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Abstract 

The ‘basis graph’ approach to structural matching 
uses a fixed set of small (4 node) graphs to 
characterize local structure. We compute mapping 
probabilities by first finding the probability of a basis 
graph being an induced subgraph of the input graph. 
The similarity of these probabilities is used to compare 
nodes of the input graphs. The method permits 
common subgraphs to be identified without the use of 
any node or edge coloring. We report on an improved, 
simpler, version of the algorithm, which has also been 
optimized. Performance is compared with the LeRP 
method, which is based on length-r paths. Both 
methods are approximate with polynomial bounds on 
both memory and on the worst-case compute effort. 
These methods work on arbitrary types of undirected 
graphs, and tests with strongly regular graphs are 
included. Monte Carlo test trials (3000+) included up 
to 100% additional (noise) nodes. 

1. Introduction 

In this paper we address the problem of finding the 
maximum common subgraph via methods appropriate for 
real-time measurement systems. Our approach has 
polynomial bounds on memory and on worst-case 
compute effort. Graph matching is accomplished solely 
via comparisons of structure; without node or edge 
attributes. No assumptions on graph structure (planar, for 
example) are made herein. Our methods do ensure a one-
to-one mapping between nodes in the two input graphs, 
and ensure the resultant common subgraph is a valid 
subgraph. However the method is approximate (inexact), 
so no guarantee of a maximum number of common nodes 
is asserted. 

We target a method for graph matching with broad 
applicability. Of particular interest are real-time 
applications where an approximation to the maximal 
common subgraph is acceptable, provided it can be found 
deterministically. For example in range data registration, 
having fewer nodes than the maximum common subgraph 
is tolerable, but lengthy computations are not [4]. Use of 

graph matching in this application permits the steps of 
determining correspondence and pose to be separated and 
computed in a deterministic fashion. 

In general, noise in sensor data impairs the ability to 
compare graph attributes. This effectively lowers the 
dynamic range of coloring. Our method is optimized to 
handle little or no coloring, and hence can perform well in 
applications with noisy sensor data. In this paper we 
restrict coloring to integer values with a range of 0 (no 
coloring) and 2 (two distinct colors). Also to demonstrate 
the capabilities of our technique we include test trials with 
strongly regular input graphs (a challenging style [16]). 

2 3 32 

0 
0 1 1 0 3 2 

Figure 1. Optimal 4-node basis graphs used to 
characterize the local structure of input graphs. Note 

the varied structure (loops of length 0, 3 and 4). 

Established methods for graph matching may be 
categorized as either exact or approximate. As the 
problem of finding a maximum common subgraph is 
know to be NP-complete, exact methods inevitably have 
an exponential worst-case compute effort. Recently 
published approximate methods include [10] [12] [15] [9] 
[7] [19-22]. The technique in [10] by Messmer, for 
example, is optimized for large databases of objects that 
may contain similar subgraph structures.  Subgraphs that 
are common among a suite of known input graphs are 
identified in a preprocessing step to create a library. These 
commonly occurring subgraphs are then identified in 
input data graphs. This method is efficient during 
recognition, but does require preprocessing time to build 
the recognition library. It also uses attributed graphs.  

The ‘basis graph’ (‘BG’) approach [17] is approximate 
and is compared to another such method ‘LeRP’, which is 
based on length-r paths [5]. Basis graphs are small graphs 
(4 nodes) that are used to describe local structure in an 
input graph. See Figure 1.  
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2. Comparing Graph Structure Dynamically 

A feature that distinguishes the BG and LeRP methods 
from other techniques has to do with the size of the 
neighborhood used to compare local graph structure. We 
refer to the size of this neighborhood as the ‘horizon’. 
Approaches employing larger horizons may be able to 
describe local structure better. This is particularly so 
when comparing neighborhoods that are structurally 
consistent. In our techniques the size of the neighborhood 
varies dynamically – the more similar the structure, the 
larger the neighborhood.  

While a larger horizon may be preferable in general, 
global constraints are still needed to reliably approximate 
the maximum common subgraph. This may be 
accomplished in a variety of ways, for example by 
making soft assignments and iterating [7], by relaxation 
[2][8][15], via MAP probabilities and hill climbing [3], or 
via MAP & EM [9]. We use a relaxation method. 

In this paper we seek to find an optimum set of basis 
graphs capable of describing structure for a wide range of 
input graphs (strongly regular, banded, with and without 
coloring, etc.). Our use of a set of small graphs is similar 
in concept to Messmer [10]. However, here we are 
striving to find an optimum basis useful for any input 
graphs; rather than a basis optimized for a given set of 
inputs.  

The degree of variation in structure of our basis 
graphs, of Wilson & Hancock’s supercliques [15] and of 
Messmer’s dictionary is another possible taxonomy to 
compare approaches. In our studies, a more varied 
structure performs better. (See Figure 1). 

3. Basis Graph Algorithm 

Basis graphs are used to describe local structure. We 
approximate a probability density function p1[ni][nx][b] 
which describes how likely a subgraph of an input graph 
G1, will match the structure of a particular basis graph. 
The PDF, p1, gives the probability of having matching 
(local) structure when the basis graph has its first node 
associated with node ni of G1, and its bth node associated 
with nx (of G1). Similarly, we find p2[nj][ny][b] for the 
other input graph G2. Estimates of a mapping probability 
P[ni][nj] are determined by finding the closest matching 
pairs of p1 and p2 values. An a-priori model related the p1-
p2 differences to the probability of ni being mapped to nj 
in the common subgraph. A-priori probabilities of the 
best-case matching pairs of p1, p2 are combined via 
Dempster-Shafer [19] to estimate P[ni][nj]. A fixed 
number of relaxation iterations are then used to refine 
P[ni][nj] and to determine the final mapping. 

More specifically, we estimate p1[ni][nx][b] via a 
histogram h1[ni][nx][b]. The histogram h1 counts the 

number of occurrences of a selected basis graph, B (V 
nodes), exactly matching a subgraph of the input G1. All 
permutations of k nodes of G1 are examined. The k nodes 
of B and of G1 are compared via their adjacency matrices, 
which must match exactly for h1 to be incremented. We 
vary k from 2 to V. When a match occurs with the first 
node of the basis associated with node ni of G1 and node b 
of the basis associated with node nx of G1, then we 
increment h1[ni][nx][*]. The PDF estimate, p1, is found by 
normalizing h1, and p2 is found similarly. The p1, p2 PDFs 
describe local structure only and could be computed in 
parallel. 

Next we determine initial estimates of the mapping 
probabilities P[ni][nj]. For each pair of nodes ni, nj in G1, 
G2, respectively, we search for p1[ni][*][*] and 
p2[nj][*][*] values which are similar. For ni, nj, we find 

MIN{ p1[ni][nx][b]  - p2[nj][ny][b] } 
by searching over all nx, ny, b entries. We require p1 and 
p2 values to be nonzero. At most one selection is made for 
each nx, ny value. We define  

pw = Nb( p1[ni][nx][b] - p2[nj][ny][b] ) 
as the wth minimum difference found for a particular 
value of b, where Nb () is a probability computed via an a-
priori Gaussian model. The mapping probability  

P[ni][nj] = DS{ pw } for all w, 
where DS{} is the Dempster-Schafer rule to combine 
evidence [19]. A separate Gaussian model Nb() is 
prepared for each node, b, of each basis graph. 

The a-priori models describe the likelihood of a given 
p1-p2 difference occurring for nodes ni, nj that should be 
associated in the common subgraph. These models 
describe the variations under given structural noise 
conditions. 

The matching algorithm may readily be expanded to 
include comparisons of graph color or other attributes. 
These restrict potential matches, improving performance 
in terms of both speed and the size of the common 
subgraph. Compared to [17], this version of the BG 
algorithm is simpler, includes the a-priori PDFs, and an 
optimal choice of basis graphs. FYI, we consider the 
(dynamic) neighborhood for node ni of G1 to consist of all 
nodes nx, where p1[ni][nx][*] is non zero. 

4. Finding the Optimal Set of Basis Graphs 

We seek results that are as broadly applicable as 
possible. Hence we select a relatively wide range of 
conditions for our input graphs during the optimization 
process. We generate four different styles of random 
graphs: Model A [13], strongly regular, and ‘banded’ with 
and without color. Parameters associated with these styles 
of inputs are also varied, as is the structural noise level. 
Generation via Model A is analogous to flipping a 
weighted coin to determine the existence of an edge. Edge 
probabilities varied (0.2, 0.3). Strongly regular graphs 



 
  

   

   
   

 

  
 

 

 

    

 

 
 

 

 
 

 
 

  
 

 
 
 

  

 

  

 
 

 

  
 

 
 

 

 

 

  

were included to provide a challenging test case [16] and 
the target degree varied (4, 6). Banded graphs have a band 
limited adjacency matrix [17] [5]. Banded graphs are a 
useful approximation to both natural and man-made 
structures (e.g. chemical molecules and VLSI circuits). 
This is a minimum bandwidth over all node orderings. 
Input graphs had 16 or 32 nodes, nominally. Noise levels 
varied from 0%, 50% and 100% additional nodes. Noise 
edges were randomly added A limited amount of coloring 
was also introduced into the optimization, to help broaden 
the applicability of our results. 

When the BG algorithm operates with multiple basis 
graphs, it simply uses each one in turn and selects the 
final result that is the largest common subgraph. Hence 
examining various combinations of individual basis 
graphs provides an assessment for the performance of a 
team. We run Monte Carlo test trials under varying 
conditions for individual basis graphs, store the results, 
and then examine team membership.  

In finding an optimal basis set, we examined basis 
graphs with 4 nodes. (Chosen via data from prior work 
[17], based on an accuracy versus speed tradeoff). With 
these small basis graphs, the optimum set (‘team’) could 
be assessed via enumeration. We examined teams of size 
T, 1 to 5. Larger teams perform better of course. Finally, 
we selected a team size by identifying a point of 
diminishing returns. See Table 1. 

Table 1. Performance for varying team sizes. 
Mean # Nodes 88% 92% 94% 95% 96% 
Team Size, T 1 2 3 4 5 
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Figure 2.  Histogram of number of teams versus 
mean size of common subgraph. Histogram includes 

all possible teams with three 4-node basis graphs. 

Figure 2 shows a typical histogram of team 
performance. This gives the number of teams vs. the 
mean number of nodes in the common subgraph (varying 
from 14.5 to 15.1). Teams had 3 basis graph members. 

Results from Figure 2 indicate that there are many 
possible teams that yield near optimal performance. We 
feel the stability of our choice for an optimum basis set is 
an important consideration for reporting a more general 

result. To best identify an optimal team (or team 
characteristic) we selected basis graphs that often 
appeared in the better-performing teams (with varying 
size). The three most commonly appearing are shown in 
Figure 1. We intend this approach to improve stability for 
our selection, rather than reporting the very best team. 

Table 1 shows the performance of teams of basis 
graphs, of varying size (T). The ‘mean # nodes’ refers to 
the average number of nodes in extracted common 
subgraphs, relative to the number of nominal nodes in the 
input graph before adding noise nodes. Based on these 
results, we select teams with T=3 basis graphs, which 
appears to be the point of diminishing returns. 

Note the optimal basis graphs shown in Figure 1 
possess fundamentally different structures, in terms of the 
number and size of loops. From an intuitive standpoint, 
we believe this variation in structure is important for 
achieving better performance 

Table 2. Performance benchmarks. Inputs with ‘Color-2’ 
had integer-valued colors for node & edge attributes 

(dynamic range=2). Inputs ‘N=32’ had 32 nodes 
Type of Input  Noise BG LeRP 
Model A (0.2) 0% 99 ± 4 % 100 ± 2 % 
Model A (0.3) 0% 100 ± 0 % 100 ± 0 % 
Model A (0.2) 50% 85 ± 16 % 63 ± 11 % 
Model A (0.3) 50% 94 ± 13 % 55 ± 9 % 
Model A (0.2) 100% 77 ± 12 % 63 ± 9 % 
Model A (0.3) 100% 75 ± 14 % 56 ± 6 % 

Regular (3) 0% 100 ± 1 % 89 ± 13 % 
Regular (4) 0% 100 ± 0 % 99 ± 4 % 
Regular (3) 50% 78 ± 12 % 68 ± 8 % 
Regular (4) 50% 86 ± 15 % 61 ± 8 % 
Regular (3) 100% 74 ± 8 % 69 ± 8 % 
Regular (4) 100% 75 ± 10 % 64 ± 6 % 
Banded (4) 0% 99 ± 3 % 99 ± 4 % 
Banded (6) 0% 100 ± 1 % 99 ± 6 % 
Banded (4) 50% 96 ± 8 % 94 ± 9 % 
Banded (6) 50% 95 ± 9 % 90 ± 11 % 
Banded (4) 100% 96 ± 7 % 95 ± 8 % 
Banded (6) 100% 93 ± 10 % 88 ± 13 % 

Banded (4) Color-2 0% 100 ± 0 % 99 ± 4 % 
Banded (6) Color-2 0% 100 ± 0 % 97 ± 6 % 
Banded (4) Color-2 50% 100 ± 0 % 94 ± 8 % 
Banded (6) Color-2 50% 100 ± 0 % 86 ± 12 % 
Banded (4) Color-2 100% 100 ± 0 % 95 ± 8 % 
Banded (6) Color-2 100% 100 ± 0 % 91 ± 11 % 
Banded (4)  (N 32) 0% 96 ± 10 % 97 ± 4 % 
Banded (6)  (N 32) 0% 93 ± 13 % 98 ± 3 % 
Banded (4)  (N 32) 50% 98 ± 5 % 96 ± 7 % 
Banded (6)  (N 32) 50% 92 ± 13 % 95 ± 5 % 
Banded (4)  (N 32) 100% 91 ± 11 % 97 ± 4 % 
Banded (6)  (N 32) 100% 90 ± 14 % 95 ± 5 % 



 
 

 
   

  
 
 

  

 
  

  
   

  

 
 

 
 

 

 
 
 

   
 
 
 

 

 
  

 
 

 

 

 

 
 

 
  

 
  

  

 

  

 

 

   
 

  
  

 

 

 
 

 

 

 

  

 

   
 

 
 

 
  

 
 

 
 

5. Test Results Using the Optimal Basis 

Monte Carlo-style testing was used to benchmark 
performance in terms of the mean size of the common 
subgraph. A test trial began by generating graphs G1 and 
G2 identically, randomizing node order, and then 
randomly adding nodes and edges to the G2 input. 
Although input graphs were randomly generated, the trials 
employed were restricted to cases of connected graphs. 

The mean size of the common subgraph is reported in 
Table 2. Tests included graphs generated via Model A 
(edge probability 0.2, 0.3) and strongly regular graphs 
(degree 3, 4). The size the initial graph was fixed at 16 
nodes, except as noted (N=32). The number of noise 
nodes added to G2 varied: 0%, 50% and 100% of the 
initial size. Results show that BG performs better than, or 
similar to LeRP. LeRP may perform slightly better for 
larger graphs (it can form larger neighborhoods). Note 
performance of BG with very modest color is ideal in 
these trials (3000 reported, total). 

6. Compute Effort & Memory Requirements 

The compute effort and memory requirements for 
each stage of the algorithm are given in Table 3. This 
assumes an N-node input, and a V-node basis. The 
number of relaxation iterations, R, was fixed for all 
reported tests. T is the number basis graphs used in teams. 

As the compute effort increases with TNV the size of 
the basis graph is an important issue. We compared 
performance with somewhat larger teams with smaller 
bases vs. smaller teams with larger bases and chose V=4. 
The parameter V remains fixed in all our reported trials. 

 Processing Step
 Effort 
 Memory 

1 
Find p1, p2
 O(TNV ) 
O(VN2) 

2 
Find P[ni][nj] 
O(TVN2) 
O(N2) 

3 
Relaxation 
 O(TRN2) 
O(VN2) 


Table 3. Order of computational effort and memory.


7. Conclusion & On-Going Studies 

Our technique for graph matching is deterministic and 
does not relay on any node or edge attributes (coloring). 
The basis graph technique incorporates a dynamic 
comparison horizon, as does LeRP. The dynamic nature 
of the neighborhood allows more local structure to be 
included in comparisons of noise-free portions of input 
graphs, benefiting local comparisons. 

We are interested in possibilities for an HDL-based 
hardware implementation. We are also studying a 
variation on the described method to estimate the p1 
probabilities via random comparisons of the basis graphs 
versus input graphs. Our software is available [6]. 
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