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Preface
 

A very powerful new type of information systems technology is rapidly emerging, driven by 
government and commercial needs for expert decision-support and knowledge management. One 
very apparent result of this technology is increasingly intelligent software systems. Computer 
programs with collaborative agents that are capable of automatically reasoning about data and 
the dynamic changes in data that occur in real world decision-making situations are already in 
use by the military and are now transitioning to the commercial world. 
It can be argued that our human view of computer software has been shortsighted in respect to 
two popular notions: first, that data and information are essentially synonymous terms;   and, 
second, that computer intelligence is largely a misnomer because computers are machines. 
Neither of these notions is accurate. While we human beings are able to convert data (i.e., 
numbers and words without relationships) automatically into information due to the experience 
(i.e., context) that is held in our cognitive system, computers do not have the equivalent of a 
human cognitive system and therefore store data simply as the numbers and words that are 
entered into the computer.  For a computer to interpret data it requires an information structure 
that provides at least some level of context. This can be accomplished utilizing an ontology of 
objects with characteristics and a rich set of relationships to create a virtual version of real world 
situations and provide the context within which agent logic can automatically operate. 
In the broadest sense an agent is a computer-based program or module of a program that has 
communication capabilities to external entities and can perform some useful tasks in at least a 
semi-autonomous fashion. Agent software can range from simple, stand-alone, predetermined 
applications to the most intelligent, integrated, multi-agent decision-support system that 
advanced technology can produce today. 

There are many types of software agents, ranging from those that emulate symbolic reasoning by 
processing rules, to highly mathematical pattern matching neural networks, genetic algorithms, 
and particle swarm optimization techniques. The focus of many of the products of this 
technology is on ontology-based decision-support systems that utilize agents with symbolic 
reasoning capabilities. In these systems the reasoning process relies heavily on the rich 
representation of objects and their relationships provided by the ontology. 

The capabilities of ontology-based multi-agent systems are several orders above those of past 
data-processing systems that were confined to predetermined algorithmic solution sequences. 
Those systems worked well when the problem in the real world was exactly as predicted during 
the design and development stages of the software. However, more often than not the problems 
encountered in the real world did not conform to those predictions. Agent-based programs are 
able to adapt their solution capabilities to a real world problem situation because of the ability of 
the software agents to reason within the context of the problem situation. 

The same capabilities can be applied to the collection and exploitation of the information and 
knowledge that is generated within an organization (e.g., e-mail messages, telephone calls, 
minutes of business meetings, and other documents), commonly referred to as knowledge 
management. The automated capture of this wealth of information within an ontology-based 
system allows software agents to conduct intelligent searches, identify patterns, and specifically 
assist in the development of plans, the evaluation of alternative courses of action, and monitor 
changing conditions in collaboration with each other and the human user. 
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Knowledge is an intellectual facility that allows a person to perform tasks that require an 
understanding of what has to be accomplished, the formulation of a plan of action, and the skills 
that are required to undertake the task.  It normally involves the acquisition over time of factual 
information, associations that bind the factual information into more general patterns, principles, 
rules, and problem solving skills.  A person acquires knowledge through experience, formal 
education, and a life-long process of self-education.  Accordingly, knowledge is a commodity 
that is held within the brain of each individual person.  Both the communication of this personal 
knowledge from one individual to another and the collection of the knowledge as a corporate 
asset has become a serious concern of organizations, and is commonly referred to as knowledge 
management. 

The reasons for this concern are due to two interrelated factors, namely advances in information 
technology and increasing performance expectations.  Technical advances in the processing and 
storage capacity of digital computers, together with the linkage of these computers into networks 
of distributed nodes, have greatly increased the capability of organizations to deliver goods and 
services. With these increased capabilities have come heightened expectations for quality, 
accuracy, responsiveness, and capacity. 

To meet increasingly more exacting performance requirements, organizations have been forced 
to frequently reexamine their formal structure, processes, and the ability of its members to 
collaboratively and expeditiously perform their tasks.  Since these tasks depend largely on the 
knowledge held by individuals, the need to share this implicit knowledge explicitly among 
groups has become more and more important.  Under these circumstances it is natural for 
organizations to take steps to protect their knowledge assets, by collecting and storing the 
knowledge of individuals in an explicit form that will make it readily accessible to others.  This 
requirement cannot be satisfied by the storage of data only.  In addition to data, the explicit 
representation of knowledge requires the storage of the mappings that convert data into 
information to place data into context, and the rules (i.e., business rules) that allow information 
to be effectively utilized in planning, problem solving, and decision-making processes. 

A key characteristic of knowledge is the ability to abstract information and relationships so that 
they can be applied to problems that are outside of the realm of a person’s existing experience. In 
this respect abstraction is a very powerful representational mechanism that allows for the 
generalization (not to be confused with vagueness as these generalizations are often quite 
concrete) of basic and sometimes common characteristics. 

As information technology permeates all aspects of life and the economy turns decidedly 
information-centric, wealth is increasingly defined in terms of information-related services and 
the availability of knowledge. In other words, knowledge has become a commodity that has 
value far in excess of the manufactured products that represented the yardstick of wealth during 
the industrial age. 

How this new form of human wealth should be effectively utilized and nurtured in commercial 
and government organizations has in recent years become a major preoccupation of 
management. The question being asked is: How can we capture and utilize the potentially 
available knowledge for the benefit of the organization? The phrase “…potentially available” is 
appropriate, because much of the knowledge is hidden in an overwhelming volume of computer-
based data. What is not commonly understood is that the overwhelming nature of the stored data 
is due to current processing methods rather than necessity. These processing methods have to 
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rely largely on manual tasks because only the human user can provide the necessary context for 
interpreting the computer-stored data into information and knowledge. If it were possible to 
capture information (i.e., data with relationships), rather than data, at the point of entry into the 
computer then there would be sufficient context for computer software to process the 
information automatically into knowledge. This is not just a desirable capability, but an absolute 
requirement for the capture and effective utilization of knowledge within any organization. 
Corporate knowledge also acts as an extension to individual knowledge. The representation and 
storage of best practices, combined with proper navigational tools, contributes to the efficiency 
of individuals performing tasks for which they may not have sufficient experience. 

Jens Pohl, June 2006 

(jpohl@calpoly.edu) (www.cadrc.calpoly.edu) 
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Elements of Human Decision-Making 
Jens Pohl, Ph.D. 

Executive Director, Collaborative Agent Design Research Center (CADRC)
 
California Polytechnic State University (Cal Poly)
 

San Luis Obispo, California, USA
 

Abstract 
The purpose of this paper is to present some understandings of the human problem-solving 
activity that we have gained in the Collaborative Agent Design Research Center (CADRC) over 
the past two decades. Since we feel strongly that the human decision-maker should be an integral 
component of any computer-based decision-support system, it follows that we would have 
endeavored to incorporate many of the elements that appear to be important to the user in the 
design of these systems. The complexity of the human cognitive system is evidenced by the large 
body of literature that describes problem-solving behavior and the relatively fewer writings that 
attempt to provide comprehensive explanations of this behavior. Our contributions in this field 
are confined to the identification of important elements of the problem-solving activity and 
exploration of how these elements might influence the design of a decision-support system. 

Keywords 
agents, analysis, communication, computers, context, data, data-centric, decisions, decision-
making, decision-support, design, evaluation, information, information-centric, intuition, 
problem-solving, reasoning, representation, synthesis, visualization 

Some Human Problem Solving Characteristics 
Human beings are inquisitive creatures by nature who seek explanations for all that they observe 
and experience in their living environment. While this quest for understanding is central to our 
success in adapting to a changing and at times unforgiving environment, it is also a major cause 
for our willingness to accept partial understandings and superficial explanations when the degree 
of complexity of the problem situation confounds our mental capabilities. In other words, a 
superficial or partial explanation is considered better than no explanation at all. As flawed as this 
approach may be, it has helped us to solve difficult problems in stages. By first oversimplifying a 
problem we are able to develop an initial solution that is later refined as a better understanding of 
the nature of the problem evolves. Unfortunately, now we have to contend with another 
characteristic of human beings, our inherent resistance to change and aversion to risk taking. 
Once we have found an apparently reasonable and workable explanation or solution we tend to 
lose interest in pursuing its intrinsic shortcomings and increasingly believe in its validity. 
Whether driven by complacency or lack of confidence, this state of affairs leads to many 
surprises. We are continuously discovering that what we believed to be true is only partly true or 
not true at all, because the problem is more complicated than we had previously assumed it to be. 
The complexity of problems faced by human society in areas such as management, economics, 
marketing, engineering design, and environmental preservation, is increasing for several reasons. 
First, computer-driven information systems have expanded these areas from a local to an 
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increasingly global focus. Even small manufacturers are no longer confined to a regionally 
localized market for selling their products. The marketing decisions that they have to make must 
take into account a wide range of factors and a great deal of knowledge that is far removed from 
the local environment. Second, as the net-centricity of the problem system increases so do the 
relationships among the various factors. These relationships are difficult to deal with, because 
they require the decision-maker to consider many factors concurrently. Although the biological 
operation of the human brain is massively parallel, our conscious reasoning processes are 
sequential. Simply stated, we have difficulty reasoning about more than two or three variables at 
any one time. Third, as the scope of problems increases decision-makers suffer simultaneously 
from two diametrically opposed but related conditions. They tend to be overwhelmed by the 
shear volume of data that they have to consider, and yet they lack information in many specific 
areas. To make matters worse, the information tends to change dynamically in largely 
unpredictable ways 
It is therefore not surprising that governments, corporations, businesses, down to the individual 
person, are increasingly looking to computer-based decision-support systems for assistance. This 
has placed a great deal of pressure on software developers to rapidly produce applications that 
will overcome the apparent failings of the human decision-maker. While the expectations have 
been very high, the delivery has been much more modest. The expectations were simply 
unrealistic. It was assumed that advances in technology would be simultaneously accompanied 
by an understanding of how these advances should be applied optimally to assist human 
endeavors. History suggests that such an a priori assumption is not justified. There are countless 
examples that would suggest the contrary. For example, the invention of new materials (e.g., 
plastics) has inevitably been followed by a period of misuse. Whether based on a 
misunderstanding or lack of knowledge of its intrinsic properties, the new material was typically 
initially applied in a manner that emulated the material(s) it replaced. In other words, it took 
some time for the users of the new material to break away from the existing paradigm. A similar 
situation currently exists in the area of computer-based decision-support systems. 

The Rationalistic Tradition 

To understand current trends in the evolution of progressively more sophisticated decision-
support systems it is important to briefly review the foundations of problem solving 
methodology from an historical perspective. Epistemology is the study or theory of the origin, 
nature, methods and limits of knowledge. The dominant epistemology of Western Society has 
been technical rationalism (i.e., the systematic application of scientific principles to the 
definition and solution of problems). 
The rationalistic approach to a problem situation is to proceed in well defined and largely 
sequential steps as shown in Figure 1: define the problem; establish general rules that describe 
the relationships that exist in the problem system; apply the rules to develop a solution; test the 
validity of the solution; and, repeat all steps until an acceptable solution has been found. This 
simple view of problem solving suggested a model of sequential decision-making that has 
retained a dominant position to the present day. With the advent of computers it was readily 
embraced by 1st Wave software (Figure 2) because of the ease with which it could be translated 
into decision-support systems utilizing the procedural computer languages that were available at 
the time. 
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STEP 1: 
DEFINE PROBLEM AS A SYSTEM 
OF IDENTIFIABLE OBJECTS THAT 
HAVE KNOWN CHARACTERISTICS. 

STEP 2: 
FIND GENERAL RULES THAT DEFINE 
THE RELATIONSHIPS AMONG THE 
OBJECTS WITHIN THE CONTEXT OF 
THE PROBLEM SYSTEM. 

STEP 3: 
APPLY THE RULES TO THE 
PROBLEM SITUATION AND DRAW 
CONCLUSIONS THAT LEAD TO A 
SOLUTION. 

STEP 4: 
TEST THE SOLUTION AGAINST 
SPECIFIC ACCEPTANCE CRITERIA 
AND IF UNSATISFACTORY RETURN 
TO ANY OF THE PREVIOUS STEPS. 

STEP-BY-STEP 

SINGLE-TASKING 

PREDETERMINED 

INFLEXIBLE 

CLOSED LOOP 

STATIC 

TIME-CONSUMING 
OUTPUT 

INPUT

 Figure 1: Solution of simple problems Figure 2: Sequential decision-support 

The close correlation between the rationalistic approach and what is commonly referred to as the 
scientific method, is readily apparent in the series of basic steps that are employed in scientific 
investigations: observe the phenomenon that requires explanation; formulate a possible 
explanation; develop a method capable of predicting or generating the observed phenomenon; 
interpret the results produced by the method; and, repeat all steps until an acceptable explanation 
of the observed phenomenon has been found. Scientific research typically attempts to establish 
situations in which observable actions (or reactions) are governed by a small number of variables 
that can be systematically manipulated. Every effort is made to keep the contrived situation 
simple, clear and deterministic, so that the results of the simulation can be verified. 
However, natural phenomena and real world problems are often very complex involving many 
related variables. Neither the relationships among the variables nor the variables themselves are 
normally sufficiently well understood to provide the basis for clear and comprehensive 
definitions. In other words, problem situations are often too complex to be amenable to an 
entirely logical and predefined solution approach. Under these circumstances the analytical 
strategy has been to decompose the whole into component parts, as follows: 

®	 Decompose the problem system into sub-problems. 

®	 Study each sub-problem in relative isolation, using the rationalistic approach
 
(Figure 1). If the relationships within the sub-problem domain cannot be clearly
 
defined then decompose the sub-problem further.
 

®	 Combine the solutions of the sub-problems into a solution of the whole. 

Underlying this problem-solving strategy is the implicit assumption that an understanding of 
parts leads to an understanding of the whole. Under certain conditions this assumption may be 
valid. However, in many complex problem situations the parts are tightly coupled so that the 
behavior of the whole depends on the interactions among the parts rather than the internal 
characteristics of the parts themselves (Bohm 1983, Senge 1993). An analogy can be drawn with 
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the behavior of ants. Each ant has only primitive skills, such as the ability to interpret the scent of 
another ant and the instinctive drive to search for food, but little if any notion of the purpose or 
objectives of the ant colony as a whole. In other words, an understanding of the behavior of an 
individual ant does not necessarily lead to an understanding of the community behavior of the 
ant colony of which the ant is a part. 
Decomposition is a natural extension of the scientific approach to problem solving and has 
become an integral and essential component of rationalistic methodologies. Nevertheless, it has 
serious limitations. First, the behavior of the whole usually depends more on the interactions of 
its parts and less on the intrinsic behavior of each part. Second, the whole is typically a part of a 
greater whole and to understand the former we have to also understand how it interacts with the 
greater whole. Third, the definition of what constitutes a part is subject to viewpoint and purpose, 
and not intrinsic in the nature of the whole. For example, from one perspective a coffee maker 
may be considered to comprise a bowl, a hotplate, and a percolator. From another perspective it 
consists of electrical and constructional components, and so on. 
Rationalism and decomposition are certainly useful decision-making tools in complex problem 
situations. However, care must be taken in their application. At the outset it must be recognized 
that the reflective sense (Schon 1983) and intuition of the decision-maker are at least equally 
important tools. Second, decomposition must be practiced with restraint so that the complexity of 
the interactions among parts is not overshadowed by the much simpler behavior of each of the 
individual parts. Third, it must be understood that the definition of the parts is largely dependent 
on the objectives and knowledge about the problem that is currently available to the decision-
maker. Even relatively minor discoveries about the greater whole, of which the given problem 
situation forms a part, are likely to have significant impact on the purpose and the objectives of 
the problem situation itself. 

Decision Making in Complex Problem Situations 

As shown in Figure 3, there are several characteristics that distinguish a complex problem from a 
simple problem. First, the problem is likely to involve many related issues or variables. As 
discussed earlier the relationships among the variables often have more bearing on the problem 
situation than the variables themselves. Under such tightly coupled conditions it is often not 
particularly helpful, and may even be misleading, to consider issues in isolation. Second, to 
confound matters some of the variables may be only partially defined and some may yet to be 
discovered. In any case, not all of the information that is required for formulating and evaluating 
alternatives is available. Decisions have to be made on the basis of incomplete information. 
Third, complex problem situations are pervaded with dynamic information changes. These 
changes are related not only to the nature of an individual issue, but also to the context of the 
problem situation. For example, a change in wind direction during a major brushfire may have a 
profound impact on the entire nature of the relief operation. Apart from precipitating an 
immediate re-evaluation of the firefighting strategy, it may require the relocation of firefighters 
and their equipment, the replanning of evacuation routes, and possibly even the relocation of 
distribution centers. Certainly, a change in the single factor of wind direction could, due to its 
many relationships, call into question the very feasibility of the existing course of action (i.e., the 
firefighting plan). Even under less critical conditions it is not uncommon for the solution 
objectives to change several times during the decision-making process. This fourth characteristic 

12 



            

 

of complex problem situations is of particular interest. It exemplifies the tight coupling that can 
exist among certain problem issues, and the degree to which decision-makers must be willing to 
accommodate fundamental changes in the information that drives the problem situation. 

Many Related Variables 

Some Variables Undefined 

Dynamic Information Changes 

Solution Objectives Change 

Several Possible Solutions 

CONCURRENT 

MULTI-TASKING 

OPPORTUNISTIC 

ADAPTABLE 

OPEN SYSTEM 

DYNAMIC 

TIME-SAVING 

Figure 3: Character of complex problems  Figure 4: Parallel decision-support 

Fifth, complex problems typically have more than one solution (Archea 1987). It is usually 
fruitless to look for an optimum solution, because there are no static benchmarks available for 
evaluating optimality. A solution is found to be acceptable if it satisfies certain performance 
requirements and if it has been determined that the search for alternatives is no longer warranted. 
Such a determination is often the result of resource constraints (e.g., availability of time, penalty 
of non-action, or financial resources) rather than a high level of satisfaction with the quality of 
the proposed solution. 

While human decision-making in complex problem situations has so far defied rigorous 
scientific explanation, we do have knowledge of at least some of the characteristics of the 
decision-making activity. 

®	 Decision-makers typically define the problem situation in terms of issues that are 
known to impact the desired outcome. The relative importance of these issues and 
their relationships to each other change dynamically during the decision-making 
process. So also do the boundaries of the problem space and the goals and 
objectives of the desired outcome. In other words, under these circumstances 
decision-making is an altogether dynamic process in which both the rules that 
govern the process and the required properties of the end-result are subject to 
continuous review, refinement and amendment. 

®	 The complexity of the decision-making activity does not appear to be due to a 
high level of difficulty in any one area but the multiple relationships that exist 
among the many issues that impact the desired outcome. Since a decision in one 
area will tend to influence several other areas there is a need to consider many 
factors at the same time. This places a severe burden on the human cognitive 
system. Although the neurological mechanisms that support conscious thought 
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processes are massively parallel, the operation of these reasoning capabilities is 
largely sequential. Accordingly, decision-makers tend to apply simplification 
strategies for reducing the complexity of the problem-solving activity. In this 
regard it becomes readily apparent why 2nd Wave software provides a much more 
useful architecture for decision-support systems (Figure 4). 

®	 Observation of decision-makers in action has drawn attention to the important
 
role played by experience gained in past similar situations, knowledge acquired in
 
the general course of decision-making practice, and expertise contributed by
 
persons who have detailed specialist knowledge in particular problem areas. The
 
dominant emphasis on experience is confirmation of another fundamental aspect
 
of the decision-making activity. Problem-solvers seldom start from first
 
principles. In most cases, the decision-maker builds on existing solutions from
 
previous situations that are in some way related to the problem under
 
consideration. From this viewpoint, the decision-making activity involves the
 
modification, refinement, enhancement and combination of existing solutions into
 
a new hybrid solution that satisfies the requirements of the given problem system.
 
In other words, problem-solving can be described as a process in which relevant
 
elements of past prototype solution models are progressively and collectively
 
molded into a new solution model. Very seldom are new prototype solutions
 
created that do not lean heavily on past prototypes.
 

®	 Finally, there is a distinctly irrational aspect to decision-making in complex
 
problem situations. Donald Schon refers to a "...reflective conversation with the
 
situation...". (Schon 1983). He argues that decision-makers frequently make value
 
judgments for which they cannot rationally account. Yet, these intuitive
 
judgments often result in conclusions that lead to superior solutions. It would
 
appear that such intuitive capabilities are based on a conceptual understanding of
 
the situation, which allows the problem solver to make knowledge associations at
 
a highly abstract level.
 

Based on these characteristics the solution of complex problems can be categorized as an 
information intensive activity that depends for its success largely on the availability of 
information resources and, in particular, the experience and reasoning skills of the decision-
makers. It follows that the quality of the solutions will vary significantly as a function of the 
problem-solving skills, knowledge, and information resources that can be brought to bear on the 
solution process. This clearly presents an opportunity for the useful employment of computer-
based decision-support systems in which the capabilities of the human decision-maker are 
complemented with knowledge bases, expert agents, and self-activating conflict identification 
and monitoring capabilities. 

Principal Elements of Decision-Making 

Over the past two decades that the CADRC Center has been developing distributed, collaborative 
decision-support systems some insights have been gained into the nature of the decision-making 
activity. In particular, we have found it useful to characterize decision-making in terms of six 
functional elements (Figure 5): information; representation; visualization; communication; 
reasoning; and, intuition. 
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COMMUNICATION 

CHARACTER OF 

DECISION MAKING 

ACTIVITY 

INFORMATION 

REPRESENTATION 

VISUALIZATION 

REASONING 

INTUITION 

INFORMATION 

COOPERATIVE 
(MANY SOURCES) 

DISTRIBUTED 
(WIDELY DISPERSED) 

UNPREDICTABLE 
(DEPENDENT ON
SOLUTION STRATEGY) 

PROTOTYPICAL 
(EXPERIENCE-BASED) 

GRAPHICAL 
(VISUALLY-ORIENTED)

 Figure 5: Decision-making elements Figure 6: The information element 

The Information Element 

Decision-making in complex problem situations is a collaborative activity involving many 
sources of information that are often widely dispersed. Seldom is all of the information required 
for the solution, or even only a component of the problem, physically located in the immediate 
vicinity of the decision-maker.  In fact, much of the information is likely to reside in remote 
repositories that can be accessed only through electronic means, the telephone, e-mail, or the 
temporary relocation of a member of the problem-solving team (Figure 6). If the desired 
information requires expert advice the services of a consultant may be required in addition to, or 
instead of, access to an information resource. 
The term information is used here in the broadest sense to include not only factual data and the 
progressively more comprehensive and detailed description of the problem system, but also the 
many knowledge bases that are part of the local and global environment within which the 
problem situation is constituted. In this regard, we are concerned with the knowledge of the 
individual members of the problem-solving team, the knowledge of peripheral players (e.g., 
colleagues, associates and consultants), the collective knowledge of the profession (such as the 
various engineering professions, the military establishment, or the management profession) and 
industry, and beyond that those aspects of what might be referred to as global knowledge that 
impact the problem context. 
Typically, the problem specifications (i.e., constraints, criteria, and objectives) evolve with the 
problem solution as the decision-makers interact with the problem situation. Accordingly, the 
information requirements of the problem solver are not predictable since the information needed 
to solve the problem depends largely on the solution strategy adopted (Fischer and Nakakoji 
1991). In this respect problem solving is a learning process in which the decision-maker 
progressively develops a clearer understanding of the problem that is required to be solved. 
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Much of the information that decision-makers use in the development of a problem solution is 
gleaned from experience with past projects.  In fact, it can be argued that solutions commonly 
evolve out of the adaptation, refinement and combination of prototypes (Gero et al. 1988). This 
argument suggests that the more expert human decision-makers are the more they tend to rely on 
prototypical information in the solution of complex problems. It would appear that the 
accumulation, categorization and ability to apply prototype knowledge are the fundamental 
requirements for a human decision-maker to reach the level of expert in a particular domain. 
Based largely on the work of Gero et al. (1988) and Rosenman and Gero (1993) the following 
techniques used by engineering designers to develop solutions through the manipulation of 
prototypes can be identified as being universally applicable to other problem domains: 

®	 Refinement: The prototype can be applied after changes have been made in the 
values of parameter variables only  (i.e., the instance of the prototype is 
reinterpreted within the acceptable range of the parameter variables). 

®	 Adaptation: Application of the prototype requires changes in the parameters that
 
constitute the description of the prototype instance, based on factors that are
 
internal to the prototype (i.e., a new prototype instance is produced).
 

®	 Combination: Application of the prototype requires the importation of parameter 
variables of other prototypes, producing a new instance of a reinterpreted version 
of the original prototype. 

®	 Mutation: Application of the prototype requires structural changes to the 
parameter variables, either through internal manipulations or the importation of 
parameter variables from external sources  (i.e., either a reinterpreted version of 
the original prototype or a new prototype is produced). 

®	 Analogy: Creation of a new prototype based on a prototype that exists in another 
context, but displays behavioral properties that appear to be analogous to the 
application context. 

For application purposes in knowledge-based decision-support systems prototypes may be 
categorized into five main groups based on knowledge content (Schon 1988, Pohl and Myers 
1994): 

1.	 Vertical prototype knowledge bases that contain typical object descriptions and 
relationships for a complete problem situation or component thereof. Such a 
knowledge base may include all of the types that exist in a particular  problem setting, 
for example: an operational template for a particular kind of humanitarian relief 
mission; a certain type of propulsion unit; or, a building type such as a library, sports 
stadium, or supermarket. 

2.	 Horizontal prototype knowledge bases that contain typical solutions for sub-
problems such as commercial procurement practices, construction of a temporary 
shelter, or techniques for repairing equipment. This kind of knowledge often applies 
to more than one discipline. For example, the techniques for repairing a truck apply 
equally to the military as they do to auto-repair shops, engineering concerns, and 
transportation related organizations. 
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3.	 Domain prototype knowledge bases that contain guidelines for developing solutions 
within contributing narrow domains. For example, the range of structural solutions 
appropriate for the construction of a suspension bridge during a military mission is 
greatly influenced by the availability of material, the prevailing wind conditions, and 
the time available for erection. Posed with this design problem military engineers will 
immediately draw upon a set of rules that guide the design activity. 

4.	 Exemplar prototype knowledge bases that describe a specific instance of an object 
type or solution to a sub-problem. Exemplary prototypes can be instances of vertical 
or horizontal prototypes, such as a particular building type or a method of welding a 
certain kind of steel joint that is applied across several disciplines and industries (e.g., 
building industry and automobile industry). Decision-makers often refer to exemplary 
prototypes in exploring solution alternatives to sub-problems. 

5.	 Experiential knowledge bases that represent the factual prescriptions, strategies and 
solution conventions employed by the decision-maker in solving similar kinds of 
problem situations. Such knowledge bases are typically rich in methods and 
procedures. For example, a particularly memorable experience such as the deciding 
event in a past business negotiation or the experience of seeing for the first time the 
magnificent sail-like concrete shell walls of the Sydney Opera House, may provide 
the basis for a solution method that is applied later to create a similar experience in a 
new problem situation that may be quite different in most other respects. In other 
words, experiential prototypes are not bound to a specific type of problem situation. 
Instead, they represent techniques and methods that can be reproduced in various 
contexts with similar results. Experiential knowledge is often applied in very subtle 
ways to guide the solution of sub-problems (e.g., a subterfuge in business merger or 
take-over negotiations that is designed to mislead a competing party). 

The amount of prototypical information is potentially overwhelming. However, the more astute 
and experienced decision-maker will insist on taking time to assimilate as much information as 
possible into the problem setting before committing to a solution theme. There is a fear that early 
committal to a particular solution concept might overlook characteristics of the problem situation 
that could gain in importance in later stages, when the solution has become too rigid to adapt to 
desirable changes. This reluctance to come to closure places a major information management 
burden on the problem solver. Much of the information cannot be specifically structured and 
prepared for ready access, because the needs of the problem solver cannot be fully anticipated. 
Every step toward a solution generates new problems and information needs (Simon 1981). 

The Representation Element 

The methods and procedures that decision-makers utilize to solve complex problems rely heavily 
on their ability to identify, understand and manipulate objects (Figure 7). In this respect, objects 
are complex symbols that convey meaning by virtue of the explicit and implicit information that 
they encapsulate within their domain. For example, military strategists develop operational plans 
by reasoning about terrain, weather conditions, enemy positions, weapon assets, and so on. Each 
of these objects encapsulates knowledge about its own nature, its relationships with other 
objects, its behavior within a given environment, what it requires to meet its own performance 
objectives, and how it might be manipulated by the decision-maker within a given problem 
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scenario (Figure 8). This knowledge is contained in the various representational forms of the 
object as factual data, relationships, algorithms, rules, exemplar solutions, and prototypes. 
The reliance on object representations in reasoning endeavors is deeply rooted in the innately 
associative nature of the human cognitive system. Information is stored in long-term memory 
through an indexing system that relies heavily on the forging of association paths. These paths 
relate not only information that collectively describes the meaning of symbols such as building, 
car, chair, and tree, but also connect one symbol to another. The symbols themselves are not 
restricted to the representation of physical objects, but also serve as concept builders. They 
provide a means for grouping and associating large bodies of information under a single 
conceptual metaphor. In fact, Lakoff and Johnson (1980) argue that "...our ordinary conceptual 
system, in terms of which we both think and act, is fundamentally metaphorical in nature.” They 
refer to the influence of various types of metaphorical concepts, such as “…desirable is up” (i.e., 
spatial metaphors) and “…fight inflation” (i.e., ontological or human experience metaphors), as 
the way human beings select and communicate strategies for dealing with everyday events.

 Figure 7: Symbolic reasoning with objects Figure 8: The representation element 

Problem-solvers typically intertwine the factually based aspects of objects with the less precise, 
but implicitly richer language of metaphorical concepts. This leads to the spontaneous linkage of 
essentially different objects through the process of analogy. In other words, the decision-maker 
recognizes similarities between two or more sub-components of apparently unrelated objects and 
embarks upon an exploration of the discovered object seeking analogies where they may or may 
not exist. At times these seemingly frivolous pursuits lead to surprising and useful solutions of 
the problem at hand. 
The need for a high level representation is fundamental to all computer-based decision-support 
systems. It is an essential prerequisite for embedding artificial intelligence in such systems, and 
forms the basis of any meaningful communication between user and computer. Without a high 
level representation facility the abilities of the computer to assist the human decision maker are 
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confined to the performance of menial tasks, such as the automatic retrieval and storage of data 
or the computation of mathematically defined quantities.  While even those tasks may be highly 
productive they cannot support a partnership in which human users and computer-based systems 
collaborate in a meaningful and intelligent manner in the solution of complex problems. 
The term high level representation refers to the ability of computer software to process and 
interpret changes in data within an appropriate context. It is fundamental to the distinction 
between data-centric and information-centric software. Strictly speaking data are numbers and 
words without relationships1. Software that incorporates an internal representation of data only is 
often referred to as data-centric software. Although the data may be represented as objects the 
absence of relationships to define the functional purpose of the data inhibits the inclusion of 
meaningful and reliable automatic reasoning capabilities. Data-centric software, therefore, must 
largely rely on predefined solutions to predetermined problems, and has little (if any) scope for 
adapting to real world problems in near real-time. 
Information, on the other hand, refers to the combination of data with relationships to provide 
adequate context for the interpretation of the data. The richer the relationships, the greater the 
context and the more opportunity for automatic reasoning by software agents. Software that 
incorporates an internal information model (i.e., ontology) consisting of objects, their 
characteristics, and the relationships among those objects is often referred to as information-
centric software. The information model provides a virtual representation of the real world 
domain under consideration. Since information-centric software has some understanding of what 
it is processing it normally contains tools rather than predefined solutions to predetermined 
problems. These software tools are commonly referred to as agents that collaborate with each 
other and the human user(s) to develop solutions to problems in near real-time, as they occur. 

The Visualization Element 

Problem solvers use various visualization media, such as visual imagination, drawings and 
physical models, to communicate the current state of the evolving solution to themselves and to 
others (Figure 9). Drawings, in particular, have become intrinsically associated with problem 
solving. Although the decision-maker can reason about complex problems solely through mental 
processes, drawings and related physical images are useful and convenient for extending those 
processes. The failings of the drawing as a vehicle for communicating the full intent of the 
decision-maker do not apply to the creator of the drawing. To the latter the drawing serves not 
only as an extension of long-term memory, but also as a visual bridge to its associative indexing 
structure. In this way, every meaningful part of the drawing is linked to related data and 
deliberation sequences that together provide an effectively integrated and comprehensive 
representation of the artifact. 
From a technical point of view a great deal of headway has been made over the past two decades 
in the area of computer-based visualization. However, without high-level representation 
capabilities even the most sophisticated computer generated images are nothing but hollow 
shells. If the computer system does not have even the simplest understanding of the nature of the 

1 Even though data are often stored in a relational database management system, the relationships that are stored 
with the data in such a database are structural in nature and do not provide any information on how the data will 
be used (i.e., the context of the data). 
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objects that are contained in the image then it cannot contribute in any way to the analysis of 
those objects. On the other hand, visualization in combination with high-level representation 
becomes the most powerful element of the user-interface of a decision-support system.  Under 
these circumstances, visualization promotes the required level of understanding between the user 
and the computer as they collaborate in the solution of a problem. 
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ANIMATION 

PHYSICAL MODELS 

VIRTUAL REALITY 

VISUALIZATION 

MULTI-MEDIA 
FACILITIES 

COOPERATIVE 
TEAM WORK 

SOCIAL INTERACTION 

CONVERSATION 

CRITIQUE 

NEGOTIATION 

PERSUASION 

COMMUNICATION

 Figure 9: The visualization element Figure 10: The communication element 

The Communication Element 

The solution of complex problems is typically undertaken by a team of decision-makers. Each 
team member contributes within a collaborative decision-making environment that relies heavily 
on the normal modes of social interaction, such as conversation, critique, negotiation, and 
persuasion (Figure 10). Two aspects of such an interactive environment are particularly well 
catered for in computer-based systems. The first aspect relates to the ability of computer-driven 
communication networks to link together electronically based resources located anywhere on 
Earth or in space.  Technical advances in the communication industry have greatly enhanced the 
ability of individuals to gain access to remotely distributed information sources, and to interact 
with each other over vast distances. In fact, connectivity rather than geographical distance has 
become the principal determinant of communication. 
The second aspect is interwoven with the first by relatively recent technological advances that 
have permitted all types of information to be converted into digital form. Through the use of 
digital switching facilities modern communication networks are able to transmit telephone 
conversations and graphical images in the same way as data streams have been sent from one 
computer to another over the past 40 years. 
As a direct result of these advances in communication systems the convenient and timely 
interaction of all of the members of a widely dispersed problem-solving team is technically 
assured. It is now incumbent on software developers to produce computer-based decision-
support systems that can fully support collaborative teamwork, which is neither geographically 
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nor operationally limited. Such systems will integrate not only computer-based information 
resources and software agents, but also multiple human agents (i.e., the users) who will 
collaborate with the computer-based resources in a near real-time interactive environment. 

The Reasoning Element 

Reasoning is central to any decision-making activity. It is the ability to draw deductions and 
inferences from information within a problem-solving context. The ability of the problem solver 
to reason effectively depends as much on the availability of information, as it does on an 
appropriately high level form of object representation (Figure 11). Decision-makers typically 
define complex problems in terms of issues that are known to impact the desired outcome. The 
relative importance of these issues and their relationships to each other change dynamically 
during the decision-making process. So also do the boundaries of the problem space and the 
goals and objectives of the desired outcome. In other words, the solution of complex problems is 
an altogether dynamic process in which both the rules that govern the process and the required 
properties of the end-result are subject to continuous review, refinement and amendment 
(Reitman 1964 and 1965, Rittel and Weber 1984). 

DECOMPOSITION 
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OBJECT-BASED 
REPRESENTATION 

INFORMATION 
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REASONING 

DECISION-MAKING PROCESS
 

ANALYSIS 

SYNTHESIS 

EVALUATION

 Figure 11: The reasoning element  Figure 12: Reasoning methodology 

As discussed previously, the complexity of a problem is normally not due to a high degree of 
difficulty in any one area but the multiple relationships that exist among the many issues that 
impact the desired outcome. Since a decision in one area will tend to influence several other 
areas there is a critical need for concurrency. However, the reasoning capabilities of the human 
problem solver are sequential in nature2. Accordingly, decision-makers find it exceedingly 
difficult to consider more than three or four issues at any one time. In an attempt to deal with the 

Reasoning is a logical process that proceeds in a step-by-step manner. In this respect reasoning is quite different 
from intuition, which allows humans to spontaneously come to conclusions that are neither consciously 
formulated nor explainable at the time of their first appearance. 
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concurrency requirement several strategies are commonly employed to reduce the complexity of 
the reasoning process to a manageable level. 

®	 Constraint Identification: By sifting through the available information the
 
problem-solver hopes to find overriding restrictions and limitations that will
 
eliminate knowledge areas from immediate consideration.
 

®	 Decision Factor Weighting: By comparing and evaluating important problem 
issues in logical groupings, relative to a set of predetermined solution objectives, 
the decision-maker hopes to identify a smaller number of issues or factors that 
appear to have greater impact on the final solution. Again, the strategy is to 
reduce the size of the information base by early elimination of apparently less 
important considerations. 

®	 Solution Conceptualization: By adopting early in the decision-making process a 
conceptual solution, the problem-solver is able to pursue a selective evaluation of 
the available information. Typically, the problem-solver proceeds to subdivide the 
decision factors into two groups, those that are compatible with the conceptual 
solution and those that are in conflict. By a process of trial and error, often at a 
superficial level, the problem-solver develops, adapts, modifies, re-conceives, 
rejects and, often, forces the preconceived concept into a final solution. 

In complex problem situations reasoning proceeds in an iterative fashion through a cycle of 
analysis, synthesis and evaluation (Figure 12).  During the analysis stage (Figure 13) the 
problem-solver interprets and categorizes information to establish the relative importance of 
issues and to identify compatibilities and incompatibilities among the factors that drive these 
issues. 
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 Figure 13: Analysis stage of reasoning Figure 14: Synthesis stage of reasoning 

During synthesis (Figure 14) solution boundaries and objectives are continuously reexamined as 
the decision-maker develops narrow solutions to sub-problems and combines these narrow 
solutions into broader solutions. Initially, these solution attempts are nothing more than trial 
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balloons. Or, stated in more technical terms, explorations based on the development of the 
relationships among the principal issues and compatible factors identified during the analysis 
stage. Later, as the problem-solving activity progresses, firmer conceptual solution strategies 
with broader implications emerge.  However, even during later cycles the solution strategies tend 
to be based on a limited number of issues or factors. 
During the evaluation stage (Figure 15) the decision-makers are forced to test the current 
solution strategy with all of the known problem issues, some of which may have been considered 
only superficially or not at all during the formulation of the current solution proposal. This may 
require the current solution concepts to be modified, extended or altogether replaced.  Typically, 
several solution strategies are possible and none are completely satisfactory.  Archea (1987), in 
his description of the architectural design activity refers to this activity as "... puzzle-making", 
suggesting by implication that the decision-maker utilizes the reasoning cycle more as a method 
for exploring the problem space than as a decision-making tool for forcing an early solution. 
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 Figure 15: Evaluation stage of reasoning Figure 16: The intuition element 

The Intuition Element 

Donald Schon (1983 and 1988) has written extensively about the intuitive aspects of decision-
making. Although he focused primarily on engineering design as an application area, his views 
provide valuable insight into the solution of complex problems in general. Design has all of the 
common characteristics of complex problem situations, and some additional ones such as the 
desire for solution uniqueness, that make it a prime candidate for computer-based assistance 
(Pohl et al.1994). 
In Schon's (1988) view designers enter into "... design worlds" in which they find the objects, 
rules and prototype knowledge that they apply to the design problem under consideration. The 
implication is that the designer continuously moves in and out of design worlds that are triggered 
by internal and external stimuli. While the reasoning process employed by the designer in any 
particular design world is typically sequential and explicitly logical, the transitions from state to 
state are governed by deeper physiological and psychological causes. Some of these causes can 
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be explained in terms of associations that the designer perceives between an aspect or element of 
the current state of the design solution and prototype knowledge that the designer has 
accumulated through experience. Others may be related to emotional states or environmental 
stimuli, or interactions of both (Figure 16). 
For example, applying Schon's view to the broader area of complex problem solving, a particular 
aspect of a problem situation may lead to associations in the decision-maker's mind that are 
logically unrelated to the problem under consideration. However, when the decision-maker 
pursues and further develops these associations they sometimes lead to unexpected solutions. 
Typically, the validity of these solutions becomes apparent only after the fact and not while they 
are being developed. In popular terms we often refer to these solutions as creative leaps and 
label the author as a brilliant strategist. What we easily forget is that many of these intuitions 
remain unrelated associations and do not lead to any worthwhile result. Nevertheless, the 
intuitive aspect of decision-making is most important. Even if only a very small percentage of 
these intuitive associations were to lead to a useful solution, they would still constitute one of the 
most highly valued decision-making resources. 
The reasons for this are twofold. First, the time at which the decision-maker is most willing to 
entertain intuitive associations normally coincides with a most difficult stage in the problem 
solving process. Typically, it occurs when an impasse has been reached and no acceptable 
solution strategy can be found. Under these circumstances intuition may be the only remaining 
course of action open to the decision-maker. The second reason is particularly relevant if there is 
a strong competitive element present in the problem situation. For example, during a chess game 
or during the execution of military operations. Under these circumstances, strategies and 
solutions triggered by intuitive associations will inevitably introduce an element of surprise that 
is likely to disadvantage the adversary. 
The importance of the intuition element itself in decision-making would be sufficient reason to 
insist on the inclusion of the human decision-maker as an active participant in any computer-
based decision system. In designing and developing such systems in the CADRC over the past 
decade we have come to appreciate the importance of the human-computer partnership concept, 
as opposed to automation. Whereas in some of our early systems (e.g., ICADS (Pohl et al. 1988) 
and AEDOT (Pohl et al. 1992)) we included agents that automatically resolve conflicts, today we 
are increasingly moving away from automatic conflict resolution to conflict detection and 
explanation. We believe that even apparently mundane conflict situations should be brought to 
the attention of the human agent. Although the latter may do nothing more than agree with the 
solution proposed by the computer-based agents, he or she has the opportunity to bring other 
knowledge to bear on the situation and thereby influence the final determination. 

The Human-Computer Partnership 

To look upon decision-support systems as partnerships between users and computers, in 
preference to automation, appears to be a sound approach for at least two reasons. First, the 
ability of the computer-based components to interact with the user overcomes many of the 
difficulties, such as representation and the validation of knowledge, that continue to plague the 
field of machine learning (Forsyth 1989, Thornton 1992, Johnson-Laird 1993).  Second, human 
and computer capabilities are in many respects complementary (Figures 17 and 18). Human 
capabilities are particularly strong in areas such as communication, symbolic reasoning, 
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conceptualization, learning, and intuition. We are able to store and adapt experience and quickly 
grasp the overall picture of even fairly chaotic situations. Our ability to match patterns is 
applicable not only to visual stimuli but also to abstract concepts and intuitive notions. However, 
although the biological bases of our cognitive abilities are massively parallel, our conscious 
reasoning capabilities are essentially sequential. Therefore, large volumes of information and 
multi-faceted decision contexts tend to easily overwhelm human decision-makers. 
When such an overload occurs we tend to switch from an analysis mode to an intuitive mode in 
which we have to rely almost completely on our ability to develop situation awareness through 
abstraction and conceptualization. While this is our greatest strength it is also potentially our 
greatest weakness. At this intuitive meta-level we become increasingly vulnerable to emotional 
influences that are an intrinsic part of our human nature and therefore largely beyond our control. 
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 Figure 17: Human abilities and limitations Figure 18: Computer abilities and limitations 

The capabilities of the computer are strongest in the areas of parallelism, speed and accuracy 
(Figure 18). Whereas the human being tends to limit the amount of detailed knowledge by 
continuously abstracting information to a higher level of understanding, the computer excels in 
its almost unlimited capacity for storing data. While the human being is prone to making minor 
mistakes in arithmetic and reading, the computer is always accurate. A slight diversion may be 
sufficient to disrupt our attention to the degree that we incorrectly add or subtract two numbers. 
However, if the error is large we are likely to notice that something is wrong further downstream 
due to our ability to apply conceptual checks and balances. The computer, on the other hand, 
cannot of its own accord (i.e., at the hardware level) distinguish between a minor mistake and a 
major error. Both are a malfunction of the entirely predictable behavior of its electronic 
components. However, at the software level it is possible to provide a layer of automatic 
reasoning capabilities (i.e., collaborating agents) served by an underlying information model 
(i.e., ontology). Software with such embedded capabilities is able to draw inferences leading to 
more sophisticated human-like conclusions. 
The differences between the human being and the computer are fundamental. All of the 
capabilities of the digital computer are derived from the simple building blocks of 0 and 1. There 
is no degree of vagueness here, 0 and 1 are precise digital entities and very different from the 
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massively parallel and largely unpredictable interactions of neurons and synapses that drive 
human behavior. It is not intuitively obvious how to create the high level representations of real 
world objects (e.g., ship, aircraft, dog, house, power, security, etc.) that appear to be a 
prerequisite for reasoning and learning capabilities, in a digital computer. While these objects 
can be fairly easily represented in the computer as superficial visual images (in the case of 
physical objects such as aircraft, weapons and buildings) and data relationships (in the case of 
conceptual objects such as power and security) that in itself does not ensure that the computer 
has any understanding of their real world meaning. These representations are simply 
combinations of the basic digital building blocks that model, at best, the external shell rather than 
the internal meaning of the object. 
In this respect the term information-centric refers to the representation of information in the 
computer, not to the way it is actually stored in a digital machine.  This distinction between 
representation and storage is important, and relevant far beyond the realm of computers.  When 
we write a note with a pencil on a sheet of paper, the content (i.e., meaning) of the note is 
unrelated to the storage device.  A sheet of paper is designed to be a very efficient storage 
medium that can be easily stacked in sets of hundreds, filed in folders, bound into volumes, 
folded, and so on.  However, all of this is unrelated to the content of the written note on the 
paper. This content represents the meaning of the sheet of paper.  It constitutes the purpose of 
the paper and governs what we do with the sheet of paper (i.e., its use).  In other words, the 
nature and efficiency of the storage medium is more often than not unrelated to the content or 
representation that is stored in the medium. 

In the same sense, the way in which we store bits (i.e., 0s and 1s) in a digital computer is 
unrelated to the meaning of what we have stored. For a computer to interpret data it requires an 
information structure that provides at least some level of context. This can be accomplished 
utilizing an ontology of objects with characteristics and a rich set of relationships to create a 
virtual version of a real world situation. The resultant level of information representation is 
normally adequate to provide the context within which agent logic can automatically operate. 
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Abstract 

In Collaborative Design, particularly in architecture, little is known about the effects of the 
mutual relations among actors in the process and on the process. 

And from the outset, the actors, which, how many? And how can a design be recognized as 
Collaborative? Did it influence the process itself, in the sense that its structure influenced the 
outcome, or only changed the order in which the actors acted, did it change the final outcome? 
Are there any settled, invariant, issues in this jelly represented by architectural design? 

These issues must be investigated in depth by those who, like ourselves, set out to build a 
general model simulating the process/product of Collaborative Architectural Design in order to 
further develop it using modern ICT tools – CollCAAD. 

Over time we have examined in depth certain theoretical issues (Carrara and Fioravanti 2001), 
general approach problems (Carrara et al. 2000), as well as specific sectors and key issues 
(Carrara and Fioravanti 2002). However, the complex of relations underpinning the actions-
reactions of the actors involved is a phenomenon that cannot be studied “in vitro”, but must be 
reproduced “in vivo” and analyzed on the spot. 

However, first of all, in order not to be overwhelmed in the simulation of the general model by 
claims to priority by requests to intervene in the design action by the actors or by mutually 
exclusive constraints or diverging (partial) goals of the actors, we deemed it useful to construct a 
“game” – a highly simplified CollCAAD model. 

The aim of the game is not just to open up the way to a general model but also to provide a 
useful teaching tool to illustrate to the student the consequences of his own design choices vis-à-
vis the choices made by others, and to accustom him to working as part of a group. 

In order to implement this game, which we have called _ –House, we previously simulated a 
preliminary briefing session for the design of an exhibition pavilion. The aim was to immediately 
sift the quantities related to the observed phenomenon, identifying the fundamental ones, 
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discarding the non essential ones and reducing as far as possible the number of actors involved, 
without reducing the richness of the design dialectics. 

A no less important aim of the present article is to concretely and tangibly clarify our 
conception regarding CollCAAD, as the same concepts and terms often take on different 
meanings and nuances if the context is changed. 

The article consists of a report and commentary of this simulated work session which proved 
stimulating for the research students present and gratifying for those experiencing it. The final 
outcomes and reflections kept the game within given conceptual bounds, eliminating any 

dangerous overflows. The work session may be considered maieutic to the birth of _-House, a 
game that warrants an ad hoc article in order to be adequately illustrated. 

1. Games in Architecture 

The games, applying Plato’s diairetic method, may be subdivided into games of skill or of 
strategy. The former are characterized by the ability to perform certain movements and therefore 
space and time are of importance; velocity is  at a premium space/time, s/t; the latter are 
characterized by detachment from current reality and from the single act; the itinerary, not the 
time taken is valid; the overall final result is at a premium. 

1.1. IMPORTANCE OF GAMES 

The architecture game is more a part of the second type in which even when we speak of an 
‘athletic gesture’ by the architect (Motorway Church by Michelucci in Florence, Guggenheim at 
Bilbao by F.O. Gehry, to mention but a few…) we are always dealing with a work that takes 
time, and is developed in time. In this second type of game the final result is important to the 
point of being able to afford a number of secondary losses, as, for example, in chess where it may 
often be necessary to sacrifice important pieces in order for the purpose of a checkmate, 
demolishing part of the preceding architecture works. 

The study and development of ‘games’ simulating a complex problem or for the further study 
of basic concepts describing and guiding a process are extensively used in advanced design 
companies, in relations among human beings and in behavioural habits. Our very nature, the 
identification of the ego, arises out of play. 

A game always has a “creative” component in so far as in a narrative context, action may be 
less dependent on logic (Woodbury et al. 2001) and is “joyful” in so far as the consequences of 
different from usual choices have no effect on reality. From this non penalization, unless in the 
context of the game itself, there derives a stimulus to engage in new “games” so as to extend the 
exploration of solution space. In this way, self-learning occurs of the “rules of effective game 
behaviour” not coded into the initially established “rules of the game” – the strategies. 

The simulation games as defined above are played in a conventionally defined “simplified 
context” in order to focus attention on strategies of the ‘moves’, on elaborating the thinking and 
on the logical correctness of behaviour. The architecture games have had both the didactic 
purpose of placing the student in a “situation”1 in which he can learn about the consequences of 

1 It should be noted that in Collaborative Architectural Design the actor is ‘situated’ (Gero 1999) or present in a 
‘condicio’ (Carrara and Fioravanti 2002). 
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his design choices as well as research to study complex relations among operators in the specific 
case of architectural design2. 

In both cases the aim is to explore cognitive fields that are little known a priori and that are 
brought to the surface by the exploration itself, to formulate hypotheses based on such 
exploration and to evaluate them as a function of the objectives adopted and above all to develop 
new methods for exploring them better. Therefore the ultimate aim is not “the discovery” or the 
“solution” of something or a problem but the heuristic enhancement of the exploration: a 
refinement of the strategy to resolve a game. 

Their great utility derives from the new strategy being applied to contexts other than the 
conventional one defined by the game by means of a process of extrapolation. 

1.2. ARCHITECTURE GAMES 

The research described arises out of several works in this field. The games developed for 
computer assisted architectural design always contain a plurality of aspects: the simplification of 
the design process, interactions among participants, difficulty of assembling the components, 
scoring, aspects of the process to be highlighted, the pictorial nature, likeness and figurability of 
the representation, the interface between player, the game and the other participants, the “items” 
to act on. 

1.2.1. StringCVE game 
For instance, in the work by J. Moloney (Moloney 2002, 2005) the game – StringCVE – refers to 
the early phases of design and is aimed at project  rapid prototyping, mainly as regards the 
insertion of a building into the landscape, and a swift and pragmatic exchange of information, 
observations and suggestions among the actors. In order to achieve this, extensive modeling is 
used of a vast area of the landscape involved (1.8 Km2), the fast and cheap graphics engines of 
some games3 to model the terrain, a single type of actor4 which has a single interface, shared by 
actors playing the game (the students), the avatars that localize their point of view, a library of 
material texture, simple prismatic volumes depicting the building and labels on “significant 
places” – the Notation. These are comments marked on the place of intervention according to the 
particular perspective view of the actor-student. 

Judgment on the projects is delegated to four external ‘critics’ that interact synchronically and 
contemporaneously among themselves and with the student, at the end of the work. The main 
advantage of this game played among the actors is the large number of interactions regarding the 
project deriving from the facility with which the building set in a figuratively realistic context can 
be manipulated, as well as the dialogue among all the student-actors (homogeneous among 
themselves) which can occur both synchronously and diachronically. 

1.2.2. Cube Game 

2 Study by means of simulation of the phenomenon in the simplified context is of use in avoiding taking negligible
 
or misleading parameters into account.

3 Il Torque of Garage Games Inc, e Deep Server of Right Hemisphere Ltd.

4 Note that an ‘actor’ is "Any participant in the design process", and it is used in this sense in this paper (Wix
 
1997).
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Another “game” from which we have drawn some grounds for reflexion is the one developed in 
the courses illustrated by Prof. Y. Kalay at the University of California at Berkeley (Kalay and 
Jeong 2003). This game – Cube Game – mimes the construction single family homes in an 
allotment. The player roles are as follows: the client, the architect and the builder. The 
assessment is based on the market value of the building as conventionally valued. This is a hemi-
symmetric situation compared with the preceding one: in the former we have many actors making 
judgments in a single role, in the latter only three actors with different roles with clearcut 
responsibilities and carefully defined skills. Each element is controlled by a single actor; there is 
no overlap of authority. The value of the building is obtained not only from the house itself, but 
also from its position in the context (streets, natural beauty) and the increased income deriving 
from advancing urbanization. There is a significant presence of the procedural - temporal-
complexity aspect in this game (Carrara e Fioravanti 2004 pp. 427-8). 

The three actors have an interface complying with a ‘specific representation’ of their own 
which depends to a large extent on a model of reality of their own, and therefore three models, as 
a function of their specific roles. Thus, in his own “specific representation”: the customer, 
defines the specifications of the home, the number of rooms, their interrelationship and relative 
arrangement, the overall budget; the architect, designs how to the assemble the simple cubes 
representing the rooms; the builder, establishes the cost and profit of each type of room. Each 
actor pursues his own particular goal: the client, the increase in the value of his investment and 
the satisfaction of his needs; the architect, to respond positively to the demands of many 
customers and reduce overall design time; the builder, to maximize his own profit. The cubes 
representing the rooms are interrelated by simple juxtaposition. 

The main advantage of this game is the articulation of the process that sheds a clear light on 
the relations among the actors, the trade-off between different goals (not necessarily divergent or 
identical), a more explicit and vaster semantics both of the detailed and the overall goals. This 
second game is aimed at learning insofar as the judgment is continuous; evaluation takes place at 
every ‘move’ (design proposal); it is not necessary to achieve a predetermined result or respect a 
time limit in order to be evaluated. This is because learning also amounts to how to attain a goal, 
by means of which strategies, and what steps are best suited to individual strategies and not just 
to the goal itself. 

1.2.3. Our game 
These two examples, two almost completely different types of game, provided the pretext for a 
different game that has the objective of simulating design process in current practice in order to 
define a valid architecture project abundantly provided with creative ideas although with the 
contradictions and misunderstandings typical of the intermediate phases(Carrara and Fioravanti 
2005). 

The game is focused on the design process as aimed at satisfying the needs of utilization of the 
building and technical and construction feasibility vis-à-vis given needs. This game is part of the 
research carried out at the CAADLab of the Department of Architecture and Town Planning for 
Engineering related to Collaborative Design – CollCAAD . The immediate aim of the game is to 
provide a useful e-learning tool; the ultimate aim is, through the construction of the latter, to 
clarify and focus more clearly on the CollCAAD problems of which it represents a useful 
simplification. 

32
 



 

 

 

 

2. The pre-game – a NO-ICT simulation of the game 

The importance of games, in particular those concerning architecture, lies in the fact that they can 
act as a stimulus to creativity (Carrara and Fioravanti 2005) and more precisely, training for 
creativity. Indeed merely to mention  one fundamental psychology and pedagogy study (Schoon 
1992) “the more creative solutions generally come from students who are prepared to critically 
examine a large number of iterations”. 

This claim is true and valid whenever: 
•	 the actors have already acquired critical capacities or are encouraged to enhance them (by 

means of the introduction of new criteria for “evaluating the conventional value” during 
the game); 

and 
•	 a large number of permutations of new solutions or proposed design solutions have 

already been developed and are being developed (in order to be effective they must be 
evaluated continuously and fluently  Moloney 2005 pg 57). 

The game that we are developing, as we shall see, takes also these two requirements into 
account. The first, by changing on the fly the ‘weighting’ given to the actors’ conventional 
evaluations; the second, by means of “simplified pieces with simplified unions”. 

2.1. THE ACTORS 

In order to define this game we simulated a verbal session of Collaborative Design during the 
early stages of the definition of the preliminary project, starting from a simple brief, a small 
pavilion for contemporary art works – Digital Art. Other specifications were (later neglected or 
somewhat overlooked) opening five days a week, from 10 a.m. to 10 p.m. and temporary 
exhibitions for about one or two months at most (in fig. 1, above, it is written 5 days/w, 10 – 22 
open, 1 – 2 month). We recorded the intense and very fast-moving conversation taking place and 
photographed the whiteboard where the notes, concepts and ideas we considered essential were 
jotted down. The work session, which was stimulating for the PhD students present and 
gratifying for the participants, was intense and lasted less than two hours. Each role was 
performed by a researcher: but how many and which roles should have been performed? Which 
roles were better performed by human beings and which by agents-automata using automated 
procedures? Which building components were significantly important in achieving a correct trade-
off among the actors? 

The aim of this session was to find the types and subtypes of rules in Collaborative 
Architectural Design that could then be applied to the game that simulates it. They were identified 
and classified in the course of the session itself. To facilitate the reader's understanding of the text 
we will first list the “types of rules”: [I] Interface, [K] Knowledge, [G] Game, [V] eValuation, [P] 
Project. In the text they have been boxed to highlight them. 

In order to respond to these numerous questions, we began a briefing session in an ‘open’ 
way, from a minimal set of actors, building components, rules and judgments and gradually 
adding concepts we believed were essential during the session itself. 

These minimal sets of concepts were defined both by each actor and collectively by the team. 
The interactions by means of which these concepts were defined were noted using felt-tip 
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pens on two whiteboards reproduced in figs. 1 and 2. 
They simulate other media and systems in order to communicate. Likewise, oral 

communication requires physical supports: the air, the voice, hearing and the brain; as well as of 
non material supports: culture. 

Already from this consideration alone the importance of a physical interface appears quite 
evident. It would have to accommodate two different information types: formally represented 
structured information (with a semantics defined collectively for all the actors and with as many 
semantics as there are homogeneous subgroups thereof); and informal information arising out of 
the verbal dialogue among the actors (which can then conveniently be rendered formal or not, by 
means of agreement between two interlocutors). Therefore the first rule: 

[I1], first Interface rule: physical means and protocol for structured and non 
structured information. 

Verbal dialogue is possible only in the presence of an agreement on Common Concepts, i.e. 
presupposes a Common Knowledge Base grounded on shared semantics. 

[K1], first Knowledge rule: to have a minimum amount of shared semantics. 

2.1.1. The Client 
It was decided that the actor who starts the game should be the client or commissioning agent – C 
– and that he should play an active part like all the other actors during the performance of the 
game itself. There is no external jury to set the parameters at the beginning of the game and to 
check them at the end; here the evaluation by the actors, or automatically by I.A.s, is continuous 
and takes place whenever the Shared Project is modified. 

How is alternation among the actors achieved? In two ways: through the “milestones”, when 
all the actors are obliged to intervene and to formulate their own judgment and assent; and in the 
interval between these when judgment or formulation of new design projects is optional. 

[G1], first Game rule: how the actors intervene. 

[V1], first rule of eValuation: criteria for assigning a value. 

Each of the actors has predefined his own objectives as a function of which the project is 
evaluated from his own point of view This means that the project is evaluated several times in 
the course of the work, using different “yardsticks” depending on the actors,. 

The positive consequences are as follows: 
•	 the student, who is stimulated to learn, propose, evaluate and ‘create’ individually, is here 

encouraged to act in accordance with collective, synergistic principles, as in professional 
practice; 

•	 the critical and self-critical spirit is refined, as recommended at the beginning of the section 
by Schoon, as each actor is subjected to continual global verifications with regard to the 
entire brief, and to personal ones with regard to his own goals; and sometimes to change 
his own evaluation criteria as also his own design objectives. 

[G2], second Game rule: work as a group. 
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Like the other actors, the customer may change his design ideas in the course of the game and 
thus his design evaluations. 

[V2], second eValuation rule: vary one’s own design criteria and that of one’s own 
group. 

Figure 1. An example of a hardware Shared Design Workspace model = physical representation + 
actors’ shared brain part outside the picture. Step 1, components, specifications and context (in the 

broad sense). 

2.1.2. The Architect 
After the customer – C – an architect – A – is needed to qualitatively and quantitatively spell 
out the customer’s requirements. Under the rapid succession of demands from A to C, the brief 
takes shape: 

[G3], third Game rule: one move -> two actors involved – trade-off between two 
actors. 
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about 100 sm2, and the activities performed must agree with the internal heights (‘met height' 
written on the whiteboard fig. 1), internal height for works of art 7.05 m., other uses 3 m, display 
space must not be extended so that max dimension = 12.0 m. 

[P1], first Project rule: the specifications5. 

The dialogue between C and A, aside from the verbal exchange, also takes place through a 
knowledge of a common, not technical, sense – the sketch – which is present in practically all 
actor relations, it is a figurative and representational knowledge of reality. 

[K2], second Knowledge rule: the sketch. 

The architect proposed a rectangular plan consisting of 3 x 4 modules having a 3.0 m. side 
length, so as to obtain 108 m2, 9 modules on top, the exhibition room and 3 below where the 
entrance and the offices are. Where is this? Location SITE – (written on the whiteboard in fig. 1) 
near a STREET, in this way further specifications are added. 

[P2], second Project rule: the possibility of adding new project rules. 

Consequently, the side of the building at right angles to the street means that the site 
configuration cannot be greater than 12.0 m, also because the customer does not want an extended 
display area that follows an itinerary but a rather compact area ([P1], see… ). All A’s elements 
on whiteboard are coloured blue. 

[I2], second Interface rule: SDW and PDW. 

The whiteboard is the means used to render explicit the shared data of the project: it 
represents the physical transposition of the Shared Design Workspace, SDW. In it both the 
collectively owned data – the Common Project – and that part of the data belonging to an 
individual actor that he has decided to share as he has identified them as being useful to the group, 
appear and are therefore shared for the first time. The concepts outlined above point to a need a 
separation the private design workspace from the shared one. 

The latter are ‘shared’ as knowledge although often it is private like intellectual property 
(Carrara et al. 2002). 

A will use a set of envelope elements or conventional elements known to him, such as: full 
wall, wall with door, wall with window, etc. For the sake of simplicity he wants all these 
elements to be modular, with dimensions in multiples of 0.3 m. Every actor has his own items 
coded in a Knowledge Base, and it does not mean they are all used in every project. 

[K3], third Knowledge rule: abacus of components. 
This rule emerged for the first time during this CollCAAD simulation, and was contributed by 

A, but is true also for all the other actors; they too have their own “abacus of components” [Ki 3] 
con {i Œ actor | i=1,…,n}. Knowledge is actually much vaster and during the simulation we will 

5 Each project-game can have different specifications – the context –usually in the broad sense, see note 1. 
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see other examples of this, without altering the nature of the type of rule [K3]. 

2.1.3. Structural engineer 
The engineer comes into action in structure S, sketching [K2] in black (to distinguish himself 
from A [I2]) on the whiteboard the elements needed to define the bearing structure: a series of 
frames side by side that, in order to leave free space in the display area has no intermediate 
supports and uses beams running from one side of the building to the other. 

But already at this point, although by means of different representations in the two actors 
(volumetric and superficial for A, mainly linear for S) these actors need: 

• a connecting link between their representations, a highest common denominator of the 
measures;
 

and
 
• a simplification and reduction of the number of building elements. 

To simplify and unify the different components, this leads to the same Euclidean space having 
parallelepiped elements and a modular dimensional coordination, in the case in question we 
adopted the International System of measures, IS, having a base size M = 0.10 m. The building 
elements introduced by S will be plinths, pillars, beams, floor slabs. 

[I3], third Interface rule: the protocol. 

This interface is the first “technical interface” that we find among specialists; indeed it is 
“the“ interface among actors”: it is the highest common denominator among the representations 
specific to the specialists; it is an integral part of the Common Project drawn up by the actors. 

S sets out the bearing structure of the large display room using beams running transversal to 
the building of a length of 3 X 3 m = 9 m. It is clear that the beams cannot be included in the 
thickness range of A’s  default module up to now for all the ‘pieces’, namely 3 M = 0.3 m: these 
have a different variability. S therefore adds to the abacus of the ‘common pieces’ a new section 
of his own abacus of components, [K3], ‘different’ element compared with those used so far: a 
beam of a height equal to 10 M = 1.0 m. We now have a different application of rule [K3]: to add 
new pieces in the SDW, so this is a new type of rule. 

[K4], fourth Knowledge rule: to be able to add new Knowledge rules. 

The use of 1.0 m beams leads to conflict with A [G3] who does not want the ceiling of the 
exhibition room to be crossed by a series of visible beams; the trade-off between the two needs is 
achieved by virtue of a common interface: the geometrical section. 

These few steps reflect the great importance of the geometry and its representation in 
developing an architecture project as it is not a simple representation tool but a tool for modeling 
reality and for design verification. 

The geometry of the beam must be visible to S, as well as to A. Its principal representation 
is the axis lines and sections of beams and pillar, but not the spaces below. In this way S gains 
fresh awareness of A’s knowledge as far as the exhibition room space is concerned so proposes 
moving the beams to the covering, at the extrados. 
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2.1.4. Energy engineering 
At this stage of the project we decide that, in order to achieve the goals set out in the game6 

construction, the co-presence of a fourth actor – the energy engineer – E, is necessary, while, on 
the contrary, the presence of a building actor is not required – as in the Cube Game – as the goals 
are different. 

With regard to the geometry being defined, side by side with what is being elaborated by A 
and S, E asks C and A to define the orientation7 of the exhibition pavilion and the climate aspects 
in the project; E checks the openings planned by A in the lower part of the exhibition room on 
the East and North sides (see fig. 1) and, as an alternative, hypothesized as larger and high on the 
North and West walls. 

Figure 2. An example of a hardware Shared Design Workspace model = physical representation + 
actors’ shared brain part outside the picture. Step 2, several PDWs and the audience. 

6 In an exhibition pavilion to display digital works of art environmental quality in terms of air purity, acoustics and 
lighting is of great importance. For the sake of extreme simplification we have made only elementary considerations 
concerning natural lighting.
7 One of the new requisites, i.e. the northern exposure, is symbolized with the letter N, that is an iconic symbol 
visible in many sketches on the whiteboard in figs. 2 and 4. 

38
 



  

 

                                                
   

  

It is important to identify who is in conflict with whom for a specific problem 8 . 

[G4], fourth Game rule, who is involved in what. 

E immediately rejects the hypothesis of high windows on the West; E proposes, as clearly 
shown by his section sketches in red, skylights with an apparatus beneath them to filter and 
control the light.. One important parameter for E is the ratio between the building’s surface area 
and its volume (E writes on the whiteboard S/V, fig. 3). 

Figure 3. An example of a hardware Shared Design Workspace model = physical representation + 
actors’ shared brain part outside the picture. Step 3, alternative layout plant, structure and HVAC 

system. 

8 The concept of the set of actors involved at a given time in a given problem – the audience – has already been the 
subject of one of our problications, i.e. Carrara e Fioravanti 2004. This concept is referred to in fig. 1 on the right 
with the sketch of a table; the actors – Ai – on the lines, the constraints on the columns – Cj . 
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This is another case in which an actor shares part of his knowledge with others. 
These physical quantities (translated into the geometric model of the Common Project) are 

also significant for A. E grants A the sharing of own knowledge concerning these concepts, and of 
his/her conventional algorithms needed to assess them. The aim of shearing is to solve at least the 
simpler problems asynchronously without the intervention of human actors, but with the aid of 
the Intelligent Assistant present in the respective KBs. 

[K5], fifth Knowledge rule: sharing. 

Only at this stage E does interact with A and does a trade-off session on the Surface 
Area/Volume ratio begin [G3]. 

E proposes the input of conditioned air from above on one side of the exhibition room through 
conduits and machinery installed on top of the lower wing of the building. 

By so doing, however, E imposes extra constraints on S : increase permanent loading of the 
roof slab on that part of the building. In this way rules [P2] and [P1] are applied. 

If the building stood in a seismic zone there would be horizontal loads concentrated half way 
up the pillars of the exhibition hall which would entail redesigning the structure and/or the 
structural layout and/or the entire shape of the building, an endless series of subordinates would 
be opened up and so we shall neglect this eventuality with a view to simplicity implicit in the 
game. 

So far we have only had conflicts due to data driven processes, that is, by inputting values, 
lead to consequences of interest to someone else: it is a constraint decision for several 
characteristics that has repercussions on another actor, due to preceding choices. 

Afterwards, the pressure from two important inputs may cause significant ‘perturbations’ 
(Carrara and Fioravanti, 2005 page 298) in the design process: C is not satisfied with the roughly 
outlined and featureless appearance of the building. S autonomously proposes covering the 
building with a framework outside the envelope which obviously entails beams longer than the 
maximum size of the exhibition pavilion. In this way he puts forward solutions that do not 
pertain strictly to his sphere of activity but belonging to those of A and E. He does not limit 
himself to exploring his own possible solutions given by the parameters imposed on him by 
others, but expands the frontiers of his PDW, of the other PDWs, and thus of the SDW. 

In this case we can no longer speak logically, in the strict sense, of "data driven" constraints, 
as while the project solution put forward so far “is acceptable” in the sense of satisfying all the 
initial requirements, now two actors autonomously propose to change (vis-à-vis the previously 
agreed rules): one the approach to the problem; the other, the “pieces” in the game. It is not a 
“data driven” process, but an “actor driven” one. They play an active role in introducing specific 
new design specifications [P2] and new components and knowledge [K4]. 

At the same time A describes to C an autonomously conceived idea to make the large 
exhibition room polyfunctional by means of movable partitions. C accepts and praises the idea as 
it will increase the revenue produced by the pavilion when the exhibition activity is absent. 

Proposals that are autonomous versus outside constraints represent the seal of approval of 
Collaborative Design vis-à-vis Cooperative Design (Carrara et al. 1997). In the latter case one is 
limited to cooperating with the work of others by attempting to avoid conflicts, accepting 
compromises, optimizing ones’ own process in a well defined domain of several authorities; in 
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the former one is “concerned” also with the good of other actors, constraints and goals are 
introduced in the domains of others, and one often deliberatively goes against the initial 
constraints (see the case of S when beams longer than the maximum length of the building are 
proposed, figs. 3 and 4, top center). 

E thus points out that the planned installation is compatible with partitions P1 and P2 (fig. 2, 
bottom right), but not with the P3 type partitions that reach ceiling height and impede air 
conditioning in parts of the exhibition room. 

A and C declare the constraint of polyfunctionality of the exhibition room to be non 
negotiable. 

Figure 4. A hardware Shared Design Workspace model = physical representation + actors’ shared 
brain part outside the picture. Step 4, more architectural, structural, plant design solutions. 

[G5], fifth Game rule: negotiability of constraints. 

This is a typical example of a constraint introduced in the course of the design process that is 
non predictable at the outset of the brief and, since, as observed during the game, the design 
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depends on the data, actors and the timing of the actions undertaken, we can conclude by saying: 
it is by doing it that it is guided. As shown on the whiteboard it is a clear example of Project 
Driven Design, fig. 1. 

The creative ideas emerging in the course of the process of designing a specific project in a 
given context are unique and represent the preponderant 9 parameters of every project. 

So A changes the starting layout and proposes a building with a courtyard with the same 
number, 12, of square modules as the preceding one, fig. 3 symmetrical plan in the lower centre. 
C likes the idea but criticizes the lack of an exhibition room and the fact that the building has 
become a place of exhibition with a compulsory itinerary and the mixing of exhibition area and 
service area. In this ring-shaped distribution, S imposes the structure with all the beams on the 
outer perimeter in order to avoid having visible beams inside the pavilion, and he points out the 
low cost resulting from the relative small floor slab span. We thus discover that there were 
constraints in one or more KBs that affect not only his own PDW but also the SDW. In this case 
the cost of the structure had been imposed by S from the beginning of the game without 
informing the others of this at the outset. This is a particular example of rule K3. 

Due to the criticism by C of the 1st ring shaped layout design solution, A proposes a more 
dynamic, less rigid, solution, restoring the exhibition room to the East, although slightly smaller 
sizes due to the 4x2 basic modules compared with the original 3 x 3 modules. The solution shown 
in fig. 4 below, center, as a variant of the “annular version” was rejected as the modules amount 
to 16 in number, i.e. greater than the 14 modules representing a non negotiable constraint set by 
C in a confidential fashion at the beginning of the brief. In this case there was a constraint not 
defined explicitly by one of the actors, since it was unimportant to him, but during the course of 
the design process it could become decisive. This is another special example of rule [K3]: there 
may be constraints not made explicit at the outset. 

This may happen for two reasons: either they are intentionally not revealed by the actor at 
the outset, or they are implicit, not formalized by the actor as considered by him to be part of the 
Common KB. Indeed part of an actor’s knowledge is rendered explicit immediately inasmuch as 
both for privacy and because the actor did not even think it necessary to render it explicit as it 
was obvious for him. But it often happens that what he considers obvious is for others a novelty, 
with conspicuous misunderstandings and therefore the actor needs to make it explicit, formalize it 
and publish it. 

A therefore proposes to reduce the width of the room to 3 x 2 basic modules, or reduce the 
courtyard from 2 x 2 basic modules to 2 x 1 (fig. 4 left and bottom right). 

The total number of modules is 13, more than the 12 initially laid down, but less than the non 
negotiable maximum number of 14. The sections for this 2nd central courtyard arrangement are 
set out on fig. 4 below: on the left, the longitudinal one; in the middle, the transversal one “B” on 
the exhibition hall; on the right, the transversal one “A” on the courtyard. S changes the layout of 
the beams to a longitudinal direction to reduce the costs of the floor slab and thus of the building, 
thereby balancing out the greater cost of the additional module. 

It may be noted that the constraint imposed by C is not respected by A and transitively falls 

The creative ideas are predominant because they characterize a project by given it meaning, quality and policy 
decisions. 
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on on S; this is an example of “net-constraint” (Carrara et al. 1997): the constraint refers to the 
network of relations among actors. The constraint may refer to the whole team, not to one or two 
individual actors. 

[G6], sixth Game rule: one move -> many actors involved – trade-off among several 
actors. 

In this way the exhibition hall is again traversed by visible beams that A does not want. S 
proposed to change the direction of the beams and the floor slab (fig. 4 bottom right plan) at the 
price of an increase in costs. This leads to a three-way negotiation (C, A, S) as E, in this phase, 
has performed his task and it is not considered necessary to involve him again in order to reduce 
plant costs. 

Here we have a second type of net-constraint that refers not so much to one technical solution 
or another, or the increased cost of one and the decreased cost of the other specification item as to 
the overall conception of the planned work. The overall evaluation must be made using criteria 
different from the initial ones. 

From this case we infer that the evaluations (the scores in the case of the game) assigned by 
each actor to the project have coefficients (the ‘weights’), varying in accordance with their 
utilization or with the “context” in which they operates. 

In this case, as it is an exhibition pavilion, priority is given to the attractive appearance, the 
pleasure of frequenting highly quality spaces, and so the actors may agree to assign a greater 
“weight” to A’s evaluation and therefore prefer the solution s/he proposes. 

3. The definition of the game: _ – house 

3.1. CONSIDERATION OF THE PRE-GAME 

The simulation performed by the actors in the first briefing session revealed numerous 
invariants10  regarding Collaborative Architectural Design and the development of a game. These 
will be useful both in e-learning programs and in the study of the mechanisms of design 
interactions and iterations. 

The first invariant. From the outset all the actors–disciplines involved must be present, or at 
least, the more significant ones. 

In our case we cannot drop below four actors without the model changing from simple to 
simplistic. 

Also the idea of replacing the builder in respect to the Cube Game (1.1.2 section) with S and 
E is correct, as the research topic is related more to the technical and building aspect than to the 
industrial and financial aspect. The need to immediately involve the principal professional figures 
from the outset is due to the presence of net-constraints (Carrara et al. 1997) that they delegate 
to the activity and choices of several actors, often the whole group. 

10 We consider a phenomenon or a characteristic of a structured set as invariant , somewhat like Lévi-Strauss when, 
with changing boundary conditions, the reciprocal relations of the set and the context mean that this phenomenon or 
characteristic vary according to compensatory relations. 

43
 



 

 

Second invariant. For the construction of the game it is necessary to calibrate the topic to 
avoid it becoming too vast. A corollary to this need is that the “items” at the outset be severely 
reduced in number, so that, although as seen in the simulation during the design process new ones 
may be added, their number will nevertheless remain limited. 

The third invariant. Architectural design as such, in so far as it is related to the ‘uniqueness’ of 
the building in a unique ‘condicio’ (Carrara and Fioravanti 2002) normally required, also in 
simplified contexts, the invention and definition of new components. 

Indeed, initially envisaged by S in the simulation was an excessive number of components for 
structural design, such as plinths, nodes, slabs, ‘T’ beams (fig. 1) which were then not utilized; 
while it was necessary to introduce a 9.00 m long beam 0.90 m high, and then a 6.00 m long and 
0.60 m high beam. 

Fourth invariant. In the resolution of conflicts it is often necessary to redefine the range of 
solutions confined at the outset by the presence of over- stringent constraints. 

Of course, in the case of the game, this possibility will be limited to special cases. 
In the course of the simulation we observed that on several occasions, in order to break the 

deadlock, we had to overrule and sometimes modify several initial specifications, e.g. surface area 
(from 100 to 110 sm, and thence from 110 sm to 117 sm), obtaining the advantage of architectural 
quality (central courtyard, building volumes better balanced and expressive of their designated 
use); the air conditioning plant (that is changed from the type with input from a single-side to a 
two-side type) with the advantage of being able to fractionate the exhibition room. 

Often it is not only necessary to change the project limits, and thus to intervene on the PDWs 
and SDW, but also to redefine the field of operations among the various actors, as when for E we 
simplified its tasks, no longer air conditioning with minimal engineering problems but only: 
exposition with respect to the cardinal points, energy balance and water distribution system. Or 
when it is necessary to introduce new professional figures, such as the environmental actor in the 
study of important interventions or the localization of problems. 

Fifth invariant. The gradual closer focusing on design objectives could lead to objectives that 
are quite different from the starting ones. 

Modification of specifications thus led not so much to a “softening” of a number of 
parameters, merely to ultimately attain the much-desired approbation of all the actors, as to 
overall advantages such a greater aesthetic appeal, and thus the capacity to attract more visitors, 
as well as a stronger emotional involvement, thus to facilitate memory of the visit for advertising 
promotion; fractionability and polyfunctionality, thus greater return on investment. 

On closer view it is seen to entail recognizing the decisive importance of evaluation factors 
that were not even taken into consideration at the beginning of the game as they were not well 
known. This involves the redefinition and/or introduction of new design objectives. 

Il game must therefore make the SDW and PDW paradigm effective. 
To achieve this paradigm, three conditions must occur in reality: the three-dimensional 

geometric consistency of the construction, the shareability of data and knowledge, the 
intelligibility of the data. 

These conditions are present in the game in simplified form and thus give rise to as many 
invariants. 
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Sixth invariant. The importance of a system of ‘common coordinates’ in which to “fix the 
items” and render their positions certain in order to control their incompenetrability in the SDW, 
while allowing the possibility of a ‘private coordinate’ system, the PDWs. 

Since the different actors are working each in his own PDW and thus defining their own 
project and their own geometry of the building and architectural components, it may happen that 
one or more of these conflicts volumetrically with others because often the actors design the same 
components. This aspect is aggravated by the fact that the actors use a symbolic, conventional 
(and simplified) representation of reality for the geometrical modeling of the parts concerning 
their contribution to the project, such as, just by way of example, the lines of the axis of a 
structural beam with regard to its volume11 . 

Therefore, in order to identify and then avoid problems of inconsistency of the geometrical 
data of the objects making up the construction, it is necessary to dispose of a single geometric 
model of it to which all can refer. As in the simulation of the briefing session we were able to 
represent the ideas of all the actors on a single SDW consisting of a whiteboard where it was 
possible to ascertain geometrical inconsistencies, in reality it would be necessary to define a SDW 
capable of containing all the components designed by the actors in a space of "reference 
coordinates" common to all, and use it to ascertain their consistency. 

Seventh invariant. The interface must be able to make available the “Common Data” specific 
to the whole group and the ‘Shared Data’, that are part of the data and knowledge specific to an 
actor who decides to share them. 

Obviously the actor also works on his “Private Data”, which are not shared with others. 
Other aspects of the preliminary briefing session that have been glossed over, as it were, and 

which exist outside the whiteboard, are those linked to intellectual property and to the privacy of 
the shared data. 

Without clear-cut regulations and the assignment of intellectual property no Collaborative 
Design can be successful (Carrara et al. 2004). 

Eighth and the final, but not the least important, invariant is the semantics of shared 
components and of concepts. In order to be able to exchange information and knowledge it is 
necessary to have Shared Knowledge and from this knowledge, through the Perspective/Filter 
mechanism, “to translate” the semanteme of a universe of one actor to another. 

Another important connotation of the game is its recursiveness. Indeed when a new rule of 
the Game – [G] – claims that there may be new game rules [G]; or when a knowledge rule – [K] – 
defines that the old components are made by others and/or new components we have the 
application of a mechanism of logic, i.e. ‘conceptual recursiveness’. In this way, the boundaries 
of a knowledge domain are extended, scaled down and redefined while thanks to the high degree of 
polymorphism of the paradigm SDW/PDWs it is possible to structure the same classes of objects 
in different ways in different domains. This means that we can explore other problems typical of 
collaborative architectural design through techniques of I.A. 

11 In this article we have overlooked the problems arising due to the use of application programs that have different 
geometric structures that would make it more difficult to achieve an interoperability among the programs 
themselves. 
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4. Conclusions towards c-House 

To this end, and also thanks to the contribution from the study of previous games, we would 
like to give a number of definite directions to our game, that we have called c-House, in order to 
respond to the aims illustrated earlier. 

Unlike the StringCVE game, wishing to take into consideration the technical and construction 
aspects and the consequent problems it is necessary to have several actors – building design 
professionals. Among these we shall not consider landscape architects who lie outside our 
objective. For the number of actors involved reference is made to section 2.1 and the first 
invariant of section 3. 2 

As the number of actors having different goals grows, the game becomes increasingly realistic 
– communications and conflicts and suggestions and proposals arise as a result of these goals, 
overall feasibility is pursued, there is a greater likelihood that creative options will emerge. the 
precondition for this is to have the ability to interface [I]. 

Again unlike the first game there will be no external judgment at the end of the game but, since 
the aim is to simulate a design team following the Collaborative Design paradigm, the eValuations 
[V] are given by all the actors at each phase. For the sake of simplicity, several evaluations may 
be performed automatically by means of agents – the evaluators – for example those regarding 
costs [P], without using quantity surveyors. We will not have an implicit semantics of 
information exchanged among actors, which is adequate only when we are in the presence of a 
single actor, but an explicit semantics [K]. Just as, owing to the plurality of actors, the evaluation 
(the game point score) must be made explicit, and no longer synchronically, but at least for some 
asynchronically, in different phases. This is all because we have a plurality of Private Design 
Workspaces – PDWs – in which to develop hypotheses and evaluations, which are asynchronic 
with respect to the Shared Design Workspace – SDW. Consequently, interaction by the actors 
with the project can no longer be chaotic, but must be subject to process rules [G]. 

With respect to the second game – Cube Game – attention is focused more on architectural 
design so that the professional figure of the Energy-Plant Engineer is introduced; we shall instead 
neglect all hypotheses regarding the evaluation of real estate income; we shall explicitly and 
formally define the semantics of the “concepts” not on in the PDW but also in the SDW; likewise 
we shall explicitly and formally evaluate the judgments12 not only in the PDW but also in the 
SDW; lastly, let us seek to fill in the gap of being able to perform overall project evaluations 
within their own PDW, without necessarily having to make any modifications to the SDW. 

In our case the modifications to set off the controls can take place in a ‘test’ environment 
which in no way passes on these modifications to the shared and accepted environment. 

4.1. THE RULES 

The “rules” discovered in the briefing session were classified under five different headings: I-
Interface, K-Knowledge, G-Game, V-eValuation, P-Project. They are numbered in order of 
appearance, not in order of logical necessity. Indeed, it may very well happen that “afterwards” 
it is discovered that pre-existing to and subsumed one rule another might be necessary. For 
example, rule [I2] (PDW/SDW) pre-exists rule [K2] (sketch): without a PDW and a mechanism 

12 The scores achieved in the game. 
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for its publication into the SDW, the actor cannot enable the actors to participate in his own 
sketch. This observation can only occur empirically, after the premises of some rules have come 
to light. 

Figure 5. Sequence of rules in the pre-game session. 

The five types of rules are considered in abstract: we refer to categories of prototypes in a 
“universal” sense and not contingency related. For example, the concept of ‘evaluation of a 
project’ is essential for the briefing regardless of the existence or non existence of project 
specifications. It is always true that these specifications are, as we saw earlier, a premise for the 
expression of the evaluation but, and here we have the counter inference, the absolute evaluation 
could be the result of other considerations and not be dependent on specifications. 

The five types are fundamentally irreducible. They cannot be reduced, from a logical point of 
view, to a lesser number of type or even “ad unum”. 

Without in any way detracting from the possibility that in information science these types 
may be “structurally” 13 reduced to a lesser variety, as indeed we think would be desirable in the 
structural logic of the information science object-agent. 

The game rule subtypes, [G], are disclosed at the beginning and towards the end as, in order to 
begin the process needs rules and at the end, insofar as it is a (complex phenomenon) CollCAAD 
it requires processing rules, that cannot be identified a priori. 

The knowledge rules, [K], display an interesting behaviour: they gather “harmonically” in a 
geometric progression in order to specify the entities: semantemes, sketch, components, 
metacomponents, shareability. 

After this progression towards explicit expression the need is no longer felt for other 
knowledge rule subtypes: they are merely repeated in new instances of the same. 

As regards the eValuation rules, [V], they are first specified and very shortly after rendered 
more elastic (as the process varies), although they are essentially fixed around the beginning of 
the session and other subtypes are no longer introduced. 

The Project rules, [P], are situated halfway through the discovery of the rules, like the [V] 
rules they consist of a specification subtype and a variation possibility subtype. 

Lastly the Interface rules, [I], are physically indispensable at the beginning (physical means) 
and then specified after the middle of the sessions when the interactions come fully into play and 
the interface is called upon to decide other important questions, like coherence/incoherence ones. 

Running quickly through the list of rules emerging and identified in the course of the 

13 In the sense of structuralism – a current of thought which interprets anthropology – types  which have similar 
logical-formal and relational structures. 
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simulation of a preliminary briefing session we observe that the game rules predominate over all 
the other rules as, having simplified that actors, the components and the required knowledge as 
far as possible, what prevails is rightly the aspect of the game regulation: its process. 

Of course, the number of rule subtypes in no way corresponds to the quantity of knowledge 
contained in them, for instance, each time the project is changed on the basis of a trade-off rule 
[G5], clearly the knowledge of one or more actors may be changed although all these 
modifications are merely new occurrences of [K3]. That is to say, a clear distinction must be 
made between the numerosity (the cardinality of the instantiation of the type) with which a type 
of rule is applied and the number of subtypes of a given rule type. 

This rapid overview shows how the objective of studying the relations of a CollCAAD 
process by means of simplified simulation succeeded in identifying a number of rules governing 
this process. These “universal” rules will go to make up the foundations on which the 
implementation of a game – c-House – is based, taking into account the observations made during 
the preliminary briefing session. The game will be to a large extent conventional and ‘simple’ as 
regards the geometry [P], the participating actors, the construction components [K], their 
characteristics, the criteria of evaluation [V], the usual windows interface [I]. All this should 
serve to focus research, on the one hand, on the specific project logic of the actors-professions; 
and on the other, on the interactions among the actors [G]. 
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Abstract 
Successful airspace control is one of the key factors maximizing the effectiveness of military air 
operations. It includes long and short-term planning and control that utilizes large and dynamic 
databases, and constitutes a combination of resource allocation, routing, scheduling, and 
deconfliction tasks performed repeatedly under information uncertainty to accommodate for the 
continuously arriving new information reflecting the dynamics of the battlefield. Combined with 
large volumes of data to be analyzed and stringent time requirements, these tasks place heavy 
burden on personnel, leading to costly inefficiencies. Modern computing technologies are 
capable of expanding the share of airspace control functions performed by computers resulting in 
numerically justified decisions that will enhance planning and reduce pressure on its personnel 
without freeing them from the ultimate responsibility. Computer-based planning, scheduling, and 
control are based on a mathematical formulation of the entire problem. Due to the high 
complexity, the problem solution is to be decomposed and its particular subsets are obtained in a 
decentralized, but coordinated fashion. This approach is best served by the “multi-agent” system 
technology that is deployed as the computational engine behind the airspace control system 
described herein. The paper features the distributed coordination mechanisms based on collective 
decision-making (voting) and sharing complex social knowledge (individual flight plans and 
aircraft status), design and implementation of the computational model, design and development 
of the algorithms and required knowledge structures for distributed coordination, the agent 
architecture and specific agents responsible for data collection/updating and 
planning/scheduling/deconfliction tasks, and the required visualization technology. 

Key words 

airspace control; air traffic; planning; multi-agent systems; software agents; deconfliction. 
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Introduction 

Successful airspace control is one of the key factors maximizing the effectiveness of air 
operations and the entire combat operation. It includes long and short-term planning and 
scheduling, and real-time control. These functions utilize a large and dynamic database and 
constitute a very complex combination of resource allocation, space allocation, routing, 
scheduling, deconfliction, and control tasks that are to be solved under information uncertainty 
and rigid time constraint. In addition, these tasks must be solved periodically to accommodate for 
the continuously arriving new information reflecting the dynamics of the battlefield operation. 
The Airspace Control Authority (ACA) has highly trained personnel utilizing their knowledge, 
experience, and intuition to perform all necessary ACA functions. However, the complexity of 
the tasks, large volumes of data to be analyzed and stringent time requirements, place a heavy 
burden on individual planners that combined with the entire scope of issues labeled as “human 
factor,” may adversely affect the quality and timeliness of ACA decisions. Consequently, these 
could be among the factors limiting the success of the air campaign and preventing advanced 
military equipment and personnel to utilize their potential to the fullest. Availability of modern 
computing technologies creates the conditions when the share of ACA functions performed by 
computers could be expanded resulting in numerically justified decisions and reduced pressure 
on its personnel. This effort is aimed at the development of a computer-based system technology 
that will enhance ACA operation providing ever-increasing support to its personnel without 
freeing them from the ultimate responsibility. 

An air traffic control system of the future is visualized as a fully decentralized, automated 
computer-based system. Such a system would allow for the utilization of the capabilities of 
personnel, equipment, and munitions to their full potential, as well as maximum safety of the air 
operation. A battlefield environment is highly dynamic. The decentralization results in the most 
flexible air operation control system that can easily accommodate for the rapidly changing 
situations providing that the necessary information is obtained and processed in a timely fashion. 
The latter could be achieved only by computer-based, fully automatic data acquisition and 
decision support. These considerations are implemented in the system for air traffic control in the 
battlefield zone presented herein with the goal of the maximum utilization of rapidly changing 
data and providing timely decision support to personnel of ACA (Wickens et al., 1998). 

The solution to an air traffic control/planning problem is sought in the spatial, functional, and 
time domains. The spatial aspect of the problem deals with the geographical map, coordinates of 
the air bases, targets, airborne refueling stations and hazardous areas, and the utilization of 
airspace. It results in the definition of rational and safe routes for particular aircraft connecting 
the base of original deployment to the target or multiple targets, and to the designated landing 
base, when necessary through refueling areas. The functional aspect of the problem addresses 
the task assignment to particular pilots/aircraft, weapons-to-targets assignment, and the logistics 
of the entire air operation. The time-domain aspect of the problem includes the scheduling of the 
operation of particular aircraft at the take-off and landing stages, in-air refueling, and engaging 
targets. It could be seen that every aspect of the planning process is dictated by the tactical and 
intelligence information, affected by weather, and is consistent with the technical characteristics 
of aircraft, weapons, and targets. The system is expected to compile better-than-average air 
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traffic control plans that will be presented for approval to ACA personnel in the enhanced, user-
friendly format, which would complete the planning stage of the process. 

The computer-based system represents the “big picture” of the airspace control problem in the 
functional-domain, spatial-domain and time-domain based on a mathematical model. Particular 
entities of the model “live” in the simulation environment and as such, obey laws of mechanics 
and aerodynamics, engage in communication among themselves and with the mission control, 
expend fuel and ammunition, experience various hazards, sustain battlefield damage, etc., and 
ultimately provide invaluable feedback for the enforcement of particular considerations and rules 
of engagement, detection of conflicts and deconflicting, and assessment of the “goodness” of the 
planning decisions. The system obtains numerical solutions of the particular subsets of the 
airspace control problem and coordinates “local,” independently obtained solutions, thus 
resulting in conflict-free, long and short-term plans and schedules. The intermediate solutions are 
coordinated and deconflicted with the enforcement of specific considerations, and when possible, 
optimized. The entire solution task is visualized as an ongoing, iterative process driven by 
continuously updated databases reflecting the battlefield dynamics and newly arrived data.  The 
capability of incorporation of human expertise presented in a formalized and intuitive fashion, 
and accommodation of new rules, considerations, and conditions is viewed as an important 
feature of the system. It could be further enhanced by inclusion of statistical analysis tools, and 
supervised and unsupervised learning capabilities. 

Operation of the system includes planning and execution stages. At the planning stage, the plan 
of the entire air operation utilizing time-invariant data, such as geographical and performance 
characteristics of the aircraft, and a priory given information, such as the initial description of the 
air operation, is established. The execution stage addresses the effect of all factors preventing the 
implementation of the accepted plan of air operation, as well as the possible deviations from the 
plan. In order to assure the completion and overall success of the operation, the proposed system 
has the capability of rapid re-planning (deconfliction) achieved at the lowest possible cost. This 
process must employ some collaboration/negotiation between the involved entities. It facilitates 
the control of the air operation and is accomplished by providing updated assignments to 
individual pilots in a timely fashion. Consequently, the proposed system should perform the data 
acquisition task on a continuous basis and utilize reliable and secure communication channels 
with individual aircraft, as well as successful visualization techniques. 

In many ways, the realization of the above capabilities is well served by the implementation of 
multi-agent system technology that has been successfully deployed for a number of large-scale 
software engineering projects for industrial and military applications (Wooldridge and Jennings, 
1995) and specifically for airspace control (Tomlin et al., 1997), (Hill et al., 2005). Recent 
advancements in multi-agent system technology provide the means for the development of fully 
automated planning, scheduling, and operation control systems for complex, multivariable 
processes exhibiting hybrid (both continuous and discrete) behavior. Modern multi-agent 
systems emulate complex collaboration and information exchange processes taking place within 
a group of human experts engaged in finding a compromise solution of complex problems. 
Driven by mathematically justified procedures and utilizing high-speed computers, these systems 
consistently generate better-than-average and very prompt solutions that could be continuously 
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updated on the basis of most recent information available. Unsurprisingly, multi-agent system 
technology has been chosen for the development of the ACA system featured in this paper. 

Specifics of the airspace control problem 

Solution of the airspace control problem results in an Airspace Control Plan (ACP) that allocates 
critical battlefield resources, equipment, space, and time reflecting 

- Rules of engagement and disposition of air defense weapon systems, 

- Air, land and maritime situations in the area of responsibility such as existing 
equipment limitations, electronic warfare, and C4 requirements that may adversely affect 
adherence to the ACP, 

- Anticipated restricted area based on initial deployment of friendly forces and bases, 

- Existing air traffic control areas, base defense zones, controlled or uncontrolled 
airspace, and overflight of neutral nations, 

- Mission profiles, combat radii, and identification capability of aircraft operating in the 
area of responsibility, 

- Enemy air defense weapons capabilities, deployment, and electronic attack/deception 
capabilities, 

- Emergency procedures for aircraft experiencing difficulties, 

- Procedures for day, night, and adverse weather conditions, 

- Procedures for en route and terminal area air traffic control procedures for aircraft 
transitioning to and from the battle area that complement planned combat requirements, 

- Procedures to support surge operations requiring high volumes of air traffic, 

- Enemy offensive air capabilities, vulnerability of defensive counter aircraft to enemy 
surface-to-air missiles and vulnerability of friendly surface-based air defenses to enemy long-
range artillery (Airspace…, 2005). 

It important that a straight-forward attempt to plan/schedule the missions unavoidably requires 
that the following issues be addressed: 

1. Traffic hazards i.e. potential conflicts with other objects on the surface or in flight such 
as other aircraft, missile launches, or other potential hazards characterized by the number, type, 
position, and intent available via surveillance. 

2. Current en route weather hazards including hail, icing, turbulence, high winds 
associated with thunderstorm activity, thunderstorm activity over oceanic airspace, wind shear 
and microburst alerts, intensive precipitation, and areas of low visibility and tornadoes. This 
information is available from the Global Weather Information System. 

3. Rational airspace utilization due to the fact that the value of the airspace for all users 
becomes increasingly critical as military operations, commercial operations, general aviation, 
rocket launches, and artillery shells compete for airspace. Airspace use/availability information 
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is dynamic; it allows utilizing available airspace to enhance flight operations for both mission 
and economic priorities. 

4. Aircraft-to-airspace separation ensures that aircraft maintain a safe distance from 
special use airspace, such as hazardous and warning areas defined via intelligence and 
surveillance data and regulatory publications and specific control instructions. Separation 
standards ensure that aircraft remain at an appropriate minimum distance from such areas. 

5. Aircraft-to-aircraft en route separation in airspace ensures that a safe distance is 
maintained between aircraft. Separation standards are defined for the different aircraft operating 
environments. They separate aircraft using standard rules for vertical, lateral, and longitudinal 
separation. When potential conflicts exist, an air traffic planner evaluates the situation and 
develops conflict resolution alternatives. Special rules exist for aircraft to aircraft separation 
services in oceanic airspace. 

6. Aircraft-to-aircraft separation in terminal airspace ensures that a safe distance is 
maintained between aircraft. Within terminal airspace, requirements for separation vary by 
airspace Class. There are standard rules for vertical, lateral, and longitudinal separation methods. 
When potential conflicts exist, an air traffic planner evaluates the situation and develops conflict 
resolution alternatives. 

7. Aircraft-to-terrain/obstacle separation that ensures that aircraft maintains a safe 
distance from terrain and obstacles. 

8. Current Surface Separation that prevents taxi conflicts and runway incursions. 

Consequently, the planning process constitutes a number of parallel, semi-autonomous tasks, 
utilizing common, continuously updated databases that are aimed at the detection and resolution 
of the conflicts. The solution process is typically decentralized and results in “local” solutions 
reflecting “local” criteria and constraints that must be coordinated in the interests of the overall 
solution (FAA 2005). 

Existing practices of air traffic control 

The air traffic control system is a vast network of people and equipment that ensures the safe 
operation of commercial and private aircraft. Air traffic controllers coordinate the movement of 
air traffic to make certain that planes stay a safe distance apart. Their immediate concern is 
safety, but controllers must also direct planes efficiently to minimize delays. Some regulate 
airport traffic through designated airspaces; others regulate arrivals and departures. 

Although airport tower controllers or terminal controllers watch over all planes traveling 
through the airport’s airspace, their main responsibility is to organize the flow of aircraft into and 
out of the airport. Relying on radar and visual observation, they closely monitor each plane to 
ensure a safe distance between all aircraft and to guide pilots between the hangar or ramp and the 
end of the airport’s airspace. In addition, controllers keep pilots informed about changes in 
weather conditions such as wind shear, a sudden change in the velocity or direction of the wind, 
that can cause the pilot to lose control of the aircraft. 
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During arrival or departure, several controllers direct each plane. As a plane approaches a base, 
the pilot radios ahead to inform the terminal of the plane’s presence. The controller in the radar 
room, just beneath the control tower, has a copy of the plane’s flight plan and already has 
observed the plane on radar. If the path is clear, the controller directs the pilot to a runway; 
otherwise, the plane is fitted into a traffic pattern with other aircraft waiting to land. As the plane 
nears the runway, the pilot is asked to contact the tower. There, another controller, who also is 
watching the plane on radar, monitors the aircraft the last mile or so to the runway, delaying any 
departures that would interfere with the plane’s landing. Once the plane has landed, a ground 
controller in the tower directs it along the taxiways to its assigned gate. The ground controller 
usually works entirely by sight and/or relies on radar information if visibility is very poor. 

The procedure is reversed for departures. The ground controller directs the plane to the proper 
runway. The local controller then informs the pilot about conditions at the airport, such as 
weather, speed and direction of wind, and visibility. The local controller also issues runway 
clearance for the pilot to take off. Once in the air, the plane is guided out of the airbase’s airspace 
by the departure controller. 

After each plane departs, airbase tower controllers notify enroute controllers who will now take 
charge. Nationally, there are 20 air route traffic control centers located around the country, each 
employing 300 to 700 controllers, with more than 150 on duty during peak hours at the busiest 
facilities. Airplanes usually fly along designated routes; each center is assigned a certain airspace 
containing many different routes. Enroute controllers work in teams of up to three members, 
depending on how heavy traffic is; each team is responsible for a section of the center’s airspace. 
A team, as exemplified by commercial aviation, might be responsible for all planes that are 
between 30 and 100 miles north of an airport and flying at an altitude between 6,000 and 18,000 
feet. 

To prepare for planes about to enter the team’s airspace, the radar associate controller organizes 
flight plans coming off a printer. If two planes are scheduled to enter the team’s airspace at 
nearly the same time, location, and altitude, this controller may arrange with the preceding 
control unit for one plane to change its flight path. The previous unit may have been another 
team at the same or an adjacent center, or a departure controller at a neighboring terminal. As a 
plane approaches a team’s airspace, the radar controller accepts responsibility for the plane from 
the previous controlling unit. The controller also delegates responsibility for the plane to the next 
controlling unit when the plane leaves the team’s airspace. 

The radar controller, who is the senior team member, observes the planes in the team’s airspace 
on radar and communicates with the pilots when necessary. Radar controllers warn pilots about 
nearby planes, bad weather conditions, and other potential hazards. Two planes on a collision 
course will be directed around each other. If a pilot wants to change altitude in search of better 
flying conditions, the controller will check to determine that no other planes will be along the 
proposed path. As the flight progresses, the team responsible for the aircraft notifies the next 
team in charge of the airspace ahead. Through team coordination, the plane arrives safely at its 
destination. 

56 



 

Both tower and enroute controllers usually control several planes at a time; often, they have to 
make quick decisions about completely different activities. For example, a controller might 
direct a plane on its landing approach and at the same time provide pilots entering the airport’s 
airspace with information about conditions at the airport. While instructing these pilots, the 
controller also might observe other planes in the vicinity, such as those in a holding pattern 
waiting for permission to land, to ensure that they remain well separated. 

In addition to airbase towers and enroute centers, air traffic controllers also work in flight service 
stations operated at more than 100 locations nationally. These flight service specialists provide 
pilots with information on the station’s particular area, including terrain, preflight and inflight 
weather information, suggested routes, and other information important to the safety of a flight. 
Flight service specialists help pilots in emergency situations and initiate and coordinate searches 
for missing or overdue aircraft. However, they are not involved in actively managing air traffic. 

Some national air traffic controllers work at the FAA’s Air Traffic Control Systems Command 
Center in Herndon, VA, where they oversee the entire system. They look for situations that will 
create bottlenecks or other problems in the system, then respond with a management plan for 
traffic into and out of the troubled sector. The objective is to keep traffic levels in the trouble 
spots manageable for the controllers working at enroute centers. 

The FAA has implemented an automated air traffic control system, called the National Airspace 
System (NAS) Architecture. The NAS Architecture is a long-term strategic plan that will allow 
controllers to more efficiently deal with the demands of increased air traffic. It encompasses the 
replacement of aging equipment and the introduction of new systems, technologies, and 
procedures to enhance safety and security and support future aviation growth. The NAS 
Architecture facilitates continuing discussion of modernization between the FAA and the 
aviation community (Nolan, 1990). 

While the above description primarily reflects the operation of commercial aviation, it provides 
sufficient detail for the purpose of this project. 

Multi-agent planning and execution processes 

In the nearest future, the advanced methods of computer science and artificial intelligence will 
play a pivotal role in air traffic control of military and civilian as well as manned and unmanned 
aerial vehicles. We have been investigating the use of agent based technology and the multi-
agent algorithms for deployment in this specific application domain. 

Multi-agent system is a collection of loosely coupled autonomous programs that perform 
collective behavior and collective decision making by means of interaction, negotiation, 
cooperation but also methods of teamwork, competition or social dominance. Multi-agent system 
domain provides a wide selection of ready to use COTS or open source integration platforms as 
well as various techniques and algorithms suitable for different coordination tasks. 
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The use of this highly innovative technology is appropriate in the situations where the data 
required for decision making are not available centrally. As air traffic control domain needs to 
move to less human driven problem and a problem more suited for automated decision making, 
we expect that substantial amount of computation and data maintenance will be onboard of the 
aircraft. Similarly, the future air-traffic operation (especially in battle-field or surveillance 
operations) will require techniques implementing safe, fast and robust deconfliction algorithms 
and would allow for other replanning scenarios in highly dynamic and unpredictable 
environment. 

This expectation leads to investigation of a highly decentralized decision making systems that 
will make an important use of the available multi-agent technologies. Operation of a multi-agent 
air traffic control system is supposed encapsulate the following 3 decision making phases: 

Data acquisition 

Time-invariant data includes geographical information (digital map); performance characteristics 
of aircraft, primarily operational speed ranges and fuel burn rates given for various Standard 
Configuration Loads (STL); coordinates of the friendly airbases; and airspace design (aircraft 
separation) criteria that could be defined for various visibility conditions (i.e., sizes of the air 
corridors and tunnels, and communication, alert, safety, and collision zones around aircraft). 
Airspace design criteria are established based on the capability of aircraft to accurately fly and 
maintain pressure altitudes in higher altitude cruise and based on the capability of the aircraft and 
the relationship to separation criteria in lower altitude situations. Airspace design criteria for 
flight objects for a special use (hazardous/restricted) airspace activity include the time duration 
and volume of airspace around the trajectory required to execute the mission. This addresses 
dynamic airspace restrictions with variable separation for security, military operations, remotely 
operated aircraft, and reusable launch vehicles. Time-varying data includes the plan of the air 
operation that designates targets for particular aircraft (pilots) and assigns weapons to target and 
defines the NET (not earlier than) and NLT (not later than) times for particular target; weather-
related information; coordinates and status of particular targets; and hazardous areas, also known 
as special use airspace (areas defended by SAMs, areas occupied by flying artillery shells, rocket 
launches, etc.).  It could be seen that this information reflects the battlefield dynamics, i.e., 
changing goals of the air operation, neutralization of targets and detection of new targets and 
hazardous areas, changing weather conditions, etc. Finally, reported data represents the current 
status of the particular aircraft, such as payload, technical status, available fuel status, and actual 
aircraft position. 

Initial planning 

The first step of the initial planning process begins with establishing a logical time schedule for 
the neutralization of particular targets that constitute a subset of the air operation plan. This is 
followed by assigning aircraft/weapons to targets, selection of take-off airbases, and the bases 
where aircraft are to return after the completion of the mission. Temporal coordinates of the rest 
of the node points are to be calculated based on the average speed of the aircraft and the 
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geometrical distance between the appropriate locations. At the next step of the initial planning, 
all intermediate points of the aircraft paths are to be calculated by interpolation, assuming that 
the node points are connected by straight lines in the four-dimensional space. The number of 
intermediate points is defined according to some chosen time step and average speed of the 
aircraft. 

Deconfliction 

The flight plans that are results form the initial planning process may contain possible conflicts 
and collision situations. Collision avoidance is not solved during the initial planning process due 
to high computational requirements related to this process and due to high dynamics of expected 
flight traffic. The detection and resolution of the conflicts criteria utilized in this process are 
defined based on the capability of aircraft to accurately fly and maintain required altitudes. 
Criteria for flight objects for a special use (hazardous/restricted) airspace activity include the 
time duration and volume of airspace around the trajectory required to execute the mission. This 
addresses dynamic airspace restrictions with variable separation for security, military operations, 
remotely operated aircraft, and reusable launch vehicles. It should be emphasized that detection 
and resolution of the conflicts takes into consideration weather conditions, time of the air 
operation, and the geographical region that dictates the size of the air corridors, air tunnels, 
communication, and alarm and danger zones surrounding aircraft. 

The deconfliction process can be physically embedded in the initial planning phase or fight execution 
phase, described below. If deconfliction is to be executed during initial planning it needs to be 
implemented on top of a multi-agent simulation of the flight-plans elaborated during the initial planning 
process. Possible collisions will be resolved by the multi-agent deconflcition methods and log of the 
resulting operation will provide the final non-conflicting plans. More natural alternative is to implemented 
deconfliction within the flight execution process. The aircraft would follow their mission plan and carry 
out deconfliction process up in the air. This concept is referred to as free-flight and is particularly suitably 
for unmanned aerial vehicle operation. 

Flight execution 

The execution stage addresses the effect of all factors preventing the implementation of the 
accepted plan of air operation. These factors include unexpected changes in weather conditions, 
damage sustained by particular aircraft, actual fuel status, newly detected targets and hazardous 
zones, failure to neutralize targets according to the plan, failure to follow the required schedule, 
failure to stay within the designated corridor/tunnel, etc. It could be seen that in addition to 
making the goals of air operation unattainable, these factors can result in additional conflicts. In 
order to minimize the effect of these factors on the completion and overall success of the 
operation, the proposed system has the capability of rapid re-planning (deconfliction) achieved at 
the lowest possible cost. This process must employ some collaboration/negotiation between the 
involved entities. It facilitates the control of the air operation and is accomplished by providing 
updated assignments to individual pilots in a timely fashion. Unlike the initial planning, conflict 
resolution at this stage implies a decision process that takes into account when reported (real) 
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data on technical status of the involved aircraft is available, amount of fuel on board, and the 
aircraft position. 

Status of the Implementation 

The agent-based air traffic based on the architecture listed in the previous section has been 
designed recently and has been implemented on top of the A-globe multi-agent platform (Sislak 
et al., 2005) and has been presented at (Pechoucek  et. al, 2006). The system features technology 
for agent based flight modeling, air-traffic planning mechanism for a single plane, rule-based and 
utility based deconfliction mechanisms (See Fig. 1.). Specific negotiation-based conflict 
resolution procedures have been developed and implemented in multi-agent environment 
originally suggested by (Schulz et al. 1997), (Tomlin et al. 1997), and further developed for 
airspace deconfliction by (Pechoucek et al. 2006). The deconfliction mechanism is distributed by 
its nature that allows for addressing the high volume of computations associated with the 
solution of this problem. 

Fig.1. Deconfliction negotiation protocol 

Currently, massive scalability tests are under development. The developed system also provides 
3-dimensional and web-accessible 2-dimensional presentation (GUI) layer (see Fig. 2). The 
system performs data-fusion on top of various data from freely available data-sources that have 
been integrated in the system (e.g. mosaic of Landsat7 images, USGS geographical data, GNIS 
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name-related data, but also almost real-time data from the airport traffic monitors of major U.S. 
airports). 

Fig.2. Presentation layer 
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Abstract 

Military deployment and distribution responsibilities call for intelligent collaborative tools in 
support of strategic and operational planning functions involving the sustainment and movement 
of military forces. The sustainment requirement is generated at the operational level and is 
dynamic. It is composed of shifting priorities responding to changes in commander’s intent and 
changes in the operational situation. 

The TRANSWAY software application is designed as a set of intelligent collaborative tools 
supporting operators performing planning and re-planning tasks in a dynamically changing 
decision-making environment. TRANSWAY includes several agents with strategic and 
operational planning and re-planning capabilities. The principal agent is based on the Tabu 
Search algorithm, with the intent of finding an optimum plan for the delivery of supplies from 
multiple origins, through multiple routes, with different kinds of conveyances, to multiple 
destinations, within specified time and resource constraints. 

The TRANSWAY System Architecture 

The TRANSWAY system has a three-tier, service-oriented architecture, implemented using the 
Integrated Cooperative Decision Making (ICDM) ontology-based software development 
framework and the Hibernate object/relational persistence and query service. Figure 2.1 provides 
an illustration of the key components within each of these tiers (i.e., presentation, information, 
and logic tiers). 

TRANSWAY incorporates an internal information model (i.e., ontology) consisting of objects, 
their characteristics, and the relationships among those objects. The information model is a 
virtual representation of the real world domain under consideration and is designed to provide 
adequate context for software agents (typically rule-based) to reason about the current state of 
the virtual environment. Since information-centric software has some ‘understanding’ of what it 
is processing it normally contains tools rather than predefined solutions to predetermined 
problems. These tools are commonly software agents that collaborate with each other and the 
human user(s) to develop solutions to problems in near real-time as they occur. Communication 
between information-centric applications is greatly facilitated since only the changes in 
information need to be transmitted. This is made possible by the fact that the object, its 
characteristics and its relationships are already known by the receiving application. 

The presentation tier interfaces with human operators through a Graphic User-Interface (GUI) 
comprised of a menu system, map display, agent display, and various reports. The main 
TRANSWAY GUI is based on the Generic Space Generator (GSG) framework employing Java Bean 
technology and offering high performance map and graphics management. The map display 
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supports a variety of map formats (e.g., CADRG, satellite imagery, etc.) and provides standard 
map interaction functionality (i.e., zoom, pan, highlight, layer management, etc.). In addition, 
due to its objectified nature theater and operational entities (e.g., tracks, operations centers, 
routes, planned activities, etc.) can be presented within the map display and interrogated through 
direct operator interaction. The agent display shows various concerns and recommendations 
generated by the agents for the operator to inspect. 

Figure 2.1: The TRANSWAY system architecture 

Presentation and interaction with external systems is provided through the ICDM Interoperability
 
Bridge supporting complex translation among potentially disparate system representations
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(Leighton et al. 2004).  Such translations can be specified as Extensible Style-sheet Language 
Transforms (XSLT) or rule-based logic. The underlying interaction metaphor supported by the 
Interoperability Bridge is that of remote service calls issues between bridge clients (i.e., 
interoperating systems). 

The information tier utilizes an information-based ontology that provides relationship-rich 
descriptions of the concepts, notions, and entities relevant to the domains over which the system 
operates. These information-centric descriptions form the means by which intelligent decision-
support agents analyze the evolving common operational picture. To support high degrees of 
extensibility, flexibility, referential integrity, and representational accuracy the TRANSWAY 
ontology employs numerous well-established analysis patterns such as operational-knowledge 
separation, contextual roles, and so on (Fowler 2003, Fowler 1997, Fowler and Scott 1997) as 
the basis for many of the concepts and entities it represents. 

Information within the TRANSWAY system is persisted in a standard Relational Database 
Management System. To support the object-oriented nature inherent in the ontology structure a 
Hibernate object-to-relational mapping (ORM) layer is inserted within each client. It is through 
this object access layer that clients (e.g., GUI, agents, Interoperability Bridge) interact with the 
ontology. Collaboration among system entities is empowered through the use of the ICDM 
Subscription Service to register ontology-based interests and the Hibernate Query Language 
(HQL) facilities. Using these two mechanisms, TRANSWAY clients employ a decoupled 
collaboration model interacting with other parts of the system via the changes that occur in the 
ontology. This type of interaction model parallels the well-established blackboard architecture 
prominent in artificial intelligence-oriented systems. A further advantage of this type of 
decoupled collaborative architecture is that since clients need not know of each other’s existence 
it is possible to attach and detach clients based on evolving system and operational needs. 

The logic tier is comprised of technologies derived from both the artificial intelligence (AI) and 
operations research disciplines, in the form of software agents. The agents take the form of Java 
applications or other AI-based languages that collaborate via the information tier in accordance 
with a standard blackboard model. Agents provide the reasoning capabilities in TRANSWAY in 
several forms. Planning agents utilize proven planning algorithms that produce quality plans 
according to set criteria. Other monitoring agents utilize symbolic reasoning to recognize 
complex patterns representing specific situations that require the attention of the operator. 

On the symbolic reasoning side, rule-based agents are employed to analyze theater and 
operational context providing alerts and recommendations (e.g., entire plans, or reacting to 
changing circumstances, or alternative actions that can be incorporated into existing plans). 
Another type of agent employed in the TRANSWAY system is based on the Tabu Search 
algorithm (Karaboga and Pham 2000, Glover and Laguna 1997). Unlike symbolic reasoning, the 
Tabu approach evolves toward solutions to complex problems (i.e., scheduling, etc.) by applying 
an extended greedy search algorithm that employs forms of adaptive memory to avoid pre-
mature isolation in local optima with respect to the effective solution space. By employing two 
historically disparate technologies the TRANSWAY agents take advantage of the precision and 
definability of symbolic reasoning and the performance of a greedy search, while minimizing 
each of their respective limitations. 

To aid in development and management of decision-support systems such as TRANSWAY, the 
ICDM toolkit provides framework generation tools capable of automatically processing the UML 
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representation of an ontology into a platform specific implementation (Leighton et al. 2004). The 
ability to quickly and iteratively move from model to implementation promotes a development 
environment where agility to changing requirements and evolving knowledge acquisition are 
significantly improved over more manual approaches. 

The Underlying Ontology 

The representation of data and its interpretation for decision-support systems must be complex 
by necessity due to the very nature of the decision-support process. This complexity may be 
defined either in the interpretation of the data or it may be placed in the data representation itself. 
By placing the complexity in the data representation, less work is required to be performed to 
interpret the data. Additionally, this complex representation may more accurately reflect the real 
nature of the problem to be analyzed and may in fact more directly represent the knowledge that 
is proposed to be captured. 

Figure 5.1: TRANSWAY ontology domains 

An ontology can be characterized as an explicit specification of a conceptualization. The term is 
borrowed from philosophy, where an ontology is a systematic account of existence.  For a 
software application, what "exists" is that which can be represented. When the information and 
knowledge of a domain is represented in a declarative formalism, the set of objects that can be 
represented is called the universe of discourse. This set of objects, and the describable 
relationships among them represents all the information and knowledge that can be known in the 
context of the applications that employ them. In such an ontology, definitions associate the 
names of entities in the universe of discourse (e.g., classes, relations, functions, or other objects) 
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with human-readable text describing what the names mean, and formal axioms that constrain the 
interpretation and well-formed use of these terms. 

The TRANSWAY ontology is divided into logical domains that can be described using the 
Unified Modeling Language (UML) methodology (Figure 5.1). These domains, or namespaces, 
are indicated by UML package symbols and named accordingly. Within each domain exist 
definitions of the various concepts and entities relevant to the representation and analysis of key 
aspects of each domain. Classes located within package symbols are defined within that domain. 
These classes may relate to classes defined in other domains through either inheritance or 
associations. In both cases, referenced classes are identified by their symbols existing outside the 
primary package symbol with some type of relationship symbol connecting them to package 
elements. Domains themselves may be related to each other in either a sibling or parent/child 
relationship. Such connections are an indication of the particular scope and inter-domain 
visibility. Following are brief textual descriptions and UML-based illustrations describing each 
domain. The names of the classes currently supported by TRANSWAY and some typical class 
descriptions are included in the Appendix. 

The Tabu Agents 

The current version of TRANSWAY includes several agents built around the Tabu search 
algorithm (Karaboga and Pham 2000, Glover and Laguna 1997). Tabu Search is a local search 
method for exploring a solution space (OpenTS 2005).  It is best suited for combinatorial 
solution spaces where a certain combination of atomic entities is considered a solution. 

The TRANSWAY agents need to be highly responsive to system events, so that they can adjust 
their plan generation strategies dynamically as the user makes changes to the visual environment. 
For example, if a route becomes unavailable due to weather or an enemy threat the agents should 
be informed of the disabled route and respond appropriately. A common practice for supporting 
this level of responsiveness in a Java development environment is to use Java Beans. A Java 
Bean provides a strategy for event-driven programming.  By encapsulating all of the properties 
of an object into a bean and notifying listeners when properties change it is possible to create the 
necessary event-driven environment. 

Since the TRANSWAY system incorporates many small agents that perform specific 
computational tasks, threading and synchronization required particular attention. Often several of 
these computational tasks need to be performed in parallel or, more accurately stated, cannot be 
performed serially.  An example of this requirement for concurrency is the need for one agent to 
monitor the current demand for supplies, while another agent continually calculates the all-pairs 
shortest path algorithm. 

Separation of Trip and Plan Generation: The literature describes many different approaches to 
combinatorial problems of the type encountered in trip routing (Talbi 2002). Based on a review 
of this literature it was decided early on in the design of the TRANSWAY agents to treat trip and 
plan generation as separate problems. It was noted that most of the approaches cited in the 
literature utilize not one but several strategies for solving the combinatorial problem. While the 
different strategies are normally domain specific, the commonality that appears to exist among 
most of the approaches is to limit the search space of the problem by taking advantage of the 
known constraints of the system.  This criterion was adopted as an important design feature of 
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the TRANSWAY Tabu agents, to limit the number of trips produced so that the combinations of 
trips that make up a better (i.e., more optimal) plan can be found more quickly. 

Selection of Search Methodology: After the separation of trip and plan generation the planning 
part becomes primarily a search problem.  As new trips are generated they need to be considered 
as possible components of a recommended plan.  However, even with the limitation of the search 
space through the application of constraints, the combination of generated trips into valid plans is 
likely to be time consuming. It was therefore decided that the TRANSWAY user should be 
provided with some means for controlling the number of plans generated by the agents. In the 
current version of TRANSWAY this is accomplished by allowing the user to set a time limit at the 
beginning of the plan generation process, and by allowing the user to terminate the search 
process at will. Several different search methods were considered, as follows: 

Simulated Annealing: This method is essentially a simulation of the annealing process in 
metals. A temperature value that simulates a cooling effect much like annealing is defined. 
This value eventually becomes cold enough to force the searching to find a close local 
optimum. 

Genetic Algorithms: This method involves breeding solutions and applying random 
mutations to evolve a population of ‘best fit’ solutions. 

Constraint Logic Programming:  This method involves using a search algorithm with 
discrete domains to find values that satisfy the given constraints (e.g., backward chaining). 

Tabu Search:  This method is based on the concept that new solutions should not revisit 
portions of the solution space previously considered. 

The Tabu Search method was selected because it is particularly suitable for the type of vehicle 
routing and scheduling problem encountered by TRANSWAY (Crino 2002). However, there was 
still a need to translate the mathematical representation of the Tabu search algorithm into the 
object-oriented environment of the TRANSWAY architecture. For example, in the case of trip 
representation, each trip contains a reference to a conveyance object and a list of ‘trip legs’ 
representing each journey that the conveyance will embark on, together with its associated cargo. 

Another theoretical notion that required translation was the concept of a move (Crino 2002). In 
the Tabu environment a move is typically defined as replacing one trip in the solution with 
another trip.  However, a trip cannot be replaced by just any other trip.  Crino (2002) uses the 
conveyance as a convenient identifier, so that one trip can be replaced by another trip if they 
share the same conveyance.  This is not acceptable in the case of TRANSWAY because 
conveyances should be able to make more than one trip.  Therefore, in TRANSWAY trips are 
identified by the degree to which the demand for supplies is satisfied. Accordingly, a set of trips 
can be replaced by another set of trips that satisfies all or a subset of the demands. 

Tabu Search Strategies: In the TRANSWAY implementation the Tabu agent attempts to find the 
best combination of trips that together form reasonable planning recommendations.  The trips in 
this case are the atomic entities. The Tabu agent tries to add or remove trips during each iteration 
of the algorithm based on several strategies.  It will first attempt to add trips to the current 
solution. If it cannot add more trips to its current solution it will remove trips and begin again. 

One fundamental aspect of a Tabu search is the use of adaptive memory.  By maintaining a list 
of taboo choices the Tabu agent is capable of diversifying its approach through the combinatorial 
solution space.  When Tabu examines the various choices or trips that can be added to the current 
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plan it first checks the taboo list to see if that solution has already been examined and chooses 
the best non-taboo option as the new incumbent solution. This approach allows the algorithm to 
search through a large combination of trips, while considering solutions that hold the most 
promise relatively quickly. 

Using the Tabu agent TRANSWAY is able to find reasonable plans in a short amount of time and 
more optimal plans if it is allowed to continue running.  Once some ending criterion has been 
reached the algorithm will stop and report the best solution that has been found. In the current 
version of TRANSWAY reporting occurs on a continuous basis as better and better solutions are 
found. The user may stop the search at any time. 

Principal Design Components: The implementation of the Tabu algorithm in TRANSWAY can 
be best described in terms of two principal design components, namely services and agents. In 
respect to services, an event manager receives events from the TRANSWAY ontology through the 
ICDM-based subscription service. Agents acting as listeners are able to register interest in these 
events, which are treated as services. The following services have been implemented in the 
current version of TRANSWAY: 

Request Service: This service maintains the locations, quantities, priorities, time windows, 
and types of supplies requested. 

Conveyance Service: This service maintains the current locations and capabilities of all of the 
conveyances within the AOR. 

Supply Service: This service maintains the locations, quantities, and types of supplies 
available. 

Routing Service: This service listens to changes within the graph-like structure of nodes and 
route segments. A shortest path matrix is maintained for each type of route traversal such as 
air, water, and land. Accordingly, agents are able to ask the routing service whether one or 
more routes exist between two nodes and, if yes: What is the shortest route?  Agents may 
also ask the routing agent to compute shortest routes based on a maximum range between 
refueling stops. 

Several kinds of agents with different functional responsibilities have been implemented in 
TRANSWAY to collaboratively develop strategic planning solutions, as follows: 

Generic Trip Generation Agents:  These agents generate a set of all possible trips that satisfy 
all of the business rule constraints. In this regard a generic trip is composed of a vehicle 
traveling to a supply depot, picking up supplies, delivering those supplies to another location, 
and returning to its home base. However: a conveyance cannot exceed its range without 
refueling; a conveyance must travel on a route of its traversal type; a conveyance should try 
and take the shortest path when available; and, an impediment may cause the need for 
alternate routes. 

Convoy Building Agent: This agent is responsible for constructing convoys out of trucks. 
The convoy then acts as another conveyance for the other agents to work with. 

Advanced Trip Generation Agents: These agents take the single trips that have been 
generated and determine whether combining two or more of these trips could lead to greater 
efficiency. For example, two trips could be combined when they use the same conveyance 
and their time constraints are compatible. 
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The conveyance scheduling and routing problem falls into a class of problems that are NP-
complete. This means that these problems grow in complexity quite fast, and it is unreasonable to 
try and examine every possible solution to a sizable scenario. The Tabu algorithm addresses this 
problem by providing good heuristics to guide searching. 

A Typical TRANSWAY Scenario 

The main TRANSWAY screen (Figure 3.1) is divided into two principal areas. On the left side, 
moving from the top down, below the main option bar the user will find: three agent icons; 
objects that may be placed on top of the map (the right side of the screen); a tree-structure that 
provides quick and convenient access to the data that the system is currently populated with; 
and, at the bottom a command window for the Tabu agent. On the right side of the screen is a 
geo-referenced map that allows the user to pan to any part of the world and, subject to the 
availability of maps, zoom down to street level if desired. Objects representing nodes (e.g., 
SAAs, APODs, etc.), route segments, impediments, and areas of interest may be moved from the 
left side of the screen to the right side by simple click to locate actions. Alternatively, the user 
may specify latitude-longitude locations and the selected object will be automatically placed on 
the map in the correct location. These objects, whether entered by the user or pre-initialized in 
the system, have attributes that relate to TRANSWAY’s internal ontology and provide the 
necessary context for automated agent actions. 

Figure 3.1: Main TRANSWAY screen 

TRANSWAY is by no means limited to the current set of attributes. With the contractual goal of 
this first version of a prototype system to demonstrate the typical capabilities of  an ontology-
based multi-agent system, attributes were selected in a fairly generic fashion based on the 
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feedback that the development team received during early demonstrations, perusal of military 
documents, and in-house experience with other logistic planning systems. 

Figure 3.2: Summary of supplies and available conveyances at supply centers 

The report shown in Figure 3.2 provides a summary of supplies (short tons) and available 
conveyances (i.e., fixed wing aircraft, helicopters, ships, and trucks (in convoys)) at most supply 
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centers currently initialized in the system for this particular demonstration scenario. Details of 
supplies at Charleston and Al Udeid are shown in Figures 3.3 and 3.4 (in terms of supply Class, 
number of pallets, number of items per pallet, and short tons), respectively. 

Figure 3.3: Details of supplies at Charleston 

Figure 3.4: Details of supplies at Al Udeid 
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Figure 3.5: Summary report of air channels and sea routes 

Figure 3.5 provides information about the air channels and sea routes that the system has been 
initialized with for this particular demonstration scenario. In each case the two end-points and 
the distance in nautical miles is indicated. 
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Detailed information about the current compliment of conveyances can be obtained by selecting 
the appropriate report. Typical examples for various fixed wing aircraft, trucks and ships are 
shown in Figures 3.6 to 3.11, below. The reason that the speed and bearing attributes in each 
table are zero is because the conveyances are not currently in-transit. 

Figure 3.6: Boeing 747 aircraft attributes 

Figure 3.7: C5 aircraft attributes 
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Figure 3.8: C17 aircraft attributes 

Figure 3.9: C130 aircraft attributes 
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Figure 3.10: Truck convoy attributes 

Figure 3.11: Typical ship attributes 

A typical request for add on armor is shown in Figure 3.12. It requires deliver to Al Udeid, with 
a high priority and an earliest and latest time for delivery window of 25 to 31 December 2005. 
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Figure 3.12: Add-on-Armor (AOR) request for delivery to Al Udeid 

Figure 3.13: User zooms in on map to reduce clutter 
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 Figure 3.14: Tabu agent interface Figure 3.15: Control of search duration 

Figure 3.16: Completed first plan showing routes 

To fulfill the request for the shipment of add-on-armor to Al Udeid (Figure 3.12) the user 
activates the Tabu agent and selects the appropriate requirement from the displayed Requirement 
Lists (Figure 3.14). In this case the Al Udeid requirement is Requirement List 1. Since the Tabu 
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agent has the ability to continue its 
search for an optimum delivery plan 
even after it has found a way of 
satisfying the requirement, the user has 
the option of either setting a maximum 
time for the planning activity (Figure 
3.15) or allowing the agent to continue 
until all alternatives have been explored. 
Of course it is not expected that the user 
would ever want to wait for that length 
of time and therefore the option for the 
user to simply stop the agent is available. 
In future versions of T R A N S W A Y, 
particularly if the Tabu agent were to be 
implemented in an opportunistic mode 
(i.e., in a manner that would activate the 
planning process without user 
involvement as soon as the conditions on 
which an existing plan were originally 
based have changed), it would be a 
relatively simple matter to restrict the 
extensiveness of the search for an 
optimum plan. For example, the search 
could be automatically aborted if after 
either a specified period of time or a 
given number of generated plans no 
better plan has been found. 

Figure 3.18: Impediment agent alert 

For the completed plan the route is shown in Figure 3.16 by means of a red line. Next the user 
enters an impediment in the form of an adverse weather report that essentially eliminates 
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Glasgow as a refueling stop (Figure 3.17). Immediately, the Impediment agent alerts the user and 
suggests that re-planning is in order (Figure 3.18). Again, also in the case of impediments, this 
first version of TRANSWAY provides only one type of generic impediment (i.e., a weather 
condition), with the objective of demonstrating the kinds of causes that would require re-
planning that could be easily implemented in subsequent versions of the system, based on user 
preferences and priorities. 

Figure 3.19: Summary of deliveries for the first and second plans 

To initiate a re-planning action the user proceeds in the same manner as described previously for 
the generation of the first plan (Figures 3.14 to 3.16). The user will notice that during the 
generation of each plan the routes that are being explored by the Tabu agent are dynamically 
indicated on the map display. Temporarily displayed green lines indicate drop-off points that are 
being considered. Red lines indicate actual delivery routes with the thickness of the red line 
providing a proportional indication of the volume of supplies being transported along that 
particular route. Summary lists of the deliveries involved in both plans are shown in Figure 3.19. 
Even thought this first test-bed version of TRANSWAY is purposely limited in scope it does allow 
the user to explore the details of each delivery plan (i.e., start and end locations, conveyances and 
routes used, start and end times, and duration of each trip), as shown in Figures 3.20 to 3.23. 
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Figure 3.20: Typical drill-down details of the first plan 

Figure 3.21: Typical drill-down details of the first plan 
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Figure 3.22: Typical drill-down details of the second plan 

Figure 3.23: Typical drill-down details of the second plan 
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Figure 3.24: Comparison of conveyances needed in support of the first and second plans 

Figure 3.25: Comparison of overall lift requirements for the first and second plans 
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Apart from the ability of the user to drill down into the details of each delivery plan there are a 
number of comparative graphical reports available, such as the utilization of specific 
conveyances by each plan shown in Figure 3.24 and the number of conveyances that are required 
to support each plan over time shown in Figure 3.25. 

Figure 3.26: Departures from Charleston by conveyance type

 Figure 3.27: Departures from Dover  Figure 3.28: Departures from Al Udeid 
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Figures 3.26 to 3.28 show examples of conveyance departures from the Charleston, Dover and 
Al Udeid APODs, respectively. Similar reports are available for cargo transfers by date (Figures 
3.29 to 3.30) in terms of what was lifted yesterday, the current inventory, and what is planned to 
be lifted  during the next 72 hours. In this way the user is able to determine the expected volume 
of shipments from any particular APOD on a daily basis. The dates selected for the example bar 
chart reports shown in Figures 3.29 and 3.30 are December 23 to 26, 2005. 

Figure 3.29: Typical cargo transfer history, status, and 72-hour projections 

Figure 3.30: Typical cargo transfer history, status, and 72-hour projections 

Again, these reports are intended to be examples of the kind of information that can be made 
available by TRANSWAY. The development team will be guided by feedback from users in future 
development cycles. The reporting capabilities of the system can be easily extended in any 
direction within the constraints of data availability. 
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Abstract 

The dynamic and non-hierarchical nature of the military domain presents a challenge for 
traditional supply chain optimization. Flow networks and simulation techniques have been 
applied to the military distribution problem, but are unable to provide time-definite delivery to 
customers. Recently, optimization approaches have been independently applied towards strategic 
and operational levels of planning. However, decomposing military distribution into separate 
problems forces optimization techniques to utilize imprecise data. The size of the military 
distribution problem has prevented optimization techniques from providing end-to-end planning 
capabilities. This paper presents a Tabu Search algorithm for simultaneously solving strategic 
and operational levels of planning. The algorithm uses partial-order planning to separate the 
optimization process from the constraint verification process. The problem is reduced to a 
tractable computation by representing scenarios as two-tier systems and only permitting 
transshipments between different tiers. The results verify that the presented algorithm discovers 
higher quality solutions than simulation for simultaneously solving strategic and operational 
levels of planning. 

Keywords: agents, logistics, military, operational planning, strategic planning, scheduling, 
simulation, supply chain optimization, Tabu Search 

1. Introduction 

Traditional supply chain techniques have been shown to produce inefficient plans when applied 
in the military domain. Serious shortcomings have illustrated the need for improved logistical 
processes in military operations such as Desert Storm (Kaminski, 1995) and Allied Force 
(Brooks, 2000). More recently, the shortfall of add-on-armor in Iraq confirmed supply chain 
problems (Bowman, 2003). It is necessary to discard the “just-in-case inventory” approach 
(Schrady, 1999) and move to a rapid and reliable transportation process that provides time-
definite delivery to customers (Crino et al, 2002). 

The military domain presents a challenge for supply chain optimization, because problems are 
dynamic and non-hierarchical. Problems in the military domain are more dynamic than problems 
in the commercial domain, because military problems operate in hostile environments. The 
military distribution problem may include several theaters of operation, which change as a plan 
is executed. Threats and unforeseen contingencies may cause a plan to become invalid. If hostile 
forces attack a convoy, then an alternate plan must be generated to distribute supplies to units. 
Therefore, the military requires a tool for efficiently responding to changes in a scenario. 

87 



The military distribution problem has been represented hierarchically by traditional planning 
techniques, such as flow networks and simulation. Modeling the problem hierarchically allows 
the problem to be decomposed into smaller problems, but fails to accurately represent the 
problem. The military distribution problem does not fit this structure for two reasons: the 
destinations of supplies are unknown before planning; and, supplies may be delivered from 
multiple theaters of operation. Therefore, it is necessary to discard the hierarchical approach and 
utilize an ad-hoc structure. 

Military supply distribution is divided into strategic, operational and tactical levels of planning. 
Operational planning consists of the allocation of supplies and personnel between different 
locations within a theater. A theater is defined as a geographical area of operation outside of the 
continental United States under the responsibility of a commander (Crino et al, 2002). Strategic 
planning consists of the distribution of supplies, personnel, and transportation assets between 
different theaters of operation. The tactical level of planning specifies the movement of supplies 
from locations within a theater to individual units. This paper considers only the strategic and 
operational levels of planning. 

The military distribution problem consists of the end-to-end distribution of supplies and 
personnel between geographical areas of operation. The objectives are to minimize shortfall and 
minimize the cost required to execute plans. A planning system must meet the following 
requirements: end-to-end planning; routing and scheduling of transportation assets at the 
strategic and operational levels; and, time-definite deliveries. 

2. Related Work 

Current planning techniques include planning by hand, flow networks, simulation, and 
optimization. Planning by hand is feasible for small scenarios. However, solutions generated by 
Tabu Search are significantly superior to those obtained by hand for large problem sets (Semet 
and Taillard, 1993). Planning by hand is unsuitable for the military distribution problem, because 
scenarios are subject to frequent change. 

Problems in the commercial domain are often represented hierarchically and analyzed using 
supply chain techniques to trace the throughput of each node (Beamon, 1998). Supply chain 
techniques allow planners to identify problems in the distribution system and react accordingly. 
Flow networks are a supply chain technique that has been applied to the military domain 
(McKinzie and Barnes, 2004), providing a tool for analyzing the throughput of hubs in a 
scenario. Supply chain techniques maximize the throughput of individual nodes, but are unable 
to provide time-definite deliveries to customers. 

Simulations are ruled-based models for solving the military distribution problem (Wu et al, 
2003). Simulation models attempt to model military scenarios as accurately as possible. 
Therefore, plans generated by a simulation are valid for real-world scenarios. Rule-based models 
are an effective technique for satisfying constraints, but fail to optimize the utilization of 
resources. Simulations provide a tool for efficiently generating feasible plans. However, 
simulation models applied to end-to-end planning have been unable to prescribe routing and 
scheduling of transportation assets at the operational level (Crino et al, 2002). 
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Current research has utilized optimization techniques for solving the military distribution 
problem. Most attention has focused on the use of Tabu Search to optimize the utilization of 
resources. Optimization techniques using Tabu Search have demonstrated the ability to schedule 
transportation assets at the operational level and provide time-definite deliveries to customers. 
Tabu Search has been applied towards planning at the strategic level (Barnes et al, 2004) and 
planning at the operational level (Crino et al, 2002). However, the size of the military 
distribution problem has prevented optimization techniques from providing end-to-end planning 
capabilities. 

3. Tabu Search Approach 

This paper presents a Tabu Search algorithm for simultaneously solving strategic and operational 
levels of planning. Tabu Search combines greedy heuristics and memory structures to effectively 
traverse through solution spaces (Glover and Laguna, 1997). The algorithm uses partial-order 
planning to separate the optimization process from the constraint verification process. The 
problem is reduced to a tractable size by representing problems as two-tier systems. Also, the 
search incorporates additional heuristics to improve performance. The result is an algorithm that 
quickly converges to feasible solutions. 

The algorithm uses partial-order planning to achieve a combination of simulation and 
optimization, and utilizes an approximated objective function that separates the intelligent 
component of the algorithm from the constraint-checking component. The intelligence of the 
algorithm is represented as an objective function, used by the search. However, it may be 
impractical to consider all necessary constraints through an objective function. Therefore, the 
search considers only those constraints that directly affect the quality of a solution. The 
algorithm uses an objective function to determine which deliveries to consider for addition to the 
current plan. Once a candidate delivery has been selected, the constraint portion of the algorithm 
determines when the delivery should be scheduled and verifies the delivery against a set of rules. 

This hybrid approach offers two benefits, but there is a tradeoff. The first benefit is faster 
iterations compared to a pure optimization approach, since constraint verification is applied to a 
single delivery each iteration. The second benefit is that the planning agent can handle additional 
constraints without modification of the optimization portion of the algorithm. However, the 
optimization component may select a move that violates constraints, because the objective 
function does not consider all constraints. Therefore, the optimization component may select a 
poor quality move that degrades the quality of the solution. This problem is resolved using 
feedback from resulting solutions. The search is informed if a selected delivery improves or 
degrades the quality of a solution. 

The algorithm represents scenarios as two-tier systems. Deliveries at the strategic level represent 
the top tier, while deliveries at the operational level represent the bottom tier. The search 
alternates between two modes. In the first mode, the search schedules deliveries for the bottom 
tier and ignores transshipments. In the second mode, the planning agent schedules deliveries for 
the top tier and allows transshipments between the different tiers. The planning agent limits 
deliveries to a maximum of two transshipments and only a single top-tier delivery is permitted. 
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This structure prevents the algorithm from solving all possible scenarios, but greatly reduces the 
permutations of deliveries considered by the algorithm. 

The Tabu Search algorithm uses the following heuristics to improve the performance of the 
search: scheduling heuristic; pick-up heuristic; and, removal heuristic. The scheduling heuristic 
determines when to schedule deliveries by trying to schedule all deliveries as early as possible. 
However, if a conveyance does not have an opening for an additional delivery, then the 
scheduling heuristic ejects deliveries that deliver to customers with later request times until an 
opening is available. The pick-up heuristic is used to estimate the cost to transport supplies from 
within a theater to locations used for transshipments. It enables the algorithm to consider 
transportation assets at the operational level when planning deliveries at the strategic level. The 
last heuristic is the removal heuristic, which deterministically removes deliveries from the 
solution. The heuristic verifies that customers are supplied from the closest possible supply 
location. If a customer is not satisfied from the closest supply location, then deliveries currently 
using the location are ejected from the solution. 

4. Results 

The performance of the Tabu Search algorithm was tested in six scenarios against a simulation 
model. The scenarios were designed to test various aspects of the Tabu Search algorithm and 
demonstrate the non-hierarchical nature of the military supply distribution problem. The 
‘Greedy’ and ‘Theater’ scenarios demonstrate the strengths of the heuristics. The ‘Non-
hierarchical’ and ‘Multi-theater’ scenarios demonstrate the ability of the Tabu Search algorithm 
to solve multi-theater problems. Finally, the ‘Cargo’ and ‘World’ scenarios validate the ability of 
the Tabu Search algorithm to solve large problems. A summary of results for the testing 
scenarios is listed in Table 1. Shortfall represents unmet customer demand. Tabu Search was able 
to satisfy more customer demand than the simulation for all of the scenarios tested. Also, Tabu 
Search converged to solutions in less than two minutes for the largest scenarios. Even though the 
travel distances required for the Tabu Search solutions are consistently longer than the distances 
for the simulation solutions, it should be noted that the differential reduces to less than 7% with 
increasing complexity and size of the problem space. Furthermore, the Tabu Search algorithm 
was able to accomplish all deliveries, except for the World scenario, while the simulation 
solutions resulted in significant shortfalls. The results verify the feasibility of optimization 
techniques for strategic and operational levels of planning and demonstrate that Tabu Search 
outperforms current simulation techniques. 

Simulation 
Shortfall 

Simulation 
Distance 

Tabu Search 
Shortfall 

Tabu Search 
Distance 

Greedy 1 100 0 600 
Theater 20 6055 0 7407 

Non-hierarchical 42 23206 0 32127 
Multi-theater 16 40254 0 41745 

Cargo 656 2422633 0 2525579 
World 508 4564128 17 4859124 

Table 1 - Scenario results 
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5. Conclusion 

Current supply chain techniques are unable to meet the requirements for the military distribution 
problem. Optimization techniques attempt to find optimal solutions and therefore cannot solve 
large-scale scenarios. This paper presents a Tabu Search algorithm that sacrifices optimality for 
practical run-time computation by separating the optimization component from the constraint-
checking component and limiting the combinations of feasible transshipments. The Tabu Search 
algorithm combines the strengths of simulation and optimization through the use of partial-order 
planning. The performance of the Tabu Search algorithm was tested in six scenarios against a 
simulation model. Tabu Search discovered superior solutions on all problem sets and all 
solutions were found in less than two minutes. The results verify the ability of Tabu Search to 
solve at the strategic and operational levels of planning. 
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1 Abstract 

Wireless sensor networks have been a popular research topic in recent years due to 
advances in low power radio frequency (RF) transceivers and embedded 
microcontrollers.  The study reported in this paper focuses on localization, a process by 
which sensor nodes gather data to aid in accurately estimating their geographic positions. 
Specifically, the objective is to use non-GPS localization to allow for automated location-
mapping, identification, and management of cargo items on military ships and loading 
areas. The high resource cost in designing, implementing, and testing a full-scale, active 
RFID hardware system poses a significant limitation for this area of systems research. 
Accordingly it is proposed to design and implement a simulator to determine the 
feasibility of such a system. 

InfoTagSim is a simulator that analyzes the behavior and performance of wireless sensor 
networks that utilize localization techniques.  InfoTagSim was designed with the 
following key functionalities in mind:  (i) to facilitate the development of new protocols; 
(ii) to allow for scalability of networks; (iii) to model node hardware characteristics; (iv) 
to analyze overall system behavior and performance; and, (v) to test the accuracy of the 
localization algorithm.  The paper describes the approach, design, and implementation of 
InfoTagSim and the results of simulation, which vary in scale, propagation methods, and 
system characteristics.  Furthermore, the accuracy of the localization algorithm, which is 
based on network node peer-to-peer communication, connectivity range restraints, and 
computational geometry, is evaluated. 

2 Introduction 

For those involved in the movement and storage of large quantities of items, much focus 
lies in solving the problem of inventory management.  After completing the planning and 
storing stages, checking the consistency of the stocked items against the plan forms the 
bulk of inventory management and also showcases why many seek to improve the tasks 
involved. Essentially, those tasks consume a great deal of time and energy, and often is 
tedious work for those involved.  Through the use of technology, researchers and industry 
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have been able to chip away at the problem, introducing ideas like barcodes, databases, 
and RFID devices to help automate many of the tasks. 

For the military, inventory management poses as complex a logistics problem as stocking 
a supermarket.  However, much of the inventory management deals with military ships 
and staging areas.  This involves the stowing, transportation, and rapid deployment of 
"…large numbers of tracked and wheeled vehicles, weapons systems, ammunition, power 
generating and communication facilities, food supplies, and other equipment” [10].  To 
handle such large tasks, the military funds many research paths, some along the lines of 
industry, and others along the lines of future technology. 

One such example involves a software tool designed to automate the planning process of 
inventory management, called the Integrated Computerized Deployment System 
(ICODES). Through the use of intelligent software agents, ICODES currently creates 
stow plans that factor in hazard material placement, trim and stability, and accessibility 
[4]. While the software reduces time spent in the planning stage, it still does not alleviate 
the time-consuming task of checking the actual placement of cargo items on a ship 
against the plan.  Last minute cargo changes, misplaced items, delays in ship arrival, and 
more can lead to changes in the actual stow locations.  This in turn requires that an 
individual or group of individuals walk around the stow area verifying the original stow 
plan and checking for inconsistencies.  Any inconsistencies then require input into the 
software to keep the plan up to date. 

Due to the software shortcomings, the military also funds other types of research, with 
the primary goal being the automation of the consistency-checking stage of inventory 
management. One such research path involves the creation of a location map of as-
loaded cargo using technology commonly found in industry.  Barcode technology 
coupled with hand-held scanners allows a cargo specialist to walk up to a cargo item, 
scan and automatically identify the item, and manually place the item into an ICODES 
plan [3].  This software, named Automated Identification Technology (AIT), validates 
actual cargo locations against the stow plan.  AIT-based processes aim to increase the 
efficiency and speed of obtaining an as-loaded plan, thereby improving in-transit 
visibility [3].  While an improvement over existing solutions, AIT still exhibits 
considerable limitations.  Tests in the field reveal difficulties in scanning barcodes in 
direct sunlight and in obtaining barcode data on cargo objects too tall to reach or in other 
inaccessible locations.  In addition to the line-of-sight requirement, this solution still 
requires a significant amount of time and labor.  A person or team must manually scan 
and place each and every item on the ship, and a military cargo vessel may carry as many 
as 4000 items. 

Another research path involving the consistency-checking stage of inventory 
management involves passive RFID tags.  While a logical successor to barcode 
technology, current RFID technology focuses on supply chain management and lacks the 
granularity needed to form location maps of cargo items [11].  At best, passive RFID tags 
can help place an item in a certain room or hold (through the use of an interrogator at the 
entrance), but not much more.  Further, passive tags possess limited memory and cannot 
store information sent by a transceiver. 
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Continuing the same line of research, the next logical step involves the use of active 
RFID tags.  Active RFID tags have longer ranges than both barcode scanners and passive 
RFID tags.  They operate autonomously and can communicate with other tags within 
range. With those added capabilities, RFID tags can possibly provide a fine enough 
granularity to perform location estimation of the items associated with the tags. 
However, limitations such as bandwidth efficiency and battery power may prove to be 
considerable obstacles to overcome.  Still, active RFID tags provide enough potential to 
make them a worthy research path to follow. 

2.1 Motivation 

A research project currently undertaken at CDM Technologies uses active RFID tags to 
perform location estimation.  The InfoTags project attempts to augment both ICODES 
and AIT with the objective of providing a complete inventory management system that is 
resident in one package.  While still in the proof-of-concept phase, the InfoTags project 
currently consists of a small number of actual tags and a software program that performs 
location estimation.  The overall goal of the InfoTags project is to further automate the 
consistency-checking stage of inventory management to the point where only a few items 
need to be scanned to collect information about every other item in the area. 

Although the design and testing of a small set of prototype tags has proved useful for 
gaining an understanding of the operating characteristics of individual tags and the 
efficacy of physical test facilities (e.g., obtaining transmission ranges), the high cost of 
these devices poses a serious limitation.  First, this route provides little insight into the 
performance of a full-scale sensor network implementation.  Information about 
propagation times over large networks and overall feasibility remain unknowns.  Second, 
prior to the construction and assembly of the hardware, the sensor network 
communication protocol requires rigorous testing to ensure proper operation and 
acceptable performance.  Creating hundreds of tags with a poorly designed and tested 
network communication protocol can prove too costly for a small company.  To address 
these issues, it is proposed to design and implement a wireless sensor network simulator, 
referred to as InfoTagSim. 

3 Overview 

InfoTagSim exists specifically to test wireless sensor network protocols with a central 
focus on localization.  Localization is the process by which sensor nodes gather data to 
aid in accurately estimating their geographic positions [12].  Position estimation is a key 
element in sensor network applications that: 

ß Determine the origins of events. 

ß Perform self-discovery of network coverage and topology. 

ß Attempt to map physical objects to coordinate locations. 

This paper investigates the third motivation in an attempt to increase the speed and 
operational efficiency of stow planning on military cargo ships. 
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One solution for localization is the Global Position System (GPS) [1], which uses 
satellites to find the position of a connected object. Applications can be found in 
navigation systems in cars, hand-held devices used during outdoor expeditions, and even 
cell phones.  If each of the tags in the wireless sensor network were to be equipped with a 
GPS receiver, the tags would then possess the capability to obtain their position 
coordinates from communication between GPS satellites.  However, several reasons 
prove GPS to be an inviable technology for stow planning operations.  GPS receivers 
only work outdoors.  The military needs to obtain position estimates from items within 
cargo holds.  Also, the technology is currently too expensive to outfit active RFID tags at 
the required scale.  Lastly, the power constraints of a tag may rule out the use of a GPS 
receiver. The above reasons prompted this research team to forgo a GPS implementation 
in favor of localization methods based on network node peer-to-peer communication, 
connectivity range restraints, and computational geometry. 

The work of Doherty, Pister, and El Ghaoui [6] largely influenced the particular 
implementation of localization used in the InfoTags project.  In their research paper, they 
propose modeling peer-to-peer communication as a set of geometric constraints that yield 
position estimates for unknown node locations.  In other words, one can turn connectivity 
data gathered by the tags into geometric computations yielding relative positions.  If two 
tags can establish a connection, then the distance between the two tags is, at maximum, 
the length of the broadcast radius.  Conversely, if two tags never receive each other's 
transmissions, the separation distance between them is at minimum the length of the 
broadcast radius.  With a complete set of connectivity information, it is possible to apply 
computational geometry to calculate tag position estimates. 

3.1 Connectivity Data 

The singular goal of the networked sensors in the InfoTags project is to obtain 
connectivity data.  They achieve this by updating and maintaining adjacency tables kept 
in the tags' external memory.  When two tags establish a connection, they are referred to 
as neighbors. Alternately, this connection is referred to as an adjacency pairing. 

Each individual tag keeps both its own record of adjacencies (i.e., who its neighbors are) 
and a record of second hand adjacency data (i.e., the neighbors of other tags).  When a 
tag receives a data packet, it first obtains the identification number of the packet's 
originator. For example, if Tag A receives a packet from Tag B, Tag A will first mark 
Tag B as a neighbor in its adjacency table.  Then, Tag A records the contents of the 
received packet (i.e., Tag B's adjacency data) into its memory.  For example, if the packet 
contains data that recognizes Tag C and Tag B as neighbors, Tag A will record this 
adjacency pairing in its own table.  To reiterate, Tag B is essentially sharing a portion of 
its adjacency data with Tag A, which will record these adjacency pairings in its own 
tables. Tags connected in the same cluster eventually obtain all the adjacency data 
information of all the tags in the cluster.  Ideally, after a certain period of time, every tag 
in the cluster should hold identical adjacency tables.  This design allows any one of the 
tags in a cluster that are interrogated (by a PDA with a RF transceiver) to supply the same 
adjacency tables, thus requiring only one tag to be interrogated.  As expected, the tags 
completely out of range from all other tags necessarily possess empty adjacency tables. 
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However, this condition should rarely occur in a ship stowing environment where objects 
are typically packed closely together. 

3.2 Broadcast Protocols 

Obtaining adjacency tables forms a crucial step to achieving localization.  Network 
protocols must be carefully designed to disseminate adjacency data to all nodes with the 
following criteria: 

ß Keeping network overhead to a minimum, 

ß Avoiding node crosstalk (i.e., packet corruption due to two broadcasts
 
occurring simultaneously).
 

ß Minimizing the time requirements for adjacency data to propagate to all
 
nodes.
 

ß Maximizing energy efficiency. 

Each of these criteria elements interrelates.  A protocol can be designed to tolerate a 
certain level of crosstalk in return for the faster propagation of data.  Reducing network 
overhead could also realize gains in the energy efficiency of tags.  Moreover, allowing 
for higher levels of network traffic may increase node crosstalk while decreasing the 
energy efficiency. 

In order to keep network overhead to a minimum, the protocols were designed to operate 
exclusively in broadcast mode.  When a tag transmits a data packet, any node within the 
transmission vicinity of the originating tag receives the transmitted packet.  Since the 
essential function of the tags aims to seek out and share information with adjacent tags, 
broadcast mode serves as the logical choice.  To reduce network overhead, tags send no 
acknowledgment packets back to the packet originators. 

Since the specified protocols operate purely in broadcast mode, contention of the wireless 
medium must be considered as a design issue.  Crosstalk occurs when two nodes within 
the same vicinity broadcast their packets simultaneously.  The simultaneous broadcast 
situation can corrupt a packet for any receiving nodes in that vicinity.  Proper error 
checking through the use of cyclic redundancy checks (CRCs) allows a receiving tag to 
reject a corrupted packet.  Error checking means that the receiver cannot obtain the data 
from either transmitter since the information is rejected, which also means that the 
transmitting nodes have wasted energy in transmitting a rejected packet.  The worst-case 
scenario involves frequent packet collisions, slowing propagation of adjacency data 
considerably since the rejected packets require another transmission.  With more 
broadcasts required to complete the propagation of adjacency data to all tags, network 
overhead increases as well. The question arises: How much crosstalk can be tolerated 
before reaching unacceptable levels in the completion time of data propagation? 

The above discussion prompted the design of two simple broadcast protocols: 

ß Time-sharing protocol: The time-sharing protocol avoids crosstalk altogether by
 
limiting access to the wireless medium and eliminating contention.  The simulator
 
assigns every node a time-share (i.e., a period in which it owns exclusive rights to
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broadcasting). The major drawback of this implementation lies in the increase of 
tags in the system.  The more tags in the system, the slower the propagation of 
data. The simulator permits a tag to broadcast a packet only once before waiting 
for every other tag in the system to broadcast.  In an example case of 300 tags in 
the wireless sensor network, a tag must wait 299 broadcast intervals before the 
simulator permits the tag to broadcast again.  Data propagation speed can be 
improved by increasing the length of the packet transmitted, thereby sending more 
adjacency data to its neighbors, as well as by reducing the broadcast interval. 
This protocol is used as a base protocol to be compared to others that are designed 
for better performance. 

ß Pseudo-random transmission protocol: Instead of assigning time-shares, the
 
simulator allows each tag to broadcast at random intervals.  Setting a minimum
 
interval and a maximum interval bounds the transmission intervals.  For instance,
 
if the minimum is set to 1 second and the maximum is set to 10 seconds, the tag
 
first generates a random number between 1 and 10.  The tag then waits in receive
 
mode for the number of seconds of the randomly generated number.  At the end of
 
that period, the tag transmits its adjacency data.  The tag then waits for the
 
broadcast interval before choosing another random number and waiting in receive
 
mode. The process then starts over again.  Compared to the time-share protocol,
 
the pseudo-random protocol achieves a higher frequency of transmissions in a
 
given period, thereby decreasing the length of time for the completion of the data
 
propagation sequence.  However, packet collisions occur frequently in this
 
protocol. Because the simulator randomly generates time between transmissions,
 
two or more tags can possibly broadcast simultaneously.  This can lead to
 
crosstalk if the tags lie within transmission range of each other.
 

Packet collisions can be tolerated in the pseudo-random protocol because: 

1.	 Completion time of data propagation improves considerably over the 
time-sharing system. 

2.	 Packet collisions do not adversely affect network overhead and energy 
efficiency. 

The completion time is expected to decrease considerably, especially as the number 
of tags in the network increases.  Overall, the pseudo-random algorithm is expected to 
offer better performance in comparison to the time-sharing protocol in large-scale 
systems, with packet collisions a minimally obtrusive data propagation factor. 

4 Design Goals 

During the initial design process of the simulator, the research team brainstormed in their 
endeavor to have the design of the simulator address the following criteria that were 
considered very important: 

ß To facilitate the development of new protocols. 

ß To allow for scalability of networks. 

ß To model node hardware characteristics. 
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ß To analyze overall system behavior and performance. 

ß To test the accuracy of the localization algorithm. 

As discussed in the previous sections, new protocols can be written and tailored to 
specific applications.  In the case of military ship stowing, the wireless sensor network 
functions to solve localization of cargo objects.  After designing new protocols, 
InfoTagSim can be used to test and analyze these protocols for functionality, accuracy, 
and performance.  Analysis of the outcome of simulations should help to easily detect 
design errors.  For instance, inconsistencies in the final adjacency tables of tags could 
mean that the data did not propagate correctly. This is a telltale sign of a flaw in the 
protocol design.  Protocols deemed too slow in forming complete adjacency tables can be 
modified and retested. 

Another major objective for InfoTagSim involves the ability to test wireless sensor 
networks at a real-world scale.  Limitations in time, research funding, hardware expertise, 
and personnel resources preclude the research team from undertaking actual hardware 
testing on the scale needed to accommodate typical stow planning environments. 
Normally, as many as 4000 vehicles, crates, and other equipment is required to be stowed 
on one military ship.  InfoTagSim should allow those quantities to be simulated. 
Additionally, cargo holds vary in shape and dimensions.  Cargo staging areas, depending 
on physical dimensions and cargo type, may contain more than 600 individual cargo 
items waiting to be loaded onto a ship.  Conversely, some cargo holds onboard ships have 
a capacity of only several dozen items.  With InfoTagSim, the research team is able to 
simulate sensor networks of 500 nodes just as easily as sensor networks of 50 nodes, with 
the ability to set the physical dimensions to best represent an actual cargo hold or staging 
area. 

The third design goal of InfoTagSim revolves around the objective of a hardware-
independent simulator. In other words, the research team wanted the ability to modify 
hardware (i.e., active RFID tag) characteristics that affect the outcome of the simulation. 
InfoTagSim can aid the hardware designer in component selection by allowing hardware 
characteristics to be modeled and used in the simulation.  If the designer currently uses 
commodity RF transceivers, he or she can obtain hardware characteristics from the data 
sheets, or can extract the data from hardware experiments on individual transceivers. 
Currently, InfoTagSim supports simulator variables of broadcast radii (i.e., the 
transmission distance outward from the tags) and also attempts to model RF radiation 
patterns of a transceiver as a set of probabilities.  Further discussion on these simulator 
variables follows in subsequent sections. 

Another design goal centers on allowing the research team to analyze overall system 
behavior and performance. Full access is provided to the simulation results in the form of 
output text to a console screen, visual output on a map, and output similar to the console 
in log files. The data documented in the console and log files include: 

ß Node coordinates, 
ß Specific times of broadcasts, 
ß The identification number of the transmitting tag, 
ß Identification numbers of receiving tags, 
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ß Packet data, 
ß Time elapsed until completion of data propagation, and 

ß Occurrence of packet collisions. 

The simulation console screen and log file seek to allow the researcher to gain a better 
understanding of how a specific protocol behaves in a given system environment. 

The final design goal revolves around the localization algorithm and testing its 
capabilities and accuracy.  In other words, after running the simulator, the algorithm 
tester can be applied to the results of the simulator to test the accuracy of location 
estimation and completeness.  The algorithm does this by gathering all the adjacency data 
from a randomly selected node and performing computational geometry on the resulting 
adjacency sets to estimate node locations.  InfoTagSim includes the localization 
algorithm tester as a runtime option. It is capable of displaying the resulting coordinates 
on a map shown beside the simulator results, and performing comparisons of the results 
to the actual node locations.  The intention is to fine-tune the localization algorithm to a 
point where it performs fairly well with both large and small datasets. 

5 Implementation and Usage 

Subject to the design goal of testing the localization algorithm, it was decided to write 
InfoTagSim in the C++ programming language.  A simple graphic user-interface (GUI) 
was added to the application to allow the user to modify simulator environment variables 
and to visualize the node placement on the map.  Users can save and load the locations of 
a simulation run and can view log files created by the simulator during program 
execution. 

The first screen displays a dialog box with edit boxes for the user to enter information for 
modifying simulation environment variables.  Here, the user can enter in the number of 
tags, broadcast probabilities, broadcast range, broadcast intervals, the network protocol 
and more. Further discussion on the simulation variables follows in the next sub-section. 

After a user enters all the desired changes, the user then clicks on the Begin Simulation... 
button to bring up another dialog box.  This dialog box displays two maps, one for the 
simulation, and one for the algorithm test.  Beneath that lies a console that displays all 
relevant information pertaining to the simulation and algorithm test runs.  Buttons for 
constructing tags, starting the simulation, testing the algorithm, saving locations, and 
loading locations lie between the upper and lower portions of the dialog. 

5.1 Simulation Parameters 

Figure 1 illustrates the graphical user interface that allows the user to set parameters 
and configuration options before running the simulation.  The following provides a 
brief description of the simulation parameters available. 

ß Number of tags. The number of tags simulated in the wireless sensor network. 

ß Broadcast interval. The broadcast interval sets how often a broadcast occurs. 
For the time-sharing protocol, for instance, if the broadcast interval is set to 10 
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seconds, one broadcast will occur every 10 seconds.  If there are 3 tags in the 
system, Tag A will broadcast at 0 seconds, Tag B will broadcast at 10 
seconds, and Tag C will broadcast at 20 seconds.  At 30 seconds, the time-
sharing cycle is restarted and Tag A broadcasts again.  For the pseudo-random 
protocol, the broadcast interval causes the tag to wait for the assigned interval 
before selecting a random time to start a broadcast. 

ß Broadcast radius. The broadcast radius specifies the transmission range of 
the tags in feet.  This parameter models the particular RF transceiver used in 
the wireless sensor network in terms of transmission power. 

Figure 1: Screenshot of InfoTags configuration options 

ß Number of adjacencies transmitted. A user may set the number of adjacency 
pairs transmitted, which directly correlates to the maximum length of packets. 
A higher number of adjacencies transmitted reduces the number of times a tag 
must broadcast before sharing its entire adjacency table with its neighbors. 

ß Transmission policy. Can be either the time-sharing or the pseudo-random 
transmission protocol. Section 2.3 describes these protocols in more detail. 

ß Random intervals. Used exclusively for operation of the pseudo-random 
protocol. When a random transmission interval is generated in a tag, the 
number falls between the minimum and maximum intervals specified. 

ß Map dimensions. The width and height dimensions of the test area (in feet). 
Currently, InfoTagSim models a rectangular room but later iterations may 
allow for rooms of varying shapes and sizes. 

ß Broadcast probabilities. These probabilities roughly model variations in RF 
radiation patterns in commodity RF transceivers.  Ideally, RF radiation 
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patterns radiate in a circular form.  However, depending on the specific RF 
transceiver used, this may not be the case [7].  The tag is divided into 
quadrants, with the probabilities for each respective quadrant set to match the 
radiation pattern of that area.  Failing the probability test results in a dropped 
packet. 

5.2 Running InfoTagSim 

After setting the simulation parameters, InfoTagSim allows the user to construct a 
random placement of tags and run the simulation to completion.  Completion occurs 
when all adjacency data have been discovered and proliferated to each of the tags in the 
cluster. How can completion be adapted in the simulator? Finding the solution to this 
question remains perhaps the most difficult part of implementing InfoTagSim.  Once the 
application establishes node locations and the simulator executes, the tags begin 
establishing connections and frequently update their adjacency tables with new data.  As 
time progresses, the tags receive fewer and fewer packets that do not contain redundant 
information (i.e., the adjacency data that a tag already contains in its adjacency table). 
Based on an arbitrary design decision the simulator stops after every one of the tags 
receives no new information for 20 consecutive packet receptions.  If a tag's redundant 
packet count is 19, but then in its next reception contains an adjacency it does not already 
have recorded, the redundant packet count resets to 0.  The simulator stops when all the 
tags in the cluster reach the redundant packet count. 

While the simulator runs, the console is continuously updated in respect to: the iteration 
(i.e., time slice); which tags are transmitting; which tags are receiving; and, the tags that 
have rejected packages.  Once the simulator stops, the user is informed of the total time 
taken and the total number of broadcasts. 

6 Experimental Results 

In the first round of experiments, the broadcast probabilities were varied to model 
different radiation patterns in RF transceivers.  Both the time-sharing protocol and the 
pseudo-random protocol were tested.  If the broadcast probability was set to 100, then 
each of the four quadrants were set to 100.  This process was repeated for probabilities of 
90 through 50, decrementing by 10 for each set of runs.  For both protocols, the number 
of tags in the system was 10 for every run.  Results are shown in Figures 2 and 3.  Figure 
2 tells us that, in order to reach completion of data propagation in the system, both 
protocols require an increasing number of transmissions.  This is due to the increasing 
likelihood of dropped packets.  Figure 3 shows that the time of completion increases as 
the probability of successful transmissions decreases.  Both protocols appear to be 
similarly affected by decreasing probabilities.  An interesting result of Figure 3 is that the 
pseudo-random algorithm takes significantly less time before data is propagated to all 
tags. In one set of runs, the pseudo-random algorithm was on average of 72% faster than 
the time-sharing algorithm. 

In the next experiment, the total number of transmissions is observed in runs of 
increasing tag quantities.  The starting number of tags is 10 and the final set of runs has 
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50 tags, incrementing the tag count by 10 for each set of runs.  The simulations take place 
in 60 ft by 60 ft room.  The tags were set to have broadcast radii of 20 feet.  Figure 4 
displays the results. 

Figure 2: This graph shows total number of broadcasts at different probabilities of successful 
transmission. 

Figure 3: This graph shows total number of broadcasts vs. the number of seconds required to 
transmit 
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The time-sharing algorithm requires an average of 49% less broadcasts before completion 
of data propagation.  This discrepancy is due to packet collisions occurring (i.e., each 
packet collision requires an eventual re-broadcast of the data that was not propagated). 
However, while the pseudo-random algorithm lacks network efficiency, it offers a 
substantial advantage in speed of propagation.  Figure 5 shows the time elapsed toward 
the completion of data propagation with increasing tag quantities.  With every 10 tags 
added to the simulation, the time-sharing algorithm exhibits an almost exponential 
increase in time requirements while the pseudo-random algorithm posts only modest 
linear increases. 

Figure 4: This graph shows the number of tags vs. the number of broadcasts. 

Figure 5: This graph shows the number of tags vs. the time elapsed in seconds 
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Figure 6: This graph shows the effects the number of adjacencies allowed per packet has on the 
number of broadcasts and the time elapsed. Note that this graph applies only to the time-sharing 

protocol. 

Many transceivers have specific buffer limitations in which to receive packet data.  It was 
decided to implement packet length requirements in InfoTagSim at a higher level with a 
number of adjacencies per packet.  The objective was to investigate the effect of 
completion time with increasing adjacencies per run.  For this experiment, 10 tags were 
simulated while the adjacencies per packet were increased. 

Figure 7: This screenshot showcases a run of the algorithm tester alongside the simulation results. 
The side-by-side comparison provides visual confirmation about the accuracy of the algorithm 

location estimation versus the actual simulation results. 
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Figure 6 shows the results of this experiment.  At first, with an increasing number of 
adjacencies, the completion time improves considerably.  However, the completion time 
improvement eventually tapers off.  This is explained by the fact that going from 20 
adjacency transmissions per packet to 25 does not make much a difference for a 10-tag 
system (which, at most, would have 81 adjacencies if all tags are within range of each 
other). This means that a tag would only require two or three transmissions before its 
entire adjacency table is propagated through the network. 

Figure 8: This second screenshot shows another algorithm test run after a simulation run. 

As stated in the Design Goals section, it was considered essential for InfoTagSim to 
support the localization algorithms used to estimate node positions.  Two of the position 
estimates from random placements of 10 tags are included in Figures 7 and 8.  The 
visualization for the estimated positions is placed side-by-side with the map of actual 
geographic coordinates.  The room dimensions are 60 ft by 60 ft and the adjacency set is 
proliferated by tags using the time-share protocol.  The position estimates came out 
mostly accurate (i.e., an accuracy of within 10 meters of actual position in this particular 
set up).  Most of the estimated positions came out to around 12 feet from the actual 
location. This suggests that the algorithm for estimating location is at least promising. 
However, it is recognized that the algorithm will require additional work to estimate tag 
positions in large scale, densely packed wireless sensor networks. 
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7 Related Work 

Many researchers have addressed the localization problem with varying methods. 
Niculescu and Nath have devised a localization computational model called Ad Hoc 
Positioning System (APS) that uses distance vector propagation, GPS triangulation, and 
signal strength measurements to estimate node positions [8].  In their work, they simulate 
100 tags and report results in which estimated tag positions are no less than one radio hop 
away from their actual geographic positions. 

Bulusu, Heidemann, and Estrin use fixed beacon signals to solve localization [2].  They 
place beacons with known locations at the four corners of their 10m by 10m test area. 
These beacons transmit a signal periodically to a randomly placed tag in the area.  The 
position of the tag is estimated after analysis of collected tag data.  Their results yielded a 
90% accuracy rate in estimating data points within one third of the separation distance. 

He, Huang, Blum, Stankovic, and Abdelzaher propose range-free localization schemes 
for coarse-grained applications [5].  They propose APIT, a scheme where high-powered 
beacons are placed to form triangular regions around nodes with unknown locations.  A 
theoretical method called Point-In-Triangulation is used to calculate node location within 
or in the proximity of the triangular region.  The authors have simulated up to two-dozen 
tags. They promote range-free schemes as cost-effective solutions that avoid inherent 
problems with range-based schemes (i.e., multi-path, fading, irregular radio patterns). 

Park, Savvides, and Srivastava developed SensorSim, a simulation framework for 
modeling and analyzing wireless sensor networks [9].  Their simulator proposal possesses 
similar end goals to the work reported by the authors of this paper (i.e., scalability, 
development of protocols, and modeling power usage).  A very intriguing feature of their 
simulator is the support for interactions between real and simulated nodes, coined as 
hybrid simulation. 

8 Conclusions and Future Work 
In this paper, the authors have described the design and implementation of InfoTagSim, a 
simulator for wireless sensor networks that specializes in localization.  The simulation 
was exercised to analyze two simple broadcast protocols, namely: a time-sharing 
broadcast protocol; and, a pseudo-random broadcast protocol.  Various simulation 
parameters were tested and their effects on the system noted.  In addition, the position 
estimates of the localization algorithm were compared with the actual geographic 
coordinates. The localization algorithm shows promising results on small data sets. 
While a significant portion of InfoTagSim was completed and tested, several 
shortcomings and desirable future extensions were noted, as follows: 

ß Item Dimensions: InfoTagSim currently simulates wireless networks at
 
the node level.  The simulator essentially treats nodes as equals and thus,
 
the nodes inhabit the same amount of physical space.  In future versions of
 
InfoTags, physical cargo will map to each node.  Each object assigned to a
 
node should then contain particular item dimensions retrieved from a
 
database of known items (used for ICODES).  For example, an object
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specified as an Apache Helicopter should contain the particular physical 
dimensions of an Apache Helicopter, thus allowing the simulator to 
visualize the object’s dimensions in the display.  Factoring item 
dimensions into the localization algorithm can also produce a more 
accurate simulation and allow for a better visualization of an actual cargo 
hold. 

In a like manner, as discussed in an earlier section, assigning space 
dimensions beyond that of a rectangle also improves the capabilities of the 
simulator. Loading up of the same Scalable Vector Graphics (SVG) files 
used in ICODES allows the simulator to mimic actual cargo holds and 
stow areas. 

ß Time Synchronization: To further the realism of the simulation, the next 
step requires InfoTagSim to also simulate the effects of time 
synchronization. In the current InfoTagSim application, nodes assume an 
idealized time infrastructure.  Each tag runs off the same master clock, 
which means that time measurements do not vary from node to node. 
Further, no methods currently exist in InfoTagSim to implement 
synchronization across the nodes.  In a time-sharing broadcast protocol, 
time synchronization becomes a crucial element in ensuring the 
exclusivity of broadcast rights for a given node.  Drift amongst nodes in a 
time-sharing broadcast system could allow for crosstalk to occur, thus 
further delaying the completion of data gathering for localization. 

ß Power Consumption: The nature of wireless sensor networks requires 
much study in the area of energy efficiency.  Using less energy translates 
to a longer useful lifetime of the sensor network.  Different modes of 
operation of a sensor node incur different energy costs.  Further, the 
specific type of hardware used (i.e., microcontrollers, transceivers, 
sensors) also dictates the amount of energy used.  Eventually, InfoTagSim 
could be improved to perform more robust metrics in respect to those 
factors that affect power consumption and thus possess the capability to 
support more elaborate network protocols in which, for instance, the tags 
enter a sleep state after receiving no new packets (i.e., an indication that 
all cargo items have settled into a stationary position).  The current version 
of InfoTagSim offers only a few primitive metrics to indirectly account for 
power consumption, namely: total transmissions; average number of node 
transmissions; and, elapsed time before completion of localization data-
gathering tasks. 

ß Received Signal Strength Indicator: Many RF transceivers possess the 
ability to measure received signal strength.  This mostly, but not always, 
serves as a crude way to estimate the distance between two connected 
nodes. The reception of a packet of weak signal strength indicates a 
longer distance connection of two nodes than the reception of a packet 
exhibiting a strong signal strength.  With localization as a primary goal, 
one can design elaborate network protocols that account for received 
signal strength.  InfoTagSim, which currently uses a binary outcome (i.e., 
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connected or not connected) method to detect neighboring nodes, could 
benefit greatly from received signal strength functionality.  Allowing for 
more elaborate broadcast protocols that utilize received signal strength 
could further optimize localization techniques and thereby improve the 
accuracy of the position estimates. 

It should be noted that in order for received signal strength to be effective 
in localization methods, the experimenter must have knowledge of the 
correspondence of signal strength values to set distances (i.e., for the 
specific RF hardware used).  This correspondence of values to distances 
requires new simulator parameters within InfoTagSim falling under the 
category of hardware characteristics.  Still, the reliability of this 
correspondence can depend on objects and barriers that can alter or inhibit 
transmission signal radiation patterns, which may consequently provide 
false signal strength data to the receiving node.  Also, InfoTagSim must 
assume a high level of consistency in both transmission power and 
received signal strength across all network nodes.  In other words, tags 
must be calibrated uniformly so that received signal strength values 
correspond to set distances regardless of the transmitting or receiving 
node. 

The authors expect that the aforementioned future improvements will increase the 
robustness of the simulation and increase InfoTagSim's value as a tool for the accurate 
analysis of new wireless sensor network designs that specialize in localization. 
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Collaborative Matrix Control, Monitoring and Management Systems for 
Infocyber Channels, Gates and Tracks 

John F. Halldane 

Environmental Systems Consultancy. USA 

Overview : 

CADRC presents a need for an intelligent internet  and alternatives for vertical stovepipe systems 
and horizontal coded data exchange protocols. A matrix management system of inline and 
crossline management intersects in nodes for monitoring and control. This was outlined in 2002 
for decentralising homeland security. Then we discussed "cues" for sensing un-usual activity in 
security contingency planning at those nodes in 2003.  Shells of security were identified in terms 
of the product, process or context being impaired, impeded or threatened. We now discuss the 
the issues and solutions in applying matrix systems in overlays for a responsive intelligent 
internet. 

Duplicate independent "channels" are needed for "intelligent infocyber" at specific nodes with 
independent sensing and protocols. This is for reasons of security, authorization, monitoring, 
automation, proprietary interest, equipment warranty, insurance, safety, fault detection, 
verification, confirmation, "truth" of infocyber, censorship, legal litigation, inbreeding and a 
delegation of responsibility for the systems to work. For this, channels must use separate "tracks" 
of duplicated overlays that "couple" at appropriate nodes. Channels may be in any mode 
including internet webs, e-mail, fax, voice over, and telephone, radio, gps, tv, cable, reports, 
public warning,... to verify infocyber activity. The nodes have "dedicated couplers" for sensing 
and observing specified cues in any form of appropriate coupling with "tracks".  This avoids the 
problems of exchange protocols and hardwiring. We should look beyond the internet alone 
towards independent interworking "collaborative channels" which can both verify and confirm 
the truths of infocyber.  In turn, "gates" at infocyber nodes form  collaborative matrix  control, 
monitoring and management systems. We introduce "psychophysical" and "cultural" protocol 
concepts for the hard, remote and perceptual exchange at gates. 
Examples are provided from experience in developing Automated Integrated Monitoring 
Systems, AIMS, for facility management. 

Protocol Issues and Infocyber Exchange : 

Protocols are the conventions governing the exchange of informatic and cybernetic flows or 
"infocyber". They are agreed ways and codes to communicate between authorized parties in 
secure connections in any mode for a very specific purpose. 

Experience with simultaneous automated control and monitoring of building services 
equipment in facilities management requires systems to be independently coupled. Let me 
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cite some examples which I believe will illustrate the same general issues for the infocyber 
universe. 

a) With an absorption chiller we wanted to stage the regenerator temperature to interface with 
solar collectors and diesel cogeneration. The chiller manufacturer agreed, but they would not 
provide the warranty because the automatic control for the the auxiliary equipment could 
override the chiller control which might compromise the efficiency of the manufacturer's 
components. The lesson; each manufacturer's equipment must stand alone and operated 
according to their specifications. 

b) Parallel wiring of  sensors between the automatic control system of a chiller and an 
automated energy monitoring system would avoid duplicating the sensors. This required sharing 
the manufacturer's proprietary protocol to exchange the sensor output. However, suddenly the 
manufacturer changed the protocol so we had no access to the infocyber. It became a legal 
proprietary issue because our monitoring could also trace the profile of equipment failure in 
evidence for the owner. Consequently we had to duplicate some 20 sensors on each chiller for 
our independent energy Automated Integrated Monitoring-Management System, AIMS,  for 
monitoring, control and management (Chiang and Kandiah 1999).  Control and monitoring 
systems must be independent in separate channels and never be coupled nor share 
exchange protocols. 

c) A building was remotely monitored realtime over a telephone line interface. In a 
demonstration I noted the chiller current was very erratic indicating it was failing. The plant 
engineer was telephoned to shut it down. This saved a quarter million in repairs which was 
greater than the cost of the monitoring equipment. A management "expert system" is needed in a 
parallel channel to independently scan for "un-usual" infocyber and to activate appropriate 
action automatically. 

d) We considered operating an oil refinery remotely in a foreign country over the internet. 
However, message stacking, busy connections, security issues, foreign protocols and uncertain 
link performance precluded that idea. With dedicated channels in other modes it might be 
possible, such as with cable, radio or satellite. 

e) Cast aluminium blades of a 40kW 1.5m dia axial exhaust fan broke after a week of use. A 
government lab misinterpretted xray tests suggesting poor casting by the manufacturer. 
Independently I had a bending test done on the blade which verified bending failure rather than 
casting. Also, in their factory I ran a fan under various asymmetrical load conditions, measured 
the air velocity vectors, current-voltage and more significantly traced the current fluctuations on 
an oscilloscope. The installation contractor had slung the fan too low under the beams which 
made the bends too sharp into the fan. This loaded the fan asymmetrically and subjected each 
blade to a 20c/s pulsing load equivalent to a metre high stack of A4 paper at the tip. Fatigue 
failure with this load is about a week for aluminium castings.  The sinusoidal current trace had a 
10% harmonic over it with a frequency corresponding to the number of blades; this I used to 
estimate the bending forces on the blades. It is important to verify and confirm fault sequence 
histories through a variety of independent channels. 

112 



 

 

 
  

f) A highbay, high intensity discharge HID lighting fixture caught fire and the installer replaced 
the whole installation to appease the client. To prevent further litigation I traced the fault to a 
capacitor and broke it apart for inspection. There were dry joints from poor soldering which 
would overheat the junction of the conductors and cause the fire. This is a component fault by a 
separate manufacturer. Now who is responsible? A component manufacturer has no idea how 
their component is to be used, a fixture designer has no control of the component reliability, the 
installer only has responsibility for it working safely, the insurance companies taking on the 
probable risks, an operator using the equipment inappropriately, an owner failing to observe 
maintenance and warranty provisions, a fire detection system, sprinkler activation,.. or do we 
blame the acts of God?  In this case a poorly manufactured component is a probable event for 
both component and fixture manufacturer and they should allow for this. The fire is also a 
predictable probable event in terms of the facility where the risks are covered by property 
insurance. In contingency planning our heuristic models depend on discovering chance sporadic 
events to prepare for the possible "what if" situations. In emergency planning our probability 
models predict probable events from known likely situations (Halldane 2002). It suggests that all 
parties share proportional responsibility for contingent events, but designated parties 
should share the delegated responsibilities for probable events. 

g) An hermetically sealed motor of a chiller compressor exploded in the plantroom of a 
Singapore mall. It happened a month after the warranty expiration in true Murphy law fashion. 
Moisture had entered the refrigerant which also cools the motor then shorted the electrical 
windings. Tests showed the shell tubes were pitted with corrosion. As a consultant I traced the 
fault sequence. As part of an energy conserving contract the chiller had been replaced with a 
seemingly more efficient American chiller at a discounted cost. Unfortunately it was oversized 
for the job and ran under partial load with poor performance. This ruptured the shaft seals to 
allow air moisture into the system. The paper cartridge moisture trap was supposed to be 
changed every six months but this was never done because the pipes were too difficult to 
uncouple for maintenance. So this broke the warranty for the chiller. The tube corrosion was 
likely from nickel impurities in the copper which is banned in the US. Manufacturers often dump 
their banned stock overseas in unsuspecting markets. The chiller performance never saved 
energy which invalidated the energy contract but the contract had no clause for failure nor to 
restore it to the original condition, so the owner still had to pay for repairs. Facility management 
is only responsible from when systems become operational and not for the design. What a mess 
of multiple party responsibility, litigation and a delegation of claims. However, the fault 
sequences were probable and predictable but simply not accepted by the parties. A lesson for us 
is that the vested interests of the parties involved must be identified and  independently 
monitored by a responsible embracing authority to plan-incorporate-finance-design-build-
operate-manage each project; a "pifdbom". This goes beyond the customary bounds of 
responsible management and ownership. 

Intelligence as Truth in a Thinking System : 

Intelligence can be considered as "truth" process to interpret meaningful infocyber, to "think" 
within certain situations, to learn a "culture", then to respond appropriately in civilized ways. It 
seems the internet is at a culture building stage with libraries of reposited infocyber in catalogues 
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of situations. There is a huge question of what the internet should learn and what to divulge, 
between certain parties, within specific products, processes or contexts? These are the broader 
issues of censorship and security. Even in lawful democratic societies the legal constraints need 
interpretation and are often ambiguous, contradictory or unknown. Also law is based on past 
precedent probable situations which makes it ineffectual and exceedingly slow in 
anticipating future contingent scenarios. Law is bound by the constitutions of a country, state 
and community for its authority. Our system models should anticipate the consequences of 
infocyber in behavioral actions and cognitive thinking. Those models should distinguish the 
truths of infocyber, be more heuristic, learn the cultural opportunities and constraints, then 
form channels for appropriate civil responses. 

The danger of these learning systems is "inbreeding" where detrimental legends and fallacies are 
perpetuated as a culture within the system. It is often a product of inline dominant single channel 
infocyber flow. We have this in our education system where teachers teach teachers to teach in 
order to perpetuate itself for its own sake. Thus the consequences of what is taught needs to 
be coupled to its infocyber so that it can be modified for the real professional world, then 
appropriately applied for the benefit of our communities. This is why I have an applied 
professional approach to teaching mathematics and physics rather than a traditional purely 
academic one. Societies, associations, institutions, clubs, religious groups, the law, ... thrive on 
their self-learning systems. Truths within those organizations become their beliefs. Problems 
arise when those beliefs are misapplied outside the products, processes and contexts of what they 
do. Truths of each infocyber channel should be independent yet accountable within the 
broader context of related channels they could be coupled to. 

Truth leads to its own consequence. Consequences can be observed, sensed and recognized as 
fact. So truth is a test or an evaluation of something to determine whether that something 
exists and performs as anticipated for its own good. In our case it is the usefulness of the 
combined infocyber, channels and parties involved. Does the use of such a system perform as 
intended for its benefit? Please note that we do not need a contrary argument such as untrue, 
fiction, false or failure since those mechanisms can lead to quite different consequences away 
from the truth we are testing. We should avoid circular logic, circumlocution or simply "beating 
about the bush". Perhaps the worst case is the null hypothesis in statistics where you disprove 
a thing is  by chance in order to accept a contrary alternative hypothesis as true. Then they go on 
to say the logic does not prove a causal relationship anyway!  It is far easier to reason in 
statistics that two things can be the same according to an agreed sameness criterion, so now 
we do not need to discuss different or alternative scenarios. (Halldane 1989) Also I dislike 
double negatives; for example in neurophysiology, what is "not uninhibited"? 

We can think of truth as a gradation in "shades of truth" from none, through a threshold to 
trueness as a self-evident observation of the consequences. This avoids semantic differentials 
with opposing antithetical true-false statements that psychologists like to use. Many questions do 
not have an opposite argument. So we could ask how much is the truthfulness in accordance with 
the facts and how reliable or conforming is the truth in a given circumstance. 
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To Verify and Confirm the Shades of Truth : 

Testing for truth may be by induction or deduction in a traditional logic of premise-argument-
conclusion. With induction we believe the conclusion is true by a reasonableness of its premise 
within the context of its conclusion. This leads to heuristic models for contingent operations and 
in scientific discovery. With deduction we accept the premise and believe the argument is true 
which then predicts a probable conclusion. This is the basis of all our predictive models in 
design. In turn the logic is used to both verify and confirm the truth of consequences. 

To verify a flow of infocyber we test the input-output with knowns to see if the product and 
processing is correct. Basically we verify a single channel is true by a deductive test within 
that system. We click on a website or link, the internet-computer deduces a result and up comes 
a page on the screen; the consequence is assumed to be true. Verification checks whether the 
operation works but not the meaning or content of that infocyber. 

To confirm a flow of infocyber we test the content for its meaningfulness as a product, then 
within its process and context. Fundamentally we confirm together with other related 
independent multiple channels that the consequence is true by inductive and or deductive 
tests coupled to  the original channel. This leads us to tracking "tracks" which are far more 
demanding and responsive. 

Responsive Thinking Systems : 

The recent (Dec 2004) tsunami in the Indian Ocean is an example of our desperate need to verify 
and confirm the shades of truth in a responsive thinking system. The cyber-data indicated a deep 
sea earthquake over 4.5 on the Richter Scale. Earthquake and sea wave info-data followed 
through various communication channels from Banda Aceh in northern Sumatra near the 
epicenter. About an hour later (450km,280mile) at Phuket in Thailand the tide receded followed 
by huge sea waves. Later there were news reports of devastation and survivor experiences from 
all around the coasts of the Indian Ocean. 

Tsunami are more common in the Pacific Ocean and locations in Japan are far more prepared 
with international warning systems, evacuation plans and in some cases wave walls. In verifying 
infocyber the question is whether the ocean floor movement will lead to a displacement 
sufficient to create the deep pressure wave and whether coastal tides will recede then build 
excessively in sufficient time for any appropriate response. Realtime cyber-data could be 
available from seismographs, deep sea pressure gages and tide level gages. But these would 
need to be linked in realtime channels to some "thinking center" to verify, confirm and 
respond accordingly. In confirming infocyber we need fast independent sightings of coastal 
quakes, excessive tide recessions and coastal wave formation. This has often been done through 
local telephone, radio stations, mobile TV and amateur "ham" radio communications. The most 
important point is the consequence of these truths. What happens when a tsunami of such 
speed, height and volume of water affects a coastal community. Communities must be prepared 
for probable emergencies and likely contingencies. They must know the local signs of trouble 
and take appropriate action. Now monsoons, typhoons, hurricanes, storms, flooding, tornadoes, 
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drought, fires,... are probable, predictable almost annual events. Yet communities rebuild in the 
same old way for the same devastating consequences. Insurance encourages this as their 
concept is only to reinstate rather than to improve (Halldane 2003,p33). 

Consequences need consideration as a continuum in time. The resulting havoc often suggests a 
redesign or elimination of system components. In a cyber world viruses lead to antiviruses and 
firewalls or to choose systems that are less vulnerable. Links with their exchange protocols, for 
instance, are very vulnerable so perhaps exchanges could be replaced with referals to uncouple 
the links. In the tsunami case I have planned and designed "freeway with town enterprises". Here 
the freeway is bunded to save the mangroves that protect the coastline, it avoids coastal flooding 
by the daily tides and now it may mitigate some of the wave damage (Halldane and Khan 2001). 
Sidesway design of buildings helps both in earthquake, wind and landslope design. We can 
economize our design by combining the consequences of various likely events. 

The "thinking" parts of our systems have often been in parallel independent people-thinking 
channels. If an automated system goes wrong then people are brought in to diagnose and correct 
the faults. We also have series dependent people-interactive channels highlighted in video games 
that anticipate or react to moves. There are smart expert systems  preprogramed to verify and 
react to infocyber. Our future intelligent internet needs also to confirm infocyber as part of the 
thinking process. To do this it must go outside of itself to other independent channels in order 
to confirm its truth. Now that is a real challenge especially for news channels with their 
duplicated links, inbred traditions, the on-the-scene correspondent, spontaneous opinions, and 
marketing hype. Generally the sides of issues are presented but rarely resolved, possibly because 
of the entertaining variety of consequences within such a diversity of contexts. So we would 
need to specify both consequence and context for our thinking intelligent channels to have 
truthful infocyber. 

Collaborative Matrix Control, Monitoring and Management : 
Gates and Tracks : Psychophysical and Cultural Protocols : 

Collaboration is the act of people with their systems working together for the benefit of the 
parties involved. The Internet is not owned, patented nor copywrited; so who is responsible for it 
working? Networking was created by the US military for their communications. It was then 
opened to universities and developed under the National Science Foundation who in 1995 
privatized it to create the World Wide Web, www, protocols. Voluntary groups of non-profit 
member based organizations such as the Internet Society, ISOC, and the International 
Corporation of Assigned Names and Numbers, ICANN, consolidated standards. The US Dept 
Commerce in 1998 recognized ICANN which led to Regional Internet Registries for domain 
names in the familiar .com .org .net  ... Public network access is now through Internet Service 
Providers, ISP, of private companies or government regulated monopolies in various countries. 
The internet can be in any mode from telephone, cable to radio in order to interface with 
connected computers which respond through a Transmission Control Protocol / Internet Protocol, 
TCP / IP, and File Transfer Protocol, FTP, Hyper Text Transfer Protocol, http, and Uniform 
Resource Locators, URL, all in open software. University networking is being preserved through 
Internet 2. 
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Security, censorship and personal information are key areas for concern. We have found that 
voluntary member organizations, such as in societies like the medical and engineering 
professions, do not police themselves well according to their ethics. It is an inbreeding 
problem where members are unwilling to sanction other members and their program sponsors. 
Identity theft, junk mail, spam, violent games and pornography are rampant. A Communications 
Decency Act 1996 and a Children's Protection Act 1998 failed to pass in the US because of 
constitutional "freedom" law. The Homeland Security Act 2002 allows the ISP to reveal 
subscriber information and trace e-mails to government agents. Already there are cases of ISP 
selling subscriber information to credit and marketing groups. A legal approach tends to be after-
the-fact, post-corrective and constraining for business. 

Governance is a government authorized management approach to control the networking of 
computer uses. Many liken this to censorship or big brother looking over your shoulder or an 
invasion of personal freedoms. Unfortunately most of our governance models are slow legalistic 
authoritarian bureaucratic inline management promulgated by lawyers. It is the vertical stovepipe 
system CADRC wants to avoid. 

Collaborative matrix approaches offer integrated combinations of "inline" organization 
with "crossline" project management principles intersecting in coupled nodes for infocyber 
control, monitoring and management. Issues and solutions are set out in the Management 
Chart (Halldane 2002). This is readily modified to a Lead Collaborative with specific 
Programs, possibly according the domains of use and levels of security, with authorized Nodes 
in specified coupled protocols. The objective of each nodal coupling would depend on its 
consequence in the control, monitoring and management of the systems involved. 

A Lead Collaborative may be through an international oversight commission with technology, 
country, provider and user representation and control. The goals would be to create and maintain 
an effective, secure working system within its authorized programs. There is an ethical 
responsibility for an intelligent internet to encourage truthful, wholesome infocyber by 
promulgating ethical standards and by monitoring the consequences. But an internet is only one 
part of a communication system and indeed we have found other independent channels are 
necessary to confirm truth. So our collaborative matrix needs to provide the product, process 
and context for assessing truth. A liberal legal approach favors an "anything goes", "caveat 
emptor", let the buyer beware attitude. Here the parties bear no responsibility unless they agree 
to a guarantee of performance in some warranty. Now a systems designer can only work from 
opportunities that can and should be done, rather than from the constraints of what could or 
should not be done. 

Gates are the type of coupling for Node Control. Hard coupled gates link dependent 
channels with shared protocol exchanges to replicate infocyber.  Remote gates  observe the 
physical channel activity in independent channels, which is characteristic of capacitively or 
inductively coupled detectors and remote measuring instruments. Perceptual gates rely on 
channels for people's sensory and cognitive observations, especially those of the consequences. 
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" Inline" Management of Conventional Organisations . . . . . 

A : Lead 
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Authorisation 

Working 

Divisions 
Departments 
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X : 

Issues : With "inline" the upper management executive  instigates contracts with other organisations and 
authorises actions in a top-down way.  At a working level within the divisions of those organisations there is a 
reiterative brainstorming for alternative solutions but they can not get their heads together because of the 
bottleneck of communications upline and over to the lead organisation. Final decisions should only go upline 
because upper management does not have the time, skills, nor resources at that level to coordinate an overflow of 
information needed in decision-making.   Further, at working levels ideas are changing from time to time which 
inline managers are unable to tolerate. 

" Crossline" Matrix Management for Programs and Projects . . . . . 
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1 q q q q 

2 q q 

3 q q 

4 q q 

Solutions: Matrix Program Management, authorised by upper management executives, identifies the 
interdisciplinary team to work with, the Nodal Managers in each organisation, arrangements for inhouse duties and 
time, contracts and allocation of resources by all parties.   Crossline Managers coordinate activity, brainstorm 
ideas, take initiative action, improvise where necessary, undertake investigations, testing,  feasibility analysis, 
report up their lines with  final decisions or recommendations for endorsement and record.  The Program and 
Nodal Management Team  must be competent, capable, enthusiastic,… acting with trusted authority from all the 
organisations involved. This way the lead organisation becomes an umbrella for program  managers with all the 
resources decentralised in an effective collaborative administrative matrix and communications network. 
From: Homeland security through a decentralised matrix management. John F. Halldane. 4th Annual ONR Workshop 
on Collaborative Design-Support Systems. Office of Naval Research. Virgina. Sept. 18-19, 2002 JFHalldane 1999, 2002 
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Matrix  for Collaborative Control, Monitoring and Management

 Collaborative Communications Servers
 
Collaborative
 

X:Collaborative


A : Lead

Y:Collaborative Z:Collaborative
Program Management 

Internet  Radio.,TV...  Press, Postal,..Parallel Management 
etc. etc. 

Channels for 

Servers 

Management ManagementManagementGate and Track 
inline inlineinlineControl 
Channel Control Channel ControlChannel Control 

A : Programs X : Nodes Y : Nodes Z : Nodes
 
Inhouse resources
 
Nodal resources
 

1 q q q qA1X A1Y A1Z 
q2 q A2X 

q3 q A3Z 
q4 q A4Y 

Security Shell Criteria. . . for protection and vulnerability 

Shell A Impaired Product : Irreversible damage . hazardous condition . 
destroyed . 

Shell B Impaired Process : Irreversible stoppage . vitals inactive . 
resources out . facility closure . 

Shell C Impaired Context : Irreversible damage to supporting context and 
collaboration . invasion . 

Shell D Impeded Product : Reversible damage . strikes . delays . 

Shell E Impeded Process : Reversible stoppage . breakdowns .   walkouts . 
sabotage . supply faults . bypass components . 

Shell F Impeded Context : Reversible damage to supporting context and 
collaboration . demonstrations . utility interruption 

Shell G Threatened Product Contingency to product impairment, impediment 
: boycott . weather conditions . 

Shell H Threatened Process Contingency to process impairment, impediment . 
: union dispute . sabotage . maintenance . safety . 

Shell I Threatened Context Contingency to context impairment, impediment 
: war . depression . 

Source:   John F Halldane  "Security Contingency Planning Matrix" 15th InterSymp 2003 p31. 
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Hard gates share and verify infocyber through exchange protocols. Remote  and perceptual gates 
are usually in different modes of communication from   that of an internet channel so they are 
valuable in confirming infocyber through the consequences of user activity. The lead 
collaboratives could be authorized to control these gates in order to detect un-usual activity 
of a channel and to respond appropriately according to the suggested Security Shell Criteria 
that threatens, impedes or impairs the product, process or context of the consequences. 

Tracks are independent channels for tracking infocyber in monitoring a product, process or 
context. An analogy is in tidal river channels with tracks beside and between those channels. A 
person walking a track may observe a saltwater backflow or bore and alert local officials by 
telephone of the un-usual phenomenon. Our lesson here is that observers must be aware and 
knowledgable of the un-usual cues in particular situations and are then capable of 
communicating those observations to modify the consequences. It brings us back to the "truth" 
and "culture" for intelligent thinking systems. Tracks also need to work through gates for nodal 
control. What are the protocols to do this? Hard and remote coupled gates have a variety of 
software for those shared protocol exchanges and are indeed the theme for this conference. 

However, a growing concern is the "psychophysical" exchange between non-physical 
cognitive thinking minds and their physical sensory behavioral environment in tracking 
infocyber. A previous paper (Ref#2) outlined the thresholds, performance, impedance and 
impairment of our perceptions in tracking un-usual sensory cues. Now I believe we need to work 
on the cognitive and behavioral consequences within acceptable cultural protocols for 
world wide communications. Such cultural protocols should use their diversity of expression 
rather be confined to some world standard... so long as those cultural protocols are compatible 
and collaborative. A matrix approach is a way to organise such a mission. 
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Abstract 

The subject of the paper is a new class of formal languages called standard knowledge languages 
(SK-languages) as a powerful and flexible tool for the realization of electronic business 
communication, in particular, for building contracts concluded by computer intelligent agents 
and representing contents of arbitrary e-negotiations.  The definition of SK-languages is a part of 
a mathematical model describing a system consisting of such 10 operations on structured 
meanings (SMs) of natural language texts (NL-texts) that, using  primitive conceptual items as 
"blocks", it is possible to build  SMs of, probably, arbitrary NL-texts. This means that a class of 
languages is determined being convenient for building semantic descriptions of arbitrary goods, 
services, and contracts. The principal advantages of SK-languages in comparison with Discourse 
Representation Theory, Theory of Conceptual Graphs, and Episodic Logic concern representing 
complicated goals and destinations of things, definitions of concepts, compound definitions of 
sets, and meanings of discourses with the references to the meaning of a phrase or larger part of 
discourse. 

Keywords 

e-commerce; electronic contracting; e-negotiations; natural language processing; semantic 
representation; standard K-languages 

Introduction 

During last years, the field of electronic commerce (e-commerce) has been attracting the 
attention of many researchers in the world. It is underlined in (Hasselbring and Weigand 2001) 
that if the messages in the filed of e-commerce are to be processed automatically, the meaning 
must be formalized This opinion coincides with the idea stated in the paper (Kimbrough and 
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Moore 1997) about the necessity off developing logical-semantic foundations of constructing 
formal languages for business communication. 

In the field of e-commerce two interrelated subfields of researches have emerged called e-
negotiations and electronic contracting. The collection of central problems faced by the 
researchers in these subfields includes the creation of formal languages for constructing records 
of commercial e-negotiations carried out by computer intelligent agents and forming contracts 
concluded in the course of such negotiations. These problems can be considered as important 
particular cases of the general problem of constructing formal languages for business 
communication. 

The analysis shows that the records of commercial negotiations and contracts potentially can be 
formed with the help of expressive means of natural language (NL) used for the construction of 
arbitrary NL-texts pertaining to medicine, technology, law, etc. 

In particular, the texts from such documents may include: (a) questions with interrogative words; 
(b) questions with the answer "Yes" or No"; (c) infinitives with dependent words expressing 
goals ("to sell 30 boxes with apples") or destinations of things; (d) constructions formed out of 
infinitives with dependent words by means of the logical connectives "and", "or", "not" and 
expressing compound designations of goals or destinations of things; 
(e) complicated designations of sets ("a consignment consisting of 50 boxes with oranges"); 
(f) fragments where the logical connectives "and", "or" join not the designations of assertions but 
the designations of objects ("the product A is distributed by the firms B1, B2, …, BN"); 
(g) explanations of the terms being unknown to an applied intelligent system (because the firms 
invent and produce new products); 
(h) fragments containing the references to the meanings of phrases or larger fragments of a 
discourse ("this proposal", "that order", etc.);  (i) the designations of the functions whose 
arguments and/or values may be the sets of objects ("the staff of the firm A", "the suppliers of 
the firm A", "the number of the suppliers of the firm A"). 

It follows from the above said that the problem is complicated, and it is necessary to use for its 
solution the most broadly applicable theories (ideally, universal) of representing meanings of 
NL-texts provided by mathematical linguistics and mathematical computer science. 

The papers (Fomichov 1996, 2002a, 2002b) describe two versions of the basic mathematical 
model of the theory of K-calculuses and K-languages (the KCL-theory); it considerably 
expanded of the stock of formal tools destined for representing in a formal way the meanings (or 
contents, or semantic structure) of NL-texts. This basic model includes the definition of a new 
class of formal languages called standard knowledge languages (standard K-languages, SK-
languages). A mathematical model was created describing a system of 10 partial operations on 
structured meanings (SMs) of NL-texts and, in particular, determining the class of  SK-
languages. The descriptions of the main features of this model can be found in (Fomichov 2002c, 
2004). 
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The following hypothesis was put forward: using primitive conceptual items as "blocks", we are 
able to build  SMs of arbitrary NL-texts (including articles, textbooks, etc.) and arbitrary pieces 
of knowledge about the world by means of these 10 partial operations. The principal advantages 
of SK-languages in comparison with Discourse Representation Theory, Theory of Conceptual 
Graphs, and Episodic Logic concern representing complicated goals and destinations of things, 
definitions of concepts, compound definitions of sets, and meanings of discourses with the 
references to the meaning of a phrase or larger part of discourse. 

This paper continues the line of the papers (Fomichov 1998, 2000) and, in particular, states in 
more details the main ideas of (Fomichov 2005). The goal is to ground the broad prospects of 
using the theory of SK-languages for building records of commercial e-negotiations in arbitrary 
application domains carried out by computer intelligent agents and for forming the contracts 
concluded in the course of such negotiations. All examples considered in this paper use only the 
expressive power of restricted SK-languages, completely defined in (Fomichov 1996). 

Main Properties of SK-Languages Being Useful for Forming Contracts and 
Records of e-Negotiations 

The analysis shows that the SK-languages posses the expressive possibilities being necessary and 
sufficient for representing in a formal way the contents of contracts and of the records of 
commercial negotiations. 

In order to illustrate an important part of such possibilities, let’s consider a multi-partner scenario 
of the interaction of business partners in the course of handling a car damage claim by an 
insurance company (called AGFIL). The names of the involved parties are Europ Assist, Lee 
Consulting Services (Lee C.S.), Garages, and Assessors. Europ Assist offers a 24-hour 
emergency call answering service to the policyholders. Lee C.S. coordinates and manages the 
operation of the emergency service on a day-to-day level on behalf of AGFIL. Garages are 
responsible for car repair. Assessors conduct the physical inspections of damaged vehicles and 
agree repair upon figures with the garages (Xu and Jeusfeld 2003). 

The process of a car insurance case can be described as follows. The policyholder phones Europ 
Assist using a free-phone number to notify a new claim. Europ Assist will register the 
information, suggest an appropriate garage, and notify AGFIL which will check whether the 
policy is valid and covers this claim. After AGFIL receives this claim, AGFIL sends the claims 
details to Lee C.S. AGFIL will send a letter to the policyholder for a completed claim form. Lee 
C.S. will agree upon repair costs if an assessor is not required for small damages, otherwise an 
assessor will be assigned. The assessor will check the damaged vehicle and agree upon repair 
costs with the garage. After receiving an agreement of repairing car from Lee C.S., the garage 
will then commence repairs. After finishing repairs, the garage will issue an invoice to the Lee 
C.S., which will check the invoice against the original estimate. Lee C.S. returns all invoices to 
AGFIL. This firm process the payment. In the whole process, if the claim is found invalid, all 
contractual parties will be contacted and the process will be stopped. 
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This scenario provides the possibility to illustrate some properties of SK-languages making them
 
a convenient tool for formally describing contracts.
 

Property 1. The possibility to build compound designations of concepts.
 
Example. The concept “a repair invoice” can be represented by the string invoice * (Theme,
 
certn repair) of some SK-language, where certn is the informational item corresponding to the
 
meaning of the word “certain”.
 

Property 2. The possibility to build compound designations of things and situations.
 
Example. A concrete repair invoice and a concrete firm called “Europ Assist” can be
 
represented by the strings of some SK-language
 

certn invoice * (Theme, certn repair : e1) : x1, 
certn firm1 * (Name1, “Europ Assist”) : x3, 

where the strings e1, x1, x3 are to be considered as the unique marks of a concrete event, 
concrete invoice, and concrete firm respectively. 

Property 3. The possibility to build compound designations of goals. 
Example. Let  E1 = “The policyholder phones Europ Assist to inform about a car damage”. The 
text E1 mentions the following entities: a policyholder, the concrete firm called “Europ Assist”, a 
concrete car, and a concrete event of the kind “a car damage”. Then on the first step of building a 
K-representation (KR) of E1, i.e. a semantic representation being an expression of some SK-
language, the following K-strings will be constructed denoting these entities: 

certn person * (Hold1, certn polis1 : x1) : x2, 
certn firm1 * (Name1, “Europ Assist”) : x3, 

certn car1: x4, certn damage1 * (Object1, certn car1: x4 ) :e2 . 

Then E1 may have the following K-representation: 

Situation(e1, phone-communication * (Agent1, certn person * (Hold1, certn polis1 : x1) : 
x2)(Object2, certn firm1 * (Name1, “Europ Assist”) : x3)(Purpose, Inform-transfer * (Them1, 
certn damage1 * (Object1, certn car1: x4 ) :e2))). 

Property 4. The existence of the means allowing for representing in a compact way the time and 
causative relations between the situations. 

Property 5.  The possibility to construct compact semantic representations of such fragments of 
sentences which are obtained by means of joining the designations of things, events, concepts or 
goals with the help of logical connectives AND, OR. 
Example. Let E2 = “After receiving a repair invoice from the firm “Lee C.S.” and a claim from 
the policyholder, the company “AGFIL” pays the car repair to the garage”. The text E2 mentions 
two events (dynamic situations) characterized by semantic items receiving1 and payment1. Then 
a K-representation of E2 can be the expression 
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(Situation (e1, (receiving1 * (Agent2, certn firm1* (Name1, “AFGIL”) : x1)(Object1, certn 
invoice * (Theme, certn repair : e2) : x2)(Sender1, certn firm1* (Name1, “Lee C.S.”) : x3) Ÿ 
receiving1 * (Agent2, x1)(Object1, certn claim1 : x4)  (Sender1, certn person * (Hold1, certn 
policy1 : x5) : x6))) Ÿ Situation (e2, (payment1* (Agent2,   x1)(Addressee1, certn garage : 
x7)(Sum, Cost (e2))) Ÿ  Before (e1, e2)) . 

Property 6. The existence of the formal means allowing for   representing structured meanings
 
of the discourses with the references to the meanings of sentences and larger fragments of the
 
texts.
 
Example. Let E3 = “The firm “Europ Assist” provides a policyholder with a telephone service;
 
in particular, assigns a garage for repair and informs the company “AGFIL” about a claim of a
 
policyholder. Then E3 may have the following KR:
 

(Situation (e1, service1 * (Agent2, certn firm1* (Name1, “Europ Assist”) : x1)(Instrument, certn 
telephone : x2)( Object1, arbitrary person * (Hold1, certn policy1: x3) : x4) : P1 Ÿ 
Concretization (P1, ((Situation (e2, assigning1 * (Agent2,  x1)( Addressee1,  x4) )( )( Object3, 
certn garage * (Destination1, repair) : x5)) Ÿ Situation (e3, information-transfer * (Agent2, 
x1)(Addressee1, certn firm1* (Name1, “AFGIL”) : x6)(Content1, certn claim1 * (Authors,  x4) : 
x7) )))) . 

The variable P1 in the constructed formula is a mark of the semantic representation (SR) of the 
sentence S1 = “The firm “Europ Assist” provides a telephone service to a policyholder”. In the 
second part of the discourse E3 this mark is used for representing in a compact way the 
references to the meaning of the sentence S1. 

Property 7. The possibility to formally represent the meanings of contractual obligations 
depending on conditions. 
Example. Let E4 = “ The firm “Lee C.S.” assigns an expert for investigating a car during 41 
hours after receiving a claim about a car damage if the repair cost doesn’t exceed 500 USD”. The 
a KR of the text E4 can be the expression 

Implies(_ Greater1 (Cost1 (certn repair1 *  (Object1, certn car  : x1) :  e1), 500/USD ) , 
(Situation (e2, assigning1 * (Agent2, certn firm1* (Name1, “Lee C.S.”) : x2)(Person1,  certn 
expert : x3)(Goal1, certn investigation1 * (Object1, x1) : e3)(Moment, t1)) Ÿ _ Greater1 
(Difference (t1, t0), 41/hour)) Ÿ Situation (e4, receiving1 * (Agent2,  x2)( Object1, certn claim1 
* (Theme, certn damage1 * (Object1, x1) : e5))(Time, t0)))) . 

Going beyond the scope of the scenario of business interaction discussed above, let’s formulate 
two additional important properties of SK-languages. 

Property 8. The existence of formal means allowing for constructing compound designations of 
sets as components of semantic representations of NL-texts being records of negotiations or 
contracts. 
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Example 1. The set consisting of 12 single rooms in the three-star hotels of Vienna may have a 
K-representation of the form 

certn set * (Number, 12) (Qualitative-composition, room * (Kind1, 
single)(Location, any hotel * (Kind2, three-star)(Loc, Vienna))) . 

Example 2. We can designate a concrete planned series of 5 consignments, each consisting of 50 
tea services No. 48 and 32 dinner services No. 27, as follows: 

certn set * (Quantity, 5)(Compos1, consignment * (Compos2, (certn set * (Quantity, 50) 
(Compos1, service1 * (Kind, tea)(No, 48)) Ÿ certn: set * (Quantity, 32)(Compos1, 

service1 * (Kind, dinner)(No, 27))))) : S1 . 
Here S1 is the mark of the planned series of 5 consignments. 

Property 9. The possibility to build object-oriented semantic representations of the records of 
negotiations or contracts, i.e. the expressions of the form 

certn inform-object * (Kind1, concept)(Content1, cont)(r1 , u1 )…(rn , un) , 

where concept is the designation of the notion “negotiation record” or “contract”, cont is a K-
representation of a document, r1 , ..., rn are the designations of the external characteristics of a 
document (expressing its metadata, for instance, the data about the authors, date, language, etc.), 
and u1, ..., un are the strings interpreted as the designations of the data associated with a 
document. 

The additional useful properties of SK-languages from the standpoint of building semantic 
representations (SRs) of contracts and records of negotiations are the possibilities (a) to 
explicitly indicate thematic roles (or conceptual cases, or semantic cases) in the structure of SRs 
of NL-texts, (b) to reflect the meanings of the phrases with direct and indirect speech, with the 
word “a concept”, (c) to consider the functions with the arguments and/or values being the sets 
of objects or concepts (Suppliers, Staff, etc.). 

Conclusions 

The author of this paper carried out a comparative analysis of the expressive possibilities of SK-
languages and of the natural language phenomena reflecting in the structure of commercial 
contracts and the records of negotiations. A number of the results of this analysis is set forth 
above. The fulfilled analysis allows for formulating the assumption that the expressive 
possibilities of SK-languages are sufficient for building with their help the formal representations 
of contracts and records of commercial negotiations. 

During last decade, the most popular approaches to building formal representations of the 
meanings of NL-texts have been Discourse Representation Theory (Kamp and Reyle 1996); 
Theory of Conceptual Graphs, represented, in particular, in (Sowa 1999), and Episodic Logic 
(Hwang and  Schubert 1993; Schubert   2000). In fact, Discourse Representation Theory and 
Theory of Conceptual Graphs are oriented at describing the semantic structure of only sentences 
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and short simple discourses. Episodic Logic studies the structure of only a part of discourses, 
more exactly, of discourses where the time and causative relationships between the situations 
(called episodes) are realized. 

The authors of Discourse Representation Theory, Theory of Conceptual Graphs, and Episodic 
Logic don’t pose the problem of formally representing the meanings of arbitrary texts pertaining 
to arbitrary fields of human professional activity: medicine, technology, business, etc. The reason 
is that, in particular, the expressive possibilities of these theoretical approaches are restricted 
from the standpoint of modeling the semantic structure of NL-texts of the kinds (a) – (i) listed 
above in the section “Introduction”. 

On the contrary, the definition of the class of SK-languages became an answer to the following 
question: how it would be possible to describe in a mathematical way a system of operations on 
conceptual structures allowing for building (after a finite number of steps) semantic 
representations of arbitrarily complicated sentences and discourses from arbitrary application 
domains, starting from primary informational items. 

Thus, the theory of SK-languages opens new prospects of building formal representations of 
contracts and records of commercial negotiations carried out by computer intelligent agents. 
Besides, it follows from the fulfilled study that SK-languages provide a unique spectrum of 
possibilities for representing the results of semantic-syntactic analysis by linguistic processors of 
the discourses being contracts or the records of commercial negotiations. 
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