
Perspective Models As a Means For Achieving True
Representational Accuracy

Kym Pohl
CDM Technologies Inc.

2975 McMillan Ave.
San Luis Obispo, CA. 93401

805-541-3750 x233
kpohl@cdmtech.com

Abstract—Accurate and expressive representation of the
subject matter over which a context-oriented, decision-
support system operates is fundamental to the effectiveness
and longevity of the resulting solution. Often taking the
form of an ontology, such extensive representational
models, by their very nature, are rich in both relationships
and fine-grained objects. It is, however, these two strengths
that can significantly increase complexity for its users in
addition to adversely affecting system performance. Further,
due to the multitude of compartmentalized facets (i.e.,
populations of distinct, reasoning agents) inherent in such
software solutions, it is important to recognize that a single-
minded omniscient set of domain descriptions representing a
singular view of the world is not necessarily appropriate for
every ontology user. In fact, in such highly expressive
environments, it is critical to not only accept these
distinctions in user perspective, but to, in fact, promote and
exploit them. It is by acknowledging and supporting this
perspective-based individuality that true representational
accuracy and utility is achieved.

Traditionally, software-based users comprising decision-
support systems have operated over a singular, common
representation, albeit a potential subset of the entire target
modeling space. However, in the perspective model-
enriched environment presented in this paper, ontology
users are empowered with the ability to effectively perceive
the world in accordance with individualized views.
Architecturally, perspective models are integrated with one
another via a central ontology. In this sense, perspective
models act as satellites deriving certain aspects of their
content from a central integration model. Exclusively
operating over personalized perspective models, users are
not only shielded from the broad-scoped complexities
inherent in the more omniscient concerns of the central
integration model but are also able to view and interact with
the world in terms of their more familiar and expressive
native representation.

To be effective, the concept of perspective models must be
partnered with a supportive model development process. In
addition to an explanation of the concept of perspective
models, this paper provides a discussion of a development
process that supports effective development of both the
potentially numerous set of perspective models in addition

to the integration model that inter-connects them. The
process offered in this paper effectively parcels the
development of individual perspective models with the
individuals possessing the necessary domain and use-case
expertise. In this manner, the development process strives to
significantly increase the involvement of the entire set of
team members in the modeling activity, both capitalizing on
user domain expertise in addition to increasing critical user
understanding and acceptance of the representation over
which their components are to operate.

TABLE OF CONTENTS

1. REPRESENTING PERSPECTIVE...1
2. AN EFFECTIVE DEVELOPMENT PROCESS5
3. CONCLUSION..6
REFERENCES..6
AUTHOR BIOGRAPHY ..7

1. REPRESENTING PERSPECTIVE

Fundamental to context-oriented reasoning is the highly
expressive representation over which intricate analysis is
performed [8] [12] [13]. Often taking the form of an
ontology, such elaborate subject matter descriptions form
the foundation critical to the effectiveness of context-
oriented, decision-support systems. An ontology in the
scope of this paper1,2 is defined as a highly expressive,
typically relationship-rich model of the extensive subject
matter over which software components, hereunto referred
to as users, reason and otherwise operate.

The Significance of Perspective

Perspective is applied each time we as human beings
perceive a particular subject matter. Housed within these
individualized perspectives is valuable information
describing how a particular topic is most suitably
represented from a certain point of view. In addition, such
perspectives also convey how that particular subject relates
to other subject matter seen as relevant by the individual.

1 0-7803-9546-8/06/$20.00© 2006 IEEE
2 IEEEAC paper #1381, Version 3, Updated November 30, 2005

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19135416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Even when a subject is shared among multiple individuals,
perception is, more often than not, biased in favor of an
individual’s personal experiences and knowledge. Although
at times a significant complication for meaningful
interaction, such perspective is extremely significant to
accurate representation as it is rich in descriptive context.
For example, consider the following illustration involving
the laptop on which this paper was written. In the case of a
software system assisting the manufacturing process, the
laptop might be most effectively described in terms of its
product-oriented nature. In this sense, the most suitable
representation of the laptop would revolve around
characteristics dealing with assembly, packaging, and other
aspects relevant to the manufacturing process. Further,
relationships to customer orders and delivery schedules
would also be important to represent. In contrast, however,
characteristics explicitly describing the laptop’s utility in
authoring conference papers or developing software are
fairly peripheral, if not completely irrelevant, to the
manufacturing process. However, such perspective may be
quite relevant to a system supporting, for example, the
activities of marketing or perhaps customer-support. Both
perspectives are quite valid with respect to their individual
areas of operation. However, both views would encompass
some of the same set of subjects (i.e., laptops) yet describe
them in distinctively different manners. The problem arises
when users of distinctly different representations of the
same subject matter are required to interoperate. This
situation can produce a significant dilemma. Simply stated,
the valuable context that is expressed within individualized
perspectives can also significantly limit their user’s ability
to interoperate with other users in a meaningful fashion (i.e.,
in terms of rich context).

However, despite these complications provoked by attempts
to capture and exploit distinctive perceptions of relevant
domains such descriptive expression is the ingredient in a
context-oriented, decision-support environment that
achieves true representation of context at the individual
level. Perspective-enriched models can successfully capture
not only the sometimes subtle distinctions among ontology
users, but by doing so can promote a more expressive
description of each user’s perception of their world.
Unfortunately, due to the complexity inherent in identifying
and supporting such subtleties and nuances, representation
approaching this level of expression has traditionally been
buried as implied assumptions within convoluted business
logic or simply omitted entirely. However, when
appropriately represented and housed within the context tier
of a collaborative environment, such expressiveness can not
only be effectively exploited, but is also readily accessible
to other users exhibiting similar views.

Perspective Models

However, even with expressive perspective sufficiently
represented within the context tier, the ability for
perspective users to interact based on these individualized
views of the world poses a substantially complex

interoperability problem. The solution to this
interoperability dilemma primarily takes three forms. The
first focuses on the development of a singular, omniscient
ontology. Such an ontology would represent a monolithic,
all-inclusive description of the world. Individual
perspectives would only indirectly influence such model
development in favor of describing subject matter as a
complex concoction essentially merging both innate and
biased characteristics with little delineation between the
two. Each system would utilize this description as its sole
representational means for operation and interaction with
other users. In a positive sense, each user would essentially
dialogue with one another in terms of a singular
representation promoting interoperability in a clear and
concise manner void of any context-diminishing translation.
Each user would share the same exact, pseudo-biased view
(i.e., a view based on an amalgamation of all relevant
perspectives). However, considering the complexity
resulting from collapsing what could possibly be numerous
perspective-oriented characteristics into a single description
of a particular subject matter, the resulting model would be
severely bloated and would most likely fail to adequately
represent any one particular perspective, resulting in a
model confusing to utilize.

The second, somewhat related approach to this dilemma
addresses the inevitable complexity of a singular,
omniscient ontology offering a more delineated
organization. In this approach, each particular subject matter
is modeled in terms of its fundamental, intrinsic nature. The
various perspectives applied to each particular subject are
each explicitly represented as individual model fragments.
These perspective sub models are connected to the subject
models they enhance using the role analysis pattern [3].
Such a connection can be conceptualized as a subject
potentially playing a variety of roles with each role
representing a particular view on that subject. In this
fashion, individual perspectives can be easily managed and
clearly discernable from one another. In addition, this
approach offers a degree, although limited, of encapsulation
and isolation from irrelevant perspectives as users can
isolate their interaction with a subject matter to those
perspectives that are meaningful to them. Further, additional
perspectives can be integrated in a manageable fashion
through the incorporation of new roles-based model
fragments. As a result, each subject is related to model
fragments describing the various contexts in which it can be
viewed. For example, interaction with the aforementioned
laptop in terms of its manufacturing-oriented properties may
be in terms of a related ManufacturedProductRole model
fragment. However, the problem with this approach is that
even though perspectives relating to the same subject matter
are somewhat partitioned from one another, they remain
integrated into a single model limiting true perspective
isolation to diligent usage with no explicit management. As
such, additional access control may need to be employed to
truly isolate users to relevant perspectives. In addition, there
is still the dilemma of whether or not a slight difference in
two perspectives is worthy to warrant creation of an entirely

 2

new perspective model fragment. In practice, one would be
tempted to collapse subtle differences in perspective into a
single, overloaded model fragment, thus compromising
accurate expression. Although these shortcoming are of a
subtle nature, they are nonetheless noteworthy concerns.

The third, more promising solution to supporting multiple,
isolated perspectives on a single subject matter introduces
the notion of a perspective model. Based on a semi-stateful
façade design pattern [5], perspective models allow context-
rich subject matter to be viewed by inter-operating users in
terms of individualized, native perspective. Perspective
models may either directly contain their content or derive it
from some type of shared source. While state simply for
local consumption is represented and maintained within the
perspective model itself, derivation is used for material that
is shared across users (i.e., the basis for collaboration). In
the case of derived content, the function of the perspective
model may, for example, be to apply more native
terminology, structure, or other characteristics that more
appropriately represent the expressive perspective exhibited
by the particular user. In some cases such mappings, either
uni- or bi-directional, may be fairly straightforward and
easily describable through standard expression grammar.
However, in other cases these mappings may be rather
complex to the point of requiring customized behavior. In
either case, such mappings can be effectively described in
terms of a formalized language such as XSLT [1] [9] or
CLIPS-based rule sets [6] [11].

Integration Model

The derived nature of a perspective model is essentially the
means for linking together multiple perspectives applied to
the same subject matter. While there are a number of
approaches to supporting such integration, it is critical that
the individuality and bias exhibited by each perspective
model is preserved in its native form. These models are
essentially a user’s most familiar and descriptive language
with which to interact with the rest of the world (i.e., other
users) and should not be corrupted in favor of more
straightforward interaction with other parts of the
environment.

The approach presented in this paper to interconnecting
disparate perspectives of the same subject matter employs
the notion of an integration model in conjunction with the
façade design pattern [5]. Architecturally, this approach
takes the form of a series of satellite perspective models
interconnected via a central integration model. With this
approach, a central, role-based representation of clearly
delineated perspectives, not unlike the second alternative to

integrating multiple perspectives described earlier, is
developed as a well-structured and delineated combination
of individualized perspectives related to the intrinsic subject
matter they enhance. For example, the main subject of our
earlier example might take the form of a laptop entity that
can play the role of a manufactured product, as well as the
role of a software platform. While the laptop entity would
describe the subject’s intrinsic nature, characteristics
specific to each of these two perspectives would be housed
within each related role.

As a further, diagrammatic description of this connection,
Figure 1 describes a logistically-oriented perspective model
linked to an integration model that presents a fairly neutral
description of a conveyance. As an aside, note that
conceptually such neutrality is not necessarily a prerequisite
in that if the integration model were more heavily biased
toward a particular perspective, it would simply imply that
the perspective models might need to be more extensive and
incorporate additional constraints. However, in the interest
of clarity, this example employs a somewhat neutral
integration model.

Central to the logistics perspective presented in Figure 1 is
the notion of a transport. Although the logistics perspective
may have knowledge of the entire set of conveyance types
(i.e., vessels, vehicles, and aircraft) represented in the
integration model, in respect to the logistics view, only
vessels and rotary aircraft are considered candidate
transports. In this situation, it would be valuable to represent
this refined constraint in the perspective model employed by
the logistics system while still basing such a biased view on
the much more neutral representation of the conveyance
offered by the integration model. As Figure 1 illustrates,
representing such refinement can be accomplished by
explicitly introducing a constrained notion of a transport in
the logistics-oriented perspective model. According to the
particular perspective, an abstract Transport is defined take
two specific forms (VesselTransport and
HelicopterTransport). At this point, it is immediately
apparent that a vehicle is not a candidate to be a transport. In
the context of this example, transports can only be
VesselTransports or HelicopterTransports. The task now
becomes linking this perspective together with the core
integration model. Relating these two transport types to
their conveyance derivation can be achieved in either an
explicit or implicit manner. For illustration purposes, the
definition of VesselTransport adopts the first method while
HelicopterTransport employs the second. The first method
defines an explicit relationship between the VesselTransport
and the core description of a vessel outlined in the
conveyance section of the integration model.

 3

- ETA :
SupplyMission

- range :

Transport

- maxHoverHeight :

HelicopterTransport

- maxSeaState :

VesselTransport

- weight :
- geometry :
- position :

PhysicalEntity

- maxRange :
- maxFuelCapacity :

Conveyance

- maxHoverHeight :

RotaryAircraft

- deckInfo :

Vessel

- flightTime :

Aircraft

GroundVehicle

*
usesTransports

- minLandingDistance :

WingerAircraft

Equipment

delivers

<< derivation >>
range = maxRange

<< derivation >>
maxHoverHeight

explicitelyLinksTo

Integration ModelPerspective Model (logistics)

Figure 1 – UML [4] Diagram Illustrating A Logistics Perspective Model Deriving From A Relatively Unbiased Central
Integration Model

Utilizing this approach, obtaining the core information
relative to the corresponding Vessel from a VesselTransport
requires both knowledge of their relationship in addition to a
further level of indirection. For reasons of performance and
representational precision, both of these requirements may
not be desirable.

The second method, illustrated in Figure 1 using
HelicopterTransport, overcomes both shortcomings
inherent in the first approach. In this case,
HelicopterTransport is represented in terms of a façade, or
filter of sorts, which transparently connects this biased view
to the core RotaryAircraft description housed within the
integration model. That is, each attribute of RotaryAircraft
desired to be exposed to users of HelicopterTransport is
explicitly declared within the façade. For example, since the
maximum range of travel is relevant to the definition of a
HelicopterTransport the maxRange attribute of
RotaryAircraft (inherited from Conveyance) is subsequently
exposed in the HelicopterTransport façade. By virtue of
being declared as a derived property, any access to such an
attribute would be transparently mapped to the
corresponding attribute(s) housed within the integration
model. In the case of the range attribute of
HelicopterTransport, access is transparently directed to the

inherited maxRange attribute of RotaryAircraft. Notice also
the use of alternative terminology over that used in the
integration model (i.e., range vs. maxRange). It should also
be noted that the derived nature of a façade attribute is not
limited to mapping to a single attribute. Rather, the value of
a façade attribute may also be derived through specific
behavior, perhaps a calculation based on the values of
multiple attributes residing across several integration model
objects. In either case, the fact that the value of the façade
attribute is derived, and not originating locally, is
completely transparent to the façade user.

Another perspective-oriented enhancement to the core
integration model illustrated in Figure 1 is the notion of a
SupplyMission. Being a fundamental notion of a logistics
perspective, a supply mission essentially relates equipment
in the form of supply items to the transports by which they
will be delivered. Once again, the definition of a logistics-
specific notion (i.e., supply item) is derived from a notion
defined in the integration model (i.e., equipment). In this
case, an explicit relationship is declared linking
SupplyMission to zero or more Equipment items. From the
perspective of the logistics system equipment scheduled for
delivery is perceived as items to be supplied, the term
supplyItems is a more appropriate nomenclature. Such

 4

- ETA :

SupplyMission

- range :
Transport

- maxHoverHeight :

HelicopterTransport

- maxSeaState :
VesselTransport

- weight :
- geometry :
- position :

PhysicalEntity

- maxRange :
- maxFuelCapacity :

Conveyance

- maxHoverHeight :
RotaryAircraft

- deckInfo :

Vessel

- flightTime :

Aircraft

GroundVehicle

*
usesTransports

- minLandingDistance :

WingerAircraft

Equipment

delivers

<< derivation >>
range = maxRange

<< derivation >>
maxHoverHeight

explicitelyLinksTo

Integration ModelPerspective Model (logistics)

TacticalMission

- readiness :

Organization

- tacticalSystems :
- maxRange :

Asset

*
hasMissions

*
hasAssets<< derivation >>

maxRange

*
hasEquipment

Perspective Model
(tactics)

Figure 2 – UML [4] Diagram Illustrating Two Disparate Perspectives Connected Via A Central Integration Model

enhancement to the innate descriptions provided by the
integration model demonstrates the ability of a perspective
model to essentially overlay new notions (i.e., supply
missions) over existing intrinsically-described subject
matter (i.e., equipment and conveyances). To further
illustrate how multiple, potentially diverse perspectives, can
be effectively integrated to support meaningful
interoperability, Figure 2 elaborates on the example by
introducing an additional perspective on the core subject
matter. The additional perspective is that of a particular
tactical command and control system. Collaboration
between these two perspectives is supported by the common
integration model from which many of their notions derive.
A conveyance is still a conveyance whether viewed in the
context of logistics operations or tactical command and
control. Although both users may discuss a conveyance
from partially disparate perspectives, both can effectively
collaborate about a particular conveyance in terms of their
own native, biased perspectives.

2. AN EFFECTIVE DEVELOPMENT PROCESS

Perspective models can be a powerful means of capturing
and exploiting the expressive nature inherent in
individuality. However, to arrive at an accepted and
effective approach, such a method must be accompanied by
a supportive development process. Traditional approaches to
domain model development have typically involved a
dedicated knowledge engineer, or group of such individuals,

whose task it is to produce a well structured representation
of the relevant domains of interest. While their efforts may
certainly be driven by overall project requirements, they
typically direct their focus toward producing an organized
domain model. Furthermore, following creation of such a
model, component developers design and implement
functionality in terms of, or at least in a form that is
compatible with, this representation. The problem inherent
in this approach is essentially twofold. First, the model
development process is not directly influenced by the
specific use-cases applied by its actual immediate users. In
the end, the primary purpose of the representation sustaining
a context-oriented, decision-support environment is to
effectively support the software components that are directly
using it to both obtain and contribute context. To ensure
effective support of these activities, such implicit use-cases
should be one—if not the most significant—force that
drives model development.

The second pitfall of a conventional approach also deals
with the potential disconnect between a subject matter
representation and its users. However, in this case the
problem manifests itself at a more humanistic level. Critical
to the successful application of an often fairly complex
representation is the degree to which project team
developers embrace, and are able to become familiar with,
the various structure and semantics comprising the model.
This is especially true in the case of reasoning-based,
decision-support systems which tend to operate over
complex, highly expressive, and, many times, relationship-

 5

arduous contexts. To effectively exploit the expressive
nature of context-enriched models requires developers to
both understand such representation at a semantic level and
embrace the manner in which it represents their subject
matter interests. Many systems have fallen far short of their
potential, sometimes to the point of complete failure, due to
a lack of team member understanding and buy-in to the
manner in which their domain(s) are represented.

The development process offered in this discussion
addresses this disconnect by significantly increasing the
involvement of model users with the actual model
development activity itself. There are three major benefits to
such team member inclusion. First, as component
developers research and design their solutions (i.e., software
components), they essentially acquire a considerable amount
of expertise and knowledge regarding relevant domain(s).
Such familiarity goes beyond a fairly deep understanding of
the semantics of relevant subject matter to include valuable
insight into the precise means by which particular
functionality most effectively views, or perceives, such
content. It is the identification and subsequent capture of
such individualized expression that produces a truly
accurate representation. Since the focus is on capturing
native perspective and bias, there is no need at this stage—
in fact it would be potentially polluting—to be concerned
about the degree to which these models align with each
other. Narrowing the scope of individual perspective model
development not only promotes the capture of true
individuality, but is also a significantly less complex task
than developing a singular, all-encompassing model
supporting the entire set of interconnected perspectives.
This less complex modeling environment has a direct
impact on the amount of expertise and experience required
for effectively developing these personalized perspective
models. While good modeling practices are still quite
important in this process, they can be applied within
considerably less complex environments by individuals who
may not have the modeling depth of an experienced
knowledge engineer. Further, familiarity with model
structure and subsequent semantics undoubtedly leads to a
significantly stronger bond between component developers
and the subject matter representation over which their
components operate.

The second component to the integration architecture
described above is the integration model that effectively ties
related perspective models together. Development of this
model is a considerably more complex task than
development of the perspective models themselves.
Development of the integration model involves the analysis
of each perspective model with an eye for both identifying
and abstracting subject matter existing across the multitude
of user perspectives. Considering the complexities involved
in this analysis in addition to the demand for being both
knowledgeable and comfortable with applying various
intricate analysis patterns, this activity typically requires a
highly experienced expert modeler. This activity, for
example, might become the main area of focus for the

expert knowledge engineer(s) who have traditionally been
responsible for the entire modeling activity. Many of the
same concerns critical to successfully developing a
traditional model (e.g., model integrity, extensibility, clarity,
accuracy, etc.) are quite applicable to the development of
integration models as well.

The final component to building the integration model is to
describe the relationships between the various perspective
models and the central integration model from which they
derive. Recall that such mappings can be described in terms
of a formalized expression language. Coupled with some
type of code-generation facility capable of managing
implementation concerns, these mappings can be designed,
communicated, and maintained primarily at the modeling
level. Similar to development of the actual integration
model itself, development of these mappings will likely also
require the skills of an experienced knowledge engineer.

3. CONCLUSION

To obtain truly accurate, expressive representation,
individual perspective must be specifically captured based
on the use-cases of its immediate user(s). Interoperability
within a diverse, perspective-enriched environment must
support meaningful interaction between users that preserves
individualized perspective. Applying perspective models,
interconnected via a unifying integration model, effectively
supports these two objectives. In addition, employing a
development process where perspective model development
is directly driven by the needs of the immediate users leads
to a more precise and expressive representation while
significantly improving the representation’s effectiveness
through increased user familiarity and imperative model
acceptance.

REFERENCES

[1] Cagle, K., M. Corning, J. Diamond, T. Duynstee, O.
Gudmundsson, M. Mason, J. Pinnock, P. Spencer, J.
Tang, A. Watt, J. Jirat, P. Tchistopolskii, and J. Tennison,
“Professional XSL”, Wrox Press Ltd,. Birmingham, UK.,
2001

[2] Daconta M., L. Obrst and K. Smith, “The Semantic Web:
A Guide to the Future of XML, Web Services, and
Knowledge Management”, Wiley, Indianapolis, IN., 2003

[3] Fowler, M., “Analysis Patterns: Reusable Object Models”,
Addison-Wesley, Reading, Massachusetts, 1997.

[4] Fowler, M., “UML Distilled: Applying the Standard
Object Modeling Language”, Addison-Wesley, Reading,
Massachusetts, 1997.

[5] Fowler M., D. Rice, M. Foemmel, E. Hieatt, R. Mee, and
R. Stafford, “Patterns of Enterprise Application

 6

Architecture”, Addison-Wesley, Reading, Massachusetts,
2003

[6] Friedman-Hill, E., “JESS In Action”, Manning
Publications Co., Greenwich, CT, 2003

[7] Garshol L. and G. Moore (eds.), “The XML Topic Maps
(XTM) Syntax”, JTC1/SC34:ISO 13250, July 22, 2002,
(www.y12.doe.gov/sgml/sc34/document/0328.htm)

[8] Giarratano J. and Riley G., “Expert Systems: Principles
and Programming”, 2nd Edition, PWS Publishing
Company, Boston, MA.

[9] Hunter D., C. Cagle, D. Gibbons, N. Ozu, J. Pinnock, and
P. Spencer, “Beginning XML”, Wrox Press Ltd.,
Birmingham, UK., 2000

[10] Karsai G., “Design Tool Integration: An Exercise in
Semantic Interoperability”, Proceedings of the IEEE
Engineering of Computer Based Systems, Edinburgh,
UK, March, 2000

[11] NASA, “CLIPS 6.0 Reference Manual”, Software
Technologies Branch, Lyndon B Space Center, Houston,
Texas, 1992

[12] Pohl J., “Information-Centric Decision-Support Systems:
A Blueprint for Interoperability”, Office of Naval
Research (ONR) Workshop hosted by the CAD Research
Center in Quantico, VA, June 5-7, 2001

[13] Pohl J, A Chapman, K Pohl, J Primrose and A Wozniak,
“Decision-Support Systems: Notions, Prototypes, and In-
Use Applications”, Technical Report, CADRU-11-97,
CAD Research Center, Design Institute, College of
Architecture and Environmental Design, Cal Poly, San
Luis Obispo, CA, January, 1997

AUTHOR BIOGRAPHY

Kym are
engineer and a co-director of CDM

 J. Pohl is a senior softw

Technologies, Inc. in San Luis
Obispo. His current focus is agent-
based, collaborative decision-
support systems with particular
interest in representation and
collaboration architectures.
Following an undergraduate
degree in Computer Science he

earned Master’s degrees in both Computer Science and
Architecture. Over the past 18 years he has provided
technical leadership in the design and development of a
number of context-oriented, decision-support systems for
the US Department of Defense, including the Integrated
Marine Multi-Agent Command and Control System
(IMMACCS) for tactical command and control and the

SEAWAY system for the coordination of logistical sea-based
sustainment operations.

 7

http://www.y12.doe.gov/sgml/sc34/document/0328.htm

