow

a user to choose an operation to perform.

2. The Adapter pattern '8 short exercise has the students answer short response.

and true/false questions that ask which classes communicate with each

other in the pattern, and which class (Adapter) contains a reference to

which other class (Adaptee). The longer exercise haE; the student create an

Adapter classthat will allu,!V two Classes to con:m1uDil,~atewith one u,nother,

as well as writing the code to invoke the adapter from witbin the Client.

3. The shorter questian for the Observer pattern asks the student to explain

why a given pwgram wit nL)t compile (the answer is that the lnterfa'-;e

lacks a notify method, which does not allow the notify AJI method to work

properly). The longer queetlo:rl has students apply the observer pattern

to a program that prints out different lines to the console after different

amounts of iterations.

The following grading rubric was used for the aforementioned refactoring exer­

cises:

1. For the Strategy exercise, students would receive the following amount of

points for each corresponding element:

(a) (2) for correct syntax in the Java code.

22

(b) (2) fot including an StrategyfnLeYface,

(c) (2) for including thedecisiiJft-lilakLri'g structure in the code.

(d) (4) faT the two ConcreteStrate,gy classes that should function analo·

gously to the given methods (there aTe two).

The sum total is ten pomts

2. For the Adapter exercise, students wouid receive the following amount of

points for each corresponding element:

(a) (2) for correct syntax.

(b) (2) for the correct invocation ofthe method ·in the Adapter class

(c) (1) for creating the new Add"pter dass.

(d) (1) if that class conto,ins an instance of the Adaptee class.

(e) (2) for having the two metrwds in the Adapter class call the .Adaptee's

methods.

(f) (2) if those methods correcUy(~an the Aclapteeis methods.

The sum total IS ten points.

3. For the Observer exercise, students would receive the foJowing amount of

points for each corresponding element:

(a) (2) for correct syntax.

(b) (2) for the Observer interface--one point for including it, and one point

for including the notify method.

(c) (3) for including the three ConcreteObserver classes.

(d) (1) for correctly writing the notifyAE method.

23

The sum total is eighfpoint8.

With thIS framework, r sought to quantify the effectiveness of the learning mod­

ules by identifying the most important elements of the three design patterns for

which I created modules, and assigning point values to those elements to generate

a numerical score that can easily be VIsualized tnd compared with other scores.

In the Section 4.2, I will go into greater det.s,il about how the experiment was

designed.

4.1.2 Final Questions

24

Adaptee

+method80

''''

Client Adapter

+adapter: Adapter +adaptee: Adaptee

+doWofkO +methodAO

adapter. methodA () ; ~daptee.methodB();

Figure 4.1: This is the UML diagram provided to the 309 students on
the final exam.

1. Briefly explain the idea of the Strategy design pattern. What is its purpose

and when is it supposed to be used?

2. What service does the Adapter class provide? In other words, what does

the Client need it for, and what does it d.o with the Adaptee?

3. In the above example, it would probably be easier to just change the method

call in the Client class to correspond with what is found in Adaptee. Please

explain why this is not a good strategy to use for more sophisticated classes

that want to communicate with each other.

It should be noted that the final two questions about the Adapter pattern were

accompanied by a UML diagram that can be seen in figure 4.1. This was provided

because the first question, on Strategy, was a pure recall question. The Adapter

questions were meant to test the retention of the relationships and the purpose

of that pattern. The "right" answers for these questions involve some version of

the responses that follow:

25

1. The Strategy pattern allows a user to select among different algorithms at

runtime.

2. The Adapter class allows the Client and Adaptee classes, who are currently

using incompatible interfaces, to communicate.

3. Modifying the code in this fashion would require changing potentially many

references in the Client class, which presents a maintenance risk.

4.2 First ClassrooIn Experiment

I conducted a controlled experiment in an undergraduate software engineering

course (CSC 309, Software Engineering II), intended for third-year computer

science and software engineering majors. Here is the course entry in the Cal Poly

Course Catalog:

Continuation of the software lifecyde. Methods and tools for the
implementation, integration, testing and maintenance of large soft··
ware systems. Software development and test environments. Software
quality assurance. Group laboratory project. Technical presentation
methods and practice.

It is expected that students enrolled in thi8 course will have knowledge of the

software lifecycle, requirements and specification. These are taught in the prereq­

uisite course, CSC 308. Additionally, students taking CSC 309 (predominantly

juniors) will have experience writing code in at least two different programming

languages. The 308-309 series teaches students about the software design process

by means of a project to create a software product. This project spans both

courses in the series. The experiment that I performed to determine the effec­

tiveness of my videos involved two parallel sections of CSC 309 taught by the

26

....,:~. -­
Pattern Section 1 Section 2

Activity 1 Strategy Video with skit Video w/0 skit
Activity 2
Activity 3

Adapter
Observer

Lecture
Video w/ 0 skjt

Video with.:J
Lecture

Table 4.1: Experiment delSign for esc 309

same instructor, and the experiment took place in the tenth (and final) week of

instruction of the course in the Winter Quarter of 2008. The first section met

from 10:00 a.m. - 12:00 p.m., the second section from 3:00 pm. - 5:00 p.m.

The experiment proceeds as follows: one section is shown a full video on one

of the patterns (i.e. Strategy). After this, the same section will undergo a lecture

on another pattern (Adapter) and then will be shown a video on the third pattern

(Observer) but without an initial skit. The second lab section will receive parallel

instruction on the patterns in the same order, but the methods will be different.

In the second lab section, the strategy pattern will be taught with the video minus

the skit, followed by the adapter pattern taught by the video with the skit, and

concluded with the observer pattern taught by lecture. Table 1 summarizes the

experiment organization.

Why proceed in this manner? Before I compare my context-oriented approach

of teaching design patterns to what other researchers have done in the past, it is

important to make sure that the method I chose to use to create the modules-

the videos-does not handicap the students' ability to comprehend the materiaL

I wanted to make sure that the videos did not represent any real dropoff from

other methods of instruction. This was the reasoning behind this experiment.

Just to make sure that the variables in play here are understood: the order

in which the patterns are presented is constant, as are the exercises used to eval­

uate students' understanding of the patterns. The independent variable for each

27

pattern is the method of instruction~video with a short skit about the pattern,

lecture, or video without the skit The lecture material will be substantiaHy the

same as the video without the skit, and both will still have information on the

context in which a pattern is to be used. At this point, I will not have proven

my method as being superior to anything-that will be the point of the next

experiment.

Unfortunately, the experiment ran a bit long on time in the quick-paced 50-·

minute lab sessions. As a result, many students were unable to complete the final

question on the Observer pattern. Many d.id not even start. Please see Chapter

5.5 for a fuller discussion on these issues.

4.3 Second Classroom Experiment

After the conclusion of my first experiment on how best to teach the patterns,

a second controlled experiment was to compare the context-oriented approach to

the structuralist approach advocated by Pecinovsky [26J and his compatriots.

The experiment used students enrolled in a different (but similar in terms of

experience) course-CSC 307~-andwill involve splitting up the class and presenting

each half of the class a lesson on the same pattern: one half of the section will

be presented the material on a pattern with a context-oriented approach, the

other with a more structuralist bent. Table 4.2 shows how this worked, Then

a different pattern will be presented, and the sections will be switched in terms

of the approach (context/structuralist) that is used to teach the pattern. For

this experiment, the independent variable is the type of method used to teach

the pattern, and the dependent variable is the students' performance on the

problems associated with the modules.

28

~~::r~~=r;:::--~r~~:o~
,--Activity 2 Adapter. J3t~~ctural Vid~~ V.!deo_with skit J

Table 4.2: Experiment design for esc 307

'---' Video Type Skit CS-Specific Context I Structure Question i

-~~:;t ~~ee~ ---~--+--.---'-~-.---t-~------ ~----~-----i- x -'-~'-3F---. iLecture .' .x ----~--~x
Structural Videof-~~-'--- x x --, __ ' ____,__._.____ . ___.__.._J.__ .____.,.]

Table 4.3: Differences between the different kinds of videos.

The differences between the videos can be found in Table 4.3.

4.4 Final Exam Questions for esc 309 (and

307)

The final exam questions were discussed in detail in the prior chapt€L These

, were administered along with the standard final exam for 309. Additionally, the

same questions were asked of stude-rtts in CSC 307 approximately the same length

of time after 309 students received them.

4.5 Expected Outcomes

I expect to find that my approach to teaching design patterns, which I have

dubbed context-oriented, will be more effective than the prevailing model of

teaching the structure of the patterns as the primary aspect of design patterns,

or at least as effective as that method. In addition, I hope that the learning

modules I create will become widely used amGng educators and professionals in

29

the field as a way of introducing these particular patterns.

Additionally) I would like informatiotl on how experience factors into the

equ&.tion-intui'dvely, I expect more experiencf;d students to do better on the

exercises. Information will also be taken on which methods students prefer the

most. I would hope that students prefp,r thebnger vldeos the most.

30

Chapter 5

Results

The results of these experiments will be broken down as follows: the students'

results from the tw'.) experiments will be broken down on the long and short

questions, separated according to the type of learning module (Lecture, Long

Video (i.e. with skit), Short Video (i.e. without skit), and Shorter Video (Le.

Short Video minus the eS·-specific context). The results can beseen for the-results·

of all three patterns in the three accompanying figur6S. Figure 5.1 breaks down

the results for the Strategy pattern, figure 5.2 shows the resultsJor the Adapter

pattern, and figure 5.3 gives the results for the Observer pattern. The y-axis of the

figures represents the amount of points awarded on each long question. Each of

these figures shows the relative differences in long question performance between

students who learned the design pattern by the various methods. The short

questions' results can be found in table 5.1. The table shows the reported scores

on the short questions-it was not possible to establish statistical significance on

these figures, in part because of the distribution of the data, which was heavily

slanted in favor of higher scores. The distribution was uneven. The scores are

given in the table-more detail can be found in Section 4.1.1. Table 5.2 contains

31

Main Effects Plot for Long Q (10)
Fitted Means

Type! Timing of Presentation Experience

10

9

8

7 ~
c

i
6

5

...­ ---­ --. ------­
4

3

2

1

o
i i .~~~- , i

J
----_._----------------_.

Figure 5.1: Results of Various Methods of Teaching the Strategy De­
sign Pattern.

the results for the long questions.

The three figures that br€3.k down results on the long question als/) contair-.. a

second graph to the side that charts students' experience with the pattsmt". This

deserves an explanation. Even within classes, experience can vary widely, so I

took data from students about their experIence with the patterns in qt:e8~ion.

This relationship is plotted separately from the main plot, which uses method

of instruction as the independent vCl,riable. As for the scores, 0 represents no

experience, 0.5 represents familiarity with the pattern (but never having used it)

and 1 represents past use. The results from the three figures generally show that

more experience unsurprisingly translates into greater success with the patterns,

although the significance of this relationship Ca!1Dot be substantiated beca,use of

the low number of students who rated a 0.5 on experience.

32

Adapter Design Pattern: long Question

Type{riming Presentation Experience

10

9 /~,
8
7 ------- --- -.­

ij 6

f - 5
-4

3

2

1

o
<.,- ~-~~~ P _'beo r::::? ~.rR\2 . ~....:f ~~ - -..s.~ tF

~o, -~
~
o~ ,,0 Co)

Figure 5.2: Results of Various Methods of Teaching the Adapter De­
sign Pattern.

Observer Design: _tong Question

Type of PresentatKln E::xperience

8

7

6

--. - --- ­
:

3 L.

2

p-value = .504 p"'value = .96-0o

Short Video - -­ - 1.0-_l.ectur~ . 0.0 _O.~

Figure 5.3: Results of Various Methods of Teaching the Observer De­
sign Pattern.

33

L.-_._ . . Long .Q_~eS~i<?Il Res~lt~ for-irype'Of~o'-'-----'-l

.11.._...... Ty,ectu~~_1~.~,or.!L.=n~ng.(?2. .S.h.o.. rt.. Short~r I

S . .., l\J /A ' ~p ! 1 "'\1 6 lR / 10 79·7' 10 5 20]~ntrategy "'".' . I oc I ,U, . /' Ie (• L
"Adapter 8.~ / 10H·871 iol~:~~.L!.9.·.. JY~_.'_. 5.45 /12
LObserver Vid~?_.<-.s·U_~.. NjA-__,_iE/A _~~4.56 !_'§_ .. N/A J

Table 5.2: Experiment Results for Long Questions. The (2) Denotes
the Long Video shown in the Second Experiment (eSC 307).

5.1 Analysis of Experimental Results

This section breaks down the results fo:::- st.udent-answered questions that'were

completed immediately after ~iewmg the videos/lectures. These questions tBst

the ability to apply thE: pattern after having seen the videos.

As can be seen fr<?m Figures 5.1, 5.. 2 and 5.3, it does not appear that the style

of presentation hadJ:nuch beaTing on the performa,nceof the various students on

the design patterns questions. It appeared that lecturing was the most effective

method of instruction: on both the long and short questions) sections who re­

ceived lecture did better on the questions than any other section. On the other

end IS the shorter video-Leo the structural video. On each and every attempt

to use it, students who learnpd from the shorter video did worse than any other

group. The 307 students r..ot (.nly [epo:r:~ed far lest; experience wIth the patterns,

but they did worse than their 309 countelparts when presented with the long

video. The differences between the short and long videos (i.e_ the ones lacking a

skit and those containing one, respectively) appear to be ambiguous-long video

34

studeDtsperfo:rmedsllghtlybeHe'f cnthk ;::!it')rt questionj while the con­

verse ';<.T~S true on.t:h.e long questIon. It (iD'-}S r.Wt~1e€rD p08~.jhle todr21w a definitive

conclusiorionth.erneritof the skit,;rvith respect j,G this ;,>~f~eri0n, aJthoilgb there

is not a statisticaHy 8igi11ficant diffe:rence fletwf;eD tl:e diff::Yenc~ -;',hat showed up

under statistical arralyds. Please see Chapt. f ::)..' 5.S for a dIscussion of these issues.

']"he statistical calculations 011 the datasets for~hi3 experimeDt were performed

using Analysis of Variance Between Gronps.

In essence, there did not seem to -be wildly diverging results between the

different methods of instruction. This sugg('~stsj~hafthe effect, ofthe method of

im,tructlOn of these design patterns is muted, t),-;; least ,v.:c:;ording to this metric.

5.2 Results for the Final/:l\,fidterln (~uestions

Though the results from thl? initiaJ.ciassroom experiment do not necessarily

bode well for IllY vIdeos, the results frornLhe final q1-1estions are significantly more

favorable. For the first .question ("Briefly explain the idea of the Strategy design

pattern. What isjts purpos~ and wheT' is it supposed to be used't') students in

the first section generally got the question correct. Glit of 24 students in the class

that viewed the Strategy video with the skit,]4 got the answer'~or:,ect and six

got the question incorrect. Out of the 2'4 students In thr:;s,~cond section that SB,W

the video withlJut the skit, only five go+; the question C9IT€Ct. Fifteen students got

the question incorrect. In both sections, four students did not give t), response.

The resillts are given in the Table Ei.3. The second section of stlldents claimed

more experience with otntegy and gen~rally did better on the questions than did

the first section. Such a contrast C3-nnot help but feel a lit,tle hard to swallow

considering that the first section bok the test four days before the second section.

35

--

--

Problem I-Strategy
Section 1 (Video w/Skit) Section 2 (Video w/ 0 Skit)

Correct 14 5
,'._'---­

Incorrect 6 15
No answer 4 4

Problem·2-Adapter
Section 1 (Lecture) Section 2 (Video w/Skit)

Two parts correct 4 .. 8
One part correct 11 11
No parts correct 6 3

-
No answer 3 2

Table 5.3: 309 Final Exam Questions

The second section had much more time to forget the material, and surely did.

Nevertheless, the benefits of the videos comes even more into focus when

considering how the two sections performed on the questions for the Adapter

pattern. If you will recall, section 1 received a lecture on the Adapter pattern,

while section 2 received a video with a skit. Section 1 performed better than

section 2 on the questions, and as has been mentioned several times, section 1

took the exam severa] days before section 2.

It turns out, once again, that the section that had a video with a skit did

much better than the other section when it came to retaining the fundamental

idea of the design pattern in question. If you recall, the Adapter question had

two parts ("What service does the Adapter class provide? In other words, what

does the Client need it for, and what does it do with the Adaptee?" " In the above

example,it would probably be easier to just change the method call in the Client

class to correspond with what is found in Adaptee. Please explain why this is not

a good strategy to use for more sophisticated classes that want to communicate

with each other.") All in all, four students in the first (lecture) section got both

parts of the answer correct, 11 got one part sorrect, and six got zero parts correct

36

Problem 1~Strategy
Section 1 (Long Video) Section 2 (Shorter Video)

Correct 3 4
Incorrect 8 5

Problem 2~Adapter
Section 1 (Shorter Video) Section 2 (Long Video)

Two parts correct 2 3
One part correct 6 4
No parts correct 3 3

Table 504: 307 Midterm Questions

(three declined to answer). In the second (video ~ection), eight students got both

parts of the question correct, eleven got one part correct, and only three got zero

parts correct, with two students leaving the question blank. The results can be

found in Table 5.3, under the label " Problem 2--Adapter."

Now, let's briefly discuss the results from the 307 section. They were given

th~ s~me questions ona ~idterm, and Ta.ble 5.4 has the responses. For this

test, ,nonresponses are counted no differently from zeroes, since everyone in the

307 class attended class the day of the experiment. This is opposed to the 309

class, where 6-7 students missed each course. Unfortunately, the sample sizes are

too small to make any determination as to whether the shorter video outstrips

the long video on retention. There might have been other factors at playas

well-please see section 5.5.

So, what can all of this tell us finally? Section 5.1 showed a decided trend-­

lecture seemed to be the best alternative in terms of ability to understand and

apply the patterns, and the shorter videos-the ones that had a bare-bones struc­

tt.).ral focus-showed the worst results. There was some ambiguity among the two

remaining methods of teaching design patterns: was the introductory skit in the

long video beneficial?

37

I

As it turns out, this question can now be answered. During the 309 experi­

ment, section 1 received a video with a skit, and section 2 received a video without

a skit. Section 1 scored much higher than 8ection 2 did, and the results are sta­

tistically significant, with a p-value of 0.0024. It is thus acceptable to say that, m

terms of retention) the long video is superior to the short video. The students in

309 who had the long video for Adapter also did superior to their counterparts

who had a lecture on the same pattern, but the results are not statistically sig­

nificant (p = 0.13), which rules out broader claims. And one cannot make any

claims as to the difference between the long video and the shorter video from the

results from 307 because of the proximity of the two groups' results, as well as

the validity factors. These statistical comparisons were performed by the use of

a simple t-test.

In short, it appears that the long video has some merit when it comes to

retention.

5.3 Student-Reported Results

This section will cover some of the more subjective data gathered during the

experiments. During both experiments, students were asked several questions

about the videos as a post-mortem, including questions that asked students to

rate on a scale from one to five (five being very good) how well the method of

instruction conveyed to use the pattern (i.e. the context); how well the method

in question conveyed information about the structure of the pattern; and how

much the student liked the presentations of each. I decided to categorize these

by type of presentation, and the results of these questions can be seen in Table

5.5.

38

'Method of Instruction~ .Cbnveys 90Er~xtTc;onveys Structure Likel

Lecture 3.31 3.30 2.52
Long Video . 3.48 322 2.98
Short Video 3.09 2.85
Shorter Video 3.29 2.93 =S~

Table 5.5: Results from subjective questions in both experiments..

As one can see from the reported results, students felt that the long. video

was superior in terms of conveying the context, and they just plain liked it more

than the other methods of instruction. The lecture just narrowly beat out the

long video in terms of conveying structure. These results indicate that, at least

in the opinions of the students who participated in the experiments, that the long

video succeeds at its main goal-focusing on the context-and it's a more satisfying

experience overall. However, these results should perhaps be taken with a grain

of salt, as statistical validation is once again hampered by the small sample size

for the shorter video.

5.4 Comparison to Text-based Tutorials

As a part of this experiment I worked with John Dalbey's esc 305 class to

compare the videos with a text tutorial I found on the internet by Bob Tarr at

the University of Maryland [33] CSC 305 is slightly different than esc 307

and 309-the focus is on individual, rather than group; programming, although

the same prerequisites apply to both classes, and both are junior-level classes.

For this part of the project I created an online survey. Students would either

watch the video or read through the tutorial first (both focused on the Strategy

pattern), answer the short matching question, and then look at the other method

of instruction and answer the following questions:

39

1. Which of the two modes of teaching-the text tutorial or the video-did you

feel did a better job at conveying the basic ideas of the design pattern?

2. Which of the two modes did you find more enjoyable?

3. Which did you prefer overall?

Needless to say, the tutorial did not emphasize ccntexts. The point of the survey

was just to get a sense of whether studex:.ts would prefer to learn by text or by

video.

Only 10 people filled out the survey. These data will therefore have to be

descriptive statistics. Nevertheless, virtually everyone got the answers correct for

the short question, aside from one text student. The responses were evenly split

as to which of the two methods was better at conveying the basic idea of the

pattern, while six of the students said they enjoyed the video experience more.

Nevertheless, six out of ten thought the text tutorial was better overall. The

results were a bIt inconclusive, which might have been due to the low rate of

response.

5.5 Threats to Validity

This chapter discusses the various threats to validity that this study faces.

5.5.1 Threats to Internal Validity

The following are threats to internal validity:

1. There is some danger that the students in this course already know the

40

design patterns presented, but I control for this eventuality by having stu­

dents state on a questionnaire whether or not they have already used the

patterns.

.
2. The p-values for the experimental results are high. This might suggest that

the method of instruction has a minor effect upon students' ability to learn

the patterns (at least, with respect to being able to apply the patterns) or it

might mean that the metrics used in this paper need to be reevaluated. For

Strategy and Observer, the p-values for the test scores across the different

modes of testing were 0.674 and 0.504. In the case of the Adapter pattern

it was not possible to extract p-values because the data did not fit the

ANOVA model-the quantity of perfect scores on the distribution of data

made the model fail.

3. In both sections of the initial experiment, the experiment ran long. Many

students did not attempt the questions pertaining to the Observer pat­

tern, while few left questions blank for the other patterns. I excluded the

missing answers from the calculation of scores on Observer, but the results

nevertheless need to be taken with an additional grain of salt.

4. Several students in esc 307 complained after the fact that they had trouble

hearing the videos.

5. It is assumed that the 309 sections were roughly equivalent in terms of the

students' respective GPAs, skill sets, etc. This is not certain, and might

pose a threat to validity.

41

5.5.2 Threats to External Validity

Here are a few possible threats to external validity:

1. Cal Poly students might differ in terms of their academic acumen from

other schools. Additionally, Cal Poly's "learn by doing" approach might

cause different results from schools that are more focused on theory.

2. Prerequisites for software engineering classes might vary at different insti­

tutions, and students taking an equivalent class at another university might

be differently equipped skill-wise.

3. Cal Poly has smaller class sizes than many universities. This might play an

effect if a professor has to lecture many more people than instructors do at

Cal Poly. The sample sizes of these experiments were too small to establish

statistical significance. This was partially due to the aforementioned small

class sizes, and the logistics of getting instructors to cooperate with this

experiment. Other institutions might or might not have such problems.

42

Chapter 6

Conclusion

In this paper I have written about the idea of a context-oriented method of

teaching design patter:as, and I have described a set of learning modules that I

have created to teach design patterns according to this method, which I feel is

a better way of thinking about design patterns. As design patterns continue to

become more of an essential piece of software engineering, the necessity to teach

these patterns becomes ever more paramount I submit to you a way of thinking

about design pattern pedagogy, in hopes that it will spur further interest and

research in the area.

During my research for this thesis I became aware of some vital deficiencies

among other attempts to teach design patterns: nearly every published paper

avoided the proper teaching of the contexts in which design patterns are meant

to be used, and few of the published attempts to teach design patterns were

easily deployable. At the outset the idea for this thesis was to create some easily

deployable learning modules, which eventually came to mean some instructional

videos, but as the project progressed I became more interested in the question of

contexts, which I incorporated into the modules at an early phase of the project.

43

The creation of the modules was accomplished with some assistance from Cal

Poly MDS and the CSC Fee Committee, as well as some online tips such as [24].

The videos for the Adapter, Strategy, and Observer patterns were completed on

time and below budget, despite the usual (and expected) setbacks in a project of

this nature. The assessment of the videos showed that students tended to respond

more to a lecture about a design pattern than to a video about the same pattern

and performed better on the corresponding exercises, but the dropoff was minor.

On the other hand, students viewing videos that included short introductory

skits about a design. pattern tended to retain information on that pattern at a

significantly better rate. And the contextual information provided in the videos

turned out to be valuable: students who viewed videos that included material

on design pattern contexts did much better on exercises than students who did

not see that materiaL In short, while the results are not uniformly glowing for

my context-oriented design pattern multimedia learning modules, the indication

is that my approach has some definite built-in advantages to other approaches,

and that much future work on this subject remains to be done to ascertain the

impact of context-oriented design patterns pedagogy.

In the final analysis, the central problem this thesis sought out to tackle was to

develop a deployable set of context-oriented learning modules. This thesis proves

that such a set of modules was, indeed, created. As design patterns continue

to insinuate themselves into the professional arena the import of this work will

become progressively more salient, and it is my hope that this thesis will spur

along more experiments and more investment in the subfield of design patterns

pedagogy and the context-oriented paradigm for teaching design patterns.

Finally, it is my hope that instructors would find these videos a useful tool in

teaching design patterns: while not perfect, they have been proven to be effective

44

according to my metrics, and it has been shown that they can meet reasonable

expectations, In conclusion, teaching design patterns is a hard task, and it will

continue to be hard. I can only hope that my thesis provides some insight so that

future researchers will have an easier go ofit.

45

Bibliography

[1] C. Alphonce and P. Ventura. Object orientation in cs1-cs2 by design. In

ITiCSE '02- Proceedings of the 7th annual conference on Innovation and

technology in computer science education, pages 70-74, New York, NY, USA,

2002. ACM.

[2] C. Alphonce and P. Ventura. Using graphics to support the teaching of

fundamental object-oriented principles in cs.i. In OOPSLA '03: Companion

of the 18th annual ACM SIGPLAN c:mference on Object-oriented program,­

ming, systems, languages, and applications, pages 156-161, New York, NY,

USA, 2003. ACM.

[3] F. Arcelli, S. Masiero, and C. Raibulet. Elemental design patterns recog­

nition in java. Software Technology and Engineering Practice, 2005. 13th

IEEE InteTnational Workshop on, pages 196-205, 24-25 Sept. 2005..

[4] O. Astrachan. 00 overkill: when simple is better than not. In SIGCSE '01:

Proceedings of the thirty-second SIGCSE technical symposium on Computer

Science Education, pages 302-306, New York, NY, USA, 2001. ACM.

[5] O. Astrachan, K. Bruce, E. Koffman, M. Kolling, and S. Reges. Resolved:

objects early has failed. In SIGCSE '05: Proceedings of the 36th SIGCSE

46

technical symposium on Computer science education, pages 451-452, New

York, NY, USA, 2005. ACM.

[6] O. Astrachan, G. Mitchener, G. Berry, and L. Cox. Design patterns: an

essential component of cs curricula. In SIGCSE '98: Proceedings of the

twenty-ninth SIGCSE technical sympositl,m on Computer science education,

pages 153-160, New York, NY, USA, 1998. ACM.

[7] K. Beck, R. Crocker, G. Meszaros, J Coplien, L. Dominick, F. Paulisch,

and J. Vlissldes. Industrial experience with design patterns. Software Engi­

neering, 1996., Proceedings of the 18th International Conference on, pages

103-114, 25-29 Mar 1996.

[8] M. Callaghan and H. Hirschmuller. 3-d visualisation of design patterns and

java programs in computer science education. In SIGCSE Bull., volume 30,

pages 37-40, New York, NY, USA, 1998. ACM.

[9] H. B. Christensen. Implications of perspective in teaching objects first and

object design. In ITzCSE)05: Proceedings of the 10th annual SIGCSE con­

ference on Innovation and technology in computer science education, pages

94-98, New York, NY, USA, 200b. ACM.

[10] M. J. Clancy and M. C. Linn. Patterns and pedagogy. In BIGCSE J99:

The proceedmgs of the thirtieth SIGCSE technical symposium on Computer

science education, pages 37-42, New York, NY, USA, 1999. ACM.

[11] J. W. Cooper. Using design patterns. Commun. ACM, 41(6):65--68, 1998.

[12] L. Della and D. Clark. Teaching object-oriented development with emphasis

on pattern application. In ACSE '00: Proceedings of the Australasian con­

47

i

I

i
I

i

ference on Computing education, ipages 56~-63, New York, NY, USA,

ACM.

[13] P. Dewan. Teaching inter-object drsign patterns to freshmen. SIGCSE

37(1):482-486, 2005. I

i

[14] E. Freeman, E. Freeman, B. BatJ'ls, and K. Sierra. Head First Design rat.
terns. O'Reilly Media, Inc., 1 ediiJion, 2004.

i

[15] E. Gamma, R. Helm, R. JOhnsot and J. Vlissides. Design Patterns: Ele­

ments of Reusable Object-Orientel,1 Software. Addison-Wesley Professi nal,

1994.

'I

[16] P. Graham. Revenge lof the nerds. Available at
I .
i

http://w\Yw.paulgraham.som/icaq.html.
I

I

[17] J. Hamer. A musical approach to teaching design patterns. In ITi ~SE
I

'02: Proceedings of the 7th annual'1 conference on Innovation and technolog~

in computer science education, pares 197-197, New York, NY; USA, 2ID02.

ACM. I

,

[18] C. W. Johnson and 1. Barnes. Re~esigning the intermediate course in soft­
I
i

ware design. In ACE '05: Proce~dings of the 7th Australasian conference
I

on Computing education, pages 24f-258, Darlinghurst, Australia, Australia,

2005. Australian Computer Society, Inc.
I

i

[19] J. E. Lang, B. R. Bogovich, S. C.I Barry, B. G. Durkin, M. R. Katchmar,

.I. H. Kelly, .I. M. McCollum, and 1M. Potts. Object-oriented programming
I

and design patterns. SIGCSE Bulf-, 33(4):68-70, 200l.

[201 T. C. Lethbridge. What knOWledgr is important to a software professional?

Computer, 33(5):44-50, 2000. .

I

48

i

[21] T. L. Lewis, M. B. Rosson, and n. Manuel A. Perez-Qui' What do the experts

say?: teaching introductory design from an expert's perspective. In SIGCSE

J04: Proceedings of the 35th SIGCSE technical symposium on Computer

science education, pages 296-'300, New York, NY, USA, 2004. ACM.

[22] G. Licea, J. R. Juarez, L. G. Martinez, and L. Aguilar. Toward a deeper

level of programming expertise for engineering students. Computer ScienceJ

2006. ENC '06. Seventh Mexican International Conference on, pages 180­

190, Sept. 2006,

[23] O. Muller. Pattern oriented instruction and the enhancement of analogical

reasomng. In ICER '05: Proceedings of the 2005 international workshop

on Computing education research, pages 57-67, New York, NY, USA, 2005.

ACM.

[24] G. Network. Your guide to better mOVIe lighting. Avail­

able at http://www.g4tv.com/techtvvault/features/41742/

Your_Guide_to_Better..Movie,.Lighting.html.

[25] C. Nevison and B. Wells. Teaching objects early and design patterns in java

using case studies. In ITiCSE J03: Proceedings oj the 8th annual conference

on Innovation and technology m computer science education, pages 94--98,

New York, NY, USA, 2003. ACM.

[26] R. Pecinovsky, J. Pavlickova, and L. Pavlicek. Let's modify the objects-first

approach into design-patterns-first. SIGCSE Bull., 38(3):188-192, 2006.

[27] R. Porter and P. Calder. Patterns in learning to program: an experiment? In

ACE '04: Proceedings of the sixth conference on Australasian computing ed­

49

ucation, pages 241-246, Darlinghurst, Australia, Australia, 2004, Austmlian

Computer Society, Inc.

[28] L. Prechelt, B. Unger, W, Tichy, P. Brossler, and L. Votta. A controlled

experiment in maintenance: comparing design patterns to simpler solutions.

In Software Engineering, IEEE Tran.'io,ctions on, volume 27, pages 1134­

1144, Dec 2001.

[29] D. Reed. Incorporating problem-solving 'patterns in cs1. In SIGCSE '98:

Proceedings of the twenty-ninth SIGCSE technical symposium on Computer

science education, pages 6-9, New York, NY, USA, 1998. ACM.

[30] A. Sterkin. Teaching design patterns. Available at http://www.hadassah­

col.a~..il/cs/staff/asterkin/advCPlusProgjTeachinggn

[31] S. Stuurman and G. Florijn. Experiences with teaching design patterns.

SIGCSE Bull., 36(3):151-155,2004.

[32] Y. Tao. Teaching software tools via design patterns. In ACSE 'DO: Proceed­

ings of the Australasian conference on Computing education, pages 248-252,

New York, NY, USA, 2000. ACM,

[33] B. Tarr. The state and strategy patterns. Available at

http://userpages.umbc.edu/ tarr j dp/lecturesjStateStrategy.pdf.

[34] E. Wallingford. Toward a first course based on object-oriented patterns.

SIGCSE Bull., 28(1):27-31, 1996.

[35] S. Weiss Teaching design patterns by stealth. SIGCSE Bull., 37(1):492-494,

2005.

50

[36] M. R Wick. Kaleidoscope: using design patterns in csL SIGCSE Bull.,

33(1):258-262, 2001.

[37] M. R Wick. Teaching design patterns in csl: a closed laboratory sequence

based on the game of life. In SIGCSE Bull., volume 37, pages 487-491, New

York, NY, USA, 2005. ACM.

51

Appendix: Code and Exercises

Design Pattern Coding Patterns
Strategy Design Pattern Short Example
IIProcessor.java
public class Processor
{

public static void main(String[] args)
{

Scanner sc = new Scanner(System.in);
TextOperation op = null;
String option = sc. nextLille 0 ;
if (option. equals C'wordcount II))
{

op = new WordCount(this);
}

else if (option.equals(ilreplaceword"»)
{

op = new ReplaceWord(this);
}

else if (option.equals("printpreview"»)
{

op = new PrintPreview(this);
}

op.initiateO;
liDo other stuff ...

}

IIFrom TextOperation.java
public interface TextOperation
{

void initiate () ;
}

52

//From WordCount.java
public class WordCount implements TextOperation
{

private Processor proc;

public WordCountCProcessor proc)
{

this.proc = proc;
}

public void initiate()
{

//Count words here
}

}

//From ReplaceWord.java

public class ReplaceWord implements TextOperation
{

private Processor proc;

public ReplaceWord(Processor proc)
{

this.proc = proc;
}

public void initiate()
{

//Count words here
}

}

//From PrintPreview.java
public class PrintPreview implements TextOperation
{

private Processor proc;
public PrintPreview(Processor proc)
{

this.proc = proc;
}

53

public void initiate()
{

IIPreview the print version of th~ document here
}

}

Strategy Short Question

Please match the following numbered items from the preceding
example with the corresponding lettered Strategy elements.

1) WordCount

2) Processor

3) PrintPreview

4) TextOperation

5) ReplaceWord

a) Context

b) Strategy

c) Concrete Strategy
Strategy Long Exercise

IIThis is the Code that needs to be fixed up ... we want to be
liable to choose an operation to perform!
package exercises;

import java.util.Scanner;

public class Calculator {
public static void main(String[] args)
{

Calculator calc = new CalculatorO;
int one, two;
Scanner sc = new Scanner(System.in);
System.out.print(IlEnter a number: ");
one = sc.nextInt();
System.out.print("Enter another number: ");
two = sc.nextInt();

54

System.out.println("Adct: " -t calc.additionCone, two));
System.out.println("Sub: II + calc.subtraction(one, twO));

}

public int additionCint one, int tVlO)
{

return one + two;
}

public int subtraction(int one, int two)
{

return one - two;
}

}

IIAnswer Space
public class Calculator
{

public static void main(String[] args)
{

IIFill in the blank on the next line

_ = null;
Scanner sc = new Scanner(System.in);
System. out. print ((CEnter a number: ");
int first = sc.nextlnt();
System.out.print(CCEnter another number: ");
int second = sc.nextlnt();
System.out.println(C'Enter an operation: ");
IIFill in this part

}

}

Adapter Design Pa.ttern Example

IIThis is the (not functional) code before the Adapter pattern
II is applied.
IITapeAdapter.java
package examples;

1**
* A class representing a tape adapter.

55

*1
public class TapeAdapter {

public static void main(String[] args)
{

TapeDeck deck = new TapeDeck();
IIThese two calls will not work!
deck.play();
deck.forward(20);

}

}

I ITapeDeck. java
public class TapeDeck
{

public void playTape() { }
public void rewind(int time) { }
public void fastForward(int time) { }

}

IIThis is the code after the Adapter pattern is applied.

package examples;
1**
* A class representing a tape adapter.
* This is the Client.
*1

public class TapeAdapter {
public static void main(String[] args)
{

TapeAdapterFixed deck = new TapeAdapterFixed();
deck.play();
deck.forward(20);

)­
}

1**
* A class representing a tape deck.
* This is the Adaptee.
*1

public class TapeDeck
{

public void playTape() { }
public void rewind(int time) { }
public void fastForward(int time) { }

56

}

/**
* This is the Adapter.
*/

public class TapeAdapterFixed
{

TapeDeck deck;
public TapeAdapter() {deck = new TapeDeck(); }
public void play() {deck.playTape(); }
public void forward(int time) {deck.fastForward(time); }
public void rewind(int time) {deck.rewind(time); }

}

Adapter Short Questions

Please answer the following questions about
the Adapter Design Pattern.
1. What are the names of the two classes
(out of Adapter, Adaptee, Client)
that want to communicate with each other, but cannot?

2. The Client calls the Adapter class, true or false?

3. True or false, the Adapter class contains a reference
to an object of the Adaptee type?

Adapter Long Exercise
//This is the Code that needs to be fixed up

package exercises;
public class SomeClass {

public static void main(String[] args)
{

SomeOtherClass x = new SomeOtherClass();
double pi, e;
pi = x.computePi();
e = x.computeE();
System.out.println("Result: + (e * pi));II

}

}

class SomeOtherClass {

57

public double getPi. ()
{

return Math.PI;
}

public double getE()
{

return Math.E;
}

}

1**
* This class needs only one minor change.
*/

public class SomeClass
{

public static void main(String[] args)
{

IISomeOtherClass x = new SomeOtherClass();
IIFi.ll in the line that replaces the line above
double pi, e;
pi = x.computePi();
e = x.computeE();
System.out.println("Result. " + (e * pi));

}

}

1**
* This class need not be touched.
*/

class SomeOtherClass {

public double getPi()
{

return Math.PI;
}

public double getE()
{

return Math.E;
}

}

pagebreak

58

Observer Example

package examples;

import java.util.ArrayList;

}

publi.c void notifyAllObservers ()
{

for (Observer 0 : list)
{

o.notify(one, two);
}

}

}

interface Observer
{

void notify(int x, int y);
}

class ObserverOne implements Observer
{

public void notify(int x, int y)
{

if ((x + y) %10 == 0)
{

System.out.printlnC'Divisible by Ten");
}

else

59

{

System.out.println("Nondivisible by Ten");
}

}

}

Observer Long Exercise
package exercises;

public class Looper {

public static void main(String[] args)
{

for (int i = 0; i < 100; i++)
{

if (i -- 5)

{

methodi(i) ;
}

else if (i == 10)
{

method2 (i) ;
}

else if (i == 20)
{

method3(i);
}

}

}

public static void methodl(int x)
{

System.out.println("Method 1: " + x);
}

public static void method2(int x)
{

System.out.println("Method 2: II + x);
}

public static void method3(int x)
{

System.out.println("Method 3: " + x);
}

60

}

//Write New classes here!

61

