DESIGN PATTERNS GO TO HOLLYWOOCD: TEACHING PATTERNS
WITH MULTIMEDIA

A Tresis
Presented to
the Faculty of California Polytechnic State University

San Lvis Obispe

In rartial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

by
Adam Dukovich

J urie 2008

AUTHOQRIZATION FOR REPRODUCTION OF MASTER’S THESIS

i reserve the reproduction rights of thic thesis for s period of seven years from the

cate of submission. I waive reprodicticon righis after the time span has expired.

[c‘(,wv\ 1

Q3 bao
wlgnature

@/ﬁ/za:‘é’

Date

i

APPROVAL PAGE

TITLE: Design Patterns Go To Hollywood: Teaching Patterns With Multimedia
AUTHOR: Adam Dukovich

DATE SUBMITTED: June 2008

Dr. David Janzen
Advisor or Committee Chair

Dr. Gene Fisher
Committee Member

Dr. Clark Turner
Committee Member

i

Abstract

Design Patterns Go To Hollywc»od» 'feaching Patterns With Multimedia
by |

Adam Dukovich

Design Patterns have insinuated themselves into the fofefront of computer
science and software engineering practice. To this end, there has been much
scholarship about the pr>oper way to introduce them into the classroom. Studies
indicate vthat understandin,g the contexts in which design patterns are to be used is
one of the most (if not the most) difficult challengeﬁ in applying désigﬁ patterns.
However, little research on the topic attempts to solve the problem of better i
illuminating this' context problem, preferring instead to focus on simplification of -
the patterns and better ex‘am'ples to explain them. This paper discussés a new
paradigm through which the teaching of désign patterns can be viewed, one which
focuses on conceptual examples and contexts as the key elements in,teaching
design patterns. To better illustrate this new ideology, several short instructional
videos, each employing this approach with a different design pattern were creatéd.
Their effectiveness was subsequently assessed, relative to traditional lecture fhat

focused more on teaching the structure of the patterns.

iv

AcknOWIedgeménts

Thanks to the Cal Poly Computer Science Department for providing funding
to create the videos, to Jimmy Hua, Michele Mayorga, and Bobby Kritzer for
acting in them, and to Gene Fisher for his cooperation with the experirent.

Thanks alsc to John Dalbey for his cooperation.

Thanks also to Clark Turner, in whose graduate software engineering class

this whole idea started to germinate.

This thesis would not have been possible without the assistance of David
Janzen, who was an invaluable collaborator in making my thesis as good as
possible.

I have also benefited ich from the assistance of Heather Smith from the
Statistics Department, who was indispensyable when it came to breaking down
the numbers.

I doubt that I could have completed all this were it niot for the support of my

family: my parents, Sherell and David; my brother Aaron and my sister Laura.

Contents

Lis_t of Tablés
List of Figures
1 Introduction

2 Related Work
2.1 Placement In The Curriculum

2.2 Pitfalls to Teaching Design Patterns .

2.3 Structuralist Notions of

DO
(.
..‘n
5
]
5
ot
—
>
[
faniy
i'-ti
@
2
jor)
o5
i~
G
¥

4 /!"‘.1r> 1l vy amtce N T st orie PPasd e
2.5 Miscellanecus but Notable Egoteric Peday

2.6 Analysis of Pcdagagies
3 Research Apprbach
3.1 Problem Statement
3.2 Creation Of Learning Modules
3.2.1 Denloyability
3.2.2 Pattern Selection
3.2.3 Video Organization
4 Evaluation
41 Assessment,
4.1.1 Design Pattern Questions
4.1.2 . Final Questions
4.2 First Classroom Experirient

4.3 Second Classroom Experiment

V1

viii

X

Y
4

4.4 Final Exam Quognons for (/‘b\, 300 {and 307) e .29

4.5 Expected Outcomes L 29

5 Results ’ : . :) 31
5.1 Analysis of hxpemn(‘mm ‘\mu}f‘{i@ e e e 34
5.2 Results for the F ma}/\hdtcrm Quéstions [35
5.3 Student-Reported Resuits 38
5.4 Comparison to Tex xt-based Tute n)l~ - ¢
5.5 Threats to Validity 40

. 5.5.1 Threats to Internal Validity 40

5.5.2 Threats to Externa iVaiidity R 4

6 Conclusion 43
Bibliography 46
Appendix: Code and E‘xercisesv 52

Vil

List of Tables

4.1
4.2
4.3

3 o
nD [

G
(8]

o >
o

Experiment design for CSC 309 .

Ay

Experiment design for CSC 307 .

Differences between the different kindz of videos. . . ~

FExperiment Results for Short Q*ietsticsns. ’11 2 Denotes the

Long Video shown in the Sevond Fxpers

h*{pemmonj Results for Long ("")u(stions
Video shown in the Second L_-pmrmw (R0

309 Final Exam Questions .
307 Midvterm Questicig L.,

Results from subjective questions in both experiments. . . .

vili

o
()

B,
X

A(

List of Figures

Still image from the Strategy video skit. . . ., ...

bo

Siide from the countext portion ¢ of the Btrategy viaeo.

o

(O8]
- 2

Slide from the structure portion of the Adapter video.

blide introducing the exercise in the Observer video. .

4.1 This is the UMIL diagram provided o the 306 students on

5.1 Results of Various Methods of Teact: Strategy Deszgﬁ Patt
5.2 Results of Various Methicds of Teaching the Adepter Uesign Pattern
5.3 Results of Various Methods of Teaching the Observer Desigﬁ Pattern.

X

Chapter 1

Introduction

A design pattern is, fundamehtally, & pairing between a common problem in
software development and a proven soilution for that problem [32|. The concepts
contaiﬁed in the seminal bock Design reiterns: Elements of Reusable Object-
Oriented Software (commonly referred to as the Gang of Four, or GoF book) {15]
engendered a great deal of recognition from ind ustry, scholarship, and controversy,
oftéﬁ in equal nleasufeé. "The GOF book prososed twéni;y»three soffware- design
patterns, whose implications are the focus of this thesis. This book did not mark
the beginning of the concept of design patterns, as the idea of design patterns
originated in the field of architecture decades ago (6] and its emergence into
software development has Jong been in the making. Nor does the GoF book

mark the be-all and end-all of design patterns

There has been enduring criticiem of the patterns in some circles, which in-
cludes the patterns’ utility and potential for misapplication [16]. However, it is
safe to say that such voices are en the fringes of this debate, and that the use
of design patterns is definitely mainstream Tao [32] notes the pervasiveness

of design patterns in modern commercial software, something which is also at-

tested to by many other sources, sur"has Astrachan [6]. Tt should be entirely
uncontroversial to say that déSigﬁ p’at;c.erris hba"ve become a major force in profes-
sional sof‘twareven.gineering_.When b furthor considers several surveys [20] {21}
of software professionals which indi{:ate»tha"‘z-va knowledge of design pafterns is an
essential skill in the field. Other squ’fcé[s’ (like Beck [71) note that the penetration
of design patterns into industrial practice is s0 profound that the patterns are
effeCtive}y a. shorthand way of referring to complicated design cereepts. A kﬁowl—
edge of these pétterns is therefore of paramount importance. Those who might
still be concerned about the potential downsides of the patterns should take heart
in the study by Prechelt [28]. Despite the previously mentioned con%sroversy over
the use of design patterns, it would appear tha,t their uge is beneficial to the
practice of programming. Cooper states that, “Design patterns are a povverfu‘l.

way t() structure the interaction ‘b‘etweeh classeé in an QO ‘pmgmmming language
like J@va”_ [11]. Design patterns have successfully insinuated them.se‘?iVes into the

professional practice of software development and engineering.

We have discussed hbw deep design patterns have Etzrr;)wed "i:hemsélves into
the world of professional software deve].opin.entz, which places & mandate upon
educa_tors to introduce patterns in the classroom. The popularity of the patterns
ultimately comes down to their power in helping to reduce software complex-
ity a little bit by providing proven solutions for c;ommbn recurrent problems in
programming, not unlike how standardized parts aided the Industrial Revolution.
Papers on design patterns range in approach from practical, industrial uses of the
patterns to how they ought to be taught,in an undergraduate curriculum. The
study of design patterns pedagogy has proceeded slowly since the publicatidn of
thé Gang of Four book-with over 13,000 citations in scholarly papers at the time

of this writing, there is ne denying that the Gang of Four book has spurred an

enorrous amount of research en design pait though little empirical research

on teaching the patterns bag beeri carried out so far.

‘The popularity and w1d€spleadu%e of des} < pattarns has led some educators
to speculate about ard experiment on diff’érén% ways to instruct students about
“design patterns. The imperative to knbw and use the patterns is spe}!.es"@ﬁ.‘t by
'Sferkin 30], who argues that design patterns are simply a better way to think
about software, and they mix well with the. objecﬁ-oriented paradigm besauée-
design patterns encourage modularity and réuse. This line of argument is further.
advancevdﬂby Lang [19], who argues that the idea that designv pa’;'ttrerné are a part
of OO ideology is precisely backward, and that the two concepts are ultimateiy
inseparabl:e, And, finally, there is some evide‘r‘lce tnst design patterns have an
incidental relation to how programming‘ expertise is physically stored within the
brain [10] - He makes the assertion that pattern-oriented thirkiag is therefore -
rooted in the brain and thus ouéht to have a promminent role in computer science
education. - There is no denying that there is a sort of synchronicity ‘between

design patterns and OO methodology, and these scurce serve to underiine the

necessity of teaching design patterns.

However, this thesis sought to do more than Just make 5 few obser\}ations. One~
of the key insights that this thesis pf@poses is an enhanced focus on teaching‘the
contexts in which design patterns are to be used, an aépproach that has genéra.ﬂy
not been favored by other researchers who have looked at introducing design
patterns into the classroom. Sect'ion‘ 2 will examine prior attembpts to teach
design pa‘ptern.é and -their underiying motivations, The thesis wﬂl then discuss
the shortcomings of the current stafe»-of—the—art in Section 3, which nl‘ lead
naturally into a, discussion of how the learning modulies th at.became the lynchpin

of this project were devised. Section 4 will discuss the plans for assessing the

leaining modules creaied in Lﬂ}“ r >cea,fvh af”d fﬂe metrics developed to ascertain

4

the effi ,acy of t n' me dules . Utm *h the thgsis will discuss the design of the

expeﬂ"nenu to see how efFu*l,Wr: the mom!@ ware. Tl’w paper will then segue into

a Ic:ok at the Su‘tu of the experimint, followed by a conclusicn ip section 6.

Chapter 2
Related Work

This section discusses pi“iorv approaches to teaching design patterns. The
section covers publ.ished, schola;rly, freely -available work. There aré approaches
to teaching design patterns that do not ﬁ; these categories, from the reputable
(such as éorporate training videcs) to sorme that ace less so (e.g. YouTube videos)..

Such things might be useful but are not research.

2.1 Placement In The Curriculum

Despite the general agreement on the impertance of design patterns, there
is still much disagreefnent about the particglars of how to teach them. Some
researchers, such as Rudolf Pecinovsky, insist on teaching the patterns as eérly
as possible in the curriculum. Pecinovsky’s paper “Let’s modify the objects-first
approach into design-patterns-first” gives some indication about his views of this
subject. ‘Ot»her researchers propose putting the ba’stems much later into an un-
dei"graduate curriculum. One of these is Johnson [18], who taught the patterns

in an intermediate-level software engineering course. The argumeits for the re-

5

spective approaches follow na*ulally from: their proponents’ positions: on the one
hand, a,dvo"c:ates of “design pé‘nyfvt'eriis ear‘ly” WSlsf that patterns, like objects, are of
such treﬁlendous importanée fo ndustry *nat teaching them as eariy":as possible,
and getting students to ﬁhi‘nk i‘n,térm‘s of pa‘zst‘éfns, is an important»_and worthy
goal. Waitmg too long, they argue, will #nly calcify bad programming habits
in students [26]. On the other hand, oppenents note that (CS1is a notoriously
difficult class to tea!ch, and that objects eaﬂy has not been such a smashiﬁé suc-
cess in and of itself [5]. Adding new and sophist_i(_:ated material to the mix, then,
might not be a good idea [34], especially when ore considers that Clancy [10]
and Dewan [13] both state that the point in the curriculum where design pat-
terns are used dOes‘ not seem dispositive in d_e,te.\:*m»ining the success of students’
use of them. And there vhave"b‘ieen some suggestions outside of these categories
(such as a proppsai for a graduate-level course exciusively about teaching design

patterns) whose underlying assumptions seemn flawed {31}-this proposal does not

even discuss how undergraduate students are to learn patterns.

2.2 Pitfalls to Teaching De‘sign, Patterns

So, putting aside the preceding discussion of curriculum placement, how does
cne go about teaching design patterns? A good starting place would prdbably
be the literature on past attempts to teach aesign patterns, which tends te be
less than voluminous. Perhaps this dearth is due to the novelty of the su’bject,
but also perhaps it is due to the difficulties of setting 'ﬁp effective experi'm’-énts to
assess the effectiveness of teaching the patterps {27‘!. One of the most significant
papers on this subject, which tackles this very question, is the one by Lew Della

and David Clark [12]. This paper provided, in crder, the two biggest stumbling

‘blocks to teaching design péttéir_ns:‘ :

1. The contexts in which the'pa’c}’te-fnséfe to be used are difficult for students

to understand.

2. The examples used to help Jearn the':patterns are overly complicated.

The ordering is signiﬁcant here. Design patterns are unusual in that cne can,
understand the structure of a pattern, its constituent parts and their. uées, and
how they all fit together and still not be able to apply it properly. The proper
context of a pattern is, as Della and Clark maintain, the most difficult part of a
design pattern to master because it is often incumbent on having _éxperiénce to
know whern to apply the pattern. ‘Sterkin. [30] agrees on this point, that the ability
to understand the context in which a pattern is to be used is the key Vto success
in using design pattéms. An interesting. experiment is described by Clangy’[].(_)],
whiéh showed that students who were just‘ given text and diagram descr_iptions
of design patterns struggled to use them eﬁ"ectively, contributing further to ’tvhe
evidenée ‘again-st the notion that giving such descriptions of design patterns to

students will be enough to actually get the students to learn the patterns.

2.3 Structuralist Notions of Design Patterns Ped-
agogy

Based on the preceding sources, a method of teaching design patterns that
focused primarily on illuminating the contexts would stand a better method of
success. And, yet, approaches of this sort are quite rare. Perhaps this is because

most researchers in this area are interested in introducing the patterns in a CS1-

like course. Scholarship in this ‘a;'éa'has mnd@d to focus osn efforts o simplify
the StI’llCt‘;lI‘e of deéign pattéfﬁs and to si"mﬁ]i’f& the conceptual examples used to
teach + e patterns - in esserce, t¢ fnake them more U.seru-friend.ly. These papers
(which include, among others, [26, 3, 1, 2, 29; 36, 37, 22!} tend to unfoid along
predictable‘ lines: simplification, a stress on better examples as the key element
toblmproving‘ performance with design patternsv, and largely snecdotal evidence
to back up the researchers’ claims. It is safe tL Say tha.‘i,,, in terms of volume,
published articles on design patterns pedagogy that focus more on structure and
examples are more prevalent than these tba‘f; focus on convexts, ot & perusal of

the ACM Digital Library wiill confirm.

2.4 Contextual Pedage:)gié;

Despite the prevalence of what I have dubbed structuralist nstions of design

pattern pecagogy, there have been some attempis that (in moest cases, unwit-

tingly) have employed a contexi-centersd approach. Tn the textbook realm, the

book Head First Design Patterns [14] is an example of a way of teaching design
patterns that gives special emphasis on & conceptual understanding of design pat-
terns and, in particular, their contexts. However, as was previously meutioned

¥ b 3 p o b

this is not the prevailing paradigm for teaching patierns.

A method employed by Weiss~[35] seems a bit more promising than some of
the structuralist pedagogies. Weise’s idea is to teach patterns “by stealth”‘, by
whiéh'he means without the knowledge of the students. He proposes ‘a2 multi-
stage project in which design patterns are added in successive stages. In this
way, patterns are introduced in a context with which students will' be familiar.

One problem with this approach 1s that the creation and deployment of learning

modules will necessariiy be 'qliité difficult to puh off-stracturing such an expan-
sive project for the purpso‘ée of’ Lisin'g man»yﬁd.esign patterns makes the idea a
bit cumbersome_—espécia}ly *Whén it comes to éreaaing actual learning modules.
Nevertheless, it is an idea that has éJ cbuple of devotees [4] [9]. - Nevison [25]
proposes another approach, which functioné similarly to the “stealth” ﬂle%'hod as
previously described, but in which design patterns are taught post hoc (i.e. after.
a project) as.an alternati.ve way of having done the project Once again,; I sesan
attempt to attack the context problem by introducing the patterns in conjunction
with a preject that students will already intuitively understand. However, this

method does not seem a sufficient way of teaching the patterns. The idea that

el

‘siudents could jearn all the subtleties of desigii pattecrns and their contexis by &
quick, after-the-fact retrospective like this seems inferior to havlng the students
actually write some code in conj unction with the patterns. Johnson’s 118! experi-
raent seems to have some similarity with thié vappm»ach: Johnson introduced soms
.light, written homework on design patterns to the curriculum of an intermediate-
level computer science course and saw little change in the pass rate of his conrse
(it had been 56% before the addition of design pattern homeworks, it was 55%
euftefwakrd)‘ This experiment proves that just a litile bit of background on pat-
terns does not seem to make much of an impact on students, although Johnson’s
objectives were different and the patterns were just one of many different changes

he tried with the class.

2.5 Miscellaneous ,but Notable Esoteric Peda-

gogies

It is also worth noting that there have been several attempts tc>>r teach design
patterns that do not fall neatly into either the explain-and-simplify camp or
the focus-on-contexts camp. For exampie, there is the paper by Callahan [8]
that utilizes the Java3D package, coupled with h&pertext, to facilitafe interactive
visualizations of design patterns. In a similar vein, there has also been some
research into the idea of teaching design patterns through musical composition
by Hamer [17]. These approaches bring a great deal of novelty to the table,
in terms of their ambition to try to teach design patterns in ways that, to use
a cliche, can aptly be described as outside of the box. However, these papers
present‘little in terms of follow through cr concrete results to assess them, and
they are somewhat obtuse with regard to Sdme of the importaht details to the
appr‘oacheé they commend. It is di.fﬁcﬁl‘t, for example, to tell if Hamer’s approach

even involves having students write any code.

2.6 "Analysi‘s of Pedagogies

To return to the question at hand, why is there such focus on simplifying
design patterns and coming up with better examples of their structure? Why
is there less of an einphasis, relatively speaking, on focusing on the contexts in
which patterns are supposed to be used, as the existing research seefns to indicate
is the mést difficult part of teaching design patterns? One reason might be that
trying to simplify design patterns is not very hard, relatively speaking. Coming

up with effective conceptual examples that capture the subtleties of the patterns

10

is Substdntially more difficult.

Another reason for the s‘urfeit of ;‘_sjc;ustura}ist pedagogies 1s that much of the
scholarship in this field, as has vbfeen previously discussed, ha.s been focused on
introducing design patterng; into CSi, toward the principle of teaching design'
patterns alongside objects as early as possible; and at that level suph measures
are needed. This assumes that teaching design patterns as early as possible
is a desirable practice, which would depend on whether teaching the patterns as
early as possible facilitates the benefits that its supporters claim. The proponents
of “design patterns-early” generally cite two. vreasons for teaching patterns early
in the curriculum: first, they assert that plscing design patterns early in the
curriculum will foster better coding skills [26] [30], and second, that teaching

design patierns and the idea of reuse will better prepare students for industry -

4

[36] [37]. In their minds, the earlier design patierns are taught, the better. In any
event, such efforts to introduce desig‘% patterns as early as poésible require not
only simplification but teacking of contextual material as well. From lobk*ing at
prior work in the field, it would seem that targeting intermediate students WQuid
be a better céurse of action, as they would undoubtably have more comfort
with the technical detail that these pafterns present. Additionally, targeting the
contexts of design patterns—the most difficult part of understanding the patterns
according to Delia and Clark [12]-is a better log.ical starting point than focusing
on the structure. In a greater sensé, though, what is stunning about the literature
about teaching design patterns is just how few of the articles and conference
proceedings cited in this section have any statistical weight behind them. Much

of the validation, such as it is, is anecdotal.

One important work to consider going forward is the framework, proposed

by Muller et al [23], which is entitled “Pattern-oriented instruction (POI)” and

11

focuses particularly on how to teach cbding pa,ttems to find solutions to problems.
Among other things, POI seeks to introduce individual examples and abstract
the pattern from those exanii)les, as well as to compare the results of using
one pattern with another and, finally, focusing expilicitly on how the contexts
of these particular patterns. The results of their study showed that students
who employed the POI method were.more easily able to identify subtasks and
apply solutions than were students who did not use their paradigm. Unlike other
researchers who focus solely on the structural aspects of design patterns, Muller
actlially ackncwledges the importance of contexts, and the projects he discusses
inn the paper are more centered on helping students uncerstand where and ho_vs}
to apply the pat.tems‘. While not all of his ideas are used in this paper, Muller7s
central insight-that through abstraction, conceptuai examples, and a coptext-
first focus we can teach design ‘patt.ernvs' better than with other ‘methodologies-‘-

underlies the research in ikis thesis.

12

Chapter 3

Research Approach

This chapter will discuss the context-criented approach to teaching design

patterhs,

3.1 Problem Statement

The goal of this project was to cieate an easily—deplbyable set of context-
oriented design pattern learning medules that would be just as effective, if not
more so, at teaching design patterns than would a method with a primary focus
cn structure. Sﬁch a way of teaching design patterns has never before been
formalized or attempted, and such a method of delivery of design patiern material -

is not known to be tried.

These modules would be targeted at intermediate-level undergraduate stu-
dents. This was thought to be superior to efforts targeted at introductory CS
students, as students who have a more comprehensive background in concepts

such as the object-oriented paradigm would be more comfortable with the level

13

of technical detail associated with design patterns than students who have only
recently learned the function of a for-loop. This base of knowledge weuld allow
more focus on teaching the pattern contéxts, which as Dewan neted is among the

hardest (if not the hardest) elements of teaching design patterns.

Ideally, these modules will pfove_tb be an effective way of teaching design
patterns, and could be useful to an instructor looking to téach design patterns
to his or her students; to a manager in mdustry lc‘,okin_g for some quick training
for employees; and to researchers looking to enhance the selection of modulesv

available.

3.2 Creation Of Learning Modules

This section discusses some of the key considerations that went into the cre-
ation of the learning modules that this research hinged upon-the design patterns

videos.

3.2.1 Deployability

One of the most important metrics in créating these learning modules was
deployability. I wanted to create learning modules that could easily be used by
instructors as part of an in-class lesson, a iab, or as homework. I ultimately
decided to create several short instructional videos that would be distributed
over the internet. I felt that this setup would most easily facilitate the flexiblity

with respect to deployment that I scught for this project.

14

3.2.2 Pattern V'Selec:ti-o.'n . B

We chose to create tiree videos which covered the Adapter, Observer, and
Strategy design patterns, as defined in [15] These patterns ‘were chosen be-
" cause of their potential utility to students and because each one lent itself fairly

~ mnaturally to a conceptual example.

3.2.3 Video Organization

~ These videos were intended to contain a combination of live-action segments
and static slides, which I hoped would make the videos dynarmic; enjoyabie, and
informative in proper proportions. [chese to use non-professional actors in the

‘videos, preferring instead to use upper-division CS stidents with seme mdustrisi

‘experience who would already be ferpiliar with the patteras and termizol

The videos contain fonr main sections (acts):

1. A skit that introduces the cohcept of the pattern-in a“q;oh.'_t‘ext entir‘e.fiy JI‘
related to computer science. For example, I used the iPod as a non-CS‘
example of the Strategy pattern, as it allows dyizamic selecticn' of sdﬁgs,
videos, eté., in' comparison to the static ordering of only songs on a tapée
player, In the Adapter sketch, a tape player éda,pter was used as an sxam-
ple of the Adapter design pattern, as a way of allowing two c»‘bjeij'i%s -.w_ith
différent interfaces to talk with one another. The Chbserver sketch used t}e
idea of a lookour for a group of qt udents perfbrmi.ng a prank as ar%,'éxéxmple
of that pa‘tterri, The idea here was to "cry to get students to understand the
most fundamental idea of the ‘p‘attern first, and 'systematically introduce

more depth. Figure 3.1 shows a still from the intial section of the Strategy

15

| Figure 3.1: Still image from the Strategy video skit.
videc.

. A section that explains the pattern’s context s_peci_ﬁéally within computer
science, and where it maight be used in. a program that they might write.
Fach of the séctio.ns of the video i3 progressively more cdncrete fban those
that precede it. The CS-specific context section is more concrege than the
opening skit that precedes it, but less concreté than the fo},lowing section
that deals with what the pattern looks like on a class level. Both this
section and the opening skit are primarily focused upon the context in
which a design pattern is to be used, although they do this in different

ways.

Here is an example of how the CS-specific context section works: in the
Adapter pattern module, the video mentions the pattern’s utility in code
reuse—-i.e. two classes from code used from two different sources. Changing
all the references in both classes is simply not feasible, so an Adapter is
suggested as a better way of solving the problem. Strategy uses the idea of

different view classes in an application among which a user can select. And

16

* Order of songs is set
beforehand

* You choose NOTHING!

* Kind of lame...

e T R 1T L PR e |

Figure 3.2: Slide from the context portibn of the Strategy video.

Obgarvar invekes (and deszribes) the Medel-View-Controiler framework ss

an example of its use within compuier science. Figure 3.2 shows a stll frem

this poriion of the Strategy videc

. A section that looks at the structure of the design pattern and how the parts
interact with one anothar, This section introduces the short problem for
the pattern. For the Strategy video, students have to match up cllésses-from
.a code example with classes from the Strategy pattern. "Fo_r‘the Adaptér
video, students have to answer a few hort questions about the relationskips:
betweenv the classes in the pattern, land the Observer vided asks students
to answer why some given code is incorrect. Figure 3.3 shows part of this

section from the Adapter video.

. A section that introduces the longer problem. Students are given a piece of

code and will have to refactor it such that it implements the pattern being

17

Adapter

¢ Adapter contains
an instance of

T Adaptee
Artivg! arer ’
T <+ The client can call
pepe pom methodA, which
e e sl Jdiies calls methodB

¢ The client contains
an instance of
Adapter

it

l
y

Figure 3.3: Slide from the structure portion of the Adapter video.

“taught A still from the Observer video is shown in Figure 3.4. Our struc-
ture stresses the contextual elements of the pattern first. As was previocusly
mentioned, most of the lesson will be context-oriented. Two-thirds of the
video aims to inform students of the context, while the other third teaches
the structure. This represents a reversal of most research on the subject
(which tends to emphasize examples and structure instead of contexts}, and
whether such a focus turns out to be more effective is at the heart of this
project. Each video is about ten minutes in length, and they can be re-
trieved from http://users.csc.calpoly.edu/ adukovic/DesignPatterns.html.
They are in QuickTime format, which was selected because of its popular-
ity and because the video editing software I used supported output in this

format.

18

Exercise

> Main method contains for loop that calls
methods at a given iteration

< Your task is to implement the observer pat-
tern on this code

2 Don't worry about threading
< Hint: think about what your concrete ob-

servers should be and when they should be
notified... s

Figure 3.4: Slide introducing the exercise in the Observer video.

19

Chapter 4

Evaluation

The Evaluation chapter summarizes how analyzing the performance of the
modules was done. Human Subjects approval was granted under minimal su-
pervision guidelines, and since this work was all anonymous there was no need
for signed consent forms. Students Were handed a piece of paper containing the

pertinent information from the Human Subjects committee.

4.1 Assessment

In this section, assessment of the design patterns videos is discussed. This
took place in several phases. On one hand,v I wanted to compare the videos to
a lecture on the same material to see how well the two methods compare. 1
performed an experiment that involved instructing a class about three different
design patterns using two diffefent types of videos—one which included a skit at
the beginning and one that did not-as well as a lecture. I was interested in seeing
the extent to which the skit had an effect upon the students’ results, if at all.

Students answered questions about these patterns, which are described in Section

20

4.2. The students’ scores on thé;se,qUes,tidns éo_nstituted the metrics for the first

part of the experiment.

In addition, I created some brief exercises fer the CSC 309 final exam. These
questions were designed to test students’ retention of the material, a crucially im-
portant element of learning design patterns. Section 4.2 will go over the thinking

behind these exercises.

Finally, I performed a final experiment on & different but similar class (CSC
307) which sought to compare the perforrhance of my context-oriented design
patterns with a more structuralist model. This, as well as the other experiménts,
will be turther described in the ngxt chapter, and this experiment used the same

exach questions as the initial experiment. -

4.1.1 Design Pattern Questions

I developed two associated exercises for each pwtttm a short exercise (either
multiple choice, true/false, or matching) to test students’ basic comprehension of
the pattern, and a longer exercise to test students’ ability to apply the pattern
by refactoring an existing piece of code to utiiize the desig‘n pattern in question.
The short and long exercises are intended to take students approximately two

and five minutes, respectively.

My three primary objectives with the videcs were that the students be able
to comprehend the patterns, that they be ablé to apply them, and that they
be able to retain the basic knowledge of what patterns accomplish‘. I assessed
the first two via the exercises previously diécuséed: comprehension is tested by
the student’s performance on the shorter question, and application by the longer

question. Retention was tested after the fact, with a final exam question that

21

tested how well stud'eﬁtjsf ’retainéd"the »c(';':"ncépts: _bf the design patterns they were

taught. The exercises thems'é_lv'eéf can be found in the appendix. In brief, here’s

what I asked students to do upon completing the learning moduies:

1.

9‘3

For the Strategy design pattern, the short exercise involves matching the
parts of a given coding pattern to the elements -of the Strategy pattern.
The longer exercise involves refactoring a calculator-like program to allow

& user to choose an operation to perform.

The Adapter- pattern’s short exercise has the students answerv short response.
and true/false questions that ask which classes commﬁnicate with each
other m the pattern, and which class ‘(Adapter‘) contains a reference i

which other class { Adaptee). The longer exercise has the student create an
Adapier class that will allow two classes to communicate with cne another,

as well as writing the code o invoke the adapter from witkin the Client.

The shorter guestion for the Observer pattern asks the student to explain
why a given- program wil: not compile (the answer is that the interface
lacks a notify methéd, which dees not allow the notify All me“sho‘d to work
properly). The vlonger question has students aéb]y the. observer pattern
to a program that prints out different lines to the console afier different

amounts of iterations.

The following grading rubric was used for the aforementioned refactoring exer-

cises:

1.

For the Strategy exercise, students would receive the following amount of

points for each corresponding element:

(a) (2) for correct syntax in the Java code.

22

(b) (2) for including an Strategy interface.

(c) (2) for indudingf‘f;h;e'decisi'éfliﬁ'iaki"rfg structure in the code.
(d) (4) for the two ConcretéStrategy classes that should function snalo-
gously tc the given methods (there are two).

The sum total is ten points

2. For the Adaptér exercise, students wouid receive the folloWing amount of
points for each corresponding element:

(a) (2) for correct syntax.

(b) (2) for the correct invocation of the 'rfle*uhod 111 the Adapter class.

(c) (1) for creating tﬁe new Adapter class.
. (d) (1) if that class contains an irlstax},f;e of the Adapteé class.

(e) (2) for having the t.v.;o m:ethéds in the Adapter class call the Adaptee’s

methods. |

 (f) (2) if those methods correcily call the Adaptee’s methods.
The sum total is ten points.

3. For the Observer exercise, students would receive the folowing amount of
points for each corresponding element: -
(a) (2) for correct syntax.

(b) (2) for the Observer interface-one point for including it, and one point

for including the notify method.
(c) (3) for including the three ConcreteObserver classes.

(d) (1) for correctly writing the notifyAll method.

23

The sum total is eight' points.

With this framework, I sought to q_ﬁént;ify the effectiveness of the learning mod-
ules by identifying the mbSt important elements of the three design patterns for
which I created modules, and assigning point vvalué_s to those elements to generate
- a numerical score that can easily be visualized 2nd compared with other scores.
In the Section 4.2, I will go into great;er detaﬂ about how the experiment was

designed.

4.1.2 Final Questions

The aim of the questiohs] devised for the final exam for 309, was to test
students’ retention of the patierns after some time had‘passed since the experi-
ment. The questions were brief and asked the students to anéwer simple questions
about the patterns that were emphasized in the videos and lecture on the pat-
- terns. Retention is an important criterien in determining the success of any
learning module that targets design patterns. For this experiment, I operated
under the assumption that it was less important that students knov& every detail
about hoW the patterns work and more important that students know the central
ideas of the patterns. Information on the patterns is readily avéil-avb],e in books
and on the internet, but having the knowledgé to kiiow where to use the patterns
is key.

The following are the final exam questions devised for CSC 309 and also
used for CSC 307 later. Students took the.exam roughly & week after the design
patterns lesson. Regrettably, _thé first section of the class took the final on Monday
and the second section took the final on Friday, which will no doubt have some

effect on the results. This situation could not be avoided.

24

| Adaptee

+methodB{)

Client —> Adapter

+adapter: Adapter +adaptee: Adaptes
+doWark() +methodA () ~
adapter.methoda(); adaptee.methodB(};

Figure 4.1: This is the UML diagram provided to the 309 students on
the final exam. :

1. Briefly explain the idea of the Strategy design pattern. What is its purpose

~and when is it supposed to be used?

2. What service does the Adapter class provide? In other words, what does

the Client need it for, and what does it do with the Adaptee?

3. In the above example, it would probably be easier to just change the method
call in the Client class to correspond with what is found in Adaptee. Please
explain why this is not a good strategy to use for more sophisticated classes

that want to communicate with each other.

It should be noted that the final two questioné' about the Adapter pattern were
accompanied by a UML diagram that can be seen in figure 4.1. This was provided
because the first question, on Strategy, was a pure recall question. The Adapter
questions were meant to test the retention of the relationships and the purpose
of that pattern. The “right” answers for these questions involve some version of

the responses that follow:

25

1. The Strategy pattern allows a user to select among different algorithms at

runtime.

2. The Adapter class aliows the Client, and Adaptee classes, who are currently

using incompatible interfaces, to communicate.

3. Modifying the code in this fashion would require changing potentially many

references in the Client class, which presents a maintenance risk.

4.2 First Classroom Experiment

I conducted a controlled experiment in an undergraduate software engineering
course (CSC 309, Software Engineering II), intended for third-year computer
science and software engineering majors. Here is the course entry in the Cal Poly
Course Catalog:

Continuation of the software lifecycle. Methods and tools for the
implementation, integration, testing and maintenance of large soft-
ware systems. Software development and test environments. Software

quality assurance. Group laboratory project. Technical presentation
methods and practice.

It is expected that students enrolled in this course will have knowledge of the
software lifecycle, requirements and specification. Thesé are taught in the prereq-
uisite course, CSC 308. Additionally, students taking CSC 309 (predominantly
juniors) will have experience writing code in at least two different programming
languages. The 308-309 series teaches students about the software design process
by means of a project to create a software product. This project spans both
courses in the series. The experiment that I performed to determine the effec-

tiveness of my videos involved two parallel sections of CSC 309 taught by the

26

[Pattern | Section 1 Section 2
Activity 1 | Strategy | Video with skit | Video w/o skit
Activity 2 | Adapter - | Lecture Video with skit
Activity 3 | Observer | Video w/o skit | Lecture

Table 4.1: Experirhent design for CSC 309

same instructor, and the experiment took place in the tenth (and final) week of
instruction of the course in the Winter Quarter of 2008. The first section met

from 10:00 a.m. - 12:00 p.m., the second section from 3:00 p.m. - 5:00 p.m.

The experiment proceeds as follows: one section is shown a full video on one
of the patterns (i.e. Strategy). After this, the same section will .uﬁdergo a lecture
on another pattern (Adapter) and then will be shown a video on the third pattern
(Observer) but without an initial skit. The second lab section will receive paraliel
instruction on the patterns in the same order, but the methods will be different.
In the second lab section, the strategy pattern will be taught with the video minus
the skit, followed by the adapter patfern taught by the video with the skit, and
- concluded with the observer pattern taught by lecture. Table 1 summarizes the

experiment organization.

Why proceed in this manner? Before I compare my context-oriented approach
of teaching design patterns to what other researchers have done in the past, it is
important to make sure that the method I chose to use to create the modules-
the videos-does not handicap the students’ ability to comprehend the material.
I wanted to make sure that the videos did not represent any real dropotf from

other methods of instruction. This was the reasoning behind this experiment.

Just to make sure that the variables in play here are understood: the order
in which the patterns are presented is constant, as are the exercises used to eval-

uate students’ understanding of the patterns. The independent variable for each

27

pattern is the method of instructionfvideo ’W_‘:'th' a shert skit about the pattern,
lecture, or video without the skit. The lecture material will be substantially the
same as the video vvithéut the SRit, and both will still have information on the
context in which a pattern is to be used. At this point, I will not have proven
ﬁly method as being superior to anything—that will be the point of the next

experiment.

Unfortunately, the experiment ran a bit long on time in the quick-paced 50-
minute lab sessions. As a result, many students were unable to complete the final
question on the Observer pattern. Many did not even start. Please see Chapter

5.5 for a fuller discussion on these issues.

4.3 Second Classroom Experiment

After the conclusion of my first experiment on how bést to teach the patterns,
a second controlled experiment was to compare the context-oriented approach to
the structuralist approach advocatedv by Pecinovsky [26J and his compatriots.
The experiment used students enrolled in a different (but similar in terms of
experience) course-CSC 307-and will involve splitting up the class and presenting
each half of the class a lesson on the same pattern: one half of the section will
be presented the material on a pattern with a context-oriented approach, the
other with a more structuralist bent. Table 4.2 shows how this worked. Then
a different pattern will be presented, and the sections will be switched in terms
of the approach (context/structuralist) that is used to teach the pattern. For
this experiment, the independent variable is the type of method used to teach
the pattern, and the dependent variable is the students’ performance on the

problems associated with the modules.

28

Pattern Croup 1 o Group 2
Activity 1 | Strategy | Video with skit | Structural Video
Activity 2 | Adapter | Structural Video | Videc with skit

Table 4.2: Experiment design for CSC 307

Video Type Skit | CS-Specific Context | Stracture | Question |
Long Video X | x _ _ X X
Short Video X - X ple

| Lecture x ' x X
Structural Video _ i x o ogx

Table 4.3: Diﬂ'erences between the different kinds of videos.

The differences between the videos can be found in ‘Table 4.3.

4.4 Final Exam Questions for CSC 309 (and

307)

The final exam questions were discussed in detail in the prior chapter. These
- were administered along with the standard final exam for 309. Addi.’cionalfiyg the
same questions were asked of students in CSC 307 approximately the same length

of time after 309 students receiyed them.

4.5 Expected Outcomes

I expect to find that my approach to teaching design patterns, which [have
dubbed context-oriented, will be more effective than the prevailing model of
teaching the structure of the patterns as the primary éspect of design patterns,
or at least as effective as that method. In addition, I hope that the learning

modules T create will-become widely used among educators and professionals in

29

the field as a way of introducing these particulas patterns.

‘Additionially, T would like informiation: on how experience factors into the
equation—-intuitively, 1 expect more experienced students to do better on the
exercises. Information will also be taken on whick methods students prefer the

most. I would hope that students prefer the longer videos the most.

30

Chapter 5

Results

‘The results of these experiments will be broken down ss follows: the students’
results from the twg experimeﬁ ¢ will be broken down on the long and. short
questions, separated according to the type of learning ‘mod-,u’lé‘ (Lecture, Long
Video (i.e. with ski,t), Short Video (1.e. without skit), and Shorter Video {i:e.
Short Video mmus the CS-;speciﬁC context).- The results can be seen for the results -
of all three patferns in the three accompanying figures. Fi‘gure 5.1 breéké.‘dawn
‘the results for the Strategy pattern, figure 5.2 shows the results for the Ada‘pter
pattern, and figure 5.3 gives the results for the Observer pattérnL The y-axis of the
figures represents. the. amount of points awarded on each‘ long question. Each of
these figures shows the relative differences in long question.“perfo,rmanc’e betv‘veeﬁ- ‘
students who learne_d the d‘esign‘ pattern by the various methods. The short
questions’ results can be found in table 5.1. The table shows the reported scores
on the short questions—it was not possible to establish statistical si‘gniﬁcance on
these figures, in part because of the distribution of the data, which was heavily
slanted in favor of higher scores. ’fhe distribution was uneven. The scores are

given in the table—more detail can be found in Section 4.1.1. Table 5.2 contains

31

Main Effects Plot for Long Q (10)

Fitted Means
Type/ Timing of Presentation Experience
10 4
0
8 4
71 . /
5 6 - LAl \. g
$ 5
4 4
3
2
1
04
‘»\ @ W:o é) Q"?
) Y
\g\bzo \\\b?‘o & &
\9<\°’ \9\\9 © &

Figure 5.1: Results of Various Methods of Teaching the Stratégy De-

sign Pattern.

the results for the long questions.

The three figures that break down results on the long question also containb a
‘second graph to the side that charts students’ experience with the patterns. This
deserves an explanation. Even within classes, experience can vary widely, so [
took data from students about their experience with the patterns in guestion.
This relationship is plotted separately from the main plot, which uses method
of instruction as the independent veriable. As for the scores, 0 represents nc
experience, 0.5 represents familiarity with the pattern (but never having used it)
and 1 represents past use. The results from the three figures generally show that
more experience‘unsurprisingly translates into greater success with the patterns,

although the significance of this relationship cannot be substantiated because of

the low number of students who rated a 0.5 on experience.

32

Adapter Design Pattern: Long Question

Type/Timing Presentation Experience
10 4
8. —__ . ~
7

Mean
W

3
2-
1_
0..

e Bl | R o S
S Fis -b“”é‘ & o o N
b X ‘&\\ T 69&

\9"9 & &€

Figure 5.2: Results of Various Methods of Teaching the Adapter De-
sign Pattern.

 Observer Design: Long Quest:on

Type of Presentation : Experience

|
|

gl prvalue =.504 p-value = .960

© Lecture Shortvideo 0.0 - 05 - 10 -

Figure 5.3: Results of Various Methods of Teaching the Observer De-
sign Pattern.

33

ohort (‘uﬂstlon Resul it for 1 va of V]dF‘O ,
: Lecht_ﬁré-f Long Long (2) | Short Shorter |
Strategy N/A 404/ 5 1345 /5 1464/5|27/5 |
Adapler | 383 /413417435574 [NJA 3007 4‘1
Observer Video 0.92 /1 N/A IN/A 0.68/1 N/A ‘

Table 5.1: Experlment Results for Short Questlons The (2) Denotes
- the Long Video shown in the Second Experiment (CSC 307).

Long Question Results for Type of Video s
| | Lecture | Long Long (2) | Short Shorter
| Strategy N/A 53 /10618 /10 | 787/ 10] 5.20 / 10
Adapter 844710 | 7.87 /10 | 5.80 /,:10 N/A 5.45 / 10
Observer Video | 54 /8 |N/A | N/A~ 1456/8 |N/A

Table 5.2: Experiment Results for Long Questions. The (2) Denotes
the Long Videc shown in the Second Experiment (CSC 307).

5.1 Amnalysis of Experimental Results

This section'breaks down the resuits for student-answered guestions thai were
completed immediate}y after viewing the vi(;eos/ lectures. These questions test

()

the ability to apply thc ‘pattern a’fter having seen the videcs.

As can be seen frqm‘ Figures&.l, 5.2 and 5.3, it does not appear that the style
of presentation had_;nﬁch bearing on the performance of the various students on
the design patterns ciuestions. It appeared that lecturing was the most effective
method of instructiori: on both the long and short questions, sections who re-
ceived lecture did betfer on the qt‘;testiono than any other section. On the other
end 1s the shorter video-i. e.” the strumural VldeO On each and every attempt
tc use it, students Who learned from tne shorter V]de() did worse than any other
group. The 307 students not énly;‘epor@ied far less experience with the patterns,
but they did Worse‘t_han their 309 countérparts when presented with the long
video. The differences between the short and iong videos (i.e. the ones lacking a

~ skit and those containing one, respectively) appear to be ambiguous-long video

34

students prrfmn\w hvhtm be]’ or on t.fhé Strategy short guestion, while the con-

verse was trun on the lung questlon It d 5 ’ridt seermn possible to draw a definitive

conclusron on 4 hx«, mer't of the sm\, with ’“(’3[) ect 1o this criterion, although there

is not a statistically °1gniﬁcan‘ dlﬁ’wem ¢ helween the diﬁérence “hat showed up
under stat 1st1oal dfl&l}"‘ls Please see th ptn 5.5 tor a discussion of these issies.
The statis stical c%lﬂmatlons on the davasutt for this evperiment were performed

using Analysis of Variance Betwsen Groups.

In essence, there did not seem to ‘be wildly diverging results between the
different methods of instruction. This ’su,ggests that the effect, of tie methéd of

instruction of these design patterns i¢ mufefx an leaﬁt according to this metric.

5.2 Results for the Final/Midterm Questions

Though the results from the initial ciassrcom experiment de not siecessarily
pode well for my videos, the rasults from the firal questions are signiﬁcantly more

- favarable. For the first question (“Briefly explain the_ idea of the Strategy design
- pattern. What. 1s its purposs .vand‘ whe_n is it supposed to be ustad?”} students in .
the first section generally got the question correct. Ott of 24 students in the class
that Vlewed the Strategy video with the skit, 14 got the answer correct and six
got the question incorrect. Out of the 44 students in thb second section that saw
the video without the skit, only five got the question corre ct. Fifteen st udeﬂts got
the question incorrect. In both °ectvons four students did not give a response.
The results are given in the Table 6.-‘3._‘% The second section of students claimed
nore experience with strategy and generally did better on the qﬁestions than did
the ﬁrstbsection; Such a contrast cannbt help but feej, a little hard to swallow

considering that the first section took the test four days before the second section.

35

v Problem «1~‘=Stra‘tbegy '

Section 1 (Video w/Skit) | Section 2 (Video w/o Skit)
Correct 14 - |5
Incorrect 6 T 15
No answer 4 ' v o 4

Problem 2-Adapter

Section 1 (Lecture) | Section 2 (Video w/Skit)
Two parts correct || 4 : . : '8
One part correct | 11 ' L 11
No parts correct || 6 : - 3

rNo answer -3 o 2

Table 5.3: 309 Final Exam Questions

The second section had much more time to forget the material, and surely did.

Nevertheless, the benefits of the ‘videos comes even more into focus when
considering how the two sections performed on the questions for the Adapter
pattern. If you will recall, section 1 received a lecture on the Adapter pa,ttefn,
Whilevsection 2 received a video with a skit. Section 1 performed »bettér' than
section 2 on the questions, and as has been mentioned several tiines, section 1 -

took the exam several days before section 2.

It turns out, once again, that the section that had a video with a skit did
much better than the other section when it came to retaining the fuhdamental
idea of the design pattern in question. If you recall, the Adapter question had
two parts (“What service does the Adapter class provide? In other words, what
does the Client need it for, and what does it do with the Adaptee?” ”In the above
example, it would probably be easier'to just change the method call in the Client
class to correspond with what is found in Adaptee. Please explain why this is not
a good strategy to use for more sdphisficated classes that want to communicate
with each other.”) All in all, four students in the first (lecture) section got both

parts of the answer correct, 11 got one part correct, and six got zero parts correct

36

Problem 1-Strategy

Section 2 (Shorter Video)

Correct

Section 1 (Long Video) -
3 ‘ :

4

Incorrect

8

; 1

Section 2 (Long Video)

- Problem 2-Adapter
Section 1 (Shorter Video)

Two parts correct || 2 , 13
One part correct | 6 ' 4
No parts correct 3 3

Table 5.4: 307 Midterm Questions

(three declined to answer). In the second (video section), eight students got both
parts of the question correct, eleven got one part correct, and only three got zero
parts correct, with two students leaving the question blank. The results can be

found in Table 5.3, under the label ” Problem 2-Adapter.”

Now, let’s briefly discuss the results from the 307 section. They were given
the same questions'on .a,midterm, and Table 5.4 has the responses. For this
test, nonresponses are counted no differently from zeroes, since everyone in the
307 class attended class the day of the experiment. This is opposed to the 309
class, where 6-7 students missed each course. Unfortunately, the sample sizes are
toc; smeﬂl to make any determiination as to whether the shorter video outstrips

the long video on retention. There might have been other factors at play as

well-please see section 5.5.

So, what can all of this tell us finally? Section 5.1 showed a decided trend-
lecture seemed to be the best alternative in terms of ability to understand and
apply the patterns, and the shorter videos—the oﬁes that had a bare-bones struc-
tural focus—showed the worst results. There was some ambiguity among the two
remaining methods of teaching design patterns: was the introductory skit in the

long video beneficial?

37

As it turns out, this question can now be answered. During the 309 experi-
ment, section 1 received a video with a skit, and section 2 received a video without
a skit, Section 1 scored much higher than section 2 did, and the results are sta-
tistically significant, with a p-value of 0.0024. It is thus acceptable to say that, mn
terms of retention, the long video is supefior to the short video. The students in
309 who had the long video for Adapter also did superior to their éounterpa.ifts
who had a lecture on the same pattern, but the results are not statistically sig-
nificant (p = 0.13), which rules out broader claims. And one cannot make any
claims as to the difference between the long video and the shorter video from the
results from 307 because of the proximity of the two groups’ results, as well as
the validity factors. These statistical compariéons were performed by the use of

a simple t-test.

In short, it appears that the long videc has some merit when it comes to

retention.

5.3 Student-Reported Results

This section will cover some of the more subjective data gathered during the
experiments. During both experiments, students were asked several questions
about the videos as a post-mortem, including questions that asked students to
rate on a scale from one to five (five being very good) how well the method of
instruction conveyed to use the patte’rﬁ (i.e. v‘the context); how well the method
in question conveyed information about the structure of the pattern; and how
much the student liked the presentations of each. 1 decided to categorize these
by type of presentation, and the results of these questions can be seen in Table

9.9.

38

Method of Instruction Conve'ys Confeﬂi Conveys Structure | Like |
Lecture 3.31 0 13.30 2.52 |
| Long Video = 3.48 j 3.22 2.98
Short Video 3.09 1285 2.48
Shorter Video 320 . - 1293 2.64

Table 5.5: Results from subjective questions in both experiments.

As one can see from the reported results, students felf that the long. video
was superior in terms of conveying the context, and they just plain liked it more
than the other methods of instruction. The lecture just narrowly beat out the
long video in terms of conveying structure. These resu;lts indicate that, at least
in the opinions of the students who participated in the experiments, that the long
video succeedé at its main»g0a1~focusing on the context—and it’s a more satisfying
experience overall. However, these results should perhaps be taken with a grain
of salt, as statistical validation is once again hampered by the small sample size

for the shorter video.

5.4 Comparison to Text-based Tutorials

As a part of this experiment I worked with Jobn Dalbey’s CSC 305 class to
compare the videos with a text tutorial I found on the internet by Bob Tarr at
the University of Maryland [33] CSC 305 is slightly different than CSC 307
and 309-the focus is on individual, rather than group, programming, .although
the same prerequisites apply to both classes, and both are junior-level classes.
For this part of the project I created an ounline survey. Students would either
watch the video or read through the tutorial first {both focused on the Strategy
pattern), answer the short matching queéstion, and then look at the other method

of instruction and answer the following questions:

39

1. Which of the two modes of teachiﬁg—the text tutorial or the video—did you

feel did a better job at conveying the basic ideas of the design pattern?
2. Which of the two modes did you find more enjoyable?

3. Which did you prefer overall?

Needless to say, the tutorial did not emphasize centexts. The point of the survey
was just to get a sense of whether studetts would prefer to learn by text or by

video.

Only 10 people filled out the survey. These data will therefore have to be
descriptive statistics. Nevertheless, virtually everyone got the answers correct for-
the short question, aside from one text student. The respdnses were evenly split
as to which of the two methods was better at Conveyiing the basic idea of the
pattern, while six of the students said they enjoyed the video experience more.
Nevertheless, six out of ten thought the text tutorial was better overall. The
results were a bit inconclusive, which might have been due to the low rate of

response.

5.5 Threats to Validity

This chapter discusses the various threats to validity that this study faces.

5.5.1 Threats to Internal Validity

The following are threats to internal validity:

1. There is some danger that the students in this course already know the

40

2.

design patterns presented, but I control for this eventuality by having stu-
dents state on a questionnaire whether or not they have already used the

patterns.

The p-values for the experimental results are high. This might suggest ‘that
the method of instruction has a minor‘éffect upon students’ ability to learn
the patterns (at least, with respect to being able to apply the patterns) or it
might mean that the metrics used in this paper need to be reevaluated. For
Strategy and Observer, the p-values for the test scores across the different
modes of testing were 0.674 and 0.504. In the case of the Adapter pattern
it was not possible to extract p-values because the data did not fit the
ANOVA model-the quantity of perfect scores on the distribution of data

made the model fail.

In both sections of the initial experiment, the experiment ran long. Many
students did not attempt the questions pertaining to the Observer pat-
tern, while few left questions blank for the bther patterns. I excluded the
missing answers from the calculation of scores on Observer, but the results

nevertheless need to be taken with an additional grain of salt.

Several students in CSC 307 complained after the fact that they had trouble

hearing the videos.

It is assumed that the 309 sections were roughly equivalent in terms of the
students’ respective GPAs, skill sets, etc. This is not certain, and might

pose a threat to validity.

41

'5.5.2 Threats to External Validity

Here are a few possible threats to external validity:

Pd

Cal Poly students might differ in terms of their academic acumen from
other schools. Additionally, Cal Poly’s “learn by doing” approach might

cause different results from schools that are more focused on theory.

Prerequisites for software engineeﬂng classes might vary at different insti-
tutions, and students taking an equivalent class at another university might

be differently equipped skill-wise.

Cal Poly has smaller class sizes than many universities. This might play an
effect if a professor has to lecture many more people than instructors do at
Cal Poly. The sample sizes of these experiments were toc small to establish
statistical Signiﬁcance. This was partially due to the ‘aforementioned small
class sizes, and the logistics of getting instructors to cooperate with this

experiment. Other institutions might or might not have such problems.

42

Chapter 6

Conclusion

In this paper 1 have written about the idea of a context-oriented method of
teaching design patterns, and I have described a set of iearning modules thét I
have created to teach design patterns according to this method, which I fee] is
a better way of thinking about design patterns. As design patterns continue to
become more of an essential piece of software engineering, the necessity to teach
these patterns becomes ever more paramount, I submit to you a Way of thinking
about design pattern pedagogy, in hopes that it will spur further interest and

research in the srea.

During my research for this thesis 1 became aware of some vital deficiencies
among other attempfs to teach design patterns: nearly every published paper
avoided the proper teaching of the contexts in which design patterns are meant
to be used, and few of the published attempts to teach design patterns were
easily deployable. At the outset the idea for this thesis was to create some easily
deployable learning modules, which evehtually came to mean some instructional
videos, but as the project progressed I became more interested in the question of

contexts, which I incorporated into the modules at an early phase of the project.

43

The creation of the modules was éccomplished with some assistance from Cal
Poly MDS and the CSC Fee Committee, as well as some online tips such as [24].
The videos for the Adapter, Strategy, and Observer patterns were completed on
time and below budget, despite the usual (and expected) setbacks in a project of
this nature. The assessment of the videos showed that students tended to respond
more to a lecture about a design pattern than to a video about the same pattern
and performed better on the corresponding exercises, but the dropoff was minor.
On the other hand, students viewing videos that included short introductory
skits about a design pattern tended to retain information on that pattern at a
significantly better rate. And the contextual information provided in the videos
turned out to be valuable: students who viewed videos that included material
on design pattern contexts did much better on exercises than students who did
not see that material. In short, while the results are not uniformly glowing for
my context-oriented design pattern multimedia learning modules, the indication
is that my approach has some definite built-in advantages to other approaches,
and that much future work on this subject remains tc be done to ascertain the

impact of context-oriented design patterns pedagogy.

In the final analysis, the central problem this thesis sought out to tackle was to
develop a deployable set of context-oriented learning modules. This thesis proves
that such a set of modules was, indeed, created. As design patterns continue
to insinuate themselves into the professional arena the import of this work will
become progressively more salient, and it is my hope that this thesis will spur
along more experiments and more investment in the subfield of design patterns

pedagogy and the. context-oriented paradigm for teaching design patterns.

Finally, it is my hope that instructors would find these videos a useful tool in

teaching design patterns: while not perfect, they have been proven to be effective

44

according to my metrics, and it has been shown that they can meet reasonable
expectations. In conclusion, teaching design patterns is a hard task, and it will
continue to be hard. I can only hope that my thesis provides some insight so that

future researchers will have an easier go of it.

45

Bibliography

[1]

s
[~
4~

C. Alphonce and P. Ventura. Object orientation in csl-cs2 by design. In
I TiCSE '02: Proceedings of the 7th annual conference on Innovation and
technology in computer science education, pages 70-74, New York, NY, USA,
2002. ACM.

C. Alphonce and P. Ventura. Using graphics to support the teaching of
fundamental object—ori‘ented principles in ¢si. In OOPSLA "03: Companion
of the 18th ahnual ACM SIGPLAN conference on Object-oriented progmm—
ming, systems, languages, and applications, pages 156-161, New York, NY,
USA, 2003. ACM.

F. Arcelli, S. Masiero, and C. Raibulet. Elemental design patterns recog-
nition in java. Software Technology and Engineering Practice, 2005. 13th
IEEFE International Workshop on, pages 196-205, 24-25 Sept. 2005.

O. Astrachan. Qo overkill: when simple is better than not. In SIGCSFE ’01:
Proceedings of the thirty-second SIGCSE technical symposium on Computer
Science Education, pages 302-306, New York, NY, USA, 2001. ACM.

0. Astrachan, K. Bruce, E. Koffman, M. Koélling, and S. Reges. Resolved:
objects early has failed. In SIGCSE ’05: Proceedings of the 36th SIGCSE

46

[10]

technical symposium on Cc-mputer_scz‘ence"education, pages 451-452, New

York, NY, USA, 2005. ACM.

O. Astrachan, G. Mitchener, G. Berry, and L. Cox. Design patterns: an
essential component of cs curricula. In SIGCSE ’98: Proceedings of the
twenty-ninth SI.G'C’SE technical sympdsz’u}m on Computer science education,

pages 153—160; New York, NY, USA, 1998. ACM.

K. Beck, R. Crocker, G. Meszaros, J Coplien, L. Dominick, F. Paulisch,
and J. Vlissides. Industrial experience with design patterns. Software Engi-
neering, 1996., Proceedings of the 18th Intemdtiona[Conference on, pages

103-114, 25-29 Mar 1996.

M. Callaghan and H. Hirschmiiller. 3-d visualisation of design patterns and
java programs in computer science education. In SIGCSE Bull., volume 30,

pages 37-40, New York, NY, USA, 1998. ACM.

H. B. Christensen. Implications of perspective in teaching objects first and
object design. In ITiCSE '05: Proceedings of the 10th annual SIGCSE con-
ference on Innovation and technology in computer science education, pages

94-98, New York, NY, USA, 2005. ACM.

M. J. Clancy and M. C. Linn. Patterns and pedagogy. In SIGCSE °99:
The proceedings of the thirtieth SIGCSE technical symposium on Computer
science education, pages 37-42, New York, NY, USA, 1999. ACM.

J. W. Cooper. Using design patterns. Commun. ACM, 41(6).65-68, 1998.

L. Della and D. Clark. Teaching object-oriented development with emphasis

on pattern application. In ACSE ’00: Proceedings of the Australasian con-

47

ference on Computing education,

ACM.

pages 5663, New York, NY, USA, 2000.

[13] P. Dewan. Teaching inter-object design patterns to freshmen. SIGCSE Bull.,

37(1):482-486, 2005.

[14] E. Freeman, E. Freeman, B. Bates, and K. Sierra. Head First Design Pat-

terns. O’Reilly Media, Inc., 1 edit

ion, 2004.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: |Ele-

ments of Reusable Object-Oriented Software. Addisoh—Wesley Professional,

1994.

[16] P. Graham. Revenge

http:/ /www paulgraham.com /icad

of the nerds. Available | at

v.html.

[17] J. Hamer. A musical approach to teaching design patterns. In ITiCSE

'02: Proceedings of the Tth annual

n computer science education, pa

ACM.

[18] C. W. Johnson and I. Barnes. Re

conference on Innovation and technology

ges 197-197, New York, NY, USA, 2002.

designing the intermediate course in soft-

ware design.” In ACE ’05: Proceedings of the Tth Australasian conference

on Computing education, pages 24

)-258, Darlinghurst, Australia, Australia,

2005. Australian Computer Society, Inc.

[19] J. E. Lang, B. R. Bogovich, S. C| Barry, B. G. Durkin, M. R. Katchmar,

J. H. Kelly, J. M. McCollum, and

and design patterns. SIGCSE Bul

M. Potts. Object-oriented programming
., 33(4):68-70, 2001.

[20] T. C. Lethbridge. What knowledge is important to a software professional?

Computer, 33(5):44-50, 2000.

48

[21]

[22]

23]

[24]

25

T. L. Lewis, M. B. Rosson, and n. Manuel A. Pérez-Qui' What do the experts
say?: teaching introductory design from an expert’s perspective. In SIGCSE
'04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, pages 296-300, New York, NY, USA, 2004. ACM.

G. Licea, J. R: Juarez, L. G. Ma,rtinéz, and L. Aguilar. Toward a deeper
level of programming expertise for engineering students. Computer Science,
2006. ENC °06. Seventh Mexican International Conference on, pages 180
190, Sept. 2006.

O. Muller. Pattern oriented instruction and the enhancement of analogical
reasoning. In ICER ’05: Proceedings of the 2005 international workshop
on Computing education research, pages 57-67, New York, NY, USA, 2005.
ACM.

G. Network. Your guide to better movie lighting. Avail-
able at http://www.gdtv.com/techtvvault /features/41742/

Your_Guide_to_Better Movie. Lighting.html.

C. Nevison and B. Wells. Teaching objects early and design patterns in java
using case studies. In ITiCSE '03: Proceedings of the 8th annual conference
on Innovation and technology wm computer science education, pages 94-98,

New York, NY, USA, 2003. ACM.

R. Pecinovsky, J. Pavlickova, and L. Pavlicek. Let’s modify the objects-first
approach into design-patterns-first. SIGCSE Bull., 38(3):188-192, 2006.

R. Porter and P. Calder. Patterns in learning to program: an experiment? In

ACE °04: Proceedings of the sixth conference on Australasian computing ed-

49

[28]

[29]

[30]

31)

33
34

[35]

ucation, pages 241-246, Darlinghurst, Australia, Australia, 2004. Australian

Computer Society, Inc.

L. Prechelt, B. Unger, W. Tichy, P. Brossler, and L. Votta. A controlled
experiment in maintenance: comparing design patterns to simpler solutions.
In Software Engineering, IEEE Transactions on, volume 27, pages 1134—

1144, Dec 2001.

D. Reed. Incorporating problem-solving ‘patterns in csl. In SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE tecknical symposium on Computer
science education, pages 6-9, New York, NY, USA, 1998. ACM.

A. Sterkin. Teaching design patterns. Available at http://www.hadassah-
col.ac.il/cs/staff/asterkin/advCPlusProg/ Teachinggn

S. Stuurman and G. Florijun. Experiences with teaching design patterns.

SIGCSE Bull., 36(3):151-155, 2004.

] Y. Tao. Teaching software tools via design patterns. In ACSE ’00: Proceed-

ings of the Australasian conference on Computing education, pages 248-252,

New York, NY, USA, 2000. ACM.

B. Tarr. The state and strategy patterns. Available at

http://userpages.umbc.edu/ tarr/dp/lectures/StateStrategy.pdf.

E. Wallingford. Toward a first course based on object-oriented patterns.

SIGCSE Bull., 28(1):27-31, 1996.

S. Weiss. Teaching design patterns by stealth. SIGCSE Bull., 37(1):492-494,
2005.

50

[36] M. R. Wick. Kaleidoscope: using design patterns in csl. SIGCSE Bull.,
33(1):258-262, 2001.

[37] M. R. Wick. Teaching design patterns in csl: a closed laboratory sequence
based on the game of life. In SIGCSFE Bull., volume 37, pages 487-491, New
York, NY, USA, 2005. ACM.

51

Appehdixz Code and Exercises

Design Pattern Coding Patterns
Strategy Design Pattern Short Example
//Processor. java
public class Processor
{
public static void main(String(] args)
{ .
Scanner sc = new Scanner(System.in);
TextOperation op = null;"
String option = sc.nextline();
if (option.equals("wordcount"))
{
op = new WordCount (this);
}
else if (option.equals("replaceword"))
{
op = new ReplaceWord(this);
}
else if (option.equals("printpreview"))
{

op = new PrintPreview(this);

}
op.initiate(};
//Do other stuff...

//From TextOperation.java
public interface TextOperation

{

void initiate();

o2

//From WordCount.java

public class WordCount implements TéxtOperation

{

private Processor proc;

public WordCount(Processor prdc)

{ B
this.proc = proc;

}

public void initiate()

{
//Count words here

}

//From ReplaceWord.java

public class ReplaceWord implements TextOperation

{

}

private Processor proc;

public ReplaceWord(Processor proc)

{

this.proc = proc;
}
public void initiate()
{

//Count words here
}

//From PrintPreview.java
public class PrintPreview implements TextOperation

{

private Processor proc;
public PrintPreview(Processor proc)

{
this.proc = proc;

}

23

public void initiate()
{ .

//Preview the print version of the document here
}

}
Strategy Short Question

Please match the following numbered items from the preceding
example with the corresponding lettered Strategy elements.

1) WordCount

2) Processor

) PrintPreview
4) _ TextOperation
5 _ ReplaceWord

a) Context
b) Strategy

c) Concrete Strategy
Strategy Long Exercise
//This is the Code that needs to be fixed up...we want to be
//able to choose an operation to perform!
package exercises;

import java.util.Scanner;

public class Calculator {

public static void main(String[] args)

{ .
Calculator calc = new Calculator();
int one, two;
Scanner sc = new Scanner(System.in);
System.out.print("Enter a number: ");
one = sc.nextInt();
System.out.print ("Enter another number: ");
two = sc.nextInt(); '

54

System.out.println("Add: " + calc.addition{one, two));

System.out.println("Sub: " + calc.subtraction(one, two));
} , .
public int addition(int one, int two)
{
return one + two;
+
public int subtraction(int one, int two)
{
return one - two;
}

}

//Answer Space
public class Calculator
{
public static void main(String[] args)

{
//Fill in the blank on the next line

_ = null;

Scanner sc = new Scanner(System.in);
System.outlprint(“Enter a number: ’’);

int first = sc.nextInt();
System.out.print (¢ ‘Enter another number: *°);
int second = sc.nextInt();
System.out.println(‘ ‘Enter an operation: ’’);
//Fill in this part

Adapter Design Pattern Example .

//This is the (nout functional) code before the Adapter pattern
//is applied.

//TapeAdapter. java

package examples;

/*%
* A class representing a tape adapter.

50

*/
public class TapeAdapter {
public static void main(String[] args)

{
TapeDeck deck = new TapeDeck();
//These two calls will not work!
deck.play();
deck.forward(20);

}

¥

//TapeDeck. java
public class TapeDeck

{
public void playTape() { }
public void rewind(int time) { }
public void fastForward(int time) { }
}

//This is the code after the Adapter pattern is applied.

package examples;
/%%
* A class representing a tape adapter.
* This is the Client.
*/
public class TapeAdapter {
public static void main(String[] args)

{
TapeAdapterFixed deck = new TapeAdapterFixed();
deck.play();
deck.forward(20) ;
}
}
/%x

* A class representing a tape deck.
* This is the Adaptee.
*/
public class TapeDeck
{
public void playTape() { }
public void rewind(int time) { }
public void fastForward(int time) { }

o6

}

/%%

* This is the Adapter.

*/
public class TapeAdapterFixed
{

TapeDeck deck;

public TapeAdapter() {deck = new TapeDeck(); }

public void play() {deck.playTape(); }

public void forward(int time) {deck.fastForward(time); }
public void rewind(int time) {deck.rewind(time); }

}

Adapter Short Questions

Please answer the following questions about

the Adapter Design Pattern.

1. What are the names of the two classes

(out of Adapter, Adaptee, Client)

that want to communicate with each other, but cannot?

2. The Client calls the Adapter class, true or false?

3. True or false, the Adapter class contains a reference
to an object of the Adaptee type?

Adapter Long Exercise
//This is the Code that needs to be fixed up

package exercises,
public class SomeClass {
public static void main(String[] args)

{
Some0therClass x = new Some(therClass();
double pi, e;
pi = x.computePi();
e = x.computeEQ);
System.out.println("Result: " + (e * pi));
}

}

class SomeQOtherClass {

o7

public double getPi()

{
return Math.PI;
}.
public double getE()
{
return Math.E;
}
}
/**

* This class needs only one minor change.
*/
public class SomeClass

{
public static void main(String[] args)
c
//Scme0therClass x = new SomeOtherClass();
//Fill in the line that replaces the line above
double pi, e;
pi = x.computePi();
e = x.computeE();
System.out.priatln("Result: " + (e * pi));
+
}
VAT
* This class need not be touched.
*/

class SomeOtherClass {

public double getPi()

{
return Math.PI:
}
public double getE()
{
return Math.E;
}
}
pagebreak

o8

Observer Example
package examples;
‘import java.util.ArrayList;

//0Observer Example

public class ObserverExample {
ArrayList<Observer> list = nmew ArrayList<Observer>();
int one = 17, two = 13; .
public static void main(String[] args)

{
ObserverExample oe = new ObserverExample();
oe.list.add(new ObserverOne());
oe.notifyAll0bservers();
oe.one--;
oe.notifyAll0bservers();
}
public void unotifyAllObservers()
{
for (Observer o : list)
{ .
o.notify(one, two);
+
}
}
interface Observer
{
void notify(int x, int y);
}
class ObserverOne implements Observer
{
public void notify(int x, int y)
{
if ((x +y) % 10 ==0)
{
System.out.println("Divisible by Ten");
+
else

99

{ .
System.out.println("Nondivisible by Ten");

}

Observer Long Exercise
package exercises;

public class Looper {
public static void main(Stringl[] args)

{

for (int i = 0; 1 < 100; i++)

{
if (i == 5)
(.
methodl(i);
}
else if (i == 10)
{
method2(i);
}
else if (i == 20)
{
method3(1);
}
}
}
public static void methodl(int x)
{
System.out.println("Method 1: " + x);
} B
public static void method2(int x)
{
System.out.println("Method 2: " + x);
}
public static void method3(int x)
{
System.out.println("Method 3: " + x);
+

60

¥

//Write New classes here!

61

