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Abstract 

Segmentation is ajimdamental process affecting the over- 
all quality and utility of a machine vision system. Range 
Profile Tracking (RPT) is a systematic approach for stable, 
accurate and high speed segmentation of range images that 
is based on Kalman filtering. Tests of RPT have produced 
stable decompositions of second order surfaces bounded by 
jump and crease discontinuities, having a volumetric error 
of a few percent, in under 6 sec. for a wide variety of con- 
ditions. Results from over 900 tests on synthetic scenes and 
150 real range images are presented. 

1. Introduction 

Segmentation is a fundamental process affecting the over- 
all quality and utility of a machine vision system. For range 
image analysis to be of practical value and utility, segmen- 
tation algorithms should provide results which satisfy often 
conflicting requirements of speed, accuracy and robustness. 
Segmentation is a pixel-level process for partitioning data 
into meaningful groups. Measurement noise makes seg- 
mentation a challenging problem because it corrupts the 
uniformity of range data. Outliers, that result from a sens- 
ing operation, or that are naturally present at the boundary 
of two distinct shapes, also make segmentation challenging 
by corrupting local curvature estimates. 

Range image segmentation has been an active area of 
research for the past 15 years [ 11, 221. A number of good 
survey articles [2. 191 are available. The spectrum of tech- 
niques can be described in terms of a footprint, or “kernel,” 
that is used to access range data at the pixel-level [8]. The 
kemel has an associated shape, placement and processing 
scheme. A new trend in range image segmentation is the 
use of adaptive kernels. Adaptive techniques avoid the use 
of rigid geometries in determining kemel size or shape, for 
example. These types of techniques provide flexible means 
to locate kernels and use dynamic procesing mechanisms. 
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Adaptive kernels have an inherently improved robustness 
over rigid schemes, via their ability to avoid outliers. Some 
examples of other adaptive methods include schemes that 
selectively shape the kemel [5,  161, that prudently position 
it [3,18,24], and that use dynamic processing methods [13]. 
The technique described herein, Range Profile Tracking, 
(RPT) is novel in its use of adaptivemechanisms in all three 
of the above areas: shape, placement and processing. 

2. Range Profile Tracking Approach 

In RPT, kemel processing is approached as a real-time 
process of shape-profile tracking [8]. Tracking is accom- 
plished using a Kalman filter [15]. This type of approach is 
similar to time-domain predictive tracking, but here, heights 
of measurements are tracked and the independent variable is 
spatial, not temporal. This tracking operation involves a sin- 
gle spatial variable and, overall, scene data is tracked in two 
orthogonal directions resulting in two overlapping sets of 
segmented vertical profiles. The overlapping sets of profiles 
are then combined to yield a 3-D segmented scene. Some 
results of the profile tracking are presented in Figure 2. 

Hence the goal of R.PT tracking is to segment range data 
into sets of vertical profiles. Each profile is to contain a 
series of end-to-end curved segments, known as “strips”. 
The strips designate a portion of a profile having uniform 
curvature. Using Kalinan filtering (KF) provides several 
benefits. First, the state of the filter provides a description 
of surface curvature. Secondly, the predictive capability 
provides a means for segmentation. The height of each 
subsequent measurement is predicted using the KF state. 
The state covariance estimate of the filter provides a means 
to express prediction error in terms of a Mahalanobis dis- 
tance [12]. When the normalized prediction error exceeds 
a threshold, the current strip is terminated and a new one 
begun. This proceedure is depicted in Figure 1. A second 
criteriais also used to terminate strips. This uses the residual 
error between the original measurements and the strip cur- 
vature model given by the KF state. Another advantage of 
the KF is its computational efficiency when processing data 
containing a second or’der variation in shape. This reduces 
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the computational burden that would otherwise be incurred 
when using least square-based approaches to second order 
curve fitting [16, 141. 
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FigUTi? 1. A Kalman filter is used to accumulate range 
measurements. The predictive capability of the filter pro- 
vides a means to determine the boundaries of strips of range 
data. Strips designate portions of vertical profiles of having 
consistent curvature. 

In the RPT approach a kernel region is synonmous with 
a strip. Hence, the size of RPT kernels is adaptive, depend- 
ing on the extent of consistent curvature. RPT kernels are 
adaptively located using the discontinuity and consistency 
(residual error) measures described above. Processing in the 
RPT kemel is state driven, making it adaptive, too. 

Overall, one of the key computational advantages to RPT 
is the use of strips to form seed regions. This is advantageous 
because the strips are computed efficiently and because the 
seed regions tend to be relatively large, compared to the size 
of the original surface patches. 

RPT has been integrated with a Structured Light (SL) 
sensor that generates verical profiles of range data. The sen- 
sor is known as PRIME, the PRofile Imaging ModulE 191. 
Because PRIME generates profiles and RPT segments them, 
the two components are considered to be "well-matched" in 
terms of their exchanged data. These two components are 
also well-matched in terms of computational loading. The 
profile tracking operation of RPT is accomplished on-line, 
at frame rate, as profiles are generated by PRIME. (Seed 
growing is accomplished off-line in a post-processing step). 

3. RPT Formulation 

The Kalman trackers in W T  have been setup with the 
capability to follow a second order height variation, such as 
z = f( z) = ax2 + bs. + e. To track the second order shape 

profiles, state vectors for the in the form z 2 dsZ 
T 

are used with a constant-acceleration type of filter 111. This 
formulation is identical to the tracking of a time-domain 
signal that is modeled with a constant temporal acceleration, 
but for the exchange of the independent variable. 

The KF state describes the curvature of a strip from the 
perspective of its endpoint. The state includes the current 
height and slope of the tangent as well as the strip's verti- 
cal acceleration (assumed constant). A continuous model 
of the system with zero noise would have = 0. In 
practice, changes in acceleration are due to process noise 

= G(z) which is assumed to have a zero mean and a 
Gaussian density 111. The process noise associated with 
shape estimation is simply the variation of surfaces be- 
yond second order curvature. The measurement system, 
expressed in terms of a continuous position variable (z), is 
given by 

where 

A =  
0 1 0  
0 0 1  
0 0 0  

1 H = l  1 0 0 1 .  (2) 

Here, H is the KaIman filter's measurement matrix and z ,  
is a height measurement. The measurement noise G(z) is 
assumed to be Gaussian with zero mean. The state transition 
matrix associated with a sampling period of 6z is 

The discrete form of the measurement matrix, H, contains 
the same numerical values for both the continuous and dis- 
crete domains. It is assumed that the measurement un- 
certainty remains constant, and because measurements are 
scalar heights, the measurement covariance matrix reduces 
to a scalar variance ck. The intensity of the process noise is 
also assumed to remain constant. This yields a covariance 
matrix for the process noise of 

1 6x5/20 6x4/8 6z'/6 
Q = 6x3/8 6x ' /3  6z'/2 ~ q .  

I 6x3/6 62'12 62 
(4) 

where q is the process noise parameter [ 11. 
There are interesting tradeoffs between the measurement 

uncertainty U; and the process noise q [4]. Relatively large 
q values will encourage RPT to track surfaces closely, but 
will also permit measurement noise to corrupt strip cur- 
vature, tending to shorten strips due to the residual error 
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limits. Relatively large 0, discourage the KF from trust- 
ing new measurements. This worsens the tracking ability 
of the strips, but does reject more noise. A basis for se- 
lecting U, is available using the residual errors associated 
with sensor calibration [9]. The process noise parameter 
was determined experimentally. In all tests described herein 
q = 100 and um = 0.010. Because of the low sensor noise 
associated with SL and a desire for high accuracy, q was 
chosen proportionally much higher than nm. 

The nominal Kalman filter formulation allows for a num- 
ber of time-varying quantities, such as the measurement ma- 
trix, process noise, measurement uncertainty and state tran- 
sisition matfix. In RPT these quantities are time invariant. 
Because of this time-invariance and due to certain observ- 
ability and controlability properties of this formulation [ll,  
a number of the matricies in the Kalman filter equations 
converge to steady-state values. This is computationally 
advantageous, as it significantly reduces the necessary com- 
putations during RPT tracking. 

The nominal formulation of the Kalman filter equations 
is used to initialize the filter 111. A zero measurement is 
applied to the filter on successive iterations until the vari- 
ous KF matrices converge. Convergence is monitored by 
subtracting subsequent Kalman Gain matrices and apply- 
ing the infinity norm to the difference. These “stead-state’’ 
calculations are given in Eq. 6 through 8. 

Before accumulating a new measurement z y  into the fil- 
ter, a discontinuity threshold is applied to test the validity of 
including z y  in the current strip. The discontinuity thresh- 
old is expressed in terms of the Mahalanobis distance, d;, 
that describes the distance of the measurement away from 
the estimate of the current state [12, 11. 

di = ( zy  - H B i ) T A - l ( ~ T  - HBi) ( 5 )  
where A is the measurement covariance matrix and Bi is the 
estimate of the current state. For WT, in steady state, this 
reduces to 

where 2, is the current height estimate, which is available in 
the vector containing the predicted state. The accumulation 
of a new measurement into the filter requires only 2 steps in 
steady state. First, the state must be advanced with 

(6 )  d .  2 - - ( * i  -m - z i ) 2 / g &  

a; = 5; + K;(z,” - Ha;) (7 )  

where, K; is the Kalman Gain matrix. Second, the state 
estimate for the next iteration is found with 

4. Experimental Validation of RPT 

Experimental validation of RPT was necessary in order 
to quantify performance. These metrics include computate 

speed, accuracy and stability. Here stability refers to the 
consistency of results. Stable scene decompositions will 
remain consistent in size and shape in the presence of small 
perturbations of the input scene conditions. 

A controlled environment was needed that allowed 
ground truth to be compared with processed results. Syn- 
thetic scenes provided this type of condition. In order to 
achieve statistically valid performance estimates, Monte 
Carlo analyses [20] were run in large numbers with ran- 
domly generated scenes. The tests with real scenes used 
objects with shapes similar to the synthetic ones. 

A 150x150 grid of range data has been used with RPT in 
testing. Synthetic range data was corrupted with both zero- 
mean Gaussian and spike noise. Tests ramped the Gaussian 
noise level from um =: 0.010 to 0.030 inches. Spike noise 
was added with a probability of 5%. Note that spike noise 
was practically nonexistent in the real scene data. 

Scene conditions for both real and synthetic tests were 
designed to include the fundamental three types of shape 
discontinuities: jump, crease and curvature [13]. These 
have discontinuities in the zeroth. first and second spatial 
derivatives of height, respectively. Both first and second 
order surfaces were also used. See Figure 2. The objects 
generated in each synthetic scene were randomly positioned 
and oriented, and had random dimensions. Disturbances in 
position and orientation were also introduced for the objects 
used in real scenes. 

Three measures halve been used to quantify RPT per- 
formance: (1) perceniage of trials with correct number of 
segmented regions, (2) percent error in volume, and (3) com- 
pute speed. The percentage of trials with the correct number 
of final regions is recorded under “Percent Trials OK’: in 
Table 1. It demonstrates the overall stability of the segmen- 
tation. Only on trials with the correct final number of regions 
were the other perfomnance measures tallied. The tests in- 
dicate a volumetric error of less than 10% and processing 
time under 6 sec for both jump and crease discontinuities. 
These tests also had ai stability measure that scored better 
than M 90%. RPT processing of scenes with curvature dis- 
continuities was somewhat less successful. These types of 
discontinuities are more difficult for the RPT approach to 
handle because their bloundaries are not revealed as crisply 
during the initial profile segmentation process. 

5 Concluding Remarks 

The objective of this research was to develop a stable, 
accurate and high speed approach to range image segmen- 
tation. Available techniques demonstrate very good shape 
characterization abilities, but tend to be somewhat slow rel- 
ative to RPT. typicallly requiring at least x 1 minute of 
processing. RPT is an order of magnitude faster than these 
techniques. RPT has demonstrated a volumetric accuracy 
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Test 
Type 

Jump 

Crease 

curv. 

. .  

. . _  . -. 
:. .. :.. - . - .  . . . .  

Std. Dev. of Trials Volumetric Duration Duration 
Gaussian Noise OK / Total Error On-Lne Off-Lne 

(inches) (%/Num) (%) (Sec) (Sec) 
0.010 90 / 100 0.3 0.012 3.2 
0.020 89 I100 0.3 0.012 3.4 
0.030 95 1100 0.3 0.012 3.2 
0.010 99 1100 2.4 0.012 5.9 
0.020 91 1100 3.1 0.013 5.9 
0.030 89 1100 2.4 0.012 5.9 

0.010 98 1100 10.1 0.012 6.5 
0.020 93 1100 14.2 0.012 6.7 
0.030 90 I100 32.1 0.012 6.7 

'e) 

. .  . . .  
. . .  . .  

Figure 2. Synthetic scenes used in RPT testing. Measurements of a second ordersurface bounded by jump discontinuities appeurs 
in (a). Orthogonal sets of strips appear in (b) and (c), and the jinal segmented sugace in (d). The measurements and suifaces of 
two planar regions separated by a crease discontinuity are shown ir. (e)  and @. Measurements and surfaces for tests of curvature 
discontinuities appear in (g) and (h). Note that measurements and strips along the 'yoor" of the synthetic scenes were not plotred. 
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Test 
Type 1 Trials Volumetric Durabon Duration 

OK I Total Error On-!-me Off-Line 
(%/Nu”) (%) (Sec) (Sec) 

of a few percent and a stability measure above 90% under a 
wide variety of conditions and in many hundereds of tests. 

[8] F. W. DePiero and M. M. Trivedi. Range profile tracking 
(RPT): A profile-based approach for robust and real-time 
range image segmentation. Under Revision for IEEE Pattern The noveltv of the RPT amroach is an adantive kemel 

Jump 
Crease 
Curv. 

I. 

Analysis and Machi,ne Intelligence, Resubmitting in 1996. 
[9] F. W. DePiero and Ilvi. M. Trivedi. 3-d computer vision us- 

ing structured light: Design, calibration and implementation 
issues. Advances in Commters. 43. To Amear in 1996. 

that is based On K*an This the 
kemel to become arbitrarily large - provided consistency of 
the underlying surface curvature estimate is maintained. The 

~, , ~I . ,  
94/50 1.8 0.012 
86/50 1.2 0.012 
76/50 54.0 0.013 8.2 

large kemel size helps to improve curvature estimation, The 
use of Kalman filtering provides a computationally efficient 
means of modeling second order curvature. 

The ability to sense objects as they move continuously 
past a structured light sensor is an important capability for 
red applications as it eliminates the need for any stop and go 

[lo] F. W. DePiero, M. Ivl. T h e d i .  and S.  Seithn. Graph match- 
ing using a direct cl.assification of node attendance. Pattern 
Recognition, 29(6), 1996. 

[ll] R. 0. Duda, D. Nitzan, and P. Barnett. Use of range and 
reflectance data to find planar surface regions. IEEE Trans. 
on PatternAnal. Machine Intell., 1(3):254-271. 1979. 

[12] 0. D. Faugeras. Three-Dimensional Computer Vision, A Ge- 
motion to support sensing. This objective supports a wealth 
of application areas in industry [23, 71. Future efforts in the 
area of geographically-distributed advanced manufacturing 
are of interest. Because of the speed of RPT processing, 
applications of RPT in Active Vision systems [17, 6,  211 
are also of interest. Future extensions to PRIME and RPT 
include integration with a novel graph-matching technique 
for object recognition [lo]. 
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