
Multibody Syst Dyn (2011) 25: 225–244
DOI 10.1007/s11044-010-9225-8

Rider motion identification during normal bicycling
by means of principal component analysis

Jason K. Moore · J.D.G. Kooijman · A.L. Schwab ·
Mont Hubbard

Received: 18 December 2009 / Accepted: 9 September 2010 / Published online: 9 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Recent observations of a bicyclist riding through town and on a treadmill show
that the rider uses the upper body very little when performing normal maneuvers and that
the bicyclist may, in fact, primarily use steering input for control. The observations also
revealed that other motions such as lateral movement of the knees were used in low speed
stabilization. In order to validate the hypothesis that there is little upper body motion during
casual cycling, an in-depth motion capture analysis was performed on the bicycle and rider
system.

We used motion capture technology to record the motion of three similar young adult
male riders riding two different city bicycles on a treadmill. Each rider rode each bicycle
while performing stability trials at speeds ranging from 2 km/h to 30 km/h: stabilizing while
pedaling normally, stabilizing without pedaling, line tracking while pedaling, and stabilizing
with no-hands. These tasks were chosen with the intent of examining differences in the
kinematics at various speeds, the effects of pedaling on the system, upper body control
motions and the differences in tracking and stabilization.

Principal component analysis was used to transform the data into a manageable set orga-
nized by the variance associated with the principal components. In this paper, these principal
components were used to characterize various distinct kinematic motions that occur during
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stabilization with and without pedaling. These motions were grouped on the basis of cor-
relation and conclusions were drawn about which motions are candidates for stabilization-
related control actions.

Keywords Bicycle · Principal component analysis · Motion capture · Human control

1 Introduction

Much progress has been made in understanding the rigid body dynamics of an uncontrolled
bicycle [1, 2] and various control schemes have been explored for tracking purposes [3–5],
but little is understood about how a bicyclist stabilizes a bicycle during normal riding. A bi-
cycle and rider system is unique among vehicles in that the rider is 80 to 90% of the total
mass of the system, the system is laterally unstable, and the rider is flexibly coupled to the bi-
cycle in such a way that many body motions can be used as control inputs. Previous research
into realistic bicycle control has focused on both steering and rider lean as control inputs,
but there has been no experimental verification of which motions a rider actually uses for
control. Recent observations of a bicyclist riding through town and on a treadmill [6] show
that the rider moves the upper body very little when performing normal maneuvers and that
the bicyclist may, in fact, primarily use steering input for control. This corresponds well
with the fact that control by leaning requires high gains compared to the gains required for
steering when employing an optimal control strategy on a model [3–5]. The observations
also revealed that the rider may use other control inputs such as drastic knee movements
at low speeds. These conclusions were drawn by visually reviewing video data, so a more
rigorous objective method of characterizing the dominant movements of the bicyclist while
stabilizing a bicycle was needed. In order to validate the hypothesis that there is little upper
body motion during normal cycling, motion capture techniques were used on the bicycle and
rider system with the intent to employ principal component analysis to identify the major
motion patterns.

Principal component analysis has successfully been used with data collected from motion
capture techniques to identify the dominant modes of motion of a person walking on a
treadmill [7] and to characterize different types of walking. We use similar methods for
steady, normal bicycle riding on a treadmill. Cyclic motions, such as pedaling, are easily
identified and separated from the other less cyclic control actions. Identifying the patterns of
movement gives insight into which body movements are primarily used and are candidates
for control inputs. This will be valuable for our overall research goals that include the design
of a realistic biomechanical-based control system of a bicycle rider, among other things.

2 Experiments

To test our hypotheses, three riders performed a set of stability tasks in a controlled envi-
ronment while the motion of the bicycle and rider were collected with a motion capture
system. The tasks were performed on a 3 × 5 meter treadmill Fig. 1 capable of belt speeds
up to 35 km/h. The treadmill was chosen because the envelope of space was suitable for
the motion capture system and it eliminated any disturbances such as wind, rough ground,
and obstacles. We chose three male riders of similar age [31, 23, 26 years], build [height
(1.76, 1.84, 1.83 m) and mass (72, 74, 72 kg)]. We also used two different Dutch bicy-
cles: a 2008 Batavus Browser with a 3 speed hub and a 2008 Batavus Stratos Deluxe with
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Fig. 1 The 3 × 5 m treadmill at the Vrije Universiteit Amsterdam

a 7 speed hub. The Browser is described by the manufacturer as “stable” and the Stratos
Deluxe as “nervous.”

We made use of the Optotrak Certus Motion Capture System [8] to record the motion
of the bicycle and rider during the stability tasks. The system is based on active infrared
emitting markers that are placed on the moving bodies and connected to a central control
unit. Each marker emits a sequential infrared signal and the infrared pulses are captured
by camera modules each containing three cameras. The accuracy of the three dimensional
measurements is ±0.15 mm [8]. The system has no hardware-based noise reduction. Wiring
harnesses were built for both the rider and the bicycles to facilitate easy bicycle and rider
exchange Fig. 2.

The marker coordinates were measured with respect to an inertial frame, M, where the
plane normal to m̂3 is coplanar with the treadmill surface and m̂3 is directed upward. We
collected the three dimensional locations of 31 markers, 11 of which were located on the
bicycle and 20 mapped the rider Fig. 3.

The markers were placed on the bicycle so that we could easily extract the rigid body
motion (i.e., body orientations and locations) of the bicycle frame and fork. Four markers
were attached to the fork and seven markers were attached to the rear frame. A marker was
attached on the right and left sides of the center of each wheel, the seat stays, the ends of
the handlebars, and the head tube. A single marker was also attached to the back of the seat
post.

We recorded the locations of 20 points on the rider Fig. 3: left and right sides of the helmet
near the temple, back of the helmet, shoulders (greater tuberosity of the humerus), elbows
(lateral epicondyle of the humerus), wrists (pisiform of the carpus), between the shoulder
blades on the spine (T6 of the thoracic vertebrae), the tail bone (coccyx), midpoint on the
spine between the coccyx and shoulder blades (L1 on the lumbar vertebrae), hips (greater
trochanter of the femur), knees (lateral epicondyle of the femur), ankles (lateral malleolus
of the fibula) and feet (proximal metatarsal joint). The body markers were not necessarily
placed such that a complete rigid body model could easily be fit to the data. This was done
to save setup and processing time because we only wanted a stick figure representation of
the rider that allowed us to visually observe the dominant motions of the rider.
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Fig. 2 (a) Rider 1 and the Batavus Stratos Deluxe with marker positions. (b) Body marker positions visible
from the rear

The stability tasks were designed such that the rider would ride at a constant speed within
the range of 2 to 30 km/h. The bicyclists were told to maintain an upright straight-ahead
course on the treadmill and to look into the distance, with exception of the line tracking
task. The bicyclists were instructed to bicycle comfortably at the designated speed and
data recording was started at random. In all cases, the subject rode at the set speed until
comfortable, then data was taken for 60 seconds at a 100 hertz sampling rate. Each task
was performed on both bicycles with each rider. The following list describes the various
tasks:

Normal pedaling The subject was instructed to simply stabilize the bicycle while pedaling
and keep the heading in approximately the forward direction. The speed
started at 5 km/h and increased in 5 km/h increments up to 30 km/h. The
speeds were then decreased in the same fashion to 5 km/h. From then
on the speed was decreased in 1 km/h increments until the subject was
not able to stabilize the bicycle any longer. Therefore, there were two
sets of data for each speed and each bicycle except speeds below 5 km/h.
Several additional runs were also performed with the rider pedaling using
a different gear, and thus a different cadence.

Without pedaling This was the same as the normal pedaling task except that a string was
attached to the head tube of the bicycle such that the bicycle was fixed
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Fig. 3 Schematic of the marker
positions. The rider and bicycle
are colored light gray and dark
gray, respectively

longitudinally relative to the treadmill and no pedaling was required. The
rider kept the feet in the same position throughout the task.

No-hands The riders stabilized the bicycle without using steering for control. They
were instructed to keep their hands on their hips while bicycling. The
rider started at 30 km/h and decreased in 5 km/h increments through
20 km/h and thereafter the speeds were decreased in 1 or 2 km/h incre-
ments until the rider was not able to comfortably stabilize the bicycle.

Line tracking This was the same as normal pedaling except that the rider was instructed
to track a line on the treadmill surface with the front wheel. A smaller
subset of speeds was performed.

These tasks were designed with the intent to answer several questions:

1. What upper body motions are used while bicycling?
2. How does the system motion change with respect to changes in forward speed?
3. How does pedaling influence the control actions?
4. Can the open loop rigid body dynamics be detected in the controlled state?
5. What does the rider do differently to control the bicycle when riding no-hands?
6. Do different bicyclists perform similar motions while performing the same task?
7. Is there a difference in motion when stabilizing and trying to track a line?

Since there is no room to address all of these questions in this paper, we focus on a sin-
gle rider on the Browser bicycle and two of the tasks: normal pedaling and without ped-
aling. We were able to draw some conclusions on questions 1 through 4 with this smaller
data set.
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Fig. 4 Eigenvalues of the
Browser bicycle with the third
rider rigidly attached as a
function of speed. Note that the
initially unstable weave motion
becomes stable above 16 km/h,
the weave speed

3 Open loop rigid body dynamics

One question we have is whether or not the eigenfrequencies of the weave motion for the
uncontrolled system can be detected in the results from the stabilization tasks. In order to
predict the uncontrolled (open loop) eigenvalues of the rigid rider system, the basic geome-
try, mass, center of gravity locations, and moments of inertia of the bicycle were measured.
Also, the riders were measured and weighed such that the body segment geometry, mass,
center of gravity locations, and moments of inertia could be estimated. The physical para-
meter estimation methods are described in [9]. This data was used to calculate eigenvalues
and eigenvectors of the uncontrolled open loop system Fig. 4.

4 Data processing

4.1 Missing markers

The Optotrak Certus Motion Capture System [8] is based on the cameras’ ability to detect
the infrared light from the sensors so there are occasional gaps in the coordinate data due
to the markers going out of view. We attempted to minimize this by careful marker and
camera placement but were not able to totally eliminate the error. Any missing markers on
the bicycle were reconstructed using the assumption that the bicycle is a rigid body. We
had more than three markers on both the frame and fork, so if one marker location was not
detected we used the relative location of the remaining markers to reconstruct the missing
marker. The gaps in the data of the markers on the human were repaired by fitting a cubic
spline through the data. The spline estimated the marker coordinates during the gaps. We
only used the splined data if the gaps were less than 10 time steps, or 0.1 sec; otherwise the
trials were discarded.

4.2 Relative motion

We were interested in the analysis of three different marker combinations: the bicycle alone,
the rider relative to the bicycle and the bicycle and rider together. The motion of the bicycle
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Fig. 5 Diagram of the bicycle’s inertial frame N, rear frame B, front frame E and configuration variables

and the bicycle-rider were calculated with reference to the N inertial frame1 and the motion
of the rider was calculated with respect to the rear frame of the bicycle B Fig. 5. These
three marker combinations allowed us to differentiate more easily between rider specific and
bicycle specific motions. Furthermore, six of the variables that describe the configuration
of the bicycle in time were calculated to give insight into the rigid body dynamics. The
configuration variables q1 and q2 locate the contact point of the rear wheel of the bicycle.
The B frame captures the yaw (q3) and roll (q4) motions of the bicycle frame, the D frame
is an intermediate frame that differs from B only by the bike’s headtube angle (λ), and the E
frame captures the steering angle (q7) of the bicycle fork relative to the bicycle frame. The
pitch of the bicycle frame (q6) is assumed to be zero. Details of these calculations are shown
in Appendix.

4.3 Principal component analysis

We used Principal Component Analysis, PCA, [10] to extract and characterize the domi-
nant motions of the system. Calculating the principal components effectively transforms the
space of the data to a space that maximizes the variance of the data. The typical advantage of
PCA is that the dimension of the system can be reduced and still retain enough information
to adequately describe the system. We are primarily interested in the way that PCA is able
to extract linear components and rank them in order of variance from the mean position. If
we assume that the components with the largest kinematic variance are motions that are the
dominant motions used for control and propulsion (which in general is not necessarily true
for dynamical systems) the comparison of these components for different riding conditions
can give insight into what motions may be important for developing a biomechanical control
model of the bicyclist.

1The N frame is used instead of the M frame to comply with the vehicle coordinate standards used in [1].
See Appendix for the derivation.



232 J.K. Moore et al.

The repaired data from the motion capture measurements contained the x, y, and z coor-
dinates of each marker 1 through l at each time step j = 1,2, . . . , n. Each marker has three
coordinates so there are a total of m = 3l coordinates i = 1,2, . . . ,m. The coordinates at
each time step can be collected in vector pj .

pT
j = [x1j · · · xlj y1j · · · ylj z1j · · · zlj ] = [p1j p2j · · · pmj ]

We can organize these coordinate vectors into a matrix, P, where the rows, i, map a single
coordinate of a marker through n time steps.

P =
⎡
⎣

| | | |
p1 p2 · · · pj · · · pn

| | | |

⎤
⎦

The principal components were calculated for the three marker combinations as de-
scribed earlier where n = 60 × 100 = 6000 time steps. The number of rows of P were
(m = 3 × 31 = 93), (m = 3 × 11 = 33) and (m = 3 × 20 = 60) for the bicycle-rider, the
bicycle alone and the rider alone, respectively.

One method of determining the principal components is to calculate the eigenvectors of
the covariance matrix of the mean-subtracted data. We begin by calculating the mean u (1)
of the rows of P and subtracting it from each column of P to form the mean-subtracted data
matrix P̄, (2).

u = 1

n

n∑
j=1

pj (1)

A vector of ones

hT = [h1 h2 · · · hj · · · hn] where hj = 1 for all j

allows us to subtract u from each column of P,

P̄ = P − uhT (2)

The covariance matrix C of P̄ can then be calculated with (3).

C = 1

n − 1
P̄P̄T (3)

Calculating the eigenvectors vi and eigenvalues λi of the covariance matrix effectively trans-
forms the space to one where the variances are maximized and the covariances are zero. The
eigenvectors are the principal components of the data set and the corresponding eigenval-
ues represent the variance of each principal component. The eigenvectors are ordered by
decreasing eigenvalue where v1 is the eigenvector corresponding to the largest eigenvalue.
The eigenvalues and eigenvectors are calculated by finding the independent solutions to (4).

Cvi = λivi (4)

Each time step can now be represented as a linear combination of the principal components.

pj = u + a1j v1 + a2j v2 + · · · + amj vm (5)
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The coefficients aij can be solved at each time step j by reformulating (5) and solving the
system of linear equations.

P − uhT =
⎡
⎣

| | |
v1 v2 · · · vm

| | |

⎤
⎦

⎡
⎢⎣

a11 . . . a1n

...
. . .

...

am1 . . . amn

⎤
⎥⎦ = VA (6)

and

A = V−1
(
P − uhT

)
. (7)

With the principal components vi being constant, the behavior in time is described by the
coefficients aij where the discretization in time is indexed by j . The order of the system
can be reduced by eliminating principal components that have little variance. We arbitrar-
ily decided to examine the first k = 10 principal components knowing that the first five
would be based around the larger motions such as pedaling and that the remaining five
may reveal some of the motions associated with control. The variance of each component,
var(ai ) = λi , is summed to determine the cumulative percentage of variance of the principal
components, gk .

gk = 100

∑k

i=1 λi∑m

i=1 λi

where 1 ≤ k ≤ m (8)

Highly correlated data will show that even when k � m, gk is close to 100%. Using 10
components g10 covers 100% (standard deviation, σ = 10−14%) of the variation in the data
for the bicycle, rider and bicycle-rider. The matrix A can then be reduced to a k × n matrix
and eigenvectors greater than vk can be eliminated.

4.4 Data visualization

We developed a Graphical User Interface, GUI, in MATLAB that easily allows different trials
to be compared with one another Fig. 6. The program loads in two different trials along with
information on each trial. A graphical representation of the rider and bicycle are displayed
in two adjacent screens and can be viewed from multiple perspectives. The animations of the
runs can be played at different speeds, rewound and fast forwarded. The principal compo-
nents are shown beside the corresponding animation display and combinations can be turned
on and off for identification and comparison. Frequency and amplitude information for the
temporal coefficients aij can also be displayed for comparison.

5 Results

5.1 Motion identification

The reduced set of data provides two important pieces of information for the identification
of motion: the principal components vi and the corresponding coefficients aij . The princi-
pal components represent linear trajectories of the markers and the coefficients show how
the markers follow the trajectories with time. We began processing the data by reviewing
each principal component of each trial in the GUI and noting what type of motion we saw
Table 1. These descriptions were subjective because we grouped marker movement based on
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Fig. 6 Screen shot of the MATLAB graphical user interface (GUI) used to visualize principal components
and compare between different components and trials

Table 1 Example raw trial description for the bicycle and rider during normal pedaling at 10 km/h

i % Variance Motion description Frequency description

1 45.50 primarily longitudinal motion, some lateral max amp = 0.6 m, most freq below 0.5 Hz,
tiny spike at 1.6 Hz

2 29.39 primarily lateral motion, some longitudi-
nal, small feet motion

max amp = 0.35 m, little spike at 0.8 Hz,
most freq below 0.5 Hz

3 15.41 vertical pedaling, slight spine bend, hip/
head/shoulder sway out of phase with ped-
aling

max amp = 0.27 m, large dominant spike
at 0.8 Hz

4 8.27 horizontal pedaling, head/shoulder sway large dominant spike at 0.8 Hz with 0.19 m
amp

5 0.82 yaw, knees stay still max amp = 0.04 m at 0.33 Hz, most freq
below 1 Hz

6 0.27 erratic left-hand movement max amp = 0.018 m, most freq below 2 Hz

7 0.21 steer, left-hand movement, slight roll most freq below 2 Hz, spike at 0.33 Hz and
1.58 Hz

8 0.07 knee and head bounce dominant spike at 1.58 Hz

9 0.04 lateral knee movement, head jiggle spikes at 1.58 Hz and 2.37 Hz, most freq
below 2.5 Hz

10 0.02 head and knee jiggle spikes at 1.58 Hz and 3.17 Hz, most freq
below 3.5 Hz
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Fig. 7 Coefficients aij versus
time of the first five principal
components for normal pedaling
at 10 km/h

Fig. 8 The frequency content of
the first five principal
components for normal pedaling
at 10 km/h. The vertical black
line represents the open loop
weave frequency (0.28 Hz)
determined from Fig. 4 at this
forward speed. The pedaling
frequency is about 0.8 Hz at this
speed; see Fig. 11

our preconceived understanding of rider and bicycle motion. Some of the components dis-
played motions that were not physically possible such as the upper leg stretching in length
during the knee bounce. This is possible when examining a single component but when su-
perimposed over the rest of the components the unrealistic motions are not present. Further-
more, for each component we examined amplitude and frequency content of the associated
coefficients aij as shown in Figs. 7 and 8 and noted the shape of the frequency spectrum and
the frequencies at any distinct spikes.

Several conclusions can be drawn from examining the coefficient data. First, some of
the components are linked by the frequencies of the coefficients and describe an identifiable
motion. The most obvious of these is that the vertical and horizontal pedaling components
make up the circular pedaling motion. Both vary periodically and have a dominant frequency
which is defined by the cadence. In the example trial, Table 1, the upper body motions are
also linked to the pedaling. Components 8 and 9 both correspond to a frequency that is
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twice the pedaling frequency, which may be due to the forces created during each pedal
stroke. Component 6 seems to be the result of a bad marker signal. Components 5 and 7
are interesting because they display motions of the bicycle that are not dominated by the
pedaling frequency and may be candidate control motions. The percentage variance of each
component gives an idea of the relative amplitude of the components. The descriptions of
each trial were used to compile a list of motions that contribute to the principal components.
These motions, illustrated in Fig. 9, are:

Drift The bicycle and rider drift longitudinally and laterally on the surface of the tread-
mill. The motions are typically defined by two components that are not necessarily
orthogonal or aligned with the inertial coordinate system. The motion is random
and at low frequencies.

Fig. 9 Diagrams of the common motions. (a) Top view of bicycle steer and roll, (b) bicycle yaw, (c) hori-
zontal and vertical components of pedaling, (d) spine bend, (e) rider lean, (f) top view of rider twist, (g) knee
bounce and (h) two lateral knee motions. All but pedaling (c) are exaggerated for clarity
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Steer Rotation of the front assembly with respect to the rear frame. The steering may
appear linked to one of the pedaling components at the pedaling frequency or may
be in one or more components sometimes combined with roll and/or yaw at more
random frequencies, Fig. 9(a).

Roll The bicycle and the rider roll with respect to the ground plane. Roll is typically
linked with steer and/or yaw and often at the pedaling frequency, Fig. 9(a).

Yaw The heading angle of the bicycle and rider change together with respect to the
ground plane. This is typically linked with steer, roll, and/or the drift, Fig. 9(b).

Pedaling This motion is defined by two or more components, typically a vertical and hor-
izontal motion of the feet, that show the feet rotating around the crank axle at a
distinct frequency and the legs following suit, Fig. 9(c).

Bend The spine bent laterally and was always connected with the vertical pedaling com-
ponent, Fig. 9(d).

Lean The upper body, shoulders and head lean laterally with respect to the rear frame
and was always linked with the horizontal pedaling component, Fig. 9(e).

Twist The shoulders rotate about the torso axis. This was linked to components that
contained steering motions, both random and at the pedaling frequency, Fig. 9(f).

Bounce The knee markers bounce up and down, the back straightens and the head nods at
twice the pedaling frequency, Fig. 9(g).

Knees The knees move laterally relative to the bicycle frame in both opposing directions
and the same direction at random low frequencies, Fig. 9(h).

Head Head twists and random head motions showed up often. These seemed to be due
to the rider looking around randomly.

5.2 Motion characterization

To identify how bicycling changes with speed it would be ideal to investigate how the ampli-
tude of each component varies with speed. However, the analysis does not return the same
set of components for each run so such a comparison is typically not possible. Therefore,
components were grouped into classes, where each class shows a specific physically relevant
motion. The same total motion of the class can be described by one set of components in one
trial and another, probably different, set of components in another trial. How the amplitudes
of these classes vary among experiments can be used as a measure for how the rider and
bicycle motion varies among trials.

To objectively identify which coefficients show the same type of motion and could there-
fore form a class, the frequency content of each of the time coefficients in a single trial was
correlated to that of each of the other components in that trial. Next, a minimum correlation
value was set to determine which coefficients were correlated to each other. When the mini-
mum was set at 0.9 only the coefficients making up the pedaling motion could be considered
correlated. On the other hand, when a minimum level of 0.7 was used practically every co-
efficient was correlated to each other. The only exception was the coefficient that displayed
the bounce. Its maximum correlation with another coefficient was no higher than 0.4 for any
of the tested speeds. The 0.8 level gave a number of distinct classes of components, and thus
this level was used to identify which coefficients were connected. Finally, the correlated co-
efficients were viewed simultaneously in the GUI enabling the determination of the motion
class.

The correlated coefficients were used to form six different classes of motions, Table 2,
each made up of combinations of the previously described motions in Fig. 9.
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Table 2 The six primary motion
classes Class name Class description

Drift Drift

Pedaling Pedaling 9(c), Bend 9(d), Lean 9(e), Twist 9(f)

Steer-Yaw-Roll Steer and Roll 9(a), Yaw 9(b)

Bounce Bounce 9(g)

Knees Knees 9(h)

Other Head and components that showed noise of

some sort

Fig. 10 The relative percent
variance of the four classes:
Pedaling, Steer-Yaw-Roll,
Bounce and Knees, at the
different speeds when the Drift
and Other classes were removed
from the results for normal
pedaling. The solid lines are
scaled to 100% (left axis), the
dotted lines are scaled to 10%
(right axis)

In most cases, the correlated coefficients described a single class. However, sometimes,
this was not the case and the coefficients were used to describe more than one class. An
example is that at low speed the components containing the drift motions also contained
large steer, yaw, and roll motions. Therefore, the motions were placed in both the Drift and
the Steer-Yaw-Roll classes.

Since the rider was not instructed to hold a specific location on the treadmill the Drift
class, which was usually the class with the largest amplitude, was not used in further analy-
sis of the motion and neither was the ‘Other’ class. For each of the remaining classes, the
percentages of variance of the remaining components were recalculated without the compo-
nents placed in the Drift and the Other classes.

We also calculated various configuration variables from the bicycle marker locations (see
Appendix) independent of the PCA perspective for more specific motion characterizations.
This allowed us to investigate the bicycle’s configuration variable time histories and fre-
quency content explicitly.

5.3 Characterization of motions during normal pedaling

Figure 10 shows how the relative percent variance of the four classes: Pedaling, Steer-
Yaw-Roll, Bounce and Knees varies with speed for Rider 3 on the Batavus Browser bi-
cycle. The percentage is the average of two runs at speeds 5 km/h and above. From the
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Fig. 11 Steer angle amplitude plot for the nine different speeds for normal pedaling experiment. Solid verti-
cal line indicates the pedaling frequency. Dashed vertical gray line indicates the bicycle-rigid rider open loop
weave eigenfrequency from Fig. 4

graph, it is clear that at 10 km/h and higher speeds practically all the motion that is tak-
ing place is the pedaling motion class. Below 10 km/h, the Steer-Yaw-Roll class becomes
increasingly active and the relative percentage of the motion taking place in the pedaling
class drops. Also, at speeds below 10 km/h, the lateral knee motion (Knees) class per-
centage increases with decreasing speed. The increase is not as significant as that of the
Steer-Yaw-Roll class (increase to roughly 5% at 2 km/h), but it is certainly visible. The
spike at 4 km/h can be attributed to the fact that the classes may contain higher vari-
ance motions because the classification method is based on principal components that
are not necessarily consistent between runs. The Bounce roughly remains constant at all
speeds.

The steer angle amplitude-frequency plot for each of the speeds calculated from the bi-
cycle rigid body motions is given in Fig. 11. It clearly shows that the steering actions take
place at or around the pedaling frequency for high and low speeds, respectively. It also shows
that the amplitude of the steering angle increases by 5000% when the speed decreases from
30 km/h to 2 km/h. Figure 11 also shows the open loop, rigid rider, weave eigenfrequency
for each speed obtained from Fig. 4. Apparently the open loop eigenfrequency is not a fre-
quency at which the bicycle-rider operates.
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Fig. 12 The percent variance
of each of the three classes:
Steer-Yaw-Roll, Bounce and
Knees, at the different speeds
when the Drift and Other classes
were removed from the results
for trials without pedaling. The
solid lines are scaled to 100%
(left axis), the dotted lines are
scaled to 15% (right axis)

5.4 Characterization of motions without pedaling

During normal pedaling, all motions, including the control tasks, are dominated by the ped-
aling motions. Therefore we also looked at the motions of bicycle-rider system without the
influence of pedaling. Figure 12 shows how the percent variance of Steer-Yaw-Roll, Bounce
and Knees varies with speed for Rider 3 on the Batavus Browser bicycle without pedaling.
Since the bicycle is towed and the riders feet remain in the same, constant, position rela-
tive to bicycle, there is no pedaling class present in analysis. Furthermore, no bend, lean
or twist motions with high variance were detected during the experiments. It is clear that
at all speeds most motion takes place in the Steer-Yaw-Roll class. Also interesting is that,
unlike in the normal pedaling situation, the Knee motion percentage does not increase at low
speeds. This may mean that the lateral knee motion is connected to pedaling in some way.
Like for the pedaling case, the Bounce and Knee classes may contain different principal
components and a statistical approach to evaluate the percent variance of the classes would
provide clearer results. Also note that as the bicycle becomes self stable above 16 km/h
the total variance is tiny and thus any sort of random knee motion can be a relatively large
motion.

Figure 13 shows the bicycle rigid body steer angle frequency-amplitude plot for different
speeds. Compared to normal pedaling, the amplitudes are about half the size at the low
speeds and one tenth the size at high speeds, indicating that smaller steering angles were
made. The frequency content now also shows a much wider, flatter spectrum compared to
normal pedaling. At 10 and 15 km/h, the frequency with the largest amplitude is near the
open loop weave eigenfrequency. However, at the other speeds, this is not the case, once
again indicating that the rigid body open loop weave eigenfrequency is not the frequency at
which the bicycle is controlled.

6 Conclusions

The view provided by principal component analysis into bicycle-rider interaction, biome-
chanics and control has led us to several conclusions. During normal bicycling there are
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Fig. 13 Steer angle amplitude plot for the nine different speeds for the tasks without pedaling. Dashed
vertical grey line indicates the bicycle-rigid rider open loop weave eigenfrequency obtained from Fig. 4

several dominant upper body motions: lean, bend, twist and bounce, all of which seem to
be linked to the pedaling motion. This is important for understanding which inputs are re-
lated to fundamental balance control and which are reactions to pedaling. We hypothesize
that lateral control is mainly accomplished by steering since only upper body motion was
observed at the pedaling frequency. If upper body motions are used for control then this
control is carried out at the pedaling frequency. Considering variations of motion with re-
spect to speed, we observed that there is a great deal of steering at low speeds but this
decreases in magnitude as speed increases. This is generally true for all motions and shows
that the bicycle-rider system becomes more stable at higher speeds with few detectable
control actions. At low speeds additional lateral knee motions are observed which are prob-
ably more effective at augmenting steering control for lateral balance than upper body mo-
tions.

The bicycle model predicts that the weave mode is stable above about 16 km/h. Intuition
might possibly lead one to believe, if the weave mode is already stable, that the weave
frequency might be relatively undisturbed by rider control actions and therefore present in
the closed loop dynamics. However, we found no evidence of a distinct weave frequency in
the steer angle time histories of any run. In fact, the only distinct frequency that sometimes
appeared was the pedaling frequency.
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Principal component analysis provided a unique view into the control actions of a rider
on a bicycle, but limitations in data reduction and motion grouping leave room for more
objective statistical views into the motion of the bicycle-rider system.
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Appendix: Inertial frames and configuration variables

The transformation from marker coordinates to rigid body inertial frames and configura-
tion variables shown in Fig. 5 is described here. A reference frame, N, with origin no corre-
sponding with the benchmark bicycle [1] is defined with respect to the Optotrak reference
frame, M, (9).

N =
⎡
⎣

n̂1

n̂2

n̂3

⎤
⎦ =

⎡
⎣

1 0 0
0 −1 0
0 0 −1

⎤
⎦

⎡
⎣

m̂1

m̂2

m̂3

⎤
⎦ (9)

Thirty-one marker locations were recorded and the vector to each is defined as rmk/no where
k = 1,2, . . . , l for the original markers and k = l + 1, . . . for any additional virtual markers.
To calculate the reference frame attached to the rear bicycle we formed a frame center plane
from the seat post marker, m26, and two new additional virtual markers at the center of
the rear wheel, m36, and the center of the head tube, m33. For example, the center of the
rear wheel was calculated by (10) where m25 and m31 are the left and right rear wheel
markers.

rm36/no = (
rm25/no + rm31/no

)
/2 (10)

The normal vector to the plane through the rear wheel center, seat post, and the head tube
center is

b̂2 = rm36/m26 × rm33/m26

|rm36/m26 × rm33/m26 | (11)

The heading vector of the rear frame is then b̂1 = b̂2 × n̂3 and b̂3 = b̂1 × b̂2 follows. These
unit vectors define a reference frame that leans and yaws with the rear frame. We assumed
that the rear frame pitch is negligible. The marker locations of the rider can now be expressed
relative to the bicycle’s inertial frame with reference to a point on the bicycle frame m36.
Equation (12) shows that the vector from any marker on the rider relative to m36 can be ex-
pressed in the bicycle reference frame, B, rather than the inertial frame, N. This formulation
was used in the PCA of the rider-only markers to look specifically at rider motion relative
to the bicycle. The subscripts, N and B, in (12) signify which reference frame the position
vectors are expressed in.

rmk/m36
B = (

rmk/m36
N · b̂1

)
b̂1 + (

rmk/m36
N · b̂2

)
b̂2 + (

rmk/m36
N · b̂3

)
b̂3 (12)
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A reference frame D that is aligned with the steering axis of the rear frame can be formu-
lated by rotation about the b̂2 axis through the steer axis angle λ, which is measured for
each bicycle [9].

D =
⎡
⎢⎣

d̂1

d̂2

d̂3

⎤
⎥⎦ =

⎡
⎣

cosλ 0 − sinλ

0 1 0
sinλ 0 cosλ

⎤
⎦

⎡
⎢⎣

b̂1

b̂2

b̂3

⎤
⎥⎦ (13)

The handlebar/fork inertial frame E is then calculated by defining ê2 to be aligned with the
front wheel axle (14).

ê2 = rm21/no − rm27/no

|rm21/no − rm27/no | (14)

The handlebar/fork frame rotates around d̂3 = ê3 and then ê1 = ê3 × ê2. Equation (15) gives
the instantaneous rear wheel radius which is used to formulate the vector to the rear wheel
contact point (16).

rR = −rm36/no · n̂3

b̂3 · n̂3

(15)

rm39/no = rm36/no + rRb̂3 (16)

This now allows us to calculate six of the eight configuration variables of the bicycle as a
function of time (q5 and q8 are the rear and front wheel rotations, respectively).

Distance to the ground contact point: q1 = rm39/no · n̂1, (17)

Distance to the ground contact point: q2 = rm39/no · n̂2, (18)

Yaw angle: q3 = arccos
(
b̂1 · n̂1

)
, (19)

Roll angle: q4 = arccos
(
b̂3 · n̂3

)
, (20)

Pitch angle: q6 = 0, (21)

Steer angle: q7 = arccos
(
d̂1 · ê1

)
, (22)
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