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Abstract We study heat traces associated with positive unbounded operators with
compact inverses. With the help of the inverse Mellin transform we derive necessary
conditions for the existence of a short time asymptotic expansion. The conditions are
formulated in terms of the meromorphic extension of the associated spectral zeta-
functions and proven to be verified for a large class of operators. We also address the
problem of convergence of the obtained asymptotic expansions. General results are
illustrated with a number of explicit examples.
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1 Introduction

Given a positive, possibly unbounded, operator P with a compact resolvent, acting
on a separable infinite-dimensional Hilbert space H one can define the associated
heat operator e−t P for t > 0. The latter, under some mild conditions on P , is trace
class for any t > 0. It turns out that a close inspection of the function t �→ Tr e−t P ,
reveals a lot of information of geometrical nature. For instance, if P is a differential
operator of Laplace type defined on a closed Riemannian manifold then the classical
results [40] show that there exists an asymptotic expansion of the form

Tr e−t P ∼
t↓0

∑

k�0

ak(P )t(k−d)/2, (1)

where d is the dimension of the manifold and ak’s – called Seeley–DeWitt coeffi-
cients – are given by the integrals over the manifold of some geometrical invariants.
Moreover, the coefficients ak can be expressed as

ak(P ) = Res
s=(d−k)/2

�(s)ζP (s),

where ζP (s) := Tr P −s is the (meromorphic extension of the) spectral zeta-function
associated with P .

The existence of an asymptotic expansion of Tr e−t P was proven for P being a
classical positive elliptic pseudodifferential operator of order m ∈ N (see [39] and
references therein). In this case,

Tr e−tP ∼
t↓0

∞∑

k=0

ak(P )t(−d+k)/m +
∞∑

l=1

bl(P )t l log t

and

ak(P ) = Res
s=(d−k)/m

� (s) ζP (s), bl(P ) = −Res
s=−l

(s + l)� (s) ζP (s).

In fact, this result can be extended to certain classes of non-classical pseudodiffer-
ential operators. In [53] for instance, the heat traces of pseudodifferential operators
with log-polyhomogeneous symbols have been studied.

With the development of noncommutative geometry [16], the need came to
investigate heat traces associated with positive functions of Dirac operators in the
framework of spectral triples. Unfortunately, there is no analogue of the formula
(1) for a general spectral triple [72]. In fact, the existence of an asymptotic expan-
sion of the heat trace is assumed whenever needed in applications (see for instance
[19, Section 11], [21, Section 2.1]) and has been proven rigorously only for a few
specific examples [29, 37, 71]. Whence the results of [37, 71] essentially used the
methods of pseudodifferential calculus, the casus of the standard Podleś sphere [29]
required completely different tools (see Section 4.2).

We note that the interplay between heat traces and spectral zeta-functions has been
investigated in a very general framework of von Neumann algebras by a number
of authors [7, 16, 54, 67]. However, the efforts of the latter focused on the leading
behaviour of heat traces and its consequences for measurability.
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The purpose of this paper is to study heat traces associated with general densely
defined positive operators P with compact inverses. In particular, we formulate suf-
ficient conditions for the existence of a small t asymptotic expansion of Tr e−t P .
Having an asymptotic expansion at hand, a natural question one may pose is that of its
convergence. This issue has not been studied in full generality, even in the context of
P being a differential operator (see however [29, 46]). We show how the conditions
on P shall be refined in order to get an exact formula for the heat trace valid on some
open interval (0, T ). The motivation behind our work comes from noncommutative
geometry, but the framework of the studies is even wider.

The heat trace methods have multifarious applications in theoretical physics (see
[70] for a review). They are in common use in quantum field theory [2, 5, 30, 36], also
in its noncommutative version [38]. In general, one only disposes of an asymptotic
expansion of the heat trace as t ↓ 0. This implies that the field-theoretic calculations
performed with the help of this method are only perturbative. Needless to say that a
control on the convergence of a perturbative expansion is of crucial importance.

In noncommutative geometry, the heat trace is the cornerstone of bosonic spec-
tral action computations [9, 19, 46–48]. The large energies expansion of the latter
is based on the asymptotic expansion of the heat trace associated with the relevant
Dirac operator. Recently, also the exact computations of the spectral action gained
interest [10, 28, 29, 57, 58, 61, 68] due to their possible application to the study of
cosmic topology.

The plan of the paper presents itself as follows: In Section 2 we recollect some
basic notions on spectral functions associated with positive operators. Then, in
Section 3 we discuss in details the interplay between the meromorphic extension of
the spectral zeta-function ζP and the asymptotic expansion of the associated heat
trace Tr e−t P , by gathering results on general Dirichlet series [43, 44] and the Mellin
transform [35, 63]. Moreover, we present a set of sufficient assumptions on P so
that the associated heat trace is controlled for t in some non-empty open interval.
Section 4 illustrates the general theorems with various special cases and examples
coming from Dirac-type operators on both classical manifolds and noncommutative
spaces. We end with an outlook on the possible generalisations and applications of
our results. We also discuss the limitations of the method and compare its usefulness
with the Tauberian theorems commonly used in this domain.

2 Preliminaries

2.1 Notations

Let us first fix some notations:

– N denotes the non-negative integers, N+ the positive ones, Z∗ stands for the
non-zero integers and R

+ for positive reals.
– Unless stated otherwise, t will always denote a positive parameter and s a

complex one.
– f (s) ≈ g(s) means that lim|s|→∞ f (s)/g(s) = 1.
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– f (x) = Ox→x0 (g(x)) means that lim supx→x0
|f (x)/g(x)| < ∞, for x, x0 ∈

R ∪ {±∞}. The notation f (x) = Ox0 (g(x)) will be used when the variable is
obvious.

– f (x) = Ox→x0 (g(x)) means that lim supx→x0
|f (x)/g(x)| = 0, for x, x0 ∈

R ∪ {±∞}. The notation f (x) = Ox0 (g(x)) will be used when the variable is
obvious.

– f (t) ∼
t↓0

∑
n φn(t) denotes an asymptotic expansion (see Definition 4) of f as

t tends to 0 from above.

2.2 Heat Traces

Let P denote an unbounded operator on a Hilbert space. Throughout the paper we
will assume the following on P :

General Assumption P is a positive densely defined operator with a compact
inverse, acting on a separable infinite-dimensional Hilbert space.

Such a strong assumption allows us, among other things, to use freely the spectral
theorem for P . As a consequence, the spectrum σ(P ) is a discrete subset of R, which
can be ordered into a sequence increasing to infinity

σ(P ) = (λn)
∞
n=0 , 0 < λ0 < λ1 < . . . , lim

n→∞ λn = ∞. (2)

We will denote the multiplicity of the eigenvalue λn ∈ σ(P ) by Mn. For further
purposes, we also define the spectral growth function as

N(λ) :=
∑

{n : λn�λ}
Mn. (3)

Now we define the main object of our interest:

Definition 1 The heat trace of the operator P is the function htrP : R
+ → R

+,
defined as

htrP (t) := Tr e−t P .

We say that the heat trace is well-defined if e−t P is a trace class operator for any
t > 0.

Using (2) the heat trace can be written as

htrP (t) =
∞∑

n=0

Mn e−t λn . (4)

The sum is of the form of a general Dirichlet series, which is defined as
∞∑

n=0

an e−s bn , (5)

for s in some (possibly empty) subset of C, an ∈ C and (bn)
∞
n=0 a sequence of real

numbers increasing to infinity. Throughout this paper we will meet only examples
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with an real and non-negative for n ∈ N (usually we will simply have an = Mn). In
such a case the convergence of (5) is governed by the following theorem:

Theorem 1 ([44], Theorem 7 with the footnote) If an > 0 for n ∈ N and∑∞
n=0 an = ∞ then the general Dirichlet series (5) converges for R(s) > L and

diverges for R(s) < L, where L is given by

L = lim sup
n→∞

b−1
n log (a0 + . . . + an) ,

and L � 0.

We will call such L the abscissa of convergence of the general Dirichlet series (5).
The inequality L � 0 follows from the fact that for s = 0 the series (5) is equal to∑∞

n=0 an, which is divergent. Note that the abscissa can be infinite, what means that
the series is nowhere convergent.

Proposition 1 The heat trace of the operator P is well-defined:

1. if and only if N(λn) = On→∞(eελn) for any positive ε;
2. if there exist α � 0 such that Mn = O∞(nα) and log n = O∞(λn) (i.e. λn grow

faster than log n).

Proof In order to have htrP well-defined, we need the abscissa of convergence L

of the series (4) to be 0. Taking an = Mn, bn = λn for all n ∈ N we see
that

∑∞
n=0 an = ∞ as P has an infinite number of eigenvalues. Now, by Theo-

rem 1 we get that htrP is well-defined iff L = lim supn→∞ λ−1
n log N(λn) equals

to 0. This is equivalent to the statement that for any ε > 0 there exists n0 such
that for any n � n0 we have λ−1

n log N(λn) � ε or, equivalently, N(λn) �
eελn . This in turn is equivalent to N(λn) = O∞(eελn) for any ε > 0 and thus
1 follows.

For statement 2 let us first note that since Mn = O∞(nα) for some α � 0, then
N(λn) = O∞(nα+1). Take a positive constant C such that N(λn) � Cnα+1 for
n � N for some N ∈ N. Then,

L = lim sup
n→∞

λ−1
n log (N(λn)) � lim sup

n→∞
λ−1

n log
(
Cnα+1

)
= lim sup

n→∞
λ−1

n (log C + (α + 1) log n) ,

what tends to 0 under the hypothesis of 2.

Note that the condition in 2 is only sufficient: consider e.g. λn = n2, and Mn = 2n

which satisfies the hypothesis of 1 but not the one of 2.
To conclude this subsection, we remark that heat traces can be defined for

operators bounded from below, possibly with a non-trivial kernel. However, the zeta-
functions described below apply only to positive invertible operators (see, however,
Section 3.3).
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2.3 Spectral Zeta-functions

Definition 2 The zeta-function associated with the operator P is a complex function

C ⊃ Dom(ζP ) � s �→ ζP (s) = Tr P −s .

We say that ζP is well-defined if Dom(ζP ) is non-empty.

Using the spectral theorem this can be written as

ζP (s) =
∞∑

n=0

Mn λ−s
n , (6)

which is again a general Dirichlet series (5) with an = Mn and bn = log λn. Using
Theorem 1 we get

Proposition 2 The abscissa of convergence of the zeta-series (6) is given by

L = inf
{
α ∈ R : N(λn) = On→∞

(
λα

n

)}
. (7)

Note that it may happen that L = +∞, which means that the zeta-function is not
well-defined (e.g. when λn = log n,Mn = 1 for n � 2, then N(λ) ≈ exp λ).

Proof Take any α such that there exists a constant c satisfying N(λn) � c λα
n . Then

by setting an = Mn, bn = log λn we have by Theorem 1

L = lim sup
n→∞

log N(λn)
log λn

� lim sup
n→∞

log(c λα
n)

log λn
= α. (8)

Thus L � K , where K denotes the RHS of (7).
On the other hand, if we suppose that L < K then there exists α such that L <

α < K . Using (8) we can find such n0 ∈ N that log N(λn)(log λn)
−1 < α for any

n � n0. Then we get that N(λn) < λα
n for n � n0, which contradicts the assumption

α < K . Thus L = K and the proposition is proved.

Proposition 3 If an operator P is such that its zeta-function is well-defined with
finite abscissa of convergence L, then its heat trace is also well-defined and

htrP (t) = O0(t
−α), for all α > L.

Proof Comparing Proposition 1 assertion 1. with Proposition 2 we get that htrP is
well-defined.

Now, let us take any α > L � 0. Then, there exists a positive constant C(α) such
that

xαe−x � C(α),

for any x > 0, as the function x �→ xαe−x is bounded on R
+ ∪ {0} for any α � 0.

Therefore, for any α > L we have

0 � tα htrP (t) =
∞∑

n=0

Mn tαe−tλn � C(α)

∞∑

n=0

Mnλ
−α
n = C(α)ζP (α) < ∞.
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Hence, htrP (t) = O0(t
−α).

2.4 Mellin Transform

Definition 3 (see [63] for instance) The Mellin transform of a locally Lebesgue
integrable function f defined over R+ is a complex function M[f ] given by

M[f ](s) =
∫ ∞

0
f (t) ts−1 dt.

The inverse Mellin transform of a meromorphic function g, denoted by M−1[g],
reads

M−1[g](t) = 1
2πi

∫ c+i∞

c−i∞
g(s) t−s ds,

for some real c such that the integral converges for all t > 0.

In general, the Mellin transform is defined only in some region of the complex
plane. This region turns out to be a strip, called the fundamental strip (see [35, Defi-
nition 1]). If f (t) = O0(t

α) and f (t) = O∞(tβ), then M[f ](s) exists at least in the
strip −α < R(s) < −β (cf. [35], Lemma 1). The invertibility of Mellin transform is
addressed by the following theorem.

Theorem 2 ([35], Theorem 2 ) Let f be a continuous function. If c is a real number
belonging to the fundamental strip ofM[f ] andR � y �→ M[f ](c+iy) is Lebesgue
integrable, then for any t ∈ R

+

f (t) = M−1 [M[f ]] (t) = 1
2πi

∫ c+i∞

c−i∞
M[f ](s) t−s ds.

We have established the framework and now we are ready to formulate and prove
the main results.

3 General Results

The Mellin transform has a direct application to the study of the asymptotic expan-
sions of heat traces. Recall that P is, by General Assumption, a positive densely
defined operator with compact inverse. Let us start with the following lemma.

Lemma 1 Let P be such that its zeta-function is well-defined with abscissa of
convergence L. Then for any s ∈ C with R(s) > L,

M[htrP ](s) = �(s) ζP (s). (9)
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Proof For s with R(s) > L we pick any α such that R(s) > α > L. From Corollary
3 we know that htrP (t) = O0(t

−α) and the integral

M[htrP ](s) =
∫ ∞

0
htrP (t) ts−1 dt

converges (absolutely) at 0. It also converges absolutely at ∞ for any s, since

Tr e−t P =
∞∑

n=0

Mne−t λn = e−t λ0

∞∑

n=0

Mne−t (λn−λ0) � e−t λ0c for t � 1, (10)

where c = ∑∞
n=0 Mne−(λn−λ0) = eλ0 Tr e−P < ∞.

Since Mn e−tλn t s−1 > 0 for all n ∈ N, t > 0 and s with R(s) > L, we can use
the Tonelli Theorem to exchange the sum with integral in the following calculation:

M[htrP ](s) =
∫ ∞

0

∞∑

n=0

Mn e−tλn t s−1 dt =
∞∑

n=0

Mn

∫ ∞

0
e−tλn t s−1 dt,

=
∞∑

n=0

Mn λ−s
n

∫ ∞

0
e−y ys−1 dy = ζP (s) �(s). (11)

For further convenience we adopt the notation

Z(s) := �(s)ζP (s),

for R(s) > L. If moreover, ζP extends to a meromorphic function on some larger
region D ⊂ C then Z also has a meromorphic extension to D, since � is meromor-
phic on C. For a meromorphic function f we also denote by Pf (D) the set of its
poles contained in the region D ⊂ C.

The inverse of the relation (9) (compare [35, Theorem 5]) produces an expansion
of htrP :

Theorem 3 Let P be an operator satisfying the General Assumption and such that:

1. ζP is well-defined with abscissa of convergence L � 0.
2. ζP has a meromorphic continuation to the half-plane R(s) > L′ for some real

L′ < L.
3. There exist real numbers c, R, such that L′ < −R < L < c, and Z is regular

and Lebesgue integrable on lines R(s) = −R and R(s) = c.
4. There exists an increasing sequence (yk)k∈Z, with y0 = 0 and yk → ±∞ as

k → ±∞, such that
sup

x∈[−R,c]
|Z(x + iyk)| → 0, (12)

as k → ±∞ and the suprema for all k ∈ Z
∗ are finite.

Let Dk denote a rectangle {x + iy : −R � x � c, y−k � y � yk} ⊂ C for k ∈ N
+

and D0 = ∅ and let Sk := PZ (Dk \ Dk−1) (see Fig. 1).
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Fig. 1 Illustration for Theorem 3. The crosses stand for poles of the function Z

Then, for t > 0, we have

htrP (t) =
∞∑

k=1

∑

s∈Sk

rs(t) + FR(t), (13)

where the, possibly infinite, series over k is convergent with

rs(t) := Res
s′=s

(
�(s′) ζP (s′) t−s′)

,

FR(t) := 1
2πi

∫ −R+i∞

−R−i∞
�(s) ζP (s) t−s ds.

Moreover, FR(t) = O0(t
R).
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Proof On the strength of Assumptions 3 and 4 the function Z is regular at the
boundary of Dk . Thus, by the residue theorem,

1
2πi

∫

∂Dk

Z(s) t−s ds =
∑

s∈PZ (Dk)

rs(t) =
k∑

m=1

∑

s∈Sm

rs(t), (14)

where the contour ∂Dk is oriented counter-clockwise. In the sum above only a finite
number of residues is taken into account, as the region Dk is bounded and the set of
poles PZ (Dk) has no accumulation points. Let us decompose the boundary of the
rectangle into four sides

I−R(k) := ∫ −R+iyk

−R+iy−k
Z(s) t−s ds, Ic(k) := ∫ c+iyk

c+iy−k
Z(s) t−s ds,

I±
H (k) := ∫ c+iy±k

−R+iy±k
Z(s) t−s ds,

so that ∫

∂Dk

Z(s) t−s ds = Ic(k) − I+
H (k) − I−R(k) + I−

H (k).

We now estimate

∣∣I±
H (k)

∣∣ =
∣∣∣∣
∫ c

−R

Z(x + iy±k) t−x−iy±k dx

∣∣∣∣ � sup
x∈[−R,c]

|Z(x + iy±k)|
∫ c

−R

t−x dx
k→∞−−−→ 0.

(15)

To analyse the integrals I−R, Ic we will use the Assumption 3. Integrability over
the line R(s) = c allows us to apply Theorem 2, which, together with Lemma 1,
gives us the following limit

1
2πi

lim
k→∞ Ic(k) = htrP (t). (16)

On the other hand, integrability of Z along the line R(s) = −R allows us to write

1
2πi

lim
k→∞ I−R(k) = FR(t).

Thus, by taking the limit k → ∞ of (14) we get

∞∑

m=0

∑

s∈Sm

rs(t) = lim
k→∞

1
2πi

∫

∂Dk

Z(s)t−sds = htrP (t) − FR(t).

To finish the proof we observe that

FR(t) t−R = 1
2π

∫ ∞

−∞
Z(−R + iy) t−iy dy = 1

2π
F [y �→ Z(−R + iy)]

(
− log t

2π

)
t→0−−→ 0,

where F denotes the Fourier transform, and the limit is a consequence of the
Riemann–Lebesgue lemma.
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The series in (13) is just the sum of residues of the function Z(s)t−s over the poles
contained in the strip −R < R(s) < c and one could be tempted to write it down as

∑

s∈S

rs(t), (17)

where summation goes over S = PZ ({s ∈ C : −R < R(s) < c}). Whilst this sec-
ond form looks simpler, it ignores the information about grouping and arrangement
of terms, which may be significant. Indeed, Theorem 3 states that the series over k

in formula (13) is convergent, and in general this may only be a conditional conver-
gence. That is why residues have to be grouped into (finite) sums over Sk , and then
summed in the order given by index k. The grouping and order are consequences
of the choice of the sequence (yk) and the assumption (12) may fail for a different
choice of sequence.

However, if the function Z has only a finite number of residues in the strip −R <

R(s) < c or the sum (17) is absolutely convergent then rearrangements of terms are
allowed and one can safely write

htrP (t) =
∑

s∈S

rs(t) + FR(t), (18)

instead of (13). One clue about the absolute convergence is given by the following
result:

Proposition 4 If the hypothesis of Theorem 3 is fulfilled with the assumption (12)
altered for a stronger one:

∑

k∈Z∗
sup

x∈[−R,c]
|Z(x + iyk)| < ∞, (19)

then for any t > 0
∞∑

k=1

∣∣∣∣∣∣

∑

s∈Sk

rs(t)

∣∣∣∣∣∣
< ∞.

Proof First note that for any t > 0

∞∑

k=1

∣∣∣∣∣∣

∑

s∈Sk

rs(t)

∣∣∣∣∣∣
= 1

2πi

∞∑

k=1

∣∣∣∣
∫

∂(Dk\Dk−1)

Z(s) t−s ds

∣∣∣∣ .

Now, for any k � 1 we decompose the boundary ∂(Dk \ Dk−1) as in the proof of
Theorem 3 and estimate∣∣∣∣
∫

∂(Dk\Dk−1)

Z(s) t−s ds

∣∣∣∣ � |I−R(k) − I−R(k − 1)| + |Ic(k) − Ic(k − 1)| +

+ ∣∣I+
H (k − 1)

∣∣ + ∣∣I−
H (k − 1)

∣∣ + ∣∣I+
H (k)

∣∣ + ∣∣I−
H (k)

∣∣ ,

with the convention I±
H (0) := 0 to comply with D0 = ∅. So the contributions of

the horizontal integrals I±
H (k), I±

H (k + 1) add together instead of canceling out as it
happened in the proof of Theorem 3.
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Therefore,
∑∞

k=1

∣∣∣
∫
∂(Dk\Dk−1)

Z(s) t−s ds

∣∣∣ �
∫ −R+i∞
−R−i∞

∣∣Z(s)t−s
∣∣ ds +

+ ∫ c+i∞
c−i∞

∣∣Z(s)t−s
∣∣ ds + 2

∑∞
k=1

(∣∣I+
H (k)

∣∣ + ∣∣I−
H (k)

∣∣) .

The convergence of the integrals along the vertical lines follows since Z is
Lebesgue integrable (Assumption 3 of Theorem 3).

On the other hand, the sum over horizontal contributions can be estimated as in
(15):

∞∑

k=1

(∣∣I+
H (k)

∣∣ + ∣∣I−
H (k)

∣∣) �
∑

k∈Z∗
sup

x∈[−R,c]
|Z(x + iyk)|

∫ c

−R

t−x dx,

which is finite by assumption (19).

In most cases (see Section 4), one can also avoid the grouping of the residues
into Sk’s, by finding some denser sequence (yk)k∈Z such that each Sk contains only
one pole of Z . Also, if there are poles of Z lying on a common line �(s) = const.,
one can resort to the more general Theorem 4. However, for a denser sequence the
assumptions (12) or (19) of the Theorem 3 may not be fulfilled.

Unfortunately, we were not able to tailor an example, where the analytic structure
of ζP is such that the grouping or arrangement of the terms are important. It might
turn out that the operatorial aspect of heat traces, which leads to a specific subclass of
general Dirichlet series, implies that one can always replace formula (13) with (18).
However, as the problem is open, we emphasise once again that in general formulae
the series in (13) is conditionally convergent only.

It is instructive to write down explicitly an individual term rs(t). If the function Z
has a pole of order n at s0, then it has a Laurent expansion Z(s) = ∑∞

k=−n bk(s0) (s−
s0)

k in some open punctured disc with the center at s0. On the other hand,

t−s = e−s0 log te−(s−s0) log t = t−s0

∞∑

k=0

(− log t)k

k! (s − s0)
k, ∀ s0, s ∈ C, t > 0.

Therefore, the residue rs0(t) being the coefficient in front of (s−s0)
−1 in the Laurent

expansion of Z(s)t−s at s = s0 reads

rs0(t) = t−s0

n−1∑

k=0

b−k−1(s0)

k! (− log t)k. (20)

Note that rs0(t) = O0(t
−R(s0)(log t)n−1), what also means that rs0(t) =

O0(t
−R(s0)+δ) for arbitrarily small δ > 0.

Remark 1 One could in principle allow the function Z to have essential singularities
as long as they are isolated (see [8, last point on p. 453] for a motivation). For such
functions the residue (i.e. the −1st term of the Laurent expansion) is well-defined.
Since � is a meromorphic function and s �→ t−s is an entire one for all t > 0, the
function

s �→ Z(s)t−s , (21)
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has isolated singularities only. At an essential singularity, the formula (20) yields an
infinite series. This series is absolutely convergent for every t > 0 in the punctured
disc of convergence of the Laurent expansion of Z at s0. Indeed, in the interior of this
punctured disc the Laurent series of the function (21) is a product of two absolutely
convergent series, and as such it is absolutely convergent.

3.1 Asymptotic Expansions

Theorem 3 gives us information about the behavior of htrP (t) at t = 0 up to the
order tR . If ζP can be meromorphically continued to the whole complex plane and
satisfies suitable growth conditions, then Theorem 3 can give us the behavior of htrP
at 0 up to an arbitrary finite order, i.e. an asymptotic expansion. Recall the definition
[22, 31, 43]:

Definition 4 Let (φn)n∈N be a sequence of functions from R
+ to C. We call this

sequence an asymptotic scale at t = 0 if for any n ∈ N we have φn+1(t) = O0(φn(t)).
For a function f : R+ → C the formal series

∑∞
n=0 φn(t), with (φn)n∈N being

an asymptotic scale, is called an asymptotic expansion (or asymptotic series) of f at
t = 0 if for any N ∈ N

f (t) −
N∑

n=0

φn(t) = O0(φN+1(t)).

In this case, we write

f (t) ∼
t↓0

∞∑

n=0

φn(t).

Now, by an iterative argument exploiting Theorem 3 we obtain the asymptotic
expansion of htrP , which is the main result of the paper:

Theorem 4 Let P be a an operator satisfying the General Assumption and such that:

1. ζP is well-defined with abscissa of convergence L � 0.
2. ζP has a meromorphic continuation to the whole complex plane.
3. There exists a sequence (Rn)n∈N of real numbers strictly increasing to infin-

ity, such that −R0 > L, −Rn < L for n � 1, and for each n ∈ N function
Z(s) = �(s)ζP (s) is regular and Lebesgue integrable over the vertical line
R(s) = −Rn.

4. For each n � 1 there exists a strictly increasing sequence
(
y

(n)
k

)

k∈Z with y
(n)
0 =

0 and y
(n)
k → ±∞ as k → ±∞ such that

sup
x∈[−Rn,−Rn−1]

∣∣∣Z
(
x + iy

(n)
k

)∣∣∣ → 0,

as k → ±∞ and the suprema for all k ∈ Z
∗ are finite.
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For n, k � 1 let Dn
k denote a rectangle

{
x + iy : −Rn � x � −Rn−1, y

(n)
−k � y �

y
(n)
k

}
⊂ C and Dn

0 = ∅ for n � 1. Set Sn
k = PZ

(
Dn

k \ Dn
k−1

)
(see Figs. 1 and 2).

Then, for t > 0

htrP (t) ∼
t↓0

∞∑

n=1

∞∑

k=1

∑

s∈Sn
k

rs(t), (22)

where

rs(t) = Res
s′=s

(
Z(s′) t−s′)

.

The RHS of (22) is to be understood as the asymptotic (formal) series
∑∞

n=1 φn(t),
with φn : R+ → C being an asymptotic scale defined by the convergent series

φn(t) :=
∞∑

k=0

∑

s∈Sn
k

rs(t), for n � 1. (23)

Fig. 2 Illustration for Theorem 4. See also Fig. 1
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Proof Let us first apply Theorem 3 to ζP with c = −R0, R = R1 and yk = y
(1)
k for

k ∈ Z. All of the assumptions are readily fulfilled and we obtain

htrP (t) = φ1(t) + FR1(t), (24)

where φ1 is given by (23).
Then, we use Theorem 3 again with c = −R1, R = R2 and yk = y

(2)
k

for k ∈ Z. Strictly speaking in this case c is not greater than L as required by
Assumption 3, but as long as Z is regular and Lebesgue integrable on the lines
R(s) = −R1 and R(s) = −R0 the same arguments apply. The contour inte-
gral, now being 2πi(FR1(t) − FR2(t)), is again equal to the sum of residues,
giving

FR1(t) = φ2(t) + FR2(t),

instead of (24). Repeating this argument for the function ζP in each strip −Rn+1 �
R(s) � −Rn we obtain a recurrence relation:

FRn(t) = φn+1(t) + FRn+1(t). (25)

Thus, for any N ∈ N
+ we have

htrP (t) =
N∑

n=1

φn(t) + FRN
(t),

where FRN
(t) = O0(t

RN ) and by Definition 4 of an asymptotic expansion we
conclude that

htrP (t) ∼
t↓0

∞∑

n=1

φn(t).

The choice of the sequence (Rn) determines the asymptotic scale (φn) of the
expansion (22). Thus, in our method the residues are first summed in each vertical
strip {s ∈ C : −Rn+1 < R(s) < −Rn} yielding φn(t), and then the contributions
from subsequent strips form an asymptotic series.

3.2 Exact and Almost Exact Expansions

Having an asymptotic series for htrP (t), it is natural to ask whether this series con-
verges for some t . This can be checked by analysing the limit of FRN

(t) as N → ∞.
If this limit exists and FRN

→ F∞ < ∞ locally uniformly on the interval (0, T )

for some T > 0, then the series in (22) converges locally uniformly on (0, T ) to
htrP (t)−F∞(t). Note that F∞ is O0(t

R) for every R ∈ R. Let us adopt the following
definition:

Definition 5 If the series on the RHS of (22) converges (to htrP (t) − F∞(t)) locally
uniformly on (0, T ) for some T > 0 then we say that htrP has an almost exact expan-
sion on (0, T ). If moreover F∞ = 0 identically, then htrP has an exact expansion on
(0, T ).
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In Section 4 we will meet various examples of almost exact and exact expansions
of heat traces, with T < ∞ and T = ∞ as well. Let us now give a general sufficient
condition for the existence of an exact expansion.

Theorem 5 Let the assumptions of Theorem 4 be fulfilled and let the estimate

|Z(−Rn + iy)| � Cne−εn|y| (26)

hold for every y ∈ R and n ∈ N, where Cn, εn are some positive constants for n ∈ N.
Assume moreover that the sequence Rn

√
Cn/εn is bounded for n ∈ N.

Then,

htrP (t) =
∞∑

n=1

∞∑

k=0

∑

s∈Sn
k

rs(t), (27)

for t ∈ (0, T ), where

T :=
(

lim sup
n→∞

Rn

√
Cn

εn

)−1

and the series over n is locally uniformly convergent on (0, T ).

Proof Let us estimate the reminder FRn(t) as follows

∣∣FRn(t)
∣∣ = 1

2π

∣∣∣∣
∫ ∞

−∞
Z(−Rn + iy)tRn−iydy

∣∣∣∣ � 1
2π

∫ ∞

−∞
Cne−εn|y|tRndy

= CntRn

2π
2

∫ ∞

0
e−εnydy = CntRn

2π
2
εn

.

Let 0 < T ′ < T . Then, for any t ∈ (0, T ′]

lim sup
n→∞

(
t Rn

√
Cn

εn

)
= t

T
� T ′

T
.

Hence, for sufficiently large n we have t Rn

√
Cn

εn
< a, where a ∈ (T ′/T , 1) is some

constant independent of t . Then
∣∣FRn(t)

∣∣ � CntRn

εnπ
< aRn

π
→ 0, (28)

so FRn(t) tends to 0 uniformly for t ∈ (0, T ′] as n → ∞. Since T ′ can be any
number in (0, T ), the theorem is proven.

Note that again the order of summation in (27) is important and the convergence
may be only conditional. As in the case of the vertical sum over k (see (17)), the con-
vergence properties depend on the choice of the (Rn) sequence. And as in Proposition
4 we can refine the assumptions of Theorem 5 to obtain an absolute convergence of
the series over n in formula (27).

Let us first adopt the following definition:
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Definition 6 Let the operator P be such that

htrP (t) =
∞∑

n=1

φn(t), for t ∈ (0, T ), (29)

with some 0 < T � +∞, where (φn)n∈N is the asymptotic scale given by (23). We
say that the heat trace associated with P has an absolutely exact expansion on (0, T̃ )

if the series ∞∑

n=1

|φn(t)|

is locally uniformly convergent on (0, T̃ ) with some 0 < T̃ � T .

Note, that since the RHS of (29) is not in general a Taylor series, its domain of
convergence does not necessarily coincide with that of absolute convergence, hence
T̃ � T . In particular if 0 = T̃ < T , then the expansion of the heat trace associated
with P will be exact on (0, T ), but nowhere absolutely exact.

By using a similar reasoning as the one used in the proof of Proposition 4, we
can refine the assumptions of Theorem 5 to obtain an absolutely exact heat trace
expansion.

Proposition 5 Let the assumptions of Theorem 5 be fulfilled and moreover let
log n = O∞(Rn) (i.e. Rn grow faster than log n). Then the expansion is absolutely
exact on the whole domain (0, T ).

Proof As announced, we proceed similarly to the proof of Proposition 4, but now we
shall add together the contributions of subsequent vertical integrals. From (25) we
have

|φn(t)| = ∣∣FRn(t) − FRn−1(t)
∣∣ �

∣∣FRn(t)
∣∣ + ∣∣FRn−1(t)

∣∣ .

Now, (28) implies
∞∑

n=1

|φn(t)| � 2
∞∑

n=1

∣∣FRn(t)
∣∣ � 2

∞∑

n=1

Cnt
Rn

εnπ
< 2

π

∞∑

n=1

aRn.

with a ∈ (T ′/T , 1) for any T ′ ∈ (0, T ). Therefore, it suffices to show that the last
series is convergent for any a < 1. Taking x = − log a we see that it is again a
general Dirichlet series (5) with an = 1, bn = Rn for n ∈ N. By Theorem 1 we
conclude that its abscissa of convergence is

lim sup
n→∞

log n

Rn

,

which equals 0 by hypothesis. Thus, the series is convergent for x > 0, i.e a < 1.

The characterisation of an absolutely exact expansion through Proposition 5 is
particularly useful. If we have an exact expansion of a heat trace htrP on (0, T ), it is
sufficient to check whether the sequence (Rn) of our choice grows faster than log n.
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In fact, all of the examples of exact expansions presented in Section 4 are actually
absolutely exact in the same domain.

Let us also note, that if we have an exact expansion of the heat trace for an open
interval (0, T ), then htrP actually provides an analytic continuation of the RHS of
(27) to the whole half line R

+.
Let us now turn to the case of an almost exact expansion of heat traces. The situa-

tion is somewhat different than that of an exact expansion, as one would need precise
formulae rather than estimates to guarantee that the limit of FRN

as N → ∞ is finite,
but non-zero. It may be seen as a kind of “critical” case, in the sense that a slight
perturbation of the zeta-function renders the expansion divergent (see Section 4.1.4).
One of these specific cases is captured by the following proposition.

Proposition 6 If the operator P fulfilling the assumptions of Theorem 4 is such that
PZ (C) is a finite set, then the expansion

htrP (t) =
∑

s∈PZ (C)

rs(t) + F∞(t) (30)

is almost exact for all t > 0, but not exact.

Proof Let us note that PZ (C) being finite requires PζP
(C) to be finite, but also that

the zeros of ζP cancel all but a finite number of poles of �, i.e. ζP (−n) = 0 for all
but a finite number of n ∈ N. In this case, Theorem 4 yields an asymptotic expansion,
which has only a finite number of terms, hence it converges for all t > 0. As t tends
to infinity we have form (10) that htrP (t) = Ot→∞(e−tλ0). But this is not compatible
with the behaviour t−s(log t)k (compare (20)) of the summands of the first term on
the RHS of (30). Hence, F∞(t) cannot be 0 and the expansion (30) is almost exact,
but not exact.

3.3 Truncated Zeta-function

For further purposes it is convenient to define also the following spectral function.

Definition 7 For any N ∈ N
+, a truncated zeta-function associated with the operator

P is a complex function

C ⊃ Dom(ζP ) � s �→ ζ̂ N
P (s) =

∞∑

n=N

Mn λ−s
n . (31)

The two zeta-functions are related by

ζP (s) =
N−1∑

n=0

Mn λ−s
n + ζ̂ N

P (s). (32)

The first term of the RHS of the above formula is an entire function of s, hence the
analytic properties of ζP and ζ̂ N

P are identical.
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We can actually slightly relax the growth rate Assumptions 3 and 4 of Theorem 4
by considering the truncated zeta-function (31) at the place of ζP .

Proposition 7 If the assumptions of Theorem 3 hold for ζ̂ N
P and Ẑ : s �→ �(s)ζ̂N

P (s)

with some finite N ∈ N
+, then for t > 0 we have

htrP (t) =
N−1∑

n=0

Mne−tλn +
∞∑

n=0

∑

s∈Sn

r̂s(t) + F̂R(t),

where

r̂s (t) := Res
s′=s

(
Ẑ(s′) t−s′)

,

F̂R(t) := 1
2πi

∫ −R+i∞

−R−i∞
Ẑ(s) t−s ds = O0(t

R).

Proof The proof of Theorem 3 will work equally well for this case with the only
difference at line (16) which will now read

1
2πi

lim
n→∞ Îc(n) = M−1[Ẑ](t).

Applying the inverse Mellin transform to relation (32) multiplied by �(s) we get
(using Lemma 1)

htrP (t) =
N−1∑

n=0

MnM−1[λ−s
n �(s)] + M−1[Ẑ](t).

Note that for any n ∈ N the function λ−s
n �(s) is integrable over any vertical line

R(s) = c /∈ N (as � decays exponentially on verticals, compare (52)) and that it
equals to M[exp(−tλn)](s) (cf. (11)). The claim then follows from Theorem 2.

As ζP and ζ̂ N
P differ by an entire function, the assumptions (i) and (ii) of Theorem

3 are fulfilled by ζ̂ N
P if and only if they are fulfilled by ζP . In view of Proposition 7

it is convenient to introduce the notion of a truncated heat trace:

ĥtrNP (t) := htrP (t) −
N−1∑

n=0

Mne−tλn . (33)

Then all of the considerations about the truncated zeta-function can be expressed in
one simple remark:

Remark 2 All of the results concerning the asymptotic and exact expansions of heat
traces hold with ζP altered for the truncated zeta-function ζ̂ N

P (31). One proceeds as

in Proposition 7 and substitutes ĥtrNP for htrP and Ẑ for Z in all of the assertions.

The truncation procedure proves very useful when some of the assumptions on the
zeta-function are not met, because of a finite number of terms in its definition (or
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because of a finite number of eigenvalues of P ). We will encounter one such situa-
tion when discussing operators with polynomial spectrum in the next section. Zeta-
functions of such operators do not generally satisfy the assumption of integrability
on vertical lines (Assumption 3 of Theorems 3 and 4), however they can always be
truncated to get an asymptotic expansion of the truncated heat trace (see Theorem 7).

Another situation when truncation is beneficial is when the operator P under con-
sideration is not positive or invertible, but there exists such a real constant c, that
P + c satisfies the General Assumption (P still has to be self-adjoint and have com-
pact resolvent). Such a P has a finite number of non-positive eigenvalues and we
can truncate them. The heat trace htrP still may be defined, although the definition
of zeta-function ζP is ambiguous at best. However, ζ̂ N

P makes sense for N such that
for every n � N one has λn > 0, if only its abscissa of convergence is finite. Then
one can obtain the asymptotic expansion of htrP from Proposition 7. An important
special case is the following:

Remark 3 Let P be a positive densely defined operator with compact resolvent
and non-trivial kernel, acting on a separable infinite-dimensional Hilbert space. Let
(λn)

∞
n=0 denote the strictly increasing sequence of its eigenvalues, that tends to infin-

ity. Then λ0 = 0 with M0 = dim ker P < ∞ and every other eigenvalue is positive.
If htrP is well-defined then from (33) one obtains

htrP (t) = dim ker P + ĥtr1
P (t)

and one can apply the Mellin transform techniques to obtain the asymptotic expan-
sion of ĥtr1

P (t) if only ζ̂ 1
P is well-defined and possesses the required properties.

4 Examples

4.1 Operators of Polynomial Spectrum

In this section we investigate heat traces associated with operators, the eigenval-
ues and multiplicities of which are given by polynomials. For brevity we shall call
such operators – the operators of polynomial spectrum. They appear naturally in
the context of Dirac and Laplace operators on spheres [6, 69] and their isospectral
deformations [17, 18, 24–26, 62].

Moreover, the results presented in this section apply almost directly when the
spectra of the relevant operators can be written as

σ(P ) =
K⋃

k=1

{
λk

n : n ∈ N

}
, (34)

for some finite K ∈ N
+, and for each k ∈ { 1, . . . , K } the eigenvalues λk

n

and their respective multiplicities Mk
n are given by polynomials in n. Since the

(inverse) Mellin transform is linear, one can apply the general theory to each
sequence

(
λk

n

)
n∈N separately. One can find examples of such spectra in the frame-

work of Dirac operators on some homogeneous spaces [3, 57, 68], like the
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Poincaré sphere or lens spaces. Indeed, [57, (6.3), (6.11)] give the decomposi-
tion of Dirac spectrum into four1 (K = 4) polynomial sequences for quaternionic
space SU(2)/Q8. The same paper describes the spectrum of Poincaré sphere with
K = 120 [57, Prop. 7.2] and of four-dimensional lens space SU(2)/Z4 with
K = 4 [57, Lemma 11.20].

By combining the results of [59] with general theorems presented in the preceding
section we are able to prove the existence of an asymptotic expansion of the heat
traces associated with operators of polynomial spectra (see Theorem 7). We also
derive sufficient conditions for the convergence of the expansion.

4.1.1 Asymptotic Expansions

Let us start with the following theorem summarising the behaviour of zeta-functions
associated with operators in the considered class (compare [59, Theorems A and B]).

Theorem 6 Let P be an operator satisfying the General Assumption with eigen-
values λn = A(n) and multiplicities Mn = B(n) for n ∈ N, where A and B are
polynomials.

Then:

1. Roots of A are not in N;
2. ζP is well-defined, with the abcissa of convergence L = (1 + deg B)/deg A;
3. ζP admits a meromorphic extension to the whole complex plane;
4. PζP

(C) ⊂ 1
deg A

(1 + deg B − N) \ (−N) and all of the poles are of first order;
5. For any ε > 0 there exists N > 0 such that the truncated zeta-function (see

(31)), ζ̂ N
P , obeys the following growth rate along the vertical lines

∣∣∣ζ̂ N
P (x + iy)

∣∣∣ = O∞
(

eε|y|) ,

for any x ∈ R.

Proof The point 1 is a direct consequence of the fact, that P is invertible, and hence
all its eigenvalues are non-zero. Now, the zeta-function associated with the operator
P for R(s) > L can be written as

ζP (s) =
∞∑

n=0

B(n)

A(n)s
, (35)

since the roots of A are not in N. The corresponding spectral growth function reads

N(λn) =
n∑

k=0

B(k) =: B̃(n),

1To be precise, eigenvalues and multiplicities are in [57] indexed by n ∈ Z, and hence they need only K/2
polynomials. In our convention with n ∈ N we need separate polynomials for positive and negative part of
spectrum, what doubles the number of polynomials given in [57].



28 Page 22 of 44 Math Phys Anal Geom (2015) 18: 28

and it is a classical result (see e.g. the Faulhaber’s formula) that B̃ is a polynomial
and deg B̃ = deg B + 1. Hence, by Theorem 1 the abscissa of convergence of ζP

equals (cf. (8))

L = lim sup
n→∞

log N(λn)
log λn

= lim sup
n→∞

log B̃(n)
log A(n)

= deg B+1
deg A

. (36)

Point 3 is the content of Theorem B in [59] (see also Remark 1 therein).
To prove points 4 and 5 we introduce for r ∈ N

+ the following multi-variable
series (see [59, Section 1, Formula (2)])

ζr (s1, . . . , sr ; α1, . . . , αr) :=
∞∑

n=0

(n + α1)
−s1(n + α2)

−s2 · · · (n + αr)
−sr , (37)

for s1, . . . , sr ∈ C with R(s1 + . . . + sr ) > 1 and α1, . . . , αr ∈ C \ (−N). The
branch of logarithm in (n + αj )

−sj = exp
(−sj log(n + αj )

)
is chosen to be −π <

arg(n + αj ) � π .
If we take r = deg A and αi for i = 1, . . . , deg A to be the roots of A, then we

can write the polynomials A and B as

A(n) = a

deg A∏

i=1

(n + αi), B(n) =
deg B∑

j=0

b̃j (n + α1)
j .

Plugging this representation into (35) and using the definition (37) we get
(compare [59, Section 1, Formula (3)])

ζP (s) = a−s

deg B∑

j=0

b̃j ζdeg A

(
s − j, s, . . . , s; α1, . . . , αdeg A

)
. (38)

In [59] the analytic properties of ζr functions are studied, what allows to draw
conclusions about the analytic properties of ζP on the strength of formula (38). For-
mulae (10) and (12) in [59, Section 1] provide an explicit meromorphic continuation
of ζr to C

r . The proof is based on the induction on r with the Riemann zeta-function
as the starting point r = 1.

The claim PζP
(C) ⊂ 1

deg A
(1 + deg B − N) then follows from [59, Theorem A].

On the other hand, [59, Theorem C] implies that −N � PζP
(C). The fact that the

poles ζP are at most of first order is a consequence of [59, Lemma 5] and the formula
[59, Section 1, Formula (12)] (see also [59, Section 1.2 and p. 242]).

Let us now pass on to the last point of the claim – the estimate of ζ̂ N
P on

vertical lines. We first quote the result [59, Proposition 1 (iii)] translated to our
notation:

|ζr (x1 + iy1, . . . , xr + iyr ; α1, . . . , αr−1, 0)| = O∞
(
C(y1, . . . , yr ) · eρ1|y1|+...+ρr−1|yr−1|) ,

with ρi = |arg αi | and C – a polynomial. Now, we repeat the proof of Proposition
1 (iii) [59, p. 240] with the formula (12) instead of (10) therein. The reasoning goes
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along the same lines, [59, Lemma 1] still applies with y = �(z), A = −π
2 , α =

yr , B = ρr − π
2 , β = 0 and we conclude that

|ζr (x1+iy1, . . . , xr +iyr ; α1, . . . , αr−1, αr )|=O∞
(
C(y1, . . . , yr ) · eρ1|y1|+...+ρr−1|yr−1|+ρr |yr |

)
.

(39)

Hence, by (38) we obtain

|ζP (x + iy)| = O∞
(
C(y)deg A · e|y| ∑deg A

i=1 |arg αi |
)

= O∞
(

e
|y|

(∑deg A

i=1 |arg αi |+δ
))

,

for any δ > 0.
Here comes the advantage of using the truncated zeta-function ζ̂ N

P , since by start-
ing the zeta-series at n = N instead of n = 0 we effectively shift αi → αi + N

(compare [59, Remark 1]). This means that by taking N large enough one can make∑deg A

i=1 |arg αi | arbitrarily small and assertion 5 is proven.

Typically (i.e. for generic polynomials A and B) the zeta-functions ζP will have
an infinite number of poles on the negative part of the real axis. This is a consequence
of the [59, formulae (10) and (12)]. Let us illustrate this property with the following
simple example.

Example 1 Let P be an operator with eigenvalues λn = A(n) = n(n+α) for n ∈ N
+

with some α ∈ R
+ and no degeneracies (i.e. B(n) = 1), then PζP

(C) = 1
2 − N.

Indeed, from the formulae (38) and [59, (10)] we have for R(s) > −M/2 with
any M ∈ N:

ζP (s) =
M∑

j=0

(−s

j

)
ζ(2s + j)αj + hM(s),

where hM is a remainder term holomorphic for R(s) > −M/2. So for any n ∈ N we
have

Res
s= 1

2 −n

ζP (s) = Res
s= 1

2 −n

⎛

⎝
2n∑

j=0

(−s

j

)
ζ(2s + j)αj + h2n(s)

⎞

⎠ =
(

n − 1
2

2n

)
α2n �= 0.

There exist however special operators P with fine-tuned polynomials A and B for
which the zeta-function ζP will only have a finite number of poles. It happens for
instance in the following case:

Proposition 8 If all of the roots of the polynomial A are equal then the set PζP
(C)

is finite.
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Proof Since A(n) = a(n + α)deg A, we have for R(s) > (1 + deg B)/deg A

ζP (s) =
∞∑

n=0

deg B∑

j=0

b̃j a−s (n + α)−(deg A)s+j = a−s

deg B∑

j=0

b̃j ζH ((deg A)s − j, α),

where ζH is the Hurwitz zeta-function. Since ζH is meromorphic on C with a single
simple pole at 1 and the sum over j for ζP is finite, the assertion follows.

The equality of all roots of A is a sufficient condition for PζP
(C) to be finite,

but not a necessary one. Consider for instance the operator P with eigenvalues λn =
A(n) = n3 + 1 and degeneracies B(n) = n2. Then, by using

(1 + x)−s =
∞∑

k=0

(−s

k

)
xk, for |x| < 1,

we obtain

ζP (s) =
∞∑

n=0

n2

(n3 + 1)s
=

∞∑

n=0

n−3s+2(1 + n−3)−s =
∞∑

j=0

(−s

j

)
ζ(3s + 3j − 2),

which gives a meromorphic extension of ζP to the whole complex plane. On the
other hand, the Theorem 6 assertion 4 implies that PζP

(C) ⊂ 1
3 (3 − N) \ (−N).

Moreover, the poles of ζP come only from the poles of s �→ ζ(3s + 3j − 2). But at
s = k

3 − n, ζ(k − 3n + 3j − 2) is finite for all n ∈ N, j ∈ N and k ∈ {1, 2} since the
only pole of the Riemann zeta-function is at 1. Hence, ζP has only one simple pole
PζP

(C) = {1}.
It is interesting to compare this result with [40, Lemma 1.10.1] and [39, p. 2]. The

former tells us that zeta-functions associated with classical positive elliptic differ-
ential operators on (finite-dimensional) compact manifolds have a finite number of
poles only. On the other hand, the latter says that positive elliptic classical pseudodif-
ferential operators generically do have an infinite number of simple poles, including
at −N.

Clearly, elliptic pseudodifferential operators on compact manifolds need not
be of polynomial spectrum — for instance, the scalar Laplacian on T

2 [32].
On the other hand, one might ask whether any operator of polynomial spectrum
can be realised as a classical elliptic pseudodifferential operator on some com-
pact manifold. We consider it as an interesting open problem, the solution to
which may shed more light on the geometrical meaning of the operators in this
class.

Finally, let us turn to the heat traces of operators with eigenvalues and multi-
plicites given by polynomials. The following Theorem establishes the existence of an
asymptotic expansion of heat trace for any operator in this class.

Theorem 7 Let P be an operator with eigenvalues λn = A(n) and multiplicities
Mn = B(n), whereA and B are polynomials of degree deg A and deg B respectively.
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Then, there exists N ∈ N such that

ĥtrNP (t) = htrP (t) −
N−1∑

n=0

B(n)e−A(n)t ∼
t↓0

∞∑

k=0

Res
s=�−k/(deg A)

(
�(s)ζ̂N

P (s)
)

t�−k/(deg A), (40)

where � = (1 + deg B)/(deg A).

Proof The claim follows from a direct application of Theorem 4 together with
Remark 2. The assumptions are met by Theorem 6.

Remark 4 Let us remark that one could actually extend Theorem 6 to operators, the
eigenvalues and multiplicites of which can be written as

λn = anγ0

deg A∏

i=1

(nγi + αi), Mn =
deg B∑

j=0

bjn
βj ,

with γi > 0 for i = 1, . . . , deg A,
∑deg A

i=0 γi > 0 and bj > 0 for at least one
j ∈ {0, . . . , deg B}. Then, instead of (37), one would need to seek a meromorphic
continuation to C

r of the functions

ζ̃r (s1, . . . , sr ; γ0, . . . , γr ; α1, . . . , αr ) :=
∞∑

n=0

n−s0γ0(nγ1 + α1)
−s1 · · · (nγr + αr)

−sr .

The latter could again be accomplished with the help of the Mellin–Barnes for-
mula as in [59]. It is plausible that ζP functions obtained in this way will only have
first order isolated poles and some bound similar to (39) can be established. On the
other hand, the regularity of ζP at −N is not to be expected in general.

We have chosen to formulate Theorem 6 for operators of polynomial spectrum, as
considering more general ones described above would add to the complexity without
being strongly motivated. In fact, we were not able to find any reasonable geometric
example where the operator falls into this larger class, but not the one of operators of
polynomial spectrum.

Generically, the expansion (40) will only be an asymptotic one. There exist, how-
ever, operators for which the formula (40) will be exact or almost exact on (0, T ) for
some 0 < T � +∞.

4.1.2 Exact Expansions

In this subsection we consider a class of operators, which have an exact expan-
sion of the associated heat traces. In particular, it will serve as an illustration for
Theorem 5.

Proposition 9 Let P be an operator of polynomial spectrum with eigenvalues λn =
A(n) and multiplicities Mn = B(n). If deg A = 1, i.e. if A(n) = a(n + α) for some
a > 0, α � 0, then the asymptotic expansion (40) is absolutely exact on (0, 2π/a).
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Proof To start, let us consider an operator P0 with a = 1, α = 1 and B(n) = 1. We
can calculate directly:

ζP (s) =
∞∑

n=1

n−s = ζ(s), for R(s) > 1.

The Riemann zeta-function ζ extends meromorphically to C with a single simple
pole at 1, whereas � has simple poles at non-positive integer numbers. The values of
the residues read

Res
s=1

ζ(s) = 1, Res
s=−n

�(s) = (−1)n

n! ∀n ∈ N.

Moreover, the values of ζ at non-positive integers are given by

ζ(−n) = −Bn+1
n+1 , ∀n ∈ N,

where Bn denote the Bernoulli numbers with the convention B1 = +1/2. As
a consequence, ζ vanishes at negative even integers, so the function Z : s �→
�(s)ζ(s) is in fact regular at these points, and the set of its poles is PZ (C) =
{1, 0, −1, −3, −5, . . . }. Theorem 7 therefore yields

htrP0(t) ∼
t↓0

t−1 − 1
2 +

∞∑

n=0

B2n+2
(2n+2)! t

2n+1. (41)

To check if this expansion is exact, by Theorem 5, we need to find an explicit
bound of the form (26) for a suitable sequence (Rn) tending monotonically to +∞.
We can, for instance, choose

R0 = − 3
2 , R1 = − 1

2 , R2 = 1
2 , Rn = 2(n − 2), for n � 3, (42)

as Z is regular at negative even integers. Now, recall the Riemann functional equation
[1, Formula (23.2.6)]:

ζ(s) = 2sπs−1 sin
(

πs
2

)
�(1 − s)ζ(1 − s).

By changing s to (1 − s) we get

Z(s) = �(s)ζ(s) = 2s−1πsζ(1 − s)

sin (π(1 − s)/2)
.

For s = −Rn + iy with n � 3 the denominator of the above expression equals

sin
(
π

(
1
2 + n − i

y
2

))
=cos

(
π

(
n − i

y
2

))=(−1)n cos
(−i

πy
2

))=(−1)n cosh
(πy

2

)
.

Thus, we have

|Z(−Rn + iy)| = 2−2n−1π−2n |ζ(2n + 1 − iy)|
cosh

(πy
2

) .
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For any y ∈ R, 2 cosh(y) > e|y| and if x > 1 then

|ζ(x + iy)| �
∞∑

k=1

∣∣∣k−x−iy
∣∣∣ =

∞∑

k=1

k−x = ζ(x).

Hence,

|Z(−2n + iy)| � (2π)−2nζ(2n + 1)e−π |y|
2 ,

what means that Z satisfies the assumptions of Theorem 4 with Cn :=
(2π)−2nζ(2n + 1) and a constant εn := π/2. Now,

lim sup
n→∞

Rn
√

Cn/εn = 1
2π

< ∞,

as ζ(x) → 1 for x → ∞. Thus, on the strength of Theorem 5, we see that the
expansion (41) is exact on (0, 2π). Moreover, with the choice (42) of the sequence
(Rn), Proposition 5 applies and the expansion (41) is in fact absolutely exact on
(0, 2π).

Let us now turn to the general case of an operator P with A(n) = a(n + α) and
B(n) = ∑deg B

j=0 bjn
j . For any t > 0 we have

htrP (t) =
∞∑

n=0

deg B∑

j=0

bjn
j e−ta(n+α) = e−taα

deg B∑

j=0

bj

∞∑

n=0

nj e−tan = e−taα

deg B∑

j=0

bj

dj

dtj
htrP0 (at).

Since R
+ � t �→ htrP0(t) is an analytic function with an absolutely exact expan-

sion for t ∈ (0, 2π), we conclude that the expansion of htrP is absolutely exact for
(0, 2π/a).

Remark 5 Since the eigenvalues of the operator at hand grow linearly, the heat trace

htrP (t) =
∞∑

n=0

B(n)e−tA(n)

associated with P can be summed explicitly – for instance, htrP0(t) = 1
2

(
coth t

2 − 1
)

for any t > 0. Hence, htrP , as a linear combination of derivatives of htrP0 , is actually
a complex analytic function of t around 0. In particular, it admits a Laurent expansion
around t = 0 with the radius of convergence precisely equal to 2π/a (recall that
coth t

2 is singular at t = 2πi).

We conclude that in this particular subclass the asymptotic expansion of htrP (t)

as t ↓ 0 obtained from the Mellin transform is equal to the Laurent expansion of htrP
and the value of abscissa of convergence of the former precisely coincides with the
value of the radius of convergence of the latter. In particular, it shows that with the
estimates adopted in the statement of Theorem 5 one can obtain the maximal region
of convergence of the expansion of a heat trace.

Proposition 9 has a direct geometrical application:
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Corollary 1 Let D be the Dirac operator acting on a spinor bundle of Sd — the
d-dimensional sphere with round metric. Then, the asymptotic expansion of the heat
trace associated with |D| is exact on (0, 2π).

Proof Recall first that on S1 there are two possible spin structures, whereas for Sd

with d � 2 there is only one available [4]. In the case of the trivial spin structure on
S1 one has

λ±n(D) = ±n, M±n(D) = 1, for n ∈ N,

hence

λn(|D|) = n, Mn(|D|) = 2 − δn,0, for n ∈ N.

So, for S1 with the trivial spin structure the operator |D| is not invertible and we have
to use truncated zeta-function. From Remark 3 we get

htr|D| = 1 + ĥtr1
|D| = 1 + 2 htrP0 ,

where P0 is as in the proof of Proposition 9.
In the case of the non-trivial spin structure, the spectrum of the Dirac operator D

fits into the general pattern for Sd [4, 6, 69]:

λ±n(D) = ± (
n + d

2

)
, M±n(D) = 2� d

2 �(n+d−1
d−1

)
, for n ∈ N. (43)

Hence, the operator |D| with

λn(|D|) = n + d
2 , Mn(|D|) = 2� d

2 �+1(
n+d−1
d−1

)
, for n ∈ N,

meets the conditions of Proposition 9 with a = 1, α = d
2 and B(n) = Mn and the

assertion follows.

4.1.3 Almost Exact Expansions

In this subsection we turn to the case of almost exact (but not exact) expansions of
heat traces associated with operators of polynomial spectrum.

Proposition 10 Let P be an operator with eigenvalues λn = A(n) and multiplicities
Mn = B(n) for n ∈ N. If A(n) = a(n + α)2k + β for some a ∈ R

+, α ∈ 1
2N, β ∈ R,

k ∈ N
+ and B(n) = ∑(deg B)/2

j=0 b̃j (n + α)2j with deg B even, then the asymptotic
expansion (40) is almost exact for all t > 0, but not exact.

Proof At first let us note that with P = P ′ + β we have

htrP (t) = e−tβ htrP ′(t).

Thus, it is sufficient to consider the case β = 0.
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Moreover, we can assume that α = 1
2 or α = 0. Indeed, let us denote by α̃ =

α − �α� the fractional part of α, then we have

htrP ′ (t) =
∞∑

n=0

B(n)e−tA(n) =
(deg B)/2∑

j=0

b̃j

∞∑

n=0

(n + α)2j e−ta(n+α)2k =

=
(deg B)/2∑

j=0

b̃j

∞∑

n=0

(n + �α� + α̃)2j e−ta(n+�α�+α̃)2k =

=
(deg B)/2∑

j=0

b̃j

∞∑

n=�α�
(n + α̃)2j e−ta(n+α̃)2k =

=
(deg B)/2∑

j=0

b̃j

∞∑

n=0

(n+α̃)2j e−ta(n+α̃)2k −
(deg B)/2∑

j=0

b̃j

�α�−1∑

n=0

(n+α̃)2j e−ta(n+α̃)2k

,

and the second term is regular at t = 0.
Let us denote by P ′′ the operator with λn(P

′′) = a(n + α̃)2k and Mn(P
′′) =

Mn(P ). For R(s) > (1 + deg B)/(deg A) we have

ζP ′′(s) =
∞∑

n=0

(deg B)/2∑

j=0

b̃j a
−s(n + α̃)2j−2ks = a−s

(deg B)/2∑

j=0

b̃j ζH (2ks − 2j, α̃),

where ζH is the Hurwitz zeta-function. This formula provides a meromorphic exten-
sion of ζP ′′ to the whole complex plane. Since the Hurwitz zeta-function has a single
simple pole at 1 for any α̃ ∈ C \ −N, we have PζP ′′ (C) = 1

2k
{1, 3, . . . , deg B + 1}.

What is more, for s = −n with n ∈ N we have

ζP ′′(−n) = an

(deg B)/2∑

j=0

b̃j ζH (−2kn − 2j, α̃) = −an

(deg B)/2∑

j=0

b̃j

B2kn+2j+1(̃α)

2kn + 2j + 1
,

where Bn denotes the Bernoulli polynomial of degree n. But if α̃ = 0 or α̃ = 1
2

then B2n+1(̃α) = 0 [1, Section 23], hence for any n ∈ N
+ ζP ′′(−n) = 0. So if

Z(s) = �(s)ζP ′′(s) as usually, we have PZ (C) = 1
2k

{0, 1, 3, . . . , deg B + 1}. Thus,
on the strength of Proposition 6 and formula (40) we finally conclude that for all
t > 0

htrP (t) = e−tβ

(deg B)/2∑

j=0

b̃j �
(

1+2j
2k

)
(at)

− 1+2j
2k − e−tβ b̃0

(
α̃ − 1

2

)
+

−e−tβ

(deg B)/2∑

j=0

b̃j

�α�−1∑

n=0

(n + α̃)2j e−ta(n+α̃)2k + F∞(t), (44)

where F∞(t) �= 0 has a null Taylor expansion at t = 0.
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In some cases, one could be able to compute the remainder function F∞ explicitly.

Example 2 Let P be an operator with λn(P ) = n2 and Mn = 1 for n ∈ N, then

htrP (t) =
∞∑

n=0

e−tn2 = 1

2
(θ3(0; e−t ) − 1),

with θ3 being the Jacobi theta function defined as

θ3(z; q) :=
∞∑

n=−∞
qn2

e2niz.

For such an operator one can compute explicitly (see [30] and also [28]):

F∞(t) =
√

π
t

1
2

(
−1 + θ3

(
0; e−π2/t

))
.

Hence, formula (44) turns out to be the famous Jacobi identity [30, (3.13)]. This
example has been analysed in details in [30] and has direct applications to quantum
physics.

Therefore, one can regard the formula (44) as a generalisation of the Jacobi
identity for special functions defined by htrP (t) with P as in Proposition 10.

Proposition 10 again has a direct geometrical application.

Corollary 2 Let D be the Dirac operator acting on a spinor bundle of Sd – the d-
dimensional sphere with round metric. If d is odd, then the asymptotic expansion of
the heat trace associated with D2k with k ∈ N

+ is almost exact for all t > 0, but not
exact.

Proof To apply Proposition 10 we need to show that Mn(D2k) can be written as a
polynomial in λn(D2). For trivial spin structure on S1 it is obvious, however we need
to resort again to the truncated zeta-function, as in Corollary 1.

In all other cases, by formula (43) we have λn(D2k) = (
n + d

2

)2k
. Note that

Mn(D2k) = Mn(|D|) (45)

= 2� d
2 �+1 (

λn(|D|) + d
2 − 1

) (
λn(|D|) + d

2 − 2
) · · · (

λn(|D|) − d
2 + 2

) (
λn(|D|) − d

2 + 1
)
.

So if d is odd, then

Mn(D2k) = 2� d
2 �+1

(
λn(|D|)2 − (

d
2 − 1

)2
) (

λn(|D|)2 − (
d
2 − 2

)2
)

· · ·
(

λn(|D|)2 −
(

1
2

)2
)

.

Hence, Mn(D2k) can indeed be written as a polynomial in λn(|D|)2 = λn(D2).
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The comparison of Corollaries 1 and 2 shows a sharp contrast between the heat
traces associated with the operators |D| and D2 for odd-dimensional spheres. For the
even-dimensional ones the discrepancy is even more dramatic, as we shall now see.

4.1.4 Divergent Expansions

For a generic operator of polynomial spectrum with eigenvalues growing at least
quadratically one expects the associated heat trace expansion to be only an asymp-
totic one. In particular, we have the following result:

Proposition 11 Let D be the Dirac operator acting on a spinor bundle of Sd – the
d-dimensional sphere with round metric. If d is even, then the asymptotic expansion
of the heat trace associated with D2 is only asymptotic.

Proof If d is even, formula (46) yields

Mn(D2) = 2� d
2 �+1

(
λn(|D|)2 − (

d
2 − 1

)2
) (

λn(|D|)2 − ( d
2 − 2)2

)
· · ·

(
λn(|D|)2 − 12

)
λn(|D|)

=:
d−1∑

m=0

cmλn(|D|)m,

with cm = 0 for m even. Moreover,

sign cd−1−2q = (−1)q, ∀q = 0, . . . , d
2 − 1. (46)

The zeta-function associated with the operator P = D2 on Sd reads

ζP (s) =
∞∑

n=0

Mn(Dk)λn(|D|)−2s =
d−1∑

m=0

cm

∞∑

n=0

(
n + d

2

)−2s+m =
d−1∑

m=0

cmζH

(
2s − m, d

2

)
,

where ζH is the Hurwitz zeta-function. It turns out, that the latter can actually be
replaced by the Riemann zeta-function. Indeed, let us note that

ζH

(
s, d

2

) =
∞∑

n=0

(
n + d

2

)−s =
∞∑

n=1

n−s −
d/2−1∑

n=1

n−s = ζ(s) − Fd(s),

with Fd(s) := ∑d/2−1
n=1 n−s for d � 4 and F2(s) = 0. Hence,

ζP (s) =
d−1∑

m=0

cmζ(2s − m) −
d−1∑

m=0

cmFd(2s − m).
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Let us investigate the second term on the RHS of the above equality. For any s ∈ C,

d−1∑

m=0

cmFd(2s − m) =
d/2−1∑

n=1

n−2s

d−1∑

m=0

cmnm =
d/2−1∑

n=1

n−2sB
(
n − d

2

)
,

where B is the polynomial defining the multiplicites of D2, i.e. Mn(D2) = B(n)

for all n ∈ N. But, since B(n) = 2� d
2 �+1(

n+d−1
d−1

)
by (43) and d is even, we have

B(n − d
2 ) = 0 for every n = 1, . . . , d

2 − 1. Thus,

ζP (s) =
d−1∑

m=0

cmζ(2s − m).

Now, Theorem 7 yields the following asymptotic expansion:

htrP (t) ∼
t↓0

∞∑

k=0

Res
s=(d−k)/2

�(s)ζP (s)t(k−d)/2

=
d−1∑

k=0

�
(

d−k
2

)
cd−k−1t

(k−d)/2 +
∞∑

p=0

(−1)p

p!
d−1∑

m=0

cmζ(−2p − m)tp.

(47)

Let us investigate the convergence of the series

∞∑

p=0

dptp, with dp = (−1)p

p!
d−1∑

m=0

cmζ(−2p − m). (48)

Recall that [1, (23.2.15)]

ζ(−2p − m) = − B2p+m+1

2p + m + 1
,

where Bn are the Bernoulli numbers.
Since cm = 0 for even m, therefore in the definition of dp the only non-vanishing

terms are those with 2p + m + 1 even. Moreover, we have

sign B2n = (−1)n+1,

and by (46)

sign cm = (−1)
d−1−m

2 ,

thus

sign cm B2p+m+1 = (−1)
d−1−m

2 (−1)
2p+m+1

2 +1 = (−1)
d
2 +p+1

.

Therefore,

sign dp = (−1)
d
2

so all of the terms in series (48) over p have the same sign. Moreover, since
sign cm B2p+m+1 does not depend on m it is sufficient to study the behaviour of
cmζ(−2p − m)/(p!) as p grows, for a fixed m.
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We have [1, (23.1.15)]

(−1)n+1B2n >
2(2n)!
(2π)n

,

so that

cm

ζ(−2p − m)

p! = cm

B2p+m+1

p!(2p + m + 1)
>

2 |cm|
(2π)(m+1)/2

(2p + m)!
(2π)p p! −−−→

p→∞ ∞.

Hence, the asymptotic series in (47) diverges for any t > 0.

The lesson from the example of spheres is that if one is interested in the conver-
gence properties of heat trace expansion one should work with |D|, which is of the
first order, rather than with D2, despite the fact that the former is not a differential
operator, but only a pseudodifferential one.

4.2 Operators of Exponential Spectrum

In this section we consider the class of operators of exponential spectrum, i.e. the
ones with the spectrum σ(P ) = (q−n)n∈N for some 0 < q < 1. We shall also assume
that the multiplicities are given by a polynomial. This type of operators appears natu-
rally in the context of quantum groups [50, 51] and their homogeneous spaces [27, 29,
60] (see also [52] and [35, Example 12]), as well as in the framework of fractal spaces
[11–13, 41, 42].

Proposition 12 Let P be an operator with λn = q−n for some 0 < q < 1
and Mn = p(n) for some polynomial p of degree m. Then, the asymptotic expan-
sion of the heat trace htrP is absolutely exact for all t > 0 and can be expressed
as

htrP (t) = p̃(1)
(m+1)!

(− logq t
)m+1 +

m∑

j=0

(
rj + Gj

(
logq t

)) (
logq t

)j +
∞∑

n=1

p̃(q−n)

(1−q−n)m+1
(−t)n

n! .

(49)

logq t = log t
log q

, p̃ is a polynomial of degree m, ri are constants (with respect to t) and
Gi are Fourier series completely determined by q and the polynomial p.

Proof We start with the analysis of the zeta-function. For R(s) > 0 we have

ζP (s) =
∞∑

n=0

p(n)qns =
m∑

j=0

pj

∞∑

n=0

njqns =: p̃(qs)

(1 − qs)m+1
.

The polynomial p̃ is completely determined by p via the formula

∞∑

n=0

njqns = Li−j (q
s) = 1

(1 − qs)j+1

j−1∑

k=0

〈
j

k

〉
qs(j−k), (50)
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where Li is the polylogarithm (Jonquière’s) function [49] and
〈
j
k

〉
stand for Eule-

rian numbers of the first kind [14]. From the formula (50) we also deduce that
p̃(1) = pm · m! �= 0. Indeed,

p̃(qs) =
m∑

j=0

pj (1 − qs)m−j

j−1∑

k=0

〈
j

k

〉
qs(j−k)

and, using the summation formula for Eulerian numbers [14, p. 242],

p̃(1) = pm

m−1∑

k=0

〈
m

k

〉
= pm · m!.

Therefore, we conclude that the function Z : s �→ �(s)ζP (s) has a meromorphic
extension to the whole complex plane with:

– first order poles at s ∈ −N
+,

– m + 1 order poles at s ∈ 2πi
log q

Z
∗,

– m + 2 order pole at s = 0.

To see that the assumptions of Theorem 4 are met let us choose Rn = n + 1
2 and

y
(n)
k = 2π

log q
(k + 1

2 ). Let us also denote by p̂ the polynomial p̂(x) = ∑m
i=0 |p̃i |xi .

On the horizontal lines of the contour integration we have

∣∣∣ζP

(
x + iy

(n)
k

)∣∣∣ =
∣∣∣p̃

(
qx+iy

(n)
k

)∣∣∣
∣∣∣1 − qx+iy

(n)
k

∣∣∣
m+1

=
∣∣∣p̃

(
qx+iy

(n)
k

)∣∣∣
(1 + qx)m+1

� p̂(qx)

(1 + qx)m+1

and � decays exponentially on verticals [63, (2.1.21)], hence Assumption 4 of
Theorem 4 is fulfilled. Similarly, on the vertical lines of integration we have

|ζP (−Rn + iy)| =
∣∣p̃(q−Rn+iy)

∣∣
∣∣1 − q−Rn+iy

∣∣m+1
� p̂(q−Rn)

∣∣1 − q−Rn

∣∣m+1
. (51)

To show that we have an exact expansion of htrP valid for any t > 0 we need
to estimate the Gamma function more precisely. The Euler reflection formula [63,
(2.1.20)] together with the estimate (see [29, Formula (43)])

|�(x + iy)|−1 � (2π)−1/2 ex+|y| | arg(x+iy)| (x2 + y2)−x/2+1/4, for x > 0, y ∈ R

gives

|�(−Rn + iy)| �
√

π
2

1

cosh(πy)
e1+Rn+|y||1+R−iy| (

(1 + Rn)
2 + y2

)−Rn/2−1/4
,

�
√

π
2 e1+RnR

−Rn−1/2
n

1

cosh(πy)
e|y||1+R−iy|,

�
√

2π e1+RnR
−Rn−1/2
n

e
π
2 |y|

eπy + e−πy
,

�
√

2π e1+RnR
−Rn−1/2
n e−π

2 |y|
. (52)
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The above result together with (51) yields the following constants in Assumption 3
of Theorem 5:

εn = π
2 , Cn = √

2πe3/2 en p̂(q−n−1/2)

|1−q−n−1/2|
(
n + 1

2

)−n

.

Therefore, Theorem 5 applies and

lim sup
n→∞

Rn
√

Cn/εn = 0, for any 0 < q < 1,

yielding T = ∞. Moreover, since Rn = n + 1
2 , Proposition 5 applies and the

expansion is absolutely exact.
The formula (49) results from a direct calculation of the residues.

This result is somewhat surprising at the first sight. Clearly, htrP (t) decays expo-
nentially as t grows to infinity, whereas the RHS of (49) seems to diverge to infinity
because of the log t terms. However, it turns out that the sum over n in the RHS
of (49) compensates for large t the divergent terms (log t)j , the constant terms and
the oscillatory part to yield an exponential decay (compare [35, Example 12] and
[29, Section 4.1]).

It is interesting to note that if P is an operator of exponential spectrum, then so
is P r for any r ∈ R+ (compare also [29, Section 4.4]). Moreover, given the exact
expansion of the heat trace (49), one immediately obtains that for htrP r simply by
changing q � qr .

5 Outlook

We start the concluding section of this paper with an exploration of the lim-
itations of our general theorems. Having in mind the exactness result of the
previous section one could naively expect that the faster the eigenvalues of a pos-
itive operator grow, the better the convergence properties of the associated heat
trace expansion are. However, as we shall show below the exponential growth
of eigenvalues establishes in fact a limit of applicability of the inverse Mellin
transform.

Proposition 13 Let P be such that Mn = O∞(nb) for some b ∈ R
+. If

lim
n→∞

λn+1

λn

= +∞, (53)

then the function ζP is holomorphic forR(s) > 0, but does not admit a meromorphic
continuation throughR(s) = 0.

Proof The general Dirichlet series defining the zeta-function associated with P reads

ζP (s) =
∞∑

n=0

Mnλ
−s
n =

∞∑

n=0

Mne−s log λn . (54)
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We note that (53) implies that λn = O∞(eg(n)) with g(n)/n → +∞. More-
over, the assumption on the power-like growth of multiplicites assures that ζP (s) is
convergent for R(s) � 0 – see [23, 45] and references therein.

Under the assumption (53), the series (54) is a lacunary Dirichlet series [45]:

ζP (s) =
∞∑

n=0

anz
μn,

with z = e−s , μn = log λn and an = Mn. Then, classical results [55] (see also [33],
[56, Theorem 1], [45] and [23]) show that the vertical line R(s) = 0 is a natural
boundary of analyticity for ζP (s). The latter means that the poles of ζP are dense
on the imaginary axis and therefore, ζP cannot be extended to the left complex half-
plane.

We shall call the operators satisfying the assumptions of Proposition 13 lacu-
nary operators. Proposition 13 does not imply directly that htrP (t) does not have an
asymptotic expansion as t ↓ 0 for lacunary operators – in particular, both htrP and
ζP are well-defined. It just states that the technique of the inverse Mellin transform
developed in this paper does not apply in this case. For an a example of a lacunary
operator in the realm of non-classical pseudodifferential operators see [64].2

Can anything be said about the small t behaviour of heat traces associated with
lacunary operators? The answer is positive and can be deduced from the following
Tauberian Theorem due to Hardy and Littlewood (known also under the name of
Karamata Theorem).

Theorem 8 ([34] Theorem XIII.5.2) Let G : R+ → R be a function of bounded
variation (see [73, Chapter 1]) and such that the following Riemann–Stieltjes integral

ω(t) =
∫ ∞

0
e−tλdG(λ),

converges for t > 0. Then, the following are equivalent:

G(λ) ≈ λLF(λ), as λ → ∞,

and
ω(t) ≈ t−L�(L + 1)F (t−1), as t ↓ 0,

where F is a slowly varying function, i.e F(τx)/F (τ) → 1 as τ → ∞ for every
x > 0.

As a direct application of Theorem 8 we obtain the following result:

Corollary 3 Let P be a positive operator such that ζP has a finite abscissa of
convergence L. If

N(λ) ≈ λLF(λ),

2We thank Bruno Iochum for pointing out this reference to us.
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with F slowly varying, then

htrP (t) ≈ �(L + 1)t−LF(t−1), as t ↓ 0.

Proof The function N , being a step function, is of bounded variation [73, Chapter
1]. Moreover, since ζP has a finite abscissa of convergence, htrP is well-defined and
thus

htrP (t) =
∞∑

n=0

Mne−tλn =
∫ ∞

0
e−tλdN(λ),

for all t > 0. Proposition 2 implies that for large λ we have N(λ) ≈ λLF(λ), with
F(λ) = O∞(λδ) for every δ > 0. If moreover, F is slowly varying, then Theorem 8
applies and the conclusion follows.

Corollary 3 applies also to lacunary operators and one can use it to detect the
leading behaviour of htrP as t ↓ 0.

Example 3 Let us consider a lacunary operator P with λn = en2
and no degeneracy

(i.e. Mn ≡ 1). Its zeta-function reads

ζP (s) =
∞∑

n=0

e−sn2 = 1
2 (θ3(0; e−s) + 1), for R(s) > 0,

where θ3 is the Jacobi theta function we met in Example 2, but now playing the role
of the zeta-function. It is a lacunary function and does not admit a meromorphic
continuation to the left complex half-plane.

On the other hand, since

N(λ) =
∑

{
n:en2�λ

}
1 ≈ √

log λ

and the function
√

log is slowly varying, Theorem 8 implies

htrP (t) =
∞∑

n=0

e−ten2 ≈ √− log t, as t ↓ 0.

However, the assumption of N being a regularly varying function is a non-trivial
one and puts limitations on the usefulness of Theorem 8.

Example 4 Let P be an operator with λn(P ) = 2n and Mn(P ) = 2n. Then,

N(λ) =
∑

n: 2n�λ

2n =
�log2 λ�∑

n=0

2n = 2�log2 λ�+1 − 1 ≈ λ · F(λ),

but F(λ) := 2�log2 λ�+1λ−1 is not slowly varying. Indeed, the limit
limλ→∞ F(xλ)/F (λ) exists (and is equal to 1) only if x = 2m with m ∈ N.
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On the other hand,

ζP (s) =
∞∑

n=0

2n2−sn = 1

1 − 2s−1
.

The results of Section 4.2 can be easily adapted to this setting yielding the following
absolutely exact expansion

htrP (t) = − t−1

log 2

∑

k∈Z
�

(
1 − 2πik

log 2

)
t

2πik
log 2 +

∞∑

n=0

(−1)n

n!
tn

1 − 2−n−1
,

which is valid for all t > 0. Note that the leading term of htrP is of the form t−1G(t),
where G is oscillating and thus not slowly varying.

We have seen that the spectral growth function (3) of an operator is a primary quan-
tity that allows us to determine whether an asymptotic expansion of the associated
heat trace can be obtained via the inverse Mellin transform. Proposition 1 establishes
an upper bound on the spectral growth of P , whereas Proposition 13 gives a lower
one. One might therefore expect that for the intermediate values of growth rates,
the inverse Mellin transform technique guarantees the existence of an asymptotic
expansion of heat traces. However, this is not the case as we shall show below.

Proposition 14 Let P be an operator such that its spectral growth function satisfies

N(λ) ≈ (log λ)a, as λ → ∞, (55)

for some a ∈ R
+. If a /∈ N, then ζP has an abscissa of convergence L = 0, but is not

meromorphic around s = 0.

Proof Proposition 2 implies that ζP is well-defined with an abscissa of convergence
L = 0. To see that ζP is not meromorphic around s = 0 we invoke the Hardy–
Littlewood Tauberian Theorem 8 once again.

With M ∈ N such that λM � 1 and λM+1 > 1, we write the zeta-function ζP on
R

+ as Riemann–Stieltjes integral (compare [65, Section 13.3])

ζP (s) =
∫ ∞

0
λ−s dN(λ), ζ̂M

P (s) =
∫ ∞

1
λ−s dN(λ).

On the strength of [73, Theorem 11a] we can change variables in the Riemann–
Stieltjes integral and rewrite

ζ̂M
P =

∫ ∞

1
e−s log λ dN(λ) =

∫ ∞

0
e−sμ dÑ(μ),

for s > 0, with Ñ(μ) = ∑
n:log λn�μ Mn, which is of bounded variation on R+.

Assumption (55) implies

Ñ(μ) ≈ μa, as μ → ∞,
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thus, by Theorem 8, we have

ζ̂M
P (s) ≈ s−a�(a + 1), as s ↓ 0.

Therefore, if an extension of ζ̂M
P to R(s) � 0 exists at all, then the point s = 0 is

not a pole unless a ∈ N
+. Since ζ̂M

P and ζP differ by an entire function, the same
conclusion holds for ζP .

Let us stress that Proposition 14 has a “no-go” character only. Having a ∈ N
+ does

not imply that ζP can be extended to the left complex half-plane in a meromorphic
way.

Proposition 14 is in accordance with Proposition 13, but it also provides examples
of pathological operators, which are not lacunary.

Example 5 Consider an operator P with λn = en2/3
and no degeneracy (i.e. Mn ≡ 1).

Although its eigenvalues grow slower than exponentially, the zeta-function ζP cannot
be meromorphic around s = 0, as

ζP (s) ≈ �(−1/2)s−3/2, as s ↓ 0 along �(s) = 0.

On the other hand, by Theorem 8,

htrP (t) =
∞∑

n=0

e−ten2/3 ≈ (− log t)3/2, as t ↓ 0.

The above examples show that Tauberian theorems and the inverse Mellin trans-
form have different domains of applicability and can be considered as complementary
tools in the study of the asymptotic behaviour of heat traces.

There is also a third method, namely the Poisson summation, not discussed in
this paper but widely used in the field of spectral geometry. The Poisson summation
formula can be written as

∞∑

n=−∞
f (tn) = t−1

∞∑

k=−∞
F[f ] (

k
t

)
, (56)

where F is the Fourier transform and f is a real function satisfying suitable condi-
tions (as usual, the more we assume on f , the more we know on the convergence and
properties of the Fourier series on the RHS – see [66, 74]). The main advantage of
the Poisson summation method is that it allows to obtain the asymptotic expansion
of Tr(f (tP )) for quite a general class of functions f , whereas the Mellin transform
technique in its basic form described in this paper applies only to f (x) = e−x . Hence,
Poisson summation method is better suited to spectral action calculations. On the
other hand, the Poisson summation may be used only for operators with polynomial
spectra (see Section 4.1), and only for those with eigenvalues given by first order
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polynomial.3 This is quite restrictive, however many symmetric sphere-like mani-
folds and their deformations provide Dirac operators with spectra of the desired form
[57]. Poisson summation also generalises easily to the multi-index case, which can be
applied to obtain spectral action on tori. This cannot be easily done by direct appli-
cation of Mellin transform technique.4 These properties make Poisson summation a
convenient method for calculations of spectral action on some specific spaces, but
make it less suitable for more general considerations, which are the aim of this paper.

The second distinguishing property of Poisson summation method is the fact, that
it provides only the principal part of the spectral action asymptotic expansion. This
principal part depends solely on F[f ](0) term in (56). If one is interested in the
non-singular part of the expansion, then one needs to analyse the whole RHS of
(56). This would arguably neither help in finding the asymptotic expansion, nor say
anything about its exactness. We found the Mellin transform technique more useful
in achieving the aims of present paper.

Let us now sum up the results of the paper. In Section 3 we have presented
general theorems on the existence and convergence of heat traces associated with
positive unbounded operators with compact inverses. The necessary conditions were
formulated in terms of spectral zeta-functions. The non-existence of meromorphic
extensions of the latter sets a natural limitation of applicability of the inverse Mellin
transform. However, lacunary operators seem to be pathological anyway from the
viewpoint of noncommutative geometry. For instance, if a spectral triple would have
a lacunary Dirac operator, then it would not have a dimension spectrum [20]. On the
other hand, the assumption (12), even in its more refined version (19), seems to be a
mild one. In fact, a similar one was adopted in [20, p. 206] “on the technical side”.

In Section 4 devoted to examples we always worked with operators, the spec-
trum of which is known explicitly. Therefore, the operatorial aspect of the problem
was somewhat hidden. In practice, one is rarely granted the comfort of knowing the
full spectrum of a given operator. Even if this is the case, one would like study the
behaviour of the heat trace when a fixed operator P is perturbed to P + A, with
some bounded A. Clearly, a bounded perturbation of P would not change the leading
behaviour of htrP (t) at small t , but it can, at least in principle, spoil the asymptotic
expansion.

Indeed, perturbations may drastically change the analytic properties of the
associated zeta-functions. For instance, the modulus of the Dirac operator on the stan-
dard Podleś sphere has (up to a multiplicative constant) the following eigenvalues
λn(|Dq |) = q−n − qn (see [27]). It can thus be considered as a sum of an opera-
tor of exponential spectrum P and a trace class perturbation Q. It turns out that the
poles of ζP+Q form a regular lattice on the left complex half-plane [29], whereas
the poles of ζP are located only on the imaginary axis (see Section 4.2). Although,
the convergence properties of the small t expansion of htrP+Q(t) are not altered by

3One needs to remember, that in Poisson formula eigenvalues are indexed by Z, while in Mellin transform
approach the index set is N. Usually this difference can be circumvented, e. g. by using the decomposition
(34) which works for both methods.
4This is because the spectrum of Dirac operators on tori cannot be easily ordered into an increasing
sequence and because the zeta-function would involve multi-index summation.
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the perturbation Q, but the estimates of contour integrals are much more subtle and
tedious to control (see [29, Proposition 4.3]).

We regard the investigation of the impact of perturbations on the asymptotic
expansion of heat traces an important and natural next step in the study initiated in
this paper. We hope that a combination of our results with the techniques developed
in [7, 54, 67] can lead to a better understanding of heat traces outside the realm of
classical pseudodifferential operators.

A promising application of the results presented in the paper concerns the spectral
action [15]. By using the semi-group property of heat operators and (distributional)
Laplace transform techniques one can attempt to extend both the existence and exact-
ness results to functionals of the form Tr f (tP ) for suitable cut-off functions f —
see [29] for an explicit example and [28] for a more detailed study. Let us note
that the non-perturbative calculations carried out in [10, 57, 58, 61, 68] using Pois-
son summation formula are, according to the nomenclature adopted in Definition 5,
only almost exact. However, with the help of Theorem 5 (compare also [28, Proposi-
tion 3.2.2] and [29, Theorem 5.2]) one is actually able to get exact formulae for the
spectral action for an explicit class of cut-off functions. This technique may prove
potentially useful in the study of cosmic topology [57].

Acknowledgments The authors would like to thank Bruno Iochum and Andrzej Sitarz for numerous
valuable discussions.

Project operated within the Foundation for Polish Science IPP Programme “Geometry and Topology
in Physical Models” co-financed by the EU European Regional Development Fund, Operational Program
Innovative Economy 2007–2013.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and
Mathematical Tables. Courier Dover (2012)

2. Avramidi, I.G.: Heat kernel approach in quantum field theory. Nucl. Phys. B, Proc. Suppl. 104(1–
3), 3–32 (2002). doi:10.1016/S0920-5632(01)01593-6. Proceedings of the international meeting on
quantum gravity and spectral geometry

3. Bär, C.: The Dirac operator on space forms of positive curvature. Journal of the Mathematical Society
of Japan 48(1), 69–83 (1996). doi:10.2969/jmsj/04810069

4. Bär, C.: Dependence of the Dirac spectrum on the spin structure. Séminaires et Congrés 4, 17–
33 (2000). Global Analysis and Harmonic Analysis, Jean Pierre Bourguignon – Thomas Branson
– Oussama Hijazi (Ed.) http://www.emis.ams.org/journals/SC/2000/4/html/smf_sem-cong_4_17-33.
html

5. Bertlmann, R.A.: Anomalies in Quantum Field Theory. International Series of Monographs on
Physics, vol. 91. Clarendon (1996)

6. Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real
hyperbolic spaces. J. Geom. Phys. 20(1), 1–18 (1996). doi:10.1016/0393-0440(95)00042-9

7. Carey, A., Sukochev, F.: Measurable operators and the asymptotics of heat kernels and zeta functions.
J. Funct. Anal. 262(10), 4582–4599 (2012). doi:10.1016/j.jfa.2012.03.008

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/S0920-5632(01)01593-6
http://dx.doi.org/10.2969/jmsj/04810069
http://www.emis.ams.org/journals/SC/2000/4/html/smf_sem-cong_ 4_17-33.html
http://www.emis.ams.org/journals/SC/2000/4/html/smf_sem-cong_ 4_17-33.html
http://dx.doi.org/10.1016/0393-0440(95)00042-9
http://dx.doi.org/10.1016/j.jfa.2012.03.008


28 Page 42 of 44 Math Phys Anal Geom (2015) 18: 28

8. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neu-
mann algebras I: spectral flow. Adv. Math. 202(2), 451–516 (2006). doi:10.1016/j.aim.2005.03.011

9. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–
750 (1997). doi:10.1007/s002200050126

10. Chamseddine, A.H., Connes, A.: Spectral action for Robertson–Walker metrics. Commun. Math.
Phys. 1210, 101 (2012). doi:10.1007/JHEP10(2012)101

11. Christensen, E., Ivan, C., Lapidus, M.L.: Dirac operators and spectral triples for some fractal sets built
on curves. Adv. Math. 217(1), 42–78 (2008). doi:10.1016/j.aim.2007.06.009

12. Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. Journal of
Noncommutative Geometry 6(2), 249–274 (2012). doi:10.4171/JNCG/91

13. Cipriani, F., Guido, D., Isola, T., Sauvageot, J.L.: Spectral triples for the Sierpiński gasket. J. Funct.
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