
Collaborative Agent Design Research Center, Cal Poly, San Luis Obispo (CA): ONR Workshop (April 1999)

Sponsored by the Office of Naval Research (ONR)

ONR Decision-Support Workshop Series

A Decision-Making Tools Workshop

hosted by the

Collaborative Agent Design Research Center (CADRC)

Cal Poly State University, San Luis Obispo, CA

in conjunction with

CDM Technologies, Inc.

San Luis Obispo, CA

Proceedings of Workshop held on April 20-22, 1999

at the

Embassy Suites Hotel

San Luis Obispo, CA

August, 1999

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Foreword

The Decision-Making Tools Workshop had its genesis in a series of discussions
between myself and Profs. J. Pohl and A. Chapman of the CAD Research Center at
Cal Poly. Subsequently, Col Anthony Wood, USMC (ret.) joined us, playing a major
role as dynamic organizer and speaker. His efforts led to a significant scientific event.

The rationale of the Workshop rests on some very simple observations. It is well
known that every situation encountered by individuals and organizations demands an
appropriate response. The choice of such a response from among a multitude of
options is the decision-making process. Simple situations that give rise to a small
number of options allow the decision maker to decide on a course of action without
great effort. This state of affairs changes dramatically when the situations are complex
and involve a large number of factors. In this case, an extensive field of options is
engendered that makes it impossible for the human decision maker to explore (espe
cially in real time), without the proper support tools. To this, one should add that
each decision option has an associated cost (e.g., time, money, human and other
assets) that without support becomes difficult, if not impossible, to determine.

These considerations and an apparent dearth of applicable support tools led us to the
idea of convening a workshop in which active developers and proponents of such tools
will present their approaches to an audience of potential users.

In view of the involvement of the CAD Research Center in developing and applying
very successfully decision-making support tools in various military and civilian
projects, including several funded by the ONR Logistics Program, it seemed both
logical and beneficial to hold this workshop at Cal Poly. It is our intention to convene
such workshops in the future and also enlarge both the number of presenters and the
participating audience.

In conclusion, it is a pleasure to thank, on behalf of ONR, our hosts, the distin
guished speakers and demonstrators, and the attendees who, through their incisive
questions, contributed greatly to the success of the Workshop.

Phillip B. Abraham
Logistics Program Officer
Office of Naval Research

August 1999

i

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

ii

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Table of Contents

Foreword (Dr. Phillip Abraham) .. i

A Personal Perspective on Decision Makers and Their

The Components of the “Decision Industry”

Table of Contents... iii

A Decision-Making Tools Workshop..vii

About the Speakers ...xi

Decisions (Vadm (ret.) Jerry Tuttle) .. 1

(Col (ret.) Anthony Wood)... 9

Global Trends and Their Implications .. 10

Decision Making ... 12

The Decision Process .. 14

The Role of Decision Support .. 15

Conclusion .. 19

Collaborative Decision-Support and the Human-Machine

Relationship (Dr. Jens Pohl) ...21

Some Underlying Human Realities. ... 21

The Increasing Complexity of Problems in a Global Community. 22

The Rationalistic Problem Solving Tradition. ... 23

Decision Making in Complex Problem Situations. 25

The Critical Importance of Information Representation in the Computer. .. 28

The Limited Role of Visualization. ... 30

The Complementary Role of Human Intuition. ... 31

The Human-Computer Partnership ... 32

Multi-Agent Collaborative Decision-Support Systems 35

Conclusion .. 40

References ... 43

Distributed Intelligent Agents (Dr. Katia Sycara et al.) 47

Introduction .. 47

Desirable Agent Characteristics .. 50

Distributed Intelligent Agents in Information Processing and Problem

Solving .. 50

Agent Types .. 52

Agent Organization and Coordination ... 54

iii

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Agent Engineering: How To Structure An Agent? 57

Application Domains .. 60

Everyday Organizational Decision Making .. 60

An Extended Example: The Visitor Hosting Task 60

Financial Portfolio Management ... 64

Conclusions ... 67

Acknowledgements ... 69

References ... 69

Anticipation, Delegation, and Demonstration: Why Talking to

Agents is Hard (Dr. Katia Sycara et al.) ..73

Introduction .. 73

A Cybernetic Model .. 74

Desiderata for Human Agent Interaction ... 75

The Tandem simulation .. 76

Trust, Error, and Uncertainty .. 78

Standalone TANDEM Experiment .. 79

Displays ... 79

Method .. 80

Results ... 80

Supporting Individuals vs. Teams .. 81

Method .. 83

Results ... 84

MokSAF Experiment ... 86

The Planning Environment: MokSAF ... 86

MokSAF Agents ... 88

Method .. 88

Results ... 89

InfoWrapper.. 92

References ... 93

The Combat Decision Range: Multimedia Training in

Decisionmaking under Stress (Francis J. West)95

How to Identify Effective Decision Makers.. 95

Practicing Decision Making .. 97

The Combat Decision Range .. 98

Using Guidelines to Constrain Interactive Case-Based HTN

Planning (Dr. David Aha et al.) .. 103

Introduction .. 103

Planning Noncombatant Evacuation Operations .. 104

Knowledge Representation .. 105

iv

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

HICAP: An Interactive Case-Based Planner.. 106

Hierarchical Task Editor ... 107

Conversational Task Decomposer ... 108

Example: NEO Planning .. 108

The Case-Based Planning Cycle in HICAP... 109

Case Retrieval .. 109

Case Revision .. 110

Case Retention .. 111

Empirical Validation ... 111

The ModSAF Simulation System... 112

Experimental Setup ... 113

Alternative Planning Strategies ... 114

Results ... 114

Related Research ... 115

Conclusion and Future Work .. 115

Acknowledgements ... 116

References ... 116

Towards an Effective Information Sharing System:

Shared Net (Dr. Thomas McVittie) .. 119

Introduction .. 119

Models of Sharing Information .. 120

Message Passing Systems .. 121

Object Sharing Systems .. 123

IMMACCS .. 126

Overview of the Shared Net .. 129

Architecture ... 130

A Subscription Example.. 132

Continuing Work .. 135

Conclusion .. 136

Acknowledgements ... 137

References ... 137

SPOOK: A System for Probabilistic Object-Oriented

Knowledge Representation (Dr. Daphne Koller et al.) 139

Introduction .. 139

The SPOOK Language .. 141

Classes and Instances .. 142

Multi-Valued Attributes and Structural Uncertainty 142

Modeling the Battlespace Domain .. 144

v

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Inference.. 147

Basic Algorithm .. 149

Dealing with Instances .. 152

Multi-Valued Attributes and Structural Uncertainty 152

Experimental Results .. 154

Discussion ... 155

Acknowledgements ... 156

References ... 157

vi

A Decision-Making Tools Workshop

April 20–22, 1999

The Office of Naval Research
and the CAD Research Center,
California Polytechnic State University,
San Luis Obispo

On behalf of the Office of Naval Research, Washington, D.C., and the CAD Research Center (CADRC),
California Polytechnic State University, San Luis Obispo, Welcome! While “Decision Support” emerges
as a mainstream direction for research and development, we hope this conference represents the first
in a series of annual events here in San Luis Obispo.

I REGISTRATION

The Conference Registration Desk is located in the main lobby of the Embassy Suites Hotel. The
Registration Desk is open from 7:30 AM until 5:00 PM on the 20th of April, and again on the 21st from
7:30 AM until noon. If you are unable to register during these hours, please see Colonel Anthony Wood
or Professor Art Chapman of the CADRC, and they will assist you. Your registration information is the
basis for the post-conference roster of attendees that will be mailed to all participants as a part of the
formal Report of Proceedings.

II ACTIVITIES AND PRESENTATIONS

All formal presentations and application “round-robins” are designed with time for questions. As the
schedule in Section V indicates, a round-robin composed of three related events is scheduled for the
afternoons of the 20th and 21st. In each case, we will be divided into small groups to allow for greater
discussion and participation. You will receive a color code on your badge at registration indicating
which group you should join for the afternoon portions of the schedule. Please observe these codes, so
groups remain roughly equal in size.

III MEALS & SNACKS

Breakfast is an individual matter. Guests staying at the Embassy Suites have a complimentary breakfast
included in their room rate. Coffee and rolls will be served outside the plenary session each morning
during scheduled breaks.

Luncheons each day are provided at no cost as a formal part of the conference and will be accompanied
by formal presentations. Please make every effort to attend these sessions.

Like breakfast, dinners are an individual matter. The hotel has a fine restaurant, and the City of San
Luis Obispo boasts a wide selection of fine dining opportunities. Please consult the hotel and the city
map included in your welcome packet to locate these establishments.

CAD Research Center, Cal Poly
San Luis Obispo, CA 93407

www.cadrc.calpoly.edu

vii

IV DOCUMENTATION

Formal versions of all presentations will be included in the post conference Report of Proceedings.
Speakers are reminded of the requirement to submit these as soon as possible. Please submit
electronically to Ms. Jan Barrett by email at jbarrett@cdmtech.com. The Report of Proceedings, including
short biographies for all speakers, will be mailed within 30 days. Presentations not received by May 5th
cannot be included.

V CONFERENCE SCHEDULE

Tuesday, April 20: “Collaborative Decision Support Today”

TIME ACTIVITY LOCATION

8:00–8:30 “Introduction and Welcome,” Dr. Philip Abraham,
Office of Naval Research.

San Luis Obispo
Room North

8:40–9:30 “A Personal Perspective on Decision Makers and
Their Decisions,” Vadm (ret.) Jerry Tuttle, ManTech
International Corporation.

San Luis Obispo
Room North

9:40–10:30 “The Decision Industry: Makers, Processes,
Support, and Communication Links,” Col (ret.)
Anthony A. Wood, Cal Poly CADRC.

San Luis Obispo
Room North

10:40–11:30 “Collaborative Decision Support and the
Man-Machine Relationship,” Dr. Jens Pohl,
Cal Poly CADRC.

San Luis Obispo
Room North

12:00 Lunch:
“The Technical Horizon,” Radm (ret.)
L. S. Kollmorgen.

Atrium

1:30–2:30 Round Robin Cycle 1: A series of applications and
demonstrations focusing on transforming data to provide
information and implications using collaborative decision-
support tool kits.

Group Red: ICODES: Mr. Steve Goodman, MTMC
(ICODES PM), with Mr. Fred Abler, Mr. Matt Parrott,
and Mr. Nick Kephalos, Cal Poly CADRC. The
 Integrated Computerized Deployment System
provides a set of collaborative decision-support
tools to assist complex stow planning in the
maritime industry.

Edna East

Group Blue: IMMACCS: LtCol David Durham, C4I
Officer in Charge, ECOC, MCWL; Mr. Mark Porczak,
Mr. Kym Pohl, and Mr. Russ Leighton, Cal Poly
CADRC. The experimental Integrated Marine Multi-
Agent Command and Control System provides
collaborative decision support to the dynamic urban
combat environment.

Edna West

viii

TIME ACTIVITY LOCATION

Tuesday, April 20: Continued

TIME ACTIVITY LOCATION

Group Green: CIAT: Mr. Al Antelman, NFESC Del Monte
(CIAT PM) with Mr. Jonathan Lee and Mr. Mike
Zang, Cal Poly CADRC. The Collaborative
Infrastructure Assessment Tool provides
collaborative decision support for waterfront
services and to future planning at the U.S. Naval
Station, San Diego.

2:40–3:30 Round Robin Cycle 2:
Group Red: IMMACCS. Edna West
Group Blue: CIAT. Del Monte
Group Green: ICODES. Edna East

3:30–3:45 Break.

3:45–4:45 Round Robin Cycle 3:
Group Red: CIAT. Del Monte
Group Blue: ICODES. Edna East
Group Green: IMMACCS. Edna West

Wednesday, April 21: “Decision Making Under Stress”
TIME ACTIVITY LOCATION

8:30–9:45 “Decision Making in Practice,” Dr. Gary Klein,
Chairman, Klein Associates.

Edna Room

9:45–10:00 Break.

10:00–11:00 “Facing Uncertainty,” LtGen (ret.) Paul Van Riper,
former Commanding General of the USMC Combat
Development Command.

Edna Room

11:10–12:00 “Intelligent Agents Infrastructure for Information
Gathering and Decision Support in an Open
Environment,” Dr. Katia Sycara, Carnegie Mellon
University.

Edna Room

12:00 Lunch:
“Emerging Decision-Support Requirements in
the USAF,” Mr. Eric Werkowitz, the USAF Command
and Control Battle Lab.

Atrium

1:30–2:30 Round Robin Cycle 1: A series of applications and
presentations highlighting the use of decision tools.

Group Red: “The Combat Decision Range,”
MajGen (ret.) Ord Steele, former Commanding
General of the 2d Marine Division.

Edna East

ix

Wednesday, April 21: Continued

TIME ACTIVITY LOCATION

Group Blue: “Conversational Case-Based Plan Edna West
Authoring for Interactive Decision Support,”
Dr. David Aha, Naval Research Laboratory.

Group Green: “A Case Study,” Del Monte
Dr. Gary Klein, Chairman, Klein Associates.

2:40–3:30 Round Robin Cycle 2:

Group Red: Dr. David Aha, Naval Research Edna West
Laboratory.

Group Blue: Dr. Gary Klein, Klein Associates. Del Monte

Group Green: MajGen (ret.) Ord Steele, former Edna East
Commanding General of the 2d Marine Division.

3:30–3:45 Break.

3:45–4:45 Round Robin Cycle 3:

Group Red: Dr. Gary Klein, Klein Associates. Del Monte

Group Blue: MajGen (ret.) Ord Steele, former Edna East
Commanding General of the 2d Marine Division.

Group Green: Dr. David Aha, Naval Research Edna West
Laboratory.

5:00–7:00 Workshop Reception. Atrium

Thursday, April 22: “Communication and Data Feeds”
TIME ACTIVITY LOCATION

8:00–8:30 “The Shared Net,” Dr. Thomas McVittie, NASA
Jet Propulsion Laboratory.

San Luis Obispo
Room North

8:40-9:30 “Information Assurance,” Ms. Kathy McCollum,
Defense Advanced Research Project Agency, Program
Manager, Cyber Command and Control Program.

San Luis Obispo
Room North

9:30–9:45 Break.

9:45–11:00 “Probabilistic Models for Decision Making,”
Prof. Daphne Koller, Stanford University.

San Luis Obispo
Room North

11:15 Concluding Luncheon. Atrium

x

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Dr. David Aha, Naval Research Laboratory

David W. Aha (UCI, 1990) leads research projects
on machine learning and case-based reasoning at
NCARAI/NRL with an emphasis on developing
decision-support tools. The focus of this presenta
tion will concern an ONR 6.2 project for the C2 &
Combat Systems Program. He serves as an Editor
for Machine Learning, guest-edited the first
special issue/book on Lazy Learning, and is a
member of Inference Corporation’s Technical
Advisory Board and the AI Research in Environ
mental Science committee. He has (co-)chaired
several workshops on machine learning and case-
based reasoning, and frequently serves on program
committees related to these areas. His current
interests include: interactive case-based planning,
case-based reasoning for knowledge management
applications, and the development of more useful
lessons learned systems.

Dr. Gary Klein, Chairman, Klein Associates

Gary Klein, Ph.D. is Chairman and Chief
Scientist of Klein Associates. He has performed
research on naturalistic decision making in a wide
variety of task domains and settings including:
firefighting, aviation, command and control,
market research, and software troubleshooting.
Based on these and related projects, he has
developed significant new models of proficient
decision making. His research interests include the
study of individual and team decision making
under conditions of stress, time pressure, and
uncertainty. Dr. Klein has furthered the develop
ment and application of a decision-centered
approach to system design and training programs.
He has edited two books on naturalistic decision
making and authored Sources of Power: How People
Make Decisions (1998, MIT Press). Currently, he is
extending the naturalistic decision making
framework to cover planning and problem solving.
He received his Ph.D. in Experimental Psychology
from the University of Pittsburgh in 1969.

Dr. Daphne Koller, Stanford University

Daphne Koller received her Ph.D. from Stanford
University in 1994. After a two-year postdoc at

About the Speakers

Berkeley, she returned to Stanford, where she is
now an Assistant Professor in the Computer
Science Department. She has a broad range of
interests: artificial intelligence, economics, and
theoretical computer science. Her main research
interest is in creating large-scale systems that
reason and act under uncertainty. The theme
underlying her work is the integration of ideas
from decision theory and economics into these
systems. This task raises the need for compact
and natural knowledge representation schemes
and efficient inference and learning algorithms
that utilize these schemes. Daphne Koller is the
author of over 50 refereed publications, which
have appeared in AI, theoretical computer
science, and economics venues. She has served on
numerous program committees, on the editorial
board of the Journal of Artificial Intelligence
Research, and on the editorial board of the
Machine Learning Journal. She was awarded the
Arthur Samuel Thesis Award in 1994, the Sloan
Foundation Faculty Fellowship in 1996, the
Stanford University Terman Award in 1998, and
the ONR Young Investigator Award in 1999.

Radm (ret.) Leland S. Kollmorgen

Rear Admiral Leland S. Kollmorgen (“Lee”) was
born May 20, 1927 in Los Angeles, CA. He
graduated from the U.S. Naval Academy in 1951.
He was awarded a B.S. in Aeronautical Engineer
ing from the U.S. Naval Postgraduate School in
1960, and in 1966, he earned a M.S. in Interna
tional Affairs from George Washington University.
He continued his studies in Technology Assess
ment from 1971-1972.

Between his various scholarly endeavors, he was
given various shipboard assignments such as
Attack Squadron Pilot and Heavy Photographic
Squadron Pilot, which included tours in Laos and
Vietnam. From 1966 to 1971, he was Staff,
Commander Fleet Air Whidbey, Whidbey
Island, Washington. From 1971 to 1974,
Kollmorgen was assigned to the Office of the
Chief of Naval Operations as the Assistant to
DCNO (AIR) for Aviation R&D and Nuclear
Matters, and then later as the Special Assistant
for Acquisition to Director, Navy Program

xi

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Planning. In 1974, he was reassigned to NAS
Cecil Field, Jacksonville, Florida as Commanding
Officer. In 1975, he was again reassigned to the
Office of the President of the United States as
Military Assistant to the President. Following his
position as Military Assistant to the President, he
was reassigned to the Office of the Secretary of
Defense as the Assistant Director, Test and
Evaluation. In 1978, Kollmorgen was assigned to
the Office of Chief of Naval Operations as the
Director, Systems Analysis Division.

From 1981 to 1983, he served in the Office of
Naval Research; Headquarters, Naval Material
Command. His positions here included: Chief of
Naval Research, Chief of Naval Development,
and Deputy chief of Naval Material for Technol
ogy. During this period, he conceived and
implemented new management procedures to
more effectively align Navy technology base
investment with the needs and requirements of
the service.

Upon retiring from the Navy in 1983, he moved
to the private sector where he became President
of TLK, Inc. Currently, he also sits on the board
of a number of companies including Xyvision,
Information Presentation Technologies, Inc., and
Racal Communications.

His personal decorations and awards include: the
Navy Distinguished Service Medal, a Silver Star,
three Legions of Merit, the Distinguished Flying
Cross, two Air Medals, seventeen Air Medal
Strike Flight, and a Battle Efficiency “E” for
training and operational Excellence.

Ms. Catherine D. McCollum, Defense
Advanced Research Project Agency,
Program Manager, Cyber Command and
Control Program

Catherine D. McCollum is a Principal Engineer
with the MITRE Corporation, working closely
with DARPA in the area of information assurance
and cyber command and control. Ms. McCollum
has been an active researcher in information
systems security for over a decade. She has
performed research in secure database management
algorithms, security policies, secure systems
architectures, and information survivability. Her
work has been presented widely in security research

conferences. Ms. McCollum recently headed a
research project in database information warfare
defense, investigating application-level isolation
techniques for containing the spread of suspect
data while operations and repairs proceed. She led
a previous research project in secure federated
systems, investigating capabilities for controlled
cooperation among autonomous systems. Working
with DARPA, Ms. McCollum has been involved
in the development of the Common Intrusion
Detection Framework and the Information
Assurance program’s security architecture and
vision. Ms. McCollum received a B.S. degree in
Applied Mathematics from Carnegie Mellon
University. Prior to MITRE, Ms. McCollum was a
researcher and systems engineer with Unisys
Defense Systems, System Development Corpora
tion, and BDM.

Dr. Thomas McVittie, Jet Propulsion
Laboratory

Thomas McVittie is a principal software engineer
at NASA’s Jet Propulsion Laboratory. He is the
principle engineer for DISA’s DII COE kernel.
He has a Ph.D. in Electrical & Computer
Engineering from UCSB. His research interests
are in Reliable Distributed Systems and Formal
Specifications.

Dr. Jens Pohl, Cal Poly CADRC

Dr. Jens Pohl holds the positions of Professor of
Architecture, Executive Director of the CAD
Research Center, and Post-Graduate Studies
Coordinator in the College of Architecture and
Environmental Design, California Polytechnic State
University, San Luis Obispo, California, USA.

Professor Pohl received his formal education in
Australia with degrees in Architecture and
Architectural Science: B.Arch. (1965), M.Bdg.Sc.
(l967), and Ph.D. (1970). He taught in the
School of Building at the University of New
South Wales in Sydney, Australia, until the end of
1972 and then left for the USA where he was
appointed to the position of Professor of Archi
tecture. Following several years of research and
consulting activities in the areas of building
support services and information systems, Dr.
Pohl’s research focus today lies in the application

xii

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

of distributed artificial intelligence methodologies
to decision-support systems in engineering
design, logistical planning, and military command
and control.

Under his direction, the Cal Poly CAD Research
Center has developed and implemented a number
of distributed computing applications in which
multiple computer-based and human agents
collaborate in the solution of complex problems.
Foremost among these is the ICDM (Integrated
Cooperative Decision Model) framework which
has been applied to engineering design (industry
sponsorship: ICADS, 1986–1991), energy
conservation (US Dept. of Energy sponsorship:
AEDOT, 1992–1993), logistical planning (US
Army MTMC sponsorship: ICODES, 1993–
present), military mission planning (US Marine
Corps MCWL sponsorship: FEAT, FEAT4, and
IMMACCS; 1994–present), and facilities
management (US Navy ONR sponsorship: CIAT,
1996–present).

The Integrated Marine Multi-Agent Command
and Control System (IMMACCS) was success
fully field-tested as the command and control
system of record during the Urban Warrior
Advanced Warfighting Exercise (AWE) con
ducted by the Marine Corps Warfighting
Laboratory (MCWL) in Central California
(Monterey and Oakland) during the period
March 11 to 18, 1999.

Dr. Pohl is the author of two patents (USA),
several books, and more than 80 research papers.
He is a Fellow of the International Institute for
Advanced Studies in Systems Research and
Cybernetics, and was awarded on honorary
doctorate by the Institute in August, 1998, during
the InterSymp-98 conference held in Baden-
Baden, Germany.

MajGen (ret.) Orlo Steele, former
Commanding General of the 2d Marine
Division

Major General Orlo Keith Steele (“O.K. Steele”)
has been named the Federal Aviation
Administration’s Assistant Administrator for
Civil Aviation Security. He joined the FAA
following a 35-year career with the U.S. Marine
Corps. His latest assignment was Deputy Naval

Inspector General for Marine Corps Matters.

General Steele graduated from Stanford University
in 1955 with a degree in Political Science, and
during that same year, he enlisted in the Marine
Corps. After his commissioning as an infantry
officer in 1956, General Steele served in many
command and staff assignments during his Marine
career, which took him from the Far East to the
Mediterranean Sea, with many stops in between.

General Steele is also a graduate of the Amphibious
Warfare School at Quantico, the Marine Corps
Command and Staff College, and the National War
College in Washington, D.C. He was an instructor
at the Mountain Warfare Training Center in
Bridgeport, CA, and with the NROTC Unit at
Dartmouth College in Hanover, NH.

Early command assignments include: rifle com
pany commander; Commanding Officer, Marine
Detachment, USS America; Commanding
Officer/Executive Officer, Second Battalion, 5th

Marines; Commanding Officer, Second Battalion,
1st Marines; and Executive Officer, Marine
Ground Defense Force, U.S. Naval Base, Cuba.

From 1980 to 1983, General Steele held assign
ments in Marine Headquarters Plan Division and
as Commanding Officer Marine Barracks, 8th &
I. In 1983, he was promoted to Brigadier
General and Assigned Commanding General, 1st

Marine Brigade FMF, Pacific, Kaneohe Bay,
Hawaii. In June 1985, he became the Legislative
Assistant to the Commandant of the Marine
Corps. He was promoted to Major General in
1987 and assigned as Commanding General, 2d
Marine Division/Deputy Commander, II Marine
Expeditionary Force, FMF, Atlantic, Camp
Lejune, NC. Prior to retirement, General Steele
was assigned as Deputy Naval Inspector General
for Marine Corps Matters.

General Steele retired from the United States
Marine Corps in October 1990. In November of
that same year, he returned to federal service as
head of Civil Aviation Security, FAA. He served
there until December 1993. He and his wife, the
former Catharine H. LeBaron of Honolulu,
Hawaii, with his two children, Colin and Wendy,
retired to Grass Valley California in 1994. He
currently acts as a consultant in DOD and Civil
Aviation Security Matters.

xiii

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

General Steele’s personal decorations and awards
include: The Distinguished Service Medal, The
Bronze Star Medal with Combat “V,” Combat
Action Ribbon, Presidential Unit Citation with
bronze star, Meritorious Unit Citation with bronze
star, National Defense Service Medal, Vietnam
Service Medal with four bronze stars, Sea Service
Deployment Ribbon, Overseas Service Ribbon,
Republic of Vietnam Cross of Gallantry with gold
star, Republic of Vietnam Meritorious Unit Citation
Gallantry Cross with Palm, and the Republic of
Vietnam Campaign Medal with device.

Dr. Katia Sycara, Carnegie Mellon
University

Dr. Sycara is a Senior Research Scientist in the
Robotics Institute in the School of Computer
Science, Carnegie Mellon University. She is also
the Director of the Enterprise Integration
Laboratory. She is directing/conducting research
and developing technology for integrating
organizational decision making. She holds a B.S.
in Applied Mathematics from Brown University,
M.S. in Electrical Engineering from the Univer
sity of Wisconsin, and a Ph.D. in Computer
Science from the Georgia Institute of Technology.
Her research has contributed to the definition of
case-based reasoning and the development of
computational negotiation models as a means of
resolving goal conflicts and inconsistencies in
assumptions and viewpoints of heterogeneous
agents in distributed problem solving. She has
applied her research to concurrent engineering
design, crisis action planning, and manufacturing
scheduling. She has published extensively in these
areas. Currently, she is engaged in the develop
ment of intelligent agents that interact with their
users, other agents, and distributed information
resources in order to assist their users in the
planning and execution of various tasks. In the
course of performing their tasks, the agents (1)
retrieve, route, and integrate information; (2)
negotiate to resolve conflicts; and (3) learn from
their users and other agents.

Dr. Sycara is Area Editor for AI and Management
Science for the journal “Group Decision and
Negotiation” and on the editorial board of “IEEE
Expert,” “AI in Engineering,” and “Concurrent
Engineering, Research and Applications”. She is a

member of AAAI, ACM, Cognitive Science
Society, IEEE, and the Institute of Management
Science (TIMS).

Vadm (ret.) Jerry Tuttle, ManTech
International Corporation

Jerry joined ManTech International Corporation’s
executive management team October 18, 1996, as
Senior Vice President of ManTech International
Corporation and President of ManTech’s largest
subsidiary, ManTech Systems Engineering Corpo
ration. He is responsible for strategic planning at the
international level and total operating responsibility
at the subsidiary level of this 4,500 person manage
ment and technology firm.

Previously, Jerry was with Oracle Government for
33 months as Vice President, Business Develop
ment and Chief Staff Officer. During this period,
Oracle Government quadrupled in size and in
revenue.

Admiral Tuttle retired from the United States
Navy, following a blissful 39 year career. From
seaman recruit to Vice Admiral his career
included assignments to numerous attack and
fighter squadrons. He served as Aide and Flag
Lieutenant to the Commander in Chief, U.S.
Pacific Fleet. He commanded an attack squadron,
an air wing, a replenishment ship, the aircraft
carrier USS John F. Kennedy, and two Battle
Groups/Forces. He served as Special Assistant to
the Chief of Naval Operations and as Deputy
Director for Intelligence, Defense Intelligence
Agency. He flew over 220 combat missions over
North Vietnam and has more than 1,025 carrier
arrested landings. At the time of his retirement,
he was Navy’s “Grey Eagle” signifying the earliest
designated Naval Aviator on active duty.

Jerry is widely regarded as an information
technology strategist, having created Navy’s C4I
Joint Operations Tactical System (JOTS). In
1989, he became Director, Space and Electronic
Warfare, an assignment he held until retirement.
During this tour he crafted Navy’s C4I architec
ture, Copernicus, and Information Warfare
architecture, Sonata. Prior to that he was Director,
Command, Control and Communications (C3)
Systems, the Joint Staff. From 1985 to 1987, he
was Deputy and Chief of Staff for the Com

xiv

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

mander in Chief, U.S. Atlantic Fleet, following a
tour as Naval Inspector General. He is a member
of the Defense Science Board, a member on the
Board of Directors for the USO-Metro, a
member of the Board of Advisors to the Superin
tendent of the Naval Postgraduate School, a
member of the Board of Advisors to the Georgia
Tech Research Institute, and an Advisory Board
Member to the Software Engineering Institute.
He is also a Navy Aviator Gold Eagle.

His personal decorations include: the Defense
Distinguished Service Medal (3), Defense
Superior Service Medal; Legion of Merit (4),
Distinguished Flying Cross (3), Meritorious
Service Medal (2), Air Medal (23), Navy Com
mendation Medal (4), Letter of Commendation
from the Japan Defense Agency, and numerous
campaign awards. He received the 1978 Navy
League’s John Paul Jones Award for inspirational
leadership, the 1983 Association of Old Crow’s
Award for his contributions to electronic warfare,
and the 1984 Annual Tailhook Award for his
contributions to Naval Aviation. He was 1989’s
AFCEAN of the Year for his contributions to the
Armed Forces Communications and Electronics
Association and received the 1991 American
Institute of Aeronautics and Astronautics (AIAA)
Command, Control, Communications and
Intelligence Award for his contribution to the
overall effectiveness to the C3I Systems. He
received the AFCEA 1992 Jon L. Boyes award
for major contributions to that organization. He
was chosen as one of Federal Computer Week’s
1991 and 1992 Federal 100 for his impact on
government computer systems. He received the
Washington Space Business Roundtable 1993
Excellence in Government Award. He was
inducted into the Government Computer News
Information Resource Management Hall of Fame
in 1993 and received the 1994 American Astro
nautical Society Military Astronauts Award. In
1995, he was awarded the French “Commandeur
de l’Order National du Merite” medal by the
President of the Republic of France for his efforts
in promoting greater interoperability between the
U.S. and French Navies.

Admiral Tuttle received a Communications
Engineering Degree from the Naval Postgraduate
School in 1962, having attended the undergradu
ate and postgraduate schools simultaneously. He

graduated with honors from the Naval War
College, concurrently receiving a master’s degree
in International Relations from George Washing
ton University in 1969. He has authored a myriad
of articles and speeches.

LtGen (ret.) Paul Van Riper, former
Commanding General of the USMC
Combat Development Command

Lieutenant General Van Riper retired from the
United States Marine Corps on 1 October 1997,
after more than 41 years of commissioned and
enlisted service. He currently resides in
Williamsburg, Virginia. A Senior Fellow with the
Center for Naval Analyses, he is also a member of
several defense and service advisory boards and
panels including: the Defense Science Board’s
1998 Summer Task Force on Joint Operations;
the National Research Council’s Naval Studies
Board, the Army Science Board; the Defense
Advanced Research Projects Agency’s Informa
tion Science and Technology Study Group; the
Institute for Defense Analyses’ Joint Advanced
Warfighting Program Senior Advisory Group;
and the National Reconnaissance Office’s
Operational Support Office Gold Team. Lieuten
ant General Van Riper continues to participate in
various defense and security related seminars and
conferences, both in the United States and
overseas. Recently, he has been a speaker and
panelist at sessions held by the Military Opera
tions Research Society; the Chief of Naval
Operations’ Strategic Studies Group; the Naval
War College’s Center for Naval Warfare Studies;
the Department of Defense’s Office of Net
Assessment; the National Security Program at the
John F. Kennedy School of Government, Harvard
University; the Association of the United States
Army; the Defense Technology Seminar ’98,
Lincoln Laboratory, Massachusetts Institute of
Technology; the Securities Studies Program,
Center for International Studies, Massachusetts
Institute of Technology; the Center for Strategic
and International Studies; and the Center for
Strategic Education, the Paul Nitze School of
Advanced International Studies, John Hopkins
University. Lieutenant General Van Riper lectures
frequently at the National Defense University and
other professional military education institutions.
He also consults part time for a number of firms

xv

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

on defense and operational matters. A student of
military history, Lieutenant General Van Riper
spends his leisure hours reading and visiting
battlefields. In addition, he writes for pleasure
and publication.

Mr. Eric Werkowitz, the USAF Command
and Control Battle Lab

Mr. Werkowitz is the Air Force Research Labora
tory (AFRL) representative to the USAF
Command and Control Battle Lab at Hurlburt
Field, Florida. His primary responsibility is
coordinating AFRL support to the battle lab.
Being an on-site representative, he also serves as a
battle lab initiative researcher, initiative manager,
technology adviser, and staff engineer. Prior to
this assignment, Mr. Werkowitz served as an
action officer with the Plans Directorate of the
AFRL. In this capacity, he performed many long-
range planning functions related to the Air Force
Modernization Planning Process and the devel
opment of the Air Force Strategic Plan. In
partnership with the Air Staff, he also planned
and directed two future-based technology war
games known as Vulcan’s Forge.

Before coming to the AFRL, Mr. Werkowitz
served as a long-range planner with the Aeronau
tical System Center in the Development Plan
ning Directorate. There he performed air-to
surface operations modeling at the campaign
level. He used the results of the modeling efforts
to develop and justify a 20-year research and
development roadmap.

Mr. Werkowitz’s previous assignment was as a
human factors engineer in the Crew System
Development Branch of the USAF Fight Dynam
ics Engineer. In this capacity, he built a speech
technology research program that led to the first
flight test of automatic speech recognition in
fighter aircraft.

Mr. Werkowitz has a Bachelor of Science degree
in Human Factors Engineering from Wright
State University and a Master of Science degree
in Computer Science from the Air Force Institute
Technology. He served with the US Marine
Corps and is a Vietnam veteran.

Col (ret.) Anthony A. Wood, Cal Poly
CADRC

Colonel Anthony A. Wood joined the California
Polytechnic State University CAD Research
Center in 1998 following his retirement from the
United States Marine Corps. In his last assign
ment as a Marine Officer, Colonel Wood founded
the Marine Corps Warfighting Laboratory and
served as its first Commander for three years. In
that capacity, he directed the Sea Dragon series of
experiments including Hunter Warrior and the
first stage of Urban Warrior. Designed to identify
future warfighting enhancements, these pioneer
ing experiments blazed the way for the current
joint experimentation effort in the Department of
Defense. In previous tours, he led the team that
developed the Marine Corps’ first Master Plan,
drafted the Marine Corps Maritime
Prepositioning Doctrine, and designed the
Maritime Prepositioning Decision Support
System, the Corps’ first formal decision-support
system. Other significant accomplishments
include his contributions as a principal author of
the Operational Maneuver from the Sea doctrine
and his work as principal designer of the Joint
Conflict Model while serving with the U.S.
Pacific Command. At the time of his retirement,
Colonel Wood was the only colonel on active
duty twice decorated with the Distinguished
Service Medal.

xvi

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

A Personal Perspective on Decision Makers and
Their Decisions

Vadm (ret.) Jerry Tuttle
President, ManTech Systems Engineering Corporation

Good morning, cyberspace caters, consiglieres, pundits, you who reside on the ethe
real side of Pluto. I am delighted to appear before this panoply of geniuses. Address
ing this learned group makes me feel akin to an astronaut suffering from acrophobia.
You shock me with awe.

What I might contribute to this brilliant group escapes me. You, who have master
fully created primordial decision support systems for solving complex problems by
exploiting, distributed collaborative computing and utilizing artificial intelligence
methodologies. Although I understand the concepts of your rule based system, I have
no idea how to add value. I realize that your decision support system defines, with
great precision, the relationships between all known and related variables of a man
ageable and bound problem set, and then integrates the solutions to these problems
with other related and associated sub-problems through service, object and human
agents. But, that is the limit of my knowledge of your marvelous work.

Nevertheless, I will reach deep into my right cerebral hemisphere and attempt to
bring something to the altar. Oliver Holmes opined that “Man’s mind, once stretched
by a new idea, never regains its original dimensions”, Unquote. We should all learn as
if we are going to live forever and live like we are going to die tomorrow.

These decision support systems that you are designing will have as an abysmal affect
on the tiered hierarchical command and control architecture of our warfighting forces.
The results will be more profound than the introduction of information management
systems in the private sector that threatened middle managers with becoming an
endangered species.

For today, I have opted to look beyond current conventional wisdom and this year’s
intellectual fantasies, because my contribution would be miniscule in areas which you
are indubitably more knowledgeable. My nirvana is to take us on an exciting journey
into the future and stretch metaphysics to the limits of our imagination and predict
the Information Infrastructure technologies that your “Decision Support” systems will
reside. This adventure is taken with great trepidation, as I am mindful that good
speeches are not written, but re-written. My remarks today are in Alpha test.

I will confidently predict where the Information revolution will take us, who will be
the benefactors, and who the new users will be. The fulcrum about which future

1

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

information systems will pivot will not be technology, computers, procedures/pro
cesses, software and speed, but seminal concepts, derived from creative operators,
whether in the boardroom, the wardroom, in war rooms, in the foxhole, on the bridge,
or in the cockpit.

Typical expectations and fundamental requirements for future information systems
will still consist of traditional features, as the crucible of information technology
churns out one astounding product after another to perpetuity. The purpose of these
information systems will remain to collect, process, and disseminate a secure uninter
rupted flow of information and knowledge. A malleable and scaleable architecture,
sensor management and distribution system and the necessary equipment, technology,
software and speed necessary for collecting, storage, retrieval, transmission, analysis,
and depiction of information in a manner that can be readily understandable and
assimilated will remain in fashion and essential.

Future information systems must eliminate, or greatly ameliorate the first law of
information theory that every relay doubles the noise and cuts the message in half.
Our legacy information systems were designed to support management decisions, not
leadership strategic decisions. They focus internal to the enterprise, not externally into
the environment where information resides that can have a profound effect on an
organization and its decision-makers’ objectives. What the operator needs to access,
which in large part is outside of his organic information universe, is effectively hidden
by the overburden of what he will never need.

We in the Information Industry grouse about interoperability and stovepipe informa
tion systems. We will always be confronted with these challenges and one need only
to look in the wake, observe the heritage of information systems and how they
evolved to understand why.

At first there was the stand alone computer which for all practical purposes simply
digitized our analog information, then computer peer-to-peer information exchanges,
followed by clusters, client/servers architectures, both two and three tier, thence
networks of networks and the latest elixir of network centric information exchanges.
But, these information domains are still for all practical purpose unique to a specific
discipline, or organization i.e. intelligence, logistics, etc. and there is no appetite to
share information across organizational boundaries. The biggest reason for stovepipe
systems had nothing to do with technologies, but had every thing to do with those
who had sway over them. They had no intentions of sharing information that resided
on their systems with others, even public information. This situation flies in the face
of your model that depends on shared distributed knowledge bases.

We have moved into an age whereby the equities of the byte age can be combined
with that of the divinely given brain, to ameliorate ignorance and biases, and permit a

2

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

more holistic, safer and peaceful world. These exciting capabilities will enable us to
combat disease, enhance the quality of life, promote commerce and conduct and win
wars in a more benevolent manner. Information will be used as an instrument to
preserve the peace and failing that as a weapon in war. Information of all descriptions
and the electronic and photonic arteries to carry it will ever increasingly become
global utilities and commodities. Shared information will no longer be an oxymoron
and be the alchemy for the decision support systems that you are creating.

Dimensions will expand to unfathomable proportions. Measurements will span from
the molecular to the vastness of our galaxy and beyond. Our vocabulary will change
and we will have a new lexicon. There will be a merging at the boundaries between
the traditional and basic information systems of logistics, maintenance, weather,
administration, personnel management, etc. These boundaries will erode away and all
of their functions and disciplines will reside on the same scaleable infrastructure,
resulting in far greater utility of resources. Such an all encompassing information
system will require a doctrinal hierarchical set of priorities that will be premeditatedly
determined but alterable and automated by problem solving tools. This hierarchical
architecture eventually will succumb to your cooperative and distributed decision
support systems.

The Information Age revolution will cause a seismic shift in distribution of wealth
and power and will transform business, communications, societies, cultures, lifestyles,
how we conduct wars, work, play, live and in fact every facet of our lives. Life in 2030
will be very different from what we know today. We are in the infancy of mankind
and will make a quantum jump in quality of life and soar to new celestial heights in
lifestyles. Whereas the laws of gravity may be repealed, mortality cannot be rescinded.
Nevertheless, individuals born three decades from now will live routinely to 120.

Not since that certain stroll across the Sea of Galilee has the world witnessed a
miracle as that which biotechnology will bring to the altar. Advanced technologies are
greatly accelerating the pace of discovery in biology. Scientists are unlocking bio
chemical mysteries in cancer, clogged arteries, and Alzheimer’s disease. Biotechnology
will permit us to grow our own organs and kidney transplants will become as common
as an oil change today. It is the biotechnology discipline where I would prefer to see
you adroitly exploit your sublime decision support systems

Human knowledge is doubling every decade, ergo there will be 8 times the amount of
knowledge in the world in 2030 than exist today. In the last 10 years, more knowledge
has been created than in the history of mankind. Clearly, we must assimilate knowl
edge differently and faster. Learning has never been easier. Information has never
been more plentiful. Knowledge has never been as accessible or as crucial. We need to
release not limit the power of human ingenuity. The cost of education is dear but the
expense of ignorance can be staggering.

3

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Our daily lives will be profoundly different. Business and work will be conducted
from our homes, in airports, in hotels, etc, and span every aspect of our lives from
banking, to shopping, to entertainment, to the elastic limits of the most sagacious. In
three decades our homes will have more bandwidth available than exists in the world
today.

Network computers will become public and as pervasive as the telephone, enabling
anyone, anywhere to communicate with anyone in the world. Your wristwatch will
also be a cellular telephone and polyglot computer terminal with color display and a
built-in real-time language translator to communicate with any nationality in the
world.

The volcanic eruption in Medium and Low Earth Orbiting satellite constellations
will serve as the loom with which to weave a global communications network to carry
the torrential flow of information. New compression algorithms will permit interac
tive multimedia communications over cellular bandwidth. Technology is moving so
rapidly that if you get a busy signal on your cellular telephone you will merely order a
new one.

Within a decade, the Internet will force a new common global monetary system,
something that the European statesmen have taken decades to accomplish via politi
cal means. The PC and the workstation will have become an endangered species in 30
years with microprocessors being ubiquitous.

Weather data will be assimilated in meteorological models in near real-time and used
to predict weather further into the future than anyone can now envision. Far greater
numbers of sensors with galactic sensitivity will permit predictions of weather years in
advance and with regression analysis achieve the granularity and fidelity of measure
ments to permit us to influence and change the weather. Your decision support sys
tems could be the enabler.

The multi-tiered cube will replace the transistor, providing unfathomable computing
permutations. We will no longer be restricted to binary choices. Boolean algebra will
necessarily surrender to the inexorable passage of time and a higher order of math
ematics. We will eventually be able to use the speed of electrons first, then the speed
of photons, to add other computational dimensions. Silicon will yield to erbium and
electrons to photons. Power requirements will plummet and a wide variety of alternate
power sources will be available. Our body temperature will power electronic devices
worn in our garments. Microelectronics will have transitioned to nano-electronics.

We have progressed from the 8-bit chip architecture with 256 addresses are about 10
times larger than our alphabet, to a 16-bit chip with 65,536 addresses) approximately
the size of the population of a midsize city, that must be ceremoniously retired to

4

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

achieve Y2K compliance. The current predominately 32-bit architecture provides 4.3
billion addresses or about the total adult population of the world. In two years, we will
have a 64-bit chip, with its inherit 18 quintillion addresses or the equivalence of the
grains of sand at a large beach.

Computer memories and databases now measured in terabytes (10 to the 12th) will
blossom to petabytes (10 to the 15th), then exabytes (10 to the 18th) and thence
zettabytes (10 to the 21st).

Bandwidth will become a commodity and rates insensitive to time and distance.
Today 3.5 terabits per second can be sent over a single strand of typical optical fiber,
which is greater than the capacity of the entire world’s Internet. The available band
width will double every two years. By 2004 there will be 80 zettabytes (10 to the 21st)
of available bandwidth.

Chip speeds will continue to increase at an exponential rate to gigabytes within a
decade and the measure of how many transistors, now about 100 million, are on a
chip will give way to the measure of how many Central Processing Units (CPUs) can
be placed on the same real-estate. The price of microchips will drop to a penny. We
will drop by a convenience store and pick up a six-pack of microchips and Bud Lite,
with the latter costing more.

Computer power has increased by a factor of ten billion in the past thirty years and
there is no reason to believe that future performance increases will not at least keep
pace.

There will be a Proteus global information systems forged on the anvil of technology
that will liberate us from the dependence on people, geography and time and be a
global utility.

Voice activated, controlled and operated computers will become common place,
permitting the operator to focus on the tasks at hand and decision making, instead of
data reduction and manual information retrieval. Using genetic algorithms and agents
that can communicate between each other, software will adapt and evolve to solve
problems, without new programming. Ever increasing number of attributes and/or
dimensions assigned to objects will permit unfathomable precision.

There will be human-like reasoning machines that will emulate and eventually super
sede the capability of man’s brain. Computers will surpass the raw computing capability
of the human brain within the next decade. There will be neural networks that will
emulate our brain’s parallel processing structure and derive inductive conclusions. These
thinking machines will discover new knowledge, actually create knowledge, through
digital insight, solve problems by silicon intuition and be adaptive by learning from

5

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

mistakes or adjusting to a changing environment. The veritable issue is not that computers
will begin to think like humans, but that humans begin to think like computers. We want
to release not limit the power of human ingenuity. Computers will facilitate this.

In biotechnology, silicon chips are being used to interface directly with human nerves.
These neurotransducers will allow one to interface with, activate and control a com
puter with one’s thoughts by wearing a headband. The Biotechnology Age will dwarf
the Information Technology Age and turn hospitals into museums. Highly sensitive
and inexpensive sensors, particularly biotechnical ones will be combined with cheap
lasers and powerful microprocessors to perform medical miracles. Smart bathrooms
will monitor people’s health, i.e. urine can be checked for diabetes, etc. Biochips
coated with millions of DNA probes in microscopic checkerboard patterns will be
scanned to make medical diagnoses that would be otherwise prohibitively expensive
and time-consuming. Algorithms used to detect, locate and identify enemy subma
rines from acoustical sensors are now being used to detect blood flow disturbances
caused by artery restrictions in humans, reducing and eventually eliminating the
requirement for angiography.

The complete human genome will be decoded within five years, providing us a hu
man blueprint. We will be able to analyze the pattern of x-rays scattered off a DNA
molecule and reconstruct the atomic structure of DNA and grow replacement organs.
There will be undetectable hearing aids, inplantable cardiac pacemakers and heart
bypasses will be conducted without open-heart surgery. We will move from curing
diseases to preventing them and migrate from chemical means of treatment to mo
lecular biological ones.

Soon 25 nations will have earth observation satellites, many with one meter resolu
tion, making the expression “nation state privacy” an oxymoron. Soon, they will be
able to determine from space when you need a haircut. Seemingly, nobody of conse
quence accepts these obvious diagnoses. A current Defense Science Board study will
give DOD a wake-up call.

There are two gapping technologies necessary for us to achieve Information Domi
nance. One is multi-level security, which could be and should be solved instanta
neously, by accepting a risk management vis-à-vis a risk avoidance policy. The other
area that inflicts an incredible penalty in maneuverability, stealth, etc. is our antedilu
vian antenna, the spinal cord for weapons and communications systems. These ex
tremely vulnerable, bulky, mechanical and predominately single frequency and nar
row-bandwidth antennae must be replaced with shared aperture, conformal, wide-
band, multiple-frequencies, electronically steered and high gain ones.

Am I quixotic? Certainly not! Our future is as bright as that bolt from the heavens that
Saul witnessed on the road to Damascus. We are indeed surrounded with fantastic oppor
tunities, brilliantly disguised as unsolvable problems.

6

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

You have honored me by your gracious attention. Thank you! A “thank you” filled
with more genuine emotion than the words were ever intended to convey. May the
most that you wish for be the least that you receive and may your worst tomorrow be
better than your best yesterday. I will now attempt to answer any of your questions.

7

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

8

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The Components of the “Decision Industry”

Col Anthony Wood
USMC (ret.)

Director of Applied Research, CAD Research Center

A young soldier raises his rifle as he confronts rioters during a peace-keeping opera
tion. A junior broker in Jakarta clicks his mouse initiating an international currency
transfer. A sailor manning the air defense missile system identifies what appears to be
an attacking aircraft on his air defense radar screen. A rail traffic controller moves a
giant freight train to an alternate route. Unable to communicate with their parent
unit, a Marine squad confidently continues on patrol in an alien urban metropolis. A
corporate staff meets “on the net” across the country and an hour later orders an
abrupt change in product mix affecting millions of dollars in sales.

Will the soldier shoot? What happens if he is filmed by CNN as he squeezes the
trigger? How does the junior broker know the conditions are ripe for an international
funds transfer, and by what authority is he executing it? How many lives will be
affected by the radar operator’s decision — and how will he make it? With hundreds
of trains moving on dozens of tracks at varying speeds, where does the rail traffic
controller gain his confidence? Faced with communications blackouts and uncertainty,
why do the Marines proceed into the urban dark instead of freezing? What happened
to three inch thick corporate plans supporting day long conferences and months-long
product change cycles?

If you answered “computers” or “training,” or perhaps even “decision support,” con
gratulations! You can join a very small group of men and women who are sensitive to
the enormous changes underway in how we make complex decisions. But don’t pat
yourself on the back too quickly; you didn’t get it right, only “close.” And that isn’t
enough. Whether as individuals, as members of a commercial firm, or as military
leaders, we are increasingly facing difficult problems which must be solved “in stride.”
Frequently the problems are complex. They usually involve great uncertainty and
often carry high risk in outcomes affecting lives, fortunes, or even national policy.
Further, the tempo, whether of combat or competition, may well preclude an ap
proach involving “sequentially staffed changes to a three inch thick plan.” Contempo
rary problems are far more likely to demand a collapsed planning-execution cycle
whose only link to the initiating formal plan was to use it as the “stepping-off point.”
We are in the midst of rapid change, change which has altered and continues to alter
our traditional approach to corporate and military decision making.

9

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Global Trends and Their Implications

The on-going digital revolution and the evolution of a speedy worldwide communica
tion network are the dominant technological trends of our time. These two trends
have enabled military and corporate decision making by vastly increasing the data which
could be manipulated while dramatically decreasing the time required for that manipu
lation. Software developments in conjunction with quantum jumps in memory capacity
and processing speed have permitted simultaneous exploitation of large multiple data
bases. Meanwhile, the advent of reliable commercially-affordable satellite-based com
munication links and the explosive growth of networks such as the world wide web offer
new options for real-time and near real-time links between systems.

However, the same trends that fostered these benefits also introduced new complexities
and complications for decision makers. “Data overload” can drown the decision maker
in a sea of “facts” without providing him the means to sift for accuracy or currency,
much less convert the data into meaningful information. The variables in the corporate
and military decision processes have grown far more complex as worldwide connectivity
allows bull market and battlefield to intrude directly in near real time. As technology
has advanced, we have developed faster more complicated and inter-related processes.
But the fact that the processes are more complicated and interconnected also opens up
the potential for having to deal with multiple simultaneous impacts vertically and
horizontally across the organization. As if this weren’t challenge enough, global connec
tivity has reduced time for reflection and reaction to the vanishing point. In many cases
we will have little or no warning, a situation which argues strongly for formal decision
making training for “front line leaders.” To complicate the situation further, countless
others viewing the same phenomena may take actions of their own. The problem sets
are not only complex, they are constantly changing.

The increasingly public nature of events is influencing every aspect of military and
corporate decision making. The detailed “rules of engagement” prescribed for con
temporary military operations have a long pedigree, but the impetus for their current
prominence is due in no small part to the likelihood that the international media will
“film” the war and transmit it to a global audience as it occurs. “Life as digital photo
journalism” also means that military leaders, corporate executives, and policy makers
must be ready to act before others leverage the media weapon.

The most gifted leaders have responded with a variety of actions. Sensing the need for
faster reaction to developments, some have proposed collapsing the planning and
execution cycles into a single continuous feedback-linked process. Recognizing that
only through the exercise of initiative at every level can simultaneous impacts be dealt
with, these leaders have sought to replace hierarchies with decentralized organiza
tional structures fed by open access to previously restricted information. Knowing that
complex problems will require inputs from many systems and sources, they have

10

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

sought to develop data mining and data fusion capabilities. A few, recognizing that
filtering data flows for currency and reliability is not enough, have sought decision
support systems that can transform the data into implications and inferences tailored
to the needs of the decision maker. Still others have recognized that only through a
degree of continuous “self adjustment” can an organization adjust its actions to this
dynamic frame. In the military, this recognition finds its clearest expression in the use of
concepts such as “commander’s intent” campaign “end state”, and a spirit of opportun
ism as the binder helping to achieve unity and coordination among decentralized
elements. There are many more examples, but in each case these reform initiatives focus
on the key elements of the collaborative decision process portrayed in Figure 1 below.

Figure 1: Key elements of the collaborative decision process.

When organizations sense that their key reactions are too slow or ineffective, then the
question is, “What is the problem?” Is it poor decision making skills ? Is it the result
of flaws in the decision process, the sometimes tortuous network of information and
data flows which feed key decisions? Is it the absence of effective collaborative deci
sion-support systems designed to transform data into more useful inference and
implication? Or, is it the reliability and responsiveness of the communication linkages
which bind these three closely related spheres of activity?

There must be a degree of balance and compatibility between these spheres of activity
which make up the “decision industry.” A good collaborative decision support system
cannot overcome the weaknesses of an indecisive leader. In the same way, a good

11

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

collaborative decision support system will never realize its full potential to assist even
a decisive leader if data flows are corrupted, incomplete, or untimely. But even a
functional collaborative decision support system fed by timely accurate data flows can
be crippled by hierarchical organization, restrictions on access to key information, or a
slavish commitment to a balky process. In short, providing effective decision support
demands a tailored decision support system fitted to the user and a clear understand
ing of the purposes of and the inter-relationships which exist between the three
spheres of activity which makeup the “decision industry” in Figure 1. The first of
these spheres is decision making and the individual skills which it demands.

Decision Making

Most of us are now familiar with the image of the “strategic corporal,” the young
fighter whose publicized actions could change the course of a war. With the cameras
rolling in the background, we can only hope that he is prepared for decisions under
stress with life and death — and perhaps national policy — in the balance. He may be
a NATO pilot over Yugoslavia, a U. S. Marine Corporal in Mogadishu, the rail
dispatcher in Houston, or one of hundreds of young brokers manipulating interna
tional capital flows. Regardless, individual decision-making skills play a central role in
this fast breaking, public, complex, and risky future. Can he or she be trained to make
better decisions, to handle stress, and to proceed in the face of uncertainty?

The answer is an unequivocal “yes.” A recent case study involving the Marine Corps
Warfighting Laboratory and its Sea Dragon program of experiments illustrates what
can be done.

12

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

In early 1995, the Commanding Officer of the Marine Corps Warfighting Labora
tory met in New York with Dr. Gary Klein, Chief Scientist and CEO of Klein Asso
ciates. The Marine made a strange request: help the Lab improve the individual
decision skills of sixteen young Marine Corporals and Sergeants. It was a strange
request in several respects. Although he had extensively examined decision processes
in the Corps, Klein had never tried to “teach” decision making under stress and
doubted that it was practical. And why focus on Corporals and Sergeants? In the
course of a day-long discussion, some things were clarified. In seven weeks time, these
young men were to lead their infantry squads in simulated combat in a dramatic
experiment called Hunter Warrior. They would be part of a small experimental
Marine Air Ground Task Force that would employ a new decision process, a new
model command element, and new tactics enabled by technology in an eleven day
force-on-force instrumented series of clashes. Their “foe” would be a larger traditional
mechanized ground force.

Traditional tactics do not involve widely dispersing small units such as squads other
than in patrolling activity. Even then distances are relatively close to the parent head
quarters. In Hunter Warrior, the Marines envisioned squads operating in a widely
dispersed fashion as far as one hundred kilometers forward of their parent unit. Further,
they would be operating independently within the thirty four hundred square kilometers
that made up the instrumented “battle box.” It was hoped that, in combination with a
new decision process, the eyes, ears, opportunism, and knowledge of these young
combat leaders would result in a stream of information that would enable their parent
task force to operate inside the opposing commander’s “OODA” loop. In doing this,
they were to be equipped with new technology in the form of precision GPS location
beacons, palm top computers, and access to a wide range of information supplied
through a new decision-support system. If the new tactics were to get a fair evaluation,
the squad leaders — and their squads — would have to be thoroughly trained in both
tactics and technology, embody great self confidence, and exhibit a strong spirit of
opportunism. These young men would carry far more than the weight of their packs
and rifles on their shoulders. They recognized this and they were worried.

With seven weeks to go, both the squad leaders and Klein continued to harbor deep
reservations. Klein continued to harbor doubts that decision making could be
“taught.” Nevertheless, he reluctantly agreed to provide an experimental program of
“individual decision skills training” for the squad leaders. The rest, as they say, is
history. In the short six weeks that remained before Hunter Warrior commenced,
Klein and his team led the Marine squad leaders and their men through a participa
tory program that transformed their attitudes and mental capabilities. In the final
analysis, the performance of this group of confident aggressive and opportunistic
young leaders astounded Marine observers and subsequently resulted in a whole series
of new training initiatives for the preparation of young Marine battle leaders.

13

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Klein Associates has since built on the Hunter Warrior experience and developed a
series of programs designed to enhance individual decision skills. This recognitive and
intuitive approach accepts uncertainty as a constant in situations of great stress.
Klein’s most recent book, Sources of Power, provides among other things a detailed
discussion of individual decision skills.

From all of this, several things stand out. First, if you want to become a better deci
sion maker then you must make decisions often. You must make them in a stressful
realistic environment tailored to your responsibilities. And, you should listen to the
qualified observers who witness your decisions and consider their critiques before
resuming “training”. In short, the implication is that whether formally or informally,
only through continuous stressfull decision training will you maintain your edge.

Among the upshots of Hunter Warrior is that Klein Associates now has a very suc
cessful individual decision skills training business. A second upshot has been the
Marines’ adoption of GAMA Corporation’s “Collins Combat Decision Range”
sponsored and developed by the Marine Corps Warfighting Lab. This PC-based
“range” provides a portable, immersive, stressful, realistic, multimedia decision envi
ronment which can be tailored to the needs of the decision trainees. Critically, it
fulfills one of the more difficult requirements necessary to improving individual
decision skills: it allows Marines to make decisions frequently in a simulated stressful
combat environment. Its early success with the Marine Corps Warfighting Labora
tory has led to plans for widespread application among the Corps’ operating forces.

The Decision Process

Enhancing individual decision skills is one key to improving decision making. As
figure 1 indicates, a second key is insuring an effective decision process. Organiza
tional structures and their connecting information and data flows come in every shape
and variety. However, as implied earlier in this article, excessively hierarchical organi
zations operating in the “information hoarding” mode are likely to find themselves
increasingly less effective in dealing with the pace and scope of contemporary change.
On the other hand, those dealing with this issue most effectively have combined a
“commander-led process”, flatter structure, and more open access to information with
the adoption of tailored collaborative decision support. When data is supplanted by
information ... when information access is opened... when authority to act on the
newly available information is pushed down...when everyone understands intent…
and when collaborative decision support is offered to all from top to bottom... when
these circumstances combine, the result can be revolutionary.

The concept of “end state” and “intent” are fundamental to process improvement. End
state is the terminal set of conditions to be achieved at the culmination of the campaign.
Intent is far more transitory, usually prescribing the result that a commander would like
to see achieved in the next period of action. Intent provides the glue that brings unity of

14

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

action. Whether in or out of communication with the parent unit, a small unit can
proceed so long as there is clear understanding of intent. The same is true in corpora
tions — intent lays out the result to be achieved in the next performance period within
the larger corporate campaign. Intent is always related to end state, representing the
commander’s view of the results needed now in order to continue to make progress
toward the final goal. But these two closely related concepts contribute more than unity,
important as that is. Together, they impart a sense of opportunism to the “field units”
whether military or commercial. In place of step-by-step central direction, it is this all
important spirit of opportunism focused by intent which enables the organization to
effectively respond at multiple levels across its breadth.

The Role of Decision Support

Collaborative decision support systems supporting an effective decision process can be
vital aids to exploiting intent and opportunism. It is fair to say that the purpose of the
decision process and supporting collaborative decision support systems is to discipline the
decision making environment and tailor it for the decision maker.

But doesn’t visualization accomplish this “disciplining?” Yes... and no. It depends on
what is being “visualized.” A whole literature has grown up around the term. It is
often held up as fundamental to effective decisions making. However, contrary to
popular literature, there is no “information overload” threatening to bury leaders in
either military command posts or in corporate suites. In fact the popular fascination
with visualization obscures the real problem. That problem is “data overload.” The
drive to visualize data often acts to conceal a more fundamental challenge: data must

15

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

be transformed into inference and implication as it enters the decision environment.
Collaborative decision-support systems are the major players in executing this vital
transformation.

Agent-based decision-support systems get mixed reviews depending on the user’s
experience. However, no matter their specific design these systems must meet four
criteria if they are to discipline the dynamic problem sets facing the key decision maker.

First, these systems should satisfy a compelling need in a complex decision situation.
In any case, the decision-support system should aid in solving difficult and vital
problems which would otherwise prove intractable.

The second criteria is that these systems should provide useful assistance in the user’s
context. The decision support tool should be shaped and its technical workings
subjugated to the requirement to be an intuitive and natural helper to the decision
maker. Arcane screens populated with numbers and alien symbols often “illuminated”
by tiny boxes filled with stilted technical terminology are too often the norm. In the
final analysis the user interface is the system. If the user interface is an intuitive design
and reflects the special characteristics of the decision domain, then the odds are that it
will prove genuinely useful and will be used.

Developers should never be left to design this interface. Why not? The mental
strengths which make a good programmer/developer are also associated with skills
such as classical music composition or complex electrical circuitry design. These

16

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

conceptual strengths enable these men and women to design wonderfully complex
systems, and there is a natural desire on the part of these artisans to have this artistry
recognized. Why hide genius behind a mundane but functional GUI? The answer is
simple: because this isn’t a fine arts competition. The decision process and the deci
sion support systems which aid it have one goal: to provide knowledge at a glance.
While complexity and elegance certainly have their place in our lives, these qualities
are hostile to this all important goal. GUIs must be clear, functional, and intuitive.

The third requirement for an effective decision support system may appear to be a
“blinding flash of the obvious:” these systems should be collaborative. The most effec
tive decision-support systems embody a fundamental system design which leverages the
unique capabilities which both sides contribute when the computer and the experienced
operator assume complementary roles in the decision process. Humans should do what
we do well, conceptualize, use emotion, employ intuition, and engage in complex
communication. Computers should contribute the special strengths which digital
technology offers: huge memory, rapid processing, attention to detail, etc. Far too many
systems are being designed absent this all important partnership.

Finally, modern decision support systems should be adaptive. The system should
adapt to the user’s needs by permitting a high degree of user-defined functionality.
Examples? Opportunity cost should be capable of being measured in terms set by the
user (e.g., “missions delayed”, etc.). The system should provide for “views” set by the
user which are then continuously maintained by agents actively searching for the
latest information and then incorporating it. A good decision support system should
adapt to circumstances identifying the commander’s critical information requirements
and then establishing agent-maintained “views” which display the latest information
affecting these requirements. Because the use of intelligent agents allows the system
to actively seek data, convert it to information, and then post it in a user-defined view,
the potential for adaptation is enormous. Clearly, this will be a major area for devel
opment in the years ahead.

Collaborative decision-support tools can perform a wide range of tasks. A few ex
amples may serve to illustrate this wide-ranging utility. A function which can be
especially useful in our technical society is to provide expert assistance to the indi
vidual whose training, background, or experience isn’t up to the task he has been
assigned. ICODES, the Integrated Computerized Deployment System, was specifi
cally designed as a collaborative tool to assist stowplanners in the complex task of
loading the Military Transportation Command’s fleet of ships. Now being installed in
55 ports worldwide, ICODES is an alert “intelligent assistant” for stowplanners from
Alexandria, Egypt to Okinawa.

Another system which bolsters individual expertise is COACH. COACH is being
developed for the Office of Naval Research (ONR) to provide a full range of technical

17

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

assistance to the individual sailor repairman. COACH will figuratively sit on the
technician’s shoulder and, using a variety of intelligent agents, will assist the techni
cian in locating appropriate diagrams, performing diagnosis, etc. COACH will deploy
with the Navy’s ships to help offset the absence of experienced maintenance personnel
in the modem fleet

Another tool designed to provide skilled assistance to Navy personnel is CIAT, the Col
laborative Infrastructure Assessment Tool. In addition to assisting the water front opera
tions officer is selecting an appropriate berth and range of port services for the Navy’s
ships in San Diego, CIAT will provide the capability to recall patterns from previous
berthing actions and to review histories. Thus CIAT offers the capability to rapidly recall
the past, examine and game it, and then apply it to the present and the future.

Among the most challenging tasks which face collaborative decision support systems
is to assist the user in monitoring, identifying conflicts, and coordinating actions in
near real time in complex dynamic situations. Few situations are more dynamic and
uncertain than the tactical battlefield.

IMMACCS, the Integrated Marine Multi-Agent Command and Control System, is
an experimental system designed to provide a high level of situation awareness from
the Commander to the Squad Leader. A first generation example of adaptive com
mand and control, IMMACCS provides agents which leaders at different levels can
direct to perform specific services. Aspects such as potential ROE violations in fires
planning, “blue-on-blue” situations, enemy activity and status in a given area, etc. are
examples of the functions in which agents assist in IMMACCS.

FEAT, the Force Evaluation and Assessment Tool, provides a set of intelligent agent
tools for rapidly developing force options in crisis response. Using lift agents, readi
ness agents, availability agents, and capability selection tools, FEAT identifies con
flicts and assists the planner in rapidly assembling a force list that meets mission
demands while identifying qualifying conditions which must be included in deploy
ment and employment plans.

SEAWAY, a system now under development, combines aspects of all of the systems
discussed thus far. SEAWAY will provide end-to-end visibility for all maritime
logistic support during contingencies. SEAWAY is designed to satisfy sea basing
demands for JV 2010. As such, it is focused on supporting OMFTS, STOM, and
other joint force deep maneuver concepts. Among many capabilities, SEAWAY will
track supplies, project availability, and coordinate and control unopposed
ship-to-shore and ship-to-objective delivery of supplies to the forces operating ashore.
As it performs these functions it will also provide a range of functions vital to sea
basing including the capability to locate and project timelines to access specific cargo
items embarked aboard the sea base.

18

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The intelligent agent technology which makes these systems “ever alert assistants” to
the user can perform many functions in the background allowing the user to concen
trate his or her attention on the decision at hand. Among such background functions
is an agent’s ability to send data “out” to a simulation or technical model, receive the
results, and then post them to a continuously maintained “operational view” set by the
user. In FIRE AIDE, a collaborative decision-support system now under design,
agents will automatically perform this function each time that they sense a significant
change in weather conditions on the fire ground. As a result, the Incident Com
mander on the scene will be alerted that there has been a change, and at his conve
nience, will switch to the agent-maintained “view” of the latest possible projection
plotting the likely spread of the fire.

The absence of activity may be as significant as the incoming reports of incidents.
Agent-based systems can report what is NOT happening which might reasonably be
expected to be occurring. Why is there an information void? Agents, embodying an object
model of the domain, can alert users at many levels to what might be expected under
existing circumstances. The user can then contrast that with incoming information for
decision. This function is critical to disciplining the decision environment for the com
mander. It is not enough to insure currency, accuracy and relevance. It is not enough to
replace visualized data with information. The absence of activity is itself information..

Finally, collaborative decision support systems are “meta systems” in that they accept
the data outputs from existing systems, convert these into objects, and then provide
information and inference for decision makers. Not only does this filter and transform
multiple data streams into usable decision support, but it provides a new lease on life
for expensive already installed legacy systems and allows their use for an extended
period. It also avoids creating yet another unique data base. As “meta systems” then,
collaborative decision support can not only enhance decision making but at the same time
revalue the sunk investment already made in large legacy systems.

Conclusion

Collaborative decision support systems can be valuable assistants in disciplining the
decision environment. However, to realize their full potential, such systems need to be
carefully tailored to the needs of the user. At the same time, the two other aspects of
the “decision industry” must achieve a rough equilibrium. The individual decision
skills of leaders must be constantly honed under pressure in a realistic setting. Assum
ing the presence of experienced decision makers assisted by a capable decision support
system, then the decision process remains. Information should flow horizontally and
vertically throughout the organization. Guided by commander’s intent, and under
standing the goal or end state to be achieved, the organization can mount an agile
decentralized response to dynamic change.

19

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Finally, there is an element of risk in seeking to improve institutional decision making
capability. Resistance to change is a very real obstacle, especially when change may
require major adjustments by those long accustomed to business as usual. For example,
we can all agree that the goal is an organization capable of simultaneous opportune
decision-action sequences on many levels at many locations. But, as adoption of
commander’s intent and opportunism as guiding principles illustrates, the price to be
paid for that more nimble organization is sharing information and granting increased
authority downward. This price can be too high for some. Recognizing this is important
in crafting a successful strategy to introduce improvements in the way organizations
make decisions and prepare their decision makers. Unfortunately, even well considered
strategies are sometimes met by a decision to silence the spokesmen of reform, “...to
shoot the messenger.” Don’t despair. We live in an era of streaming change, and time is
not on the side of the status quo. Like overweight executives whose blood oozes
through plaque constricted arteries, layered hierarchical organizations with balky deci
sion processes are inviting crisis. Its not a question of “if,” only of “when.”

20

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Collaborative Decision-Support and the Human-
Machine Relationship

Jens Pohl
Executive Director, CAD Research Center

Some Underlying Human Realities.

Human beings are inquisitive creatures who seek explanations for all that they observe
and experience in their living environment. While this quest for understanding is
central to our success in adapting to a changing environment, it is also a major cause
of our willingness to accept partial understandings and superficial explanations when
the degree of complexity of the problem situation confounds our current cognitive
capabilities. In other words, a superficial or partial explanation is considered better
than no explanation at all. As flawed as this approach may be, it has helped us to solve
difficult problems in stages. By first oversimplifying a problem we are able to develop
an initial solution that is later refined as a better understanding of the nature of the
problem evolves.

Unfortunately, now we have to contend with another characteristic of human beings,
our inherent resistance to change and aversion to risk taking. Once we have found an
apparently reasonable and workable explanation or solution we tend to lose interest in
pursuing its intrinsic shortcomings and increasingly believe in its validity. Whether
driven by complacency or lack of confidence, this state of affairs leads to many
surprises. We are continuously discovering that what we believed to be true is only
partly true or not true at all, because the problem is more complicated than we had
previously assumed.

At times a particular set of explanations, or school of thought, becomes entrenched as
a paradigm that is not easily broken. Kuhn (1977) has drawn attention to the stagnat
ing influence on progress of scientific paradigms, the resistance experienced by indi
viduals or small groups that wish to correct flaws in a paradigm, and the resurgence of
innovative activity after the paradigm has been broken. If experts in science will
succumb to this weakness in human nature then how much more difficult will it be
for a layperson to maintain a discerning mind?

Throughout modern history these intrinsic human characteristics of resisting change,
avoiding risks, and endeavoring to maintain status quo have created a tension in
society. A prominent example is, of course, the Information Revolution driven by the
rapid development of computers and communication systems and their potential
assistance in human decision making endeavors.

21

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The Increasing Complexity of Problems in a Global Community.

The complexity of problems faced by human society in areas such as management,
economics, marketing, engineering design, military operations, and environmental
preservation, is increasing for several reasons. First, computer-driven information
systems have expanded these areas from a local to an increasingly global focus. Even
small manufacturers are no longer confined to a regionally localized market for selling
their products. The marketing decisions that they have to make must take into ac
count a wide range of factors (e.g., international currency rates, political alliances, and
climatic conditions) and a great deal of knowledge (e.g., language, conventions, and
cultural beliefs) that is far removed from the local environment.

Second, as the scope of the problem system increases so do the relationships among
the various factors. These relationships are difficult to deal with, because they require
the decision maker to consider many factors concurrently. Although the biological
operation of the human brain is massively parallel, our conscious reasoning processes
are sequential. Simply stated, we have difficulty reasoning about more than two or
three variables at any one time.

Third, as the scope of problems increases decision makers suffer simultaneously from
two diametrically opposed but related conditions. They tend to be overwhelmed by
the shear volume of information that they have to consider, and yet they lack infor
mation in many specific areas. To make matters worse, the information tends to
change dynamically in largely unpredictable ways.

It is therefore not surprising that governments, corporations, businesses, down to the
individual person, are increasingly looking to computer-based decision-support
systems for assistance. This has placed a great deal of pressure on software developers
to rapidly produce applications that will overcome the apparent failings of the human
decision maker. While the expectations have been very high, the delivery has been
much more modest. The expectations were simply unrealistic.

It was assumed that advances in technology will be simultaneously accompanied by an
understanding of how these advances should be applied optimally to assist human
endeavors. History suggests that such an a priori assumption is not justified. There
have been countless experiences in the past that would suggest the contrary. For
example, the invention of new materials (e.g., plastics) have inevitably been followed
by a period of misuse. Whether based on a misunderstanding or lack of knowledge of
its intrinsic properties, the new material was typically initially applied in a manner
that emulated the material(s) it replaced. In other words, it took some time for the
users of the new material to break away from the existing paradigm. A similar situa
tion currently exists in the area of computer-based decision-support systems.

22

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The Rationalistic Problem Solving Tradition.

To understand current trends in the evolution of progressively more sophisticated
decision-support systems it is important to briefly review the foundations of problem
solving methodology from an historical perspective. Epistemology is the study or
theory of the origin, nature, methods and limits of knowledge. The dominant episte
mology of Western Society has been technical rationalism (i.e., the systematic appli
cation of scientific principles to the definition and solution of problems).

The rationalistic approach to a problem situation is to proceed in well defined and
largely sequential steps (Fig.1): define the problem; establish general rules that describe
the relationships that exist in the problem system; apply the rules to develop a solution;
test the validity of the solution; and, repeat all steps until an acceptable solution has
been found. This simple view of problem solving suggested a model of sequential
decision making that has retained a dominant position to the present day. With the
advent of computers it was readily embraced by 1st Wave software (Fig.2) because of
the ease with which it could be translated into packaged, automated solutions utilizing
the procedural computer languages that were available at the time (Pohl 1996).

1st Wave software assumes that problem solving is essentially a sequential process in
which every subsequent step depends on the completion of the preceding step. This
view of problem solving is far removed from real world experience, where project
teams solve problems collaboratively and contribute to the decision making process
whenever they have something useful to share with the other team members. Seldom,
if ever, is a team member prevented from contributing information until a certain
stage or milestone has been reached. On the contrary, team members are encouraged
to exchange information freely in the hope that their contributions will accelerate the
solution process and increase the quality of the solution.

STEP 1:
DEFINE PROBLEM AS A SYSTEM OF
IDENTIFIABLE OBJECTS THAT HAVE
KNOWN CHARACTERISTICS.

STEP 2:
FIND GENERAL RULES THAT DEFINE
THE RELATIONSHIPS AMONG THE
OBJECTS WITHIN THE CONTEXT OF THE
PROBLEM SYSTEM.

STEP 3:
APPLY THE RULES TO THE
PROBLEM SITUATION AND DRAW
CONCLUSIONS THAT LEAD TO A
SOLUTION.

STEP 4:
TEST THE SOLUTION AGAINST
SPECIFIC ACCEPTANCE CRITERIA
AND IF UNSATISFACTORY RETURN TO
ANY OF THE PREVIOUS STEPS.

USER DATA

USER DATA

INPUT

OUTPUT

O Single Process and Single User

O Low Level Object Representation

O All Input from Data Files and User

O All Output to Data Files and User

O Limited Integration Potential

O Predetermined Operational Sequence

Fig.1: Solution of simple problems Fig.2: ‘1st Wave’ computer applications

23

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Over the past 50 years with the availability of more and more convenient and effective
communication facilities, government and industry have been increasingly challenged
by real world problems that are often very complex involving many related variables.
Neither the relationships among the variables nor the variables themselves are nor
mally sufficiently well understood to provide the basis for clear and comprehensive
definitions. In other words, problem situations are often too complex to be amenable
to an entirely logical and predefined solution approach. Under these conditions the
analytical strategy has been to decompose the whole into component parts, as follows:

•	 Decompose the problem system into sub-problems.

•	 Study each sub-problem in relative isolation, using the rationalistic approach
(Fig.1), and if the relationships within the sub-problem domain cannot be
clearly defined then decompose the sub-problem further.

•	 Combine the solutions of the sub-problems into a solution of the whole.

Underlying this problem solving strategy is the implicit assumption that an under
standing of parts leads to an understanding of the whole. Under certain conditions
this assumption may be valid. However, in many complex problem situations the parts
are tightly coupled so that the behavior of the whole depends on the interactions
among the parts rather than the internal characteristics of the parts themselves
(Bohm 1983, Senge 1993). An analogy can be drawn with the behavior of ants. Each
ant has only primitive skills, such as the ability to interpret the scent of another ant
and the instinctive drive to search for food, but little if any notion of the purpose or
objectives of the ant colony as a whole. Therefore, an understanding of the behavior of
an individual ant does not necessarily lead to an understanding of the community
behavior of the ant colony of which the ant is a part.

Decomposition is a natural extension of the scientific approach to problem solving
and has become an integral and essential component of rationalistic methodologies.
Nevertheless, it has serious limitations. First, the behavior of the whole usually de
pends more on the interactions of its parts and less on the intrinsic behavior of each
part. Second, the whole is typically a part of a greater whole and to understand the
former we have to also understand how it interacts with the greater whole. Third, the
definition of what constitutes a part is subject to viewpoint and purpose, and not
intrinsic in the nature of the whole. For example, from one perspective a coffee maker
may be considered to comprise a bowl, a hotplate, and a percolator. From another
perspective it consists of electrical and constructional components, and so on.

Rationalism and decomposition are certainly useful decision making tools in complex
problem situations. However, care must be taken in their application. At the outset it
must be recognized that the reflective sense (Schön 1983) and the intuitive capabili

24

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

ties of the decision maker are at least equally important tools. Second, decomposition
must be practiced with restraint so that the complexity of the interactions among
parts is not overshadowed by the much simpler behavior of each of the individual
parts. Third, it must be understood that the definition of the parts is largely depen
dent on the objectives and knowledge about the problem that is currently available to
the decision maker. Even relatively minor discoveries about the greater whole, of
which the given problem situation forms a part, are likely to have significant impact
on the purpose and the objectives of the problem situation itself.

Decision Making in Complex Problem Situations.

In several previous CAD Research Center publications we have drawn attention to
the importance of internal and external relationships in complex problem situations
(Pohl et al. 1997 (48-62), Pohl and Myers 1994). As shown in Fig.3, there are several
characteristics that distinguish a complex problem from a simple problem. First, the
problem is likely to involve many related issues or variables. As discussed earlier the
relationships among the variables often have more bearing on the problem situation
than the variables themselves. Under such tightly coupled conditions it is usually not
particularly helpful, and may even be misleading, to consider issues in isolation.
Second, to confound matters some of the variables may be only partially defined and
some may yet to be discovered. In any case, not all of the information that is required
for formulating and evaluating alternatives is available. Decisions have to be made on
the basis of incomplete information.

Third, complex problem situations are pervaded with dynamic information changes.
These changes are related not only to the nature of an individual issue, but also to the
context of the problem situation. For example, a change in location of an enemy force
(even within the same sector of the battlefield) could easily have a major impact on
the entire nature of the combat situation facing the commander. Apart from the
disposition of friendly forces under these changed conditions, the influence on target
priorities, and the effectiveness of available weapons, such a relocation could call into
question the very feasibility of the existing battle plan. Even under less critical condi
tions it is not uncommon for the solution objectives to change several times during
the decision making process. This fourth characteristic of complex problem situations
is of particular interest. It exemplifies the tight coupling that can exist among certain
problem issues, and the degree to which decision makers must be willing to accom
modate fundamental changes in the information that drives the problem situation.

Fifth, complex problems typically have more than one solution (Archea 1987). It is
normally unproductive to look for an optimum solution, because there are no static
benchmarks available for evaluating optimality. A solution is found to be acceptable if it
satisfies certain performance requirements and if it has been determined that the search
for alternatives is no longer warranted. Such a determination is often the result of

25

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

resource constraints (e.g., availability of time, penalty of non-action, or financial re
sources) rather than a high level of satisfaction with the quality of the proposed solution.

Many Related Variables

Some Variables Undefined

Dynamic Information Changes

Solution Objectives Change

Several Possible Solutions

CONCURRENT

MULTI-TASKING

OPPORTUNISTIC

ADAPTABLE

OPEN SYSTEM

DYNAMIC

TIME-SAVING

Fig.3: Character of complex problems Fig.4: Parallel decision support

While human decision making in complex problem situations has so far defied rigor
ous scientific explanation, we do have knowledge of at least some of the characteristics
of the decision making activity.

•	 Decision makers typically define the problem situation in terms of issues that
are known to impact the desired outcome. The relative importance of these
issues and their relationships to each other change dynamically during the
decision making process. So also do the boundaries of the problem space and
the goals and objectives of the desired outcome. In other words, under these
circumstances decision making is an altogether dynamic process in which both
the rules that govern the process and the required properties of the end result
are subject to continuous review, refinement and amendment. Accordingly, the
borderline between planning and execution is blurred by the constant need for
replanning.

•	 The complexity of the decision making activity does not appear to be due to a
high level of difficulty in any one area but the multiple relationships that exist
among the many issues that impact the desired outcome. Since a decision in
one area will tend to influence several other areas there is a need to consider
many factors at the same time. This places a severe burden on the human
cognitive system. Although the neurological mechanisms that support con
scious thought processes are massively parallel, the conscious operation of
these reasoning capabilities is largely sequential. Under these conditions the

26

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

individual human decision maker is very much in need of assistance. The
availability of computers would appear to offer welcomed support through paral
lelism (Fig.4), connectivity, and information access, as long as the human decision
makers are able to effectively communicate their assistance needs to the computer.

•	 Observation of decision makers in action has drawn attention to the impor
tant role played by experience gained in past similar situations, knowledge
acquired in the general course of decision making practice, and expertise
contributed by persons who have detailed specialist knowledge in particular
problem areas (Mackinder and Marvin 1982, Mallen and Goumain 1973).
The dominant emphasis on experience is confirmation of another fundamen
tal aspect of the decision making activity. Problem solvers seldomly start from
first principles. In most cases, the decision maker intuitively builds on existing
solutions from previous situations that are in some way related to the problem
under consideration. Again, computers should be potentially useful through their
ability to store not only vast amounts of data but also higher level information and
knowledge. It is not unreasonable to expect knowledge-based computer systems (i.e.,
software applications) to alert the user to past solutions and suggest how these
might relate to the current problem.

•	 Finally, there is a distinctly irrational aspect to decision making in complex
problem situations. Schön (1983) refers to a “...reflective conversation with the
situation...”. He argues that decision makers frequently make value judgments
for which they cannot rationally account. Yet, these intuitive judgments often
result in conclusions that lead to superior solutions. It would appear that such
intuitive capabilities are based on a conceptual understanding of the situation,
which allows the problem solver to make knowledge associations at a highly
abstract level. This strongly suggests that a collaborative human-computer part
nership is essential. Both must contribute their respective strengths and assist each
other to overcome their respective weaknesses. Any attempt to automate the deci
sion making process to the exclusion of the human element is not only likely to be
counterproductive, but dangerous as well.

Based on these characteristics the solution of complex problems can be categorized as
an information intensive activity that depends for its success largely on the availability
of information resources and, in particular, the experience and reasoning skills of the
decision makers. It follows that the quality of the solutions will vary significantly as a
function of the problem solving skills, knowledge, and information resources that can
be brought to bear on the solution process. This clearly presents an opportunity for
the useful employment of computer-based decision-support systems in which the
capabilities of the human decision maker are complemented with knowledgebases,
expert agents, and self-activating conflict identification and monitoring capabilities.

27

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The Critical Importance of Information Representation in the
Computer.

Although technological advances in computer hardware and communication systems
have been truly astounding over the past 20 years, the direct utilization of these
advances in the area of decision-support has been less than remarkable. The fact is
that we are still using computers largely as data processing devices that perform only
the most menial and least intelligent data transmission and manipulation tasks. While
computers are performing these tasks with great speed and accuracy, and while they
are able to provide connectivity among a virtually unlimited number of access points,
the higher level and much more rewarding tasks of analyzing, interpreting and ab
stracting data as information and knowledge is almost entirely left to the human users
(Fig.5).

COMPUTER-STORED DATAUBIQUITOUS COMPUTING
Millions of connected interfaces serving Alphanumeric character strings
as information sources and information and numbers without subject

delivery nodes. matter meaning to computer.

BODY NETS
Direct interface to the human senses for COMPUTER-STORED INFORMATION
the enhancement of human functions. Symbols representing real world

objects with behavorial characteristics
and shallow (typical) relationships.PROBLEM SOLVING TOOLS

Shift from programming tools to user

tools for solving problems.

COMPUTER-STORED KNOWLEDGE

AGENT SOCIETIES Information with deeper relationships
A virtual world of service agents will based on monitoring of events,

profoundly leverage the capabilities of reasoning and understanding.
the individual.

Fig.5: Evolving computer-human partnership Fig.6: Data-information-knowledge

This serious deficiency has become increasingly apparent as technological advances have
increased computing power, data storage capacities, and data transmission speeds by
orders of magnitude in such a short period of time. Convenient global access to users
and data has increased the need for information filtering, so that individuals might take
advantage of the opportunities for material and personal profit that this connectivity
and processing power present to the user. Needless to say, the capabilities of a computer
to assist in the intelligent assessment of information are basically non-existent if the
computer processes this information as bitmaps and alphanumeric text strings (Fig.6).
Any significantly useful human-computer collaborative partnership carries with it the
expectation that information is held within the system environment in a representational
form that is, if not equivalent to, at least compatible with human cognition.

28

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The current approach for achieving this objective is to represent information in the
computer as objects with behavioral characteristics and relationships to other objects
(Myers et al. 1993). While this approach is hardly sophisticated it does allow real
world objects (e.g., airfield, tunnel, building, weapon, tank) to be represented sym
bolically so that computer software modules can reason about them.

It is important to note that the relationships among these objects are often far more
important than the characteristics that describe the individual behavior of each object.
For example, the word house holds little meaning if we strip away the many associa
tions that this word represents in our mind. However, such associations to our knowl
edge of construction materials, our experiences in having lived in houses, and our
understanding of how our own home is impacted by external factors (such as rain,
sunshine, neighbors, mortgage interest rates, and so on) constitute the rich meaning
of the object house (Minsky 1982). Accordingly, any useful representation of informa
tion in the computer must be capable of capturing the relationships among the enti
ties (i.e., objects) in the problem system.

While some of these associations are fairly static (e.g., a weapon is a kind of asset and
a lethal weapon is a kind of weapon) many of the associations are governed by current
conditions and are therefore highly dynamic. For example, as a platoon of soldiers
moves through the battlefield it continuously establishes new associations (e.g., to
windows in buildings from which snipers could fire on individual members of the
platoon), changes existing associations (e.g., higher levels of risk as the platoon nears
an active combat zone), and severs previous associations (e.g., as the platoon is forced
to abandon its compromised command post).

Abstract concepts such as privacy, security and power, are less amenable to this ap
proach since their meaning and role in our day-to-day activities is less easily defined.
For example, the characteristics of privacy are neither static nor can they be accurately
described in relational terms. They depend on a wide range of factors that relate to
both environmental and personal circumstances and dispositions. These factors can be
only partially accounted for through embedded knowledge and rules, and therefore
become largely the purview of the human members of the collaborative human-
computer partnership.

Nevertheless, even with these shortcomings this form of representation of real world
objects can provide the basis of usable problem solving support and decision making
assistance. Improvements are possible with the addition of knowledge bases and user
interaction. In the latter case the user becomes as much a helper to the system as the
system serves as an assistant to the user. However, this occurs in quite different ways.
The system uses its computing and logical reasoning capabilities to monitor, analyze
and evaluate the actions, requests and interests of the user in an opportunistic manner.
The user, on the other hand, helps the system to understand the nature of the objects
and relationships that it is processing in a more deliberate manner (Pohl 1995).

29

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The reliance on object representations in reasoning endeavors is deeply rooted in the
innately associative nature of the human cognitive system. Information is stored in long
term memory through an indexing system that relies heavily on the forging of associa
tion paths. These paths relate not only information that collectively describes the mean
ing of symbols such as helicopter, rifle and truck, but also connect one symbol to another.
The symbols themselves are not restricted to the representation of physical objects, but
also serve as concept builders. They provide a means for grouping and associating large
bodies of information under a single conceptual metaphor. In fact, Lakoff and Johnson
(1980) argue that “...our ordinary conceptual system, in terms of which we both think and act,
is fundamentally metaphorical in nature...”. They refer to the influence of various types of
metaphorical concepts, such as ‘desirable is up’ (spatial metaphors) and ‘fight inflation’
(ontological or human experience metaphors), as the way human beings select and
communicate strategies for dealing with every day events. Problem solvers typically
intertwine the factually based aspects of objects with the less precise, but implicitly
richer language of metaphorical concepts. This leads to the spontaneous linkage of
essentially different objects through the process of analogy. In other words, the decision
maker recognizes similarities between two or more sub-components of apparently
unrelated objects and embarks upon an exploration of the discovered object seeking
analogies where they may or may not exist. At times these seemingly frivolous pursuits
lead to surprising and useful solutions of the problem at hand.

The need for a high level representation is fundamental to all computer-based decision-
support systems. It is an essential prerequisite for embedding artificial intelligence in
such systems, and forms the basis of any meaningful communication between user and
computer. Without a high level representation facility the abilities of the computer to
assist the human decision maker are confined to the performance of menial tasks, such
as the automatic retrieval and storage of data or the computation of mathematically
defined quantities. While even those tasks may be highly productive they cannot
support a partnership in which human users and computer-based systems collaborate in
a meaningful and intelligent manner in the solution of complex problems.

The Limited Role of Visualization.

Decision makers use various visualization media, such as visual imagination or simu
lation, drawings and physical models, to communicate the current state of the evolv
ing solution to themselves and to others. For example, drawings, sketches and com
puter displayed images have become intrinsically associated with problem solving.
Although the decision maker can reason about complex problems solely through
mental processes, drawings and related visual images are useful and convenient for
extending those processes. The failings of a drawing or sketch as a vehicle for commu
nicating the full intent of the decision maker do not apply to the creator of the draw
ing. To the latter the drawing serves not only as an extension of long term memory,
but also as a visual bridge to its associative indexing structure. In this way, every

30

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

meaningful part of the drawing is linked to related data and deliberation sequences
that together provide an effectively integrated and comprehensive representation of
the artifact.

From a technical point of view a great deal of headway has been made over the past
two decades in the area of computer-based visualization. However, without high level
representation capabilities even the most sophisticated computer generated images are
nothing but hollow shells. If the computer system does not have even the simplest
understanding of the nature of the objects and their associations that are contained in
the image then it cannot contribute in any way to the analysis of those objects. On the
other hand, visualization in combination with high level representation becomes the
most powerful element of the user interface of a decision-support system. Under
these circumstances, visualization promotes the required level of understanding
between the user and the computer as they collaborate in the solution of the problem.

The Complementary Role of Human Intuition.

Schön (1983 and 1988) has written extensively about the intuitive aspects of decision
making. Although he focused primarily on engineering design as an application area,
his views provide valuable insight into the solution of complex problems in general.
Design has all of the common characteristics of complex problem situations, and
some additional ones such as the desire for solution uniqueness, that make it a prime
candidate for computer-based assistance (Pohl et al.1994).

In Schön’s (1988) view designers enter into “...design worlds...” in which they find the
objects, rules and prototype knowledge that they apply to the design problem under
consideration. The implication is that the designer continuously moves in and out of
design worlds that are triggered by internal and external stimuli. While the reasoning
process employed by the designer in any particular design world is typically sequential
and explicitly logical, the transitions from state to state are governed by deeper physi
ological and psychological causes. Some of these causes can be explained in terms of
associations that the designer perceives between an aspect or element of the current
state of the design solution and the prototype knowledge that the designer has accu
mulated through experience. Others appear to be related to environmental stimuli or
emotional states, or interactions of both.

For example, applying Schön’s view to the broader area of complex problem solving, a
particular aspect of a problem situation may lead to associations in the decision
maker’s mind that are logically unrelated to the problem under consideration. How
ever, when the decision maker pursues and further develops these associations they
sometimes lead to unexpected solutions. Typically, the validity of these solutions
becomes apparent only after the fact and not while they are being developed. In
popular terms we often refer to these solutions as creative leaps and label the author as

31

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

a brilliant strategist. What we easily forget is that many of these intuitions remain
unrelated associations and do not lead to any worthwhile result. Nevertheless, the
intuitive aspect of decision making is most important. Even if only a very small
percentage of these intuitive associations were to lead to a useful solution, they would
still constitute one of the most highly valued decision making resources.

The reasons for this are twofold. First, the time at which the decision maker is most
willing to entertain intuitive associations normally coincides with a most difficult
stage in the problem solving process. Typically, it occurs when an impasse has been
reached and no acceptable solution strategy can be found. Under these conditions
intuition may be the only remaining course of action open to the decision maker. The
second reason is particularly relevant if there is a strong competitive element present
in the problem situation. For example, in command and control situations during the
execution of military operations. Under these circumstances, strategies and solutions
triggered by intuitive associations will inevitably introduce an element of surprise that
is likely to disadvantage the enemy.

The importance of intuition in decision making would be sufficient reason to insist
on the inclusion of the human decision maker as an active participant in any com
puter-based decision-support system. In designing and developing such systems in
the CAD Research Center over the past decade we have come to appreciate the
importance of the human-computer partnership concept, as opposed to automation.
Whereas in some of our early systems (e.g., ICADS (Pohl et al. 1988) and AEDOT
(Pohl et al. 1992)) we included agents that automatically resolved conflicts, today we
are increasingly moving away from automatic conflict resolution to conflict detection
and explanation. We believe that even apparently mundane conflict situations should
be brought to the attention of the human agent. Although the latter may do nothing
more than agree with the solution proposed by the computer-based agents, he or she
should be given the opportunity to bring other knowledge to bear on the situation
and thereby influence the final determination.

The Human-Computer Partnership

To look upon decision-support systems as partnerships between users and computers,
in preference to automation, appears to be a sound approach for at least two reasons.
First, the ability of the computer-based components to interact with the user over
comes many of the difficulties, such as representation and the validation of knowl
edge, that continue to plague the field of machine learning (Thornton 1992, Johnson-
Laird 1993).

Second, human and computer capabilities are in many respects complementary
(Figs.7 and 8). Human capabilities are particularly strong in areas such as communi
cation, symbolic reasoning, conceptualization, learning, and intuition. We are able to

32

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

store and adapt experience and quickly grasp the overall picture of even fairly chaotic
situations. Our ability to match patterns is applicable not only to visual stimuli but
also to abstract concepts and intuitive notions. However, although the biological basis
of our cognitive abilities is massively parallel, our conscious reasoning capabilities are
essentially sequential. Therefore, human decision makers are easily overwhelmed by
large volumes of information and multi-faceted decision contexts. We have great
difficulty dealing with more than two or three variables at any one time, if there are
multiple relationships present. Under these circumstances we tend to switch from an
analysis mode to an intuitive mode in which we have to rely almost entirely on our
ability to develop situation awareness through abstraction and conceptualization.
While this is our greatest strength it is also potentially our greatest weakness. At this
intuitive meta-level we are vulnerable to emotional influences that are an intrinsic part
of our human nature and therefore largely beyond our control.

Computer capabilities are strongest in the areas of parallelism, speed and accuracy
(Fig.8). Whereas the human being tends to limit the amount of detailed knowledge
by continuously abstracting information to a higher level of understanding, the
computer excels in its almost unlimited capacity for storing data. While the human
being is prone to making minor mistakes in arithmetic and reading, the computer is
always accurate. A slight diversion may be sufficient to disrupt our attention to the
degree that we incorrectly add or subtract two numbers. However, if the error is large
we are likely to notice that something is wrong further downstream due to our ability
to apply conceptual checks and balances. The computer, on the other hand, cannot of
its own accord distinguish between a minor mistake and a major error. Both are a
malfunction of the entirely predictable behavior of its electronic components.

The differences between the human being and the computer are fundamental. All of
the capabilities of the digital computer are derived from the simple building blocks of
‘0’ and ‘1’. There is no degree of vagueness here, ‘0’ and ‘1’ are precise digital entities
and very different from the massively parallel and largely unpredictable interactions of
neurons and synapses that drive human behavior. It is not intuitively obvious how to
create the high level representations of real world objects (e.g., ship, aircraft, dog,
house, power, security, etc.) that appear to be a prerequisite for human reasoning and
learning, in a digital computer. While these objects can be fairly easily represented in
the computer as superficial visual images (in the case of physical objects such as
aircraft and house) and data relationships (in the case of conceptual objects such as
power and security) that in itself does not ensure that the computer has any under
standing of their real world meaning. These representations are simply combinations
of the basic digital building blocks that model, at best, the external shell rather than
the internal kernel of the object.

33

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

FAST PARALLEL
COMPUTATIONAL

REASONING

DETAILED
KNOWLEDGE

SIMPLE
COMMUNICATION

CONTINUOUS
AVAILABILITY

??SLOW SEQUENTIAL
REASONING

LEARNING

EMOTION

INTUITION

CONCEPTUAL
KNOWLEDGE

COMPLEX
COMMUNICATION

LIMITED
AVAILABILITY

MOTIVATION

Fig.7: Human abilities and limitations Fig.8: Computer abilities and limitations

Unfortunately, it is still not generally understood that this representational inadequacy
is the single most limiting factor in virtually all existing decision-support systems. For
example, current military command and control systems tend to overwhelm com
manders with hundreds of detailed satellite pictures of battlefield conditions that are
transmitted by computers as digital packages rather than groups of objects. As a result
the interpretation, filtering and fusion of these images, areas in which computer-
assistance would be highly desirable, become the burdensome task of the human
decision maker.

More than 10 years ago when the CAD Research Center first embarked on the
development of cooperative multi-agent systems we recognized the fundamental
importance of representation, as a prerequisite for providing computer-based agents
with reasoning capabilities. We discovered that while this problem was well known
and had been the subject of considerable research in the artificial intelligence commu
nity, the results of this research work had generally remained the province of that
close-knit community.

Early practical implementations of artificial intelligence systems were almost exclu
sively confined to stand-alone applications, such as expert systems (e.g., Prospector
(Duda et al. 1977, Reboh 1981), MYCIN (Buchanan and Shortliffe 1984), and
ASTA (Wilson et al. 1984)). Since these systems were not intended to interface with
other applications the importance of representation continued to be largely ignored by
the mainstream of software developers and users. Over the past decade the CAD
Research Center has explored, adapted and implemented several high level represen
tation techniques in its various decision-support applications for industry and govern
ment sponsors (Myers et al. 1993). While there is a need for a great deal more work
in this area the state of technology today is, without question, capable of providing an
internal representation level that can support meaningful reasoning assistance in large
integrated decision-support systems.

34

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Multi-Agent Collaborative Decision-Support Systems

Adaptation of 1st Wave software (Fig.2) to increasingly more complex real world
problem situations has led to a hybrid of human and computer-based decision-
support systems (Fig.9). Individual members of the human problem solving team
utilize computer-based tools to assist them mostly with the computational and plan
ning components of their tasks. However, this assistance is limited to the individual
team member. While the computer can retrieve and send information from and to
shared databases, it exercises these capabilities only on the request of its user. Collabo
ration within the problem team is largely restricted to the communications initiated
by team members. The computer shares in these communications only to the extent
that its user initiates queries to shared databases. The computer functions as a stand
alone tool that interacts with its user, but does not actively participate in the collabo
rative problem solving process.

LIMITED
SHARED

KNOWLEDGE

LIMITED
COMMUNICATION
NETWORKS

HUMAN
AGENT

HUMAN
AGENT

MESSAGES

HUMAN
AGENT

HUMAN
AGENT

HUMAN
AGENT

HUMAN
AGENT

DATA

STAND-ALONE
COMPUTER

LOCAL
KNOW
LEDGE

LOCAL
KNOW
LEDGE

LOCAL
KNOW
LEDGE

LOCAL
KNOW
LEDGE

LOCAL
KNOW
LEDGE

LOCAL
KNOW
LEDGE

Theater

CINC

Continuous
Electronic
and Voice
Communication
from Person to
Person

HUMAN-BASED
C4I SYSTEM

Human Agent
Layers of CSS

Massive Human/Machine
Support and Fighting Units

Fig.9: Limited computer assistance Fig.10: Hierarchical military C4I structure

In this hybrid decision-support environment, which is still representative even of the
more critical transportation and military systems today, much of the collaboration is
based on human to human voice communication. As a result, under severe stress
conditions these systems are subject to serious communication bottlenecks that will
disrupt and may even terminate the decision making process. In recent years examples
of these conditions have occurred during environmental disasters, such as earthquakes
in the USA, and military missions, such as Desert Storm in the Middle East. In the
latter case, as shown in Fig.10, the combination of a hierarchical command and
control structure with a 1st Wave software architecture produced a high potential for
communication failure. A massive build-up of US and allied forces (i.e., more than
500,000 personnel) in the theater was supported by computer-based communication

35

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

facilities that reflected the chain of command through multiple levels from the com
mander in chief (CINC) down to the soldier in the battlefield. In this human-based
C4I system environment continuous electronic and voice communication, essentially
from person to person, quickly clogged the available communication channels.

During the late 1990s the limited computer-assistance capabilities (Fig.9) that are
reflective of 1st Wave software will be increasingly replaced by integrated, multi-
agent, cooperative systems. This signals the emergence of 2nd Wave software
(Fig.11) in which the contributions of several decision-support components are
coordinated through an inter-process communication facility. The components,
commonly referred to as agents, may be separate processes or modules of one or more
processes. They may be rule-based expert systems, procedural programs, neural
networks, or even sensing devices. Increasingly, these agents will have the ability to
explain their actions and proposals, as they interact spontaneously with each other
either directly or through coordination facilities.

In the broadest sense an agent may be described as a computer-based program or
module of a program that has communication capabilities to external entities and can
perform some useful tasks in at least a semi-autonomous fashion. According to this
definition agent software can range from simple, stand-alone, predetermined applica
tions to the most intelligent, integrated, multi-agent decision-support system that
advanced technology can produce today.

DECISION
SUPPORT

COMPONENT

DECISION
SUPPORT

COMPONENT

DECISION
SUPPORT

COMPONENT

COORDINATION

COMMUNICATION

GRAPHIC (MULTI
MEDIA)

USER INTERFACE DECISION
SUPPORT

COMPONENT

DISTRIBUTED
DATABASES

EXPLANATION
FACILITY

DECISION
SUPPORT

COMPONENT

(AGENT)

(AGENT)

(AGENT) (AGENT)

(AGENT)

SERVICE
AGENT

DISTRIBUTED
KNOWLEDGE

BASES

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

COMMUNICATION

HUMAN
AGENT

HUMAN
AGENT

MESSAGES

MESSAGES

Fig.11: 2nd Wave computer applications Fig.12: The service-agent architecture

As discussed previously, 2nd Wave software requires a high level internal representa
tion of the real world objects and their relationships that are central to the problem
situation. This is a prerequisite for the reasoning capabilities of the agents and also for
the interaction of the user(s) with the system. The objective of 2nd Wave software is

36

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

not to automate the decision making activity, but to create an effective partnership
between the human decision maker and the computer-based agents. In this partner
ship the human agent must be able to communicate with the computer-based agents
in terms of the same real world objects that are used so effectively in all human
reasoning endeavors. In their role as active collaborators the computer-based agents
will have information needs that cannot be totally predetermined. Therefore, similar
to the human agent, they will require the capability to dynamically generate database
queries and initiate user interactions. At least some of the information sources ac
cessed by the agents will be prototypical in nature (i.e., standard practices, case stud
ies, and other typical knowledge pertaining to the problem situation) consistent with
the notion of knowledge-based systems.

As discussed earlier, human and computer capabilities are complementary in many
respects. Where we excel in the areas of abstraction, conceptualization, intuition and
creativity, the performance of the computer cannot be described as being even ad
equate. However, when it comes to computational speed and accuracy, searching for
and storing data, redundancy and parallelism, information persistence, and continuous
availability, the computer outperforms us by far. It is therefore not surprising that
current 2nd Wave software developments are increasingly focusing on collaborative
systems in which users interact with computer-based expert agents (Fig.11). Typically,
each agent is designed to be knowledgeable in a narrow domain, and represents the
viewpoint of that domain in its collaborative endeavors. In this respect it provides
services and can be categorized as a service-agent (Fig.12).

The service-agents are endowed with a communication facility that allows them to
receive and send information. The manner in which they participate in the decision
making activities depends on the nature of the application. They can be designed to
respond to changes in the problem state spontaneously, through their ability to moni
tor information changes and respond opportunistically, or information may be passed
to them in some chronological order based on time-stamped events or predefined
priorities. They should be able to generate queries dynamically and access databases
automatically whenever the need arises. In other words, service-agents should have
the same data search initiation capabilities as the user and should not be dependent
solely on the user for access to external information sources. In fact, the human users
in such multi-agent systems may be categorized as very intelligent, multi-domain
service agents. Examples of such service-agent systems can be found in the literature
(Durfee 1988, Lesser 1995, Pohl et al. 1989, 1991 and 1997).

Within a networked environment the service-agents pertaining to a single multi-
agent system (Fig.12) may be distributed over several computers, and even the coordi
nation facilities (i.e., planning, negotiation, conflict detection, etc.) may be distributed
over several nodes (Pohl et al. 1992). Alternatively, several single multi-agent systems
can be connected. In this case each multi-agent system functions as an agent in a

37

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

higher level multi-agent system. Such systems are well suited to planning functions in
which resources and viewpoints from several organizational entities must be coordi
nated. Typical application areas include military mission planning and facilities
management. The user at each node should be able to plan in multiple worlds. For
example, a private world in which shared information sources may be accessed but the
deliberations of the user are not shared with other users, and a shared world which
allows and encourages the continuous exchange of comments, plans and instructions.
The capability normally exists for the user to maintain multiple views of each world
to facilitate experimentation and the exploration of alternatives (Nadendla and Davis
1995). The service-agents resident in each system (i.e., at each node) should be able
to differentiate between worlds and also between the views of any particular world.
This normally requires a high degree of parallelism that must be supported by the
system architecture.

So far we have discussed multi-agent systems involving two types of agents; namely,
service-agents and human agents (i.e., users). Other agent types are certainly feasible.
Of particular interest is the agentification of the information objects that are intrinsic
to the nature of each application. These are the information objects that human
decision makers reason about, and that constitute the building blocks of the real world
representation of the problem situation.

OBJECT-AGENT
(Mentor Agent
For Vehicle)

OBJECT-AGENT
(Mentor Agent

For Marine)

Service Agents,
Object Agents,
and Human Agents

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

SERVICE
AGENT

COMMUNICATION

HUMAN
AGENTHUMAN

AGENT MESSAGES

MESSAGES

MENTOR
AGENT

MENTOR
AGENT

MENTOR
AGENT

MESSAGES

Fig.13: Object-Agent systems Fig.14: The object-agent as a mentor

The notion of object-agents brings several potential benefits. First, it increases the
granularity of the active participants in the decision making environment. As agents
with communication capabilities, objects such as armored vehicles (in military mis
sions), aircraft (in air traffic control), or building spaces (in architectural design), can
pursue their own needs and perform a great deal of local problem solving without

38

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

continuously impacting the communication and coordination facilities utilized by the
higher level components of the decision-support system (Fig.13). Typically, an object-
agent is a process (i.e., program) or component of a process that includes several
adjuncts that provide the agent with communication capabilities, process management
capabilities, information about its own nature, global objectives, and some focused
problem solving tools.

Second, the ability of object-agents to request services through their communication
facilities greatly increases the potential for concurrent activities. Multiple object-
agents can request the same or different services simultaneously. If necessary, service-
agents responding to multiple service requests can temporarily clone themselves so
that the requests can be processed in parallel. Third, groups of object-agents can
negotiate among themselves in the case of matters that do not directly affect other
higher level components or as a means of developing alternatives for consideration by
higher level components. Fourth, by virtue of their communication facilities object-
agents are able to maintain their associations to other objects. In this respect they are
the product of decentralization rather than decomposition. In other words, the concept
of object-agents overcomes one of the most serious deficiencies of the rationalistic
approach to problem solving; namely, the dilution and loss of relationships that occurs
when a complex problem is decomposed into sub-problems. In fact, the relationships
are greatly strengthened because they become active communication channels that can
be dynamically created and terminated in response to the changing state of the prob
lem situation.

The combination of object-agents and service-agents in the same decision-support
system suggests a logical transition from 2nd Wave to 3rd Wave software in which
even simple learning capabilities may eventually lead to emergent knowledge (Brooks
1990). Object-Agents may represent abstract concepts such as image and power,
collective notions such as climate, virtual entities such as a building space during the
design process (Pohl 1996), physical objects such as a M1A1 tank in the battlefield, or
even human beings such as an individual soldier, squad or platoon. In the latter case a
small communication device, embedded in a computer tag, is attached to the uniform
of the soldier (Fig.14). This Radio Frequency Tag (RF-Tag) is capable of receiving
and sending messages to an object-agent taking the role of a mentor within the
computer-based command and control system. In this scenario the object-agent can
serve many functions. It can provide several kinds of assistance to the soldier, such as
medical advice, geographical position and terrain information, enemy location and
strength, maneuver strategies, fire support alternatives, and so on. Conversely, the
object-agent can use the soldier as part of a sensory array that continuously collects
intelligence with and without the soldier’s direct involvement.

Many of the service requests received by the object-agent will need to be passed onto
service-agents, human agents, or other object-agents. This can be accomplished

39

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

through the appropriate use of both broadcasting and directed modes of communica
tion. For example, a request for medical advice may initiate several actions by the
mentor agent: a specific request for more detailed information to the soldier; the
collection of bodily functions data from sensors embedded in the soldier’s uniform, if
the soldier has been wounded; a broadcast for evacuation assistance, if the wounds are
serious; a request for specific self-help medical advice directed to a service-agent with
medical expertise; a situation update to the Commander’s mentor agent and/or the
designated command and control service-agent; and so on. Even if the soldier is
unable to personally communicate, the mentor agent is automatically alerted to the
soldier’s medical condition through sensors attached to his uniform or skin.

Conclusion

A collaborative agent-based command and control system, such as the Integrated
Marine Multi-Agent Command and Control Systems (IMMACCS) that was success
fully field-tested by the Marine Corps Warfighting Laboratory (MCWL) during the
Urban Warrior Advanced Warfighting Experiment a few weeks ago (i.e., March 11 to
18, 1999, Monterey and Oakland, California), differs from the conventional human-
based command and control system shown in Fig.10 in several significant respects
(Porczak et al. 1999). First, the continuous and automatic monitoring of human/
machine warfighting units by the various types of agents that operate spontaneously
within the communication system potentially provides the warfighter with access to
instantaneous advice and guidance. The agent to agent communication which facili
tates this continuous access to information and intelligent analysis is not dependent
on human to human interaction. In a conventional command and control system the
communication channels are easily saturated by the continuous flow of human to
human electronic and voice communications. Efforts to control this traffic inevitably
require the imposition of communication restrictions that can easily prevent critical
information from reaching the appropriate Commander or warfighter. In addition, as
shown in Fig.10, the human to human interaction encourages a build-up of support
personnel in and around the theater. This build-up is costly in terms of transportation
and logistics, increases the danger of casualties, and places an additional burden on
the already overloaded communication facilities.

Second, the multi-agent system architecture decentralizes both the collection and
analysis of information. Individual human/machine warfighting units serve equally
well as collectors and generators of information, as they do as recipients of informa
tion. In this way a dispersed force of warfighters can represent an important sensor
array, with the ability to add value by converting data into information and knowledge
close to the source. This decentralization of the data analysis process is particularly
valuable in terms of distributing the communication traffic and validating the results
of the analysis at the collection source.

40

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Third, the seamless integration of planning, execution and training functions within
the same command and control communication system allows the Commander and
the individual warfighter to continuously and instantaneously switch from one mode
of operation to another. In fact, the parallel nature of the system allows specific
planning, execution and training tasks to be undertaken concurrently. For example,
the Commander may wish to initiate a planning function through one set of agents
while executing a specific operation in the theater, and at the same time simulate a
particular what if scenario in anticipation of a possible future situation.

Recent studies by the US Marine Corps and the US Army have demonstrated the
capabilities of relatively low cost computerized RF-Tags that are mounted on vehicu
lar cargo. Object-Agents can be designed to communicate with tagged equipment
not only for purposes of monitoring their location, but also in a service and low level
decision making role.

For example, let us assume a tactical cargo loadout scenario in which a fuel truck,
fitted with a RF-Tag has been loaded onto a ship. During the voyage the fuel truck
starts to leak. While the volume of fuel leaked is fairly small, even this small amount
constitutes a serious potential hazard on-board ship. Alerted of the situation through
a simple feed-back mechanism the RF-Tag communicates to its companion object-
agent, resident in the command and control system, both its location and the extent
of the leakage. The object-agent analyses the situation, either through its own capa
bilities or by requesting supporting services from other agents, and automatically
notifies appropriate command personnel, or other agents, or the ship directly. What is
particularly noteworthy in this scenario is the fact that the command and control system
was not only able to automatically detect the problem, but also analyze the situation and
take action without the need for human intervention.

In existing multi-agent system configurations which include only domain agents (i.e.,
service-agents), conflicts arise when agents either disagree among themselves or with
a decision made by the user. For example, utilizing such a system for the load plan
ning of a ship, the placement of a fuel truck in a particular ship compartment might
provoke the latter type of conflict (CADRC 1994). If the stow-planner unknowingly
places the truck in the immediate vicinity of another cargo item of a different hazard
ous material class, then the hazard agent will alert the user and explain the necessary
segregation requirements. The stow-planner resolves the conflict by relocating or
unloading one or both of the cargo items or, alternatively, overrules the service-agent.
The fuel truck, as a passive object, is involved in the conflict resolution process only as
an information source that is used by the service-agent in its deliberations. In other
words, while the validation of the load planning decision is entirely dependent on the
knowledge encapsulated in the object the latter is unable to actively participate in the
determination of its own destiny.

41

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

There is another kind of conflict resolution scenario that becomes possible with the
availability of object-agents. An object-agent may develop a solution to a sub-problem
in its own domain that redirects the entire course of the overall solution plan. For
example a squad, operating in dispersed mode in enemy territory and communicating
with a mentor agent (Fig.14), performs its assigned enemy surveillance mission. It
communicates through its object-agent certain enemy behavior that it believes could
be turned to advantage if specific elements of the current overall operations plan were
to be modified. However, such suggestions are rejected at operational levels below the
Commander for reasons that appear to this squad to be based on erroneous intelli
gence. The squad judges the matter to be of a potentially serious nature and instructs
its mentor agent to validate aspects of the squad’s current understanding of the battle
field situation.

The object-agent commences a low level investigation by communicating with the
mentor agents of several other squads and utilizing the services of domain agents (i.e.,
service-agents) where necessary. Soon an alarming picture emerges. It appears pos
sible that the enemy has infiltrated one node of the command and control system and
is entering erroneous information through this node. The effects of this gradually
evolving deception could lead to disastrous consequences. The squad, realizing the
potentially serious nature of the situation, progressively develops through the activities
of its object-agent a more and more compelling case in support of its observations and
suggestions.

Eventually, the overwhelming weight of evidence developed from the interactions of
the squad with its object-agent and other agents in the command and control system
attracts the attention of the Command Element. The Commander and his object-
agent quickly undertake another analysis of the situation considering additional
factors not considered in the squad’s analysis. He verifies an almost certain localized
penetration by the enemy of the command and control system and decides to utilize
this knowledge by implementing a double-deception strategy.

This scenario demonstrates several significant capabilities of a multi-agent command
and control system, like IMMACCS, incorporating object-agents. First, it is signifi
cant that the likely enemy penetration of the information system has been discovered
at all. If the squad had been restricted to communicating its information as passive
objects for processing by service-agents there would not have been any desire on the
part of the command and control system to pursue the problem after the initial
conflict resolution. Second, the squad’s object-agent was able to undertake its investi
gation in a decentralized fashion without impacting higher level command and
control activities until it was ready to present a strong case for reconsideration. How
ever, it was able at any time to alert higher levels of the command structure as soon as
the results of its investigation warranted such action.

42

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Third, if the squad’s projections had been rejected at all higher agent levels, the
squad’s object-agent could have appealed directly to the Commander or his object-
agent. Under these circumstances the Commander would have several alternative
courses of actions open: also reject the squad’s suggestions; require one or more of the
higher level agents (i.e., object-agents and service-agents) to explain their ruling; reset
certain parameters that allow the higher level agents to reconsider their ruling; over
rule the higher level agents and accept the proposal; or, capture the current state of
the battlefield situation as a recoverable view and use the squad’s proposition as the
basis for the exploration of alternative solution paths.

Apart from their immediate action capabilities, object-agents support the highly
desirable goal of decentralization through localized decision making and communica
tion. In this kind of distributed, cooperative environment it would be useful if mes
sages themselves could be endowed with agent capabilities. At least certain types of
messages would benefit greatly from action capabilities. For example, a message-agent
sent by an object-agent or service-agent to find particular information could clone
itself to seek the information concurrently in several potential sources. Once appar
ently relevant information has been found it could be synthesized to formulate a
meaningful response to the originator of the query. Clearly, message-agents would
add another level of granularity, decentralization and action capability within the
distributed, collaborative decision-support system architecture.

References

Archea J. (1987); ‘Puzzle-Making: What Architects Do When No One Is Looking’;
in Kalay (ed.) Principles of Computer-Aided Design: Computability of Design’;
Wiley, New York, New York.

Bohm D. (1983); ‘Wholeness and the Implicate Order’; Ark Paperbacks, London,
England.

Brooks R.A. (1990); “Elephants Don’t Play Chess”; in Maes P. (ed.) Designing
Autonomous Agents, MIT Press, Cambridge, Massachusetts (pp.3-15).

Buchanan B. and E. Shortliffe (1984); ‘Uncertainty and Evidential Support ’; in
Buchanan and Shortliffe (eds.) Rule-Based Expert Systems, Addison-Wesley, Read
ing, Massachusetts (pp.209-232).

CADRC (1994); ‘ICODES: Proof-of-Concept System: Final Report’; Contract #:
N47408-93-7347, Naval Civil Engineering Laboratory (Port Hueneme, California),
CAD Research Center, Cal Poly, San Luis Obispo, California.

43

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Duda R., P. Hart, N. Nilsson, R. Reboh, J. Slocum and G. Sutherland (1977); ‘Devel
opment of a Computer-Based Consultant for Mineral Exploration’; SRI Report,
Stanford Research Institute, Menlo Park, California, October.

Durfee E. (1988); ‘Coordination of Distributed Problem Solvers’; Kluwer Academic,
Boston, Massachusetts.

Johnson-Laird P. (1993); ‘Human and machine Thinking’; Erlbaum, Hillsdale, New
Jersey.

Kuhn T. (1977); ‘The Essential Tension: Selected Studies in Scientific Tradition and
Change’; University of Chicago Press, Chicago, Illinois.

Lakoff G. and M. Johnson (1980); “Metaphors We Live By”; University of Chicago
Press, Chicago, Illinois.

Lesser V. (ed.) (1995); ‘Proc. First International Conference on Multi-Agent Sys
tems’; ICMAS-95, AAAI Press/MIT Press, Cambridge, Massachusetts.

Mackinder M. and H. Marvin (1982); ‘Design Decision Making in Architectural
Practice’; Building Research Establishment, Department of Environment, HMSO,
London, England, July.

Mallen G. and P. Goumain (1973); ‘The Analysis of Architectural Design Activity in
the Working Environment’; Report 108/4 DDR, Royal College of Art, London,
England, November.

Minsky M. (1982); “Why People Think Computers Can’t”; AI Magazine, Vol.3(4),
Fall.

Myers L., J. Pohl, J. Cotton, J. Snyder, K. Pohl, S. Chien, S. Aly and T. Rodriguez
(1993); ‘Object Representation and the ICADS-Kernel Design’; CAD Research
Center, Technical Report (CADRU-08-93), Cal Poly, San Luis Obispo, California.

Nadendla R. and A. Davis (1995); ‘FEAT: Distributed Problem Solving in a Military
Mission Planning Environment’; Master Thesis, Computer Science Department, Cal
Poly, San Luis Obispo, California.

Pohl J., A. Chapman, L. Chirica, R. Howell and L. Myers (1988); ‘Implementation
Strategies for a Prototype ICADS Working Model’; Technical Report, CADRU-02
88, CAD Research Unit, Design and Construction Institute, College of Architecture
and Environmental Design, Cal Poly, San Luis Obispo, California.

44

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Pohl J., L. Myers, A. Chapman and J. Cotton (1989); ‘ICADS: Working Model
Version 1’; Technical Report, CADRU-03-89, CAD Research Unit, Design and
Construction Institute, College of Architecture and Environmental Design, Cal Poly,
San Luis Obispo, California.

Pohl J., L. Myers, A. Chapman, J. Snyder, H. Chauvet, J. Cotton, C. Johnson and D.
Johnson (1991); ‘ICADS Working Model Version 2 and Future Directions’; Technical
Report, CADRU-05-91, CAD Research Center, Design and Construction Institute,
College of Architecture and Environmental Design, Cal Poly, San Luis Obispo,
California.

Pohl J., J. La Porta, K. Pohl and J. Snyder (1992); ‘AEDOT Prototype (1.1): An
Implementation of the ICADS Model’; Technical Report, CADRU-07-92, CAD
Research Center, Design and Construction Institute, College of Architecture and
Environmental Design, Cal Poly, San Luis Obispo, California.

Pohl J. and L. Myers (1994); ‘A Distributed Cooperative Model for Architectural
Design’; in G. Carrara and Y. Kalay (eds.), Knowledge-based Computer-Aided
Architectural Design, Elsevier, Amsterdam (pp.205-242).

Pohl J., L. Myers and A. Chapman (1994); ‘Thoughts on the Evolution of Computer-
Assisted Design’; Technical Report, CADRU-09-94, CAD Research Center, Design
and Construction Institute, College of Architecture and Environmental Design, Cal
Poly, San Luis Obispo, California, September.

Pohl J. (1995); ‘The Representation Problem in CAD Systems: Solution Approaches’;
in Pohl J. (ed.) Advances in Cooperative Computer-Assisted Environmental Design
Systems, focus symposium: 8th International Conference on Systems Research,
Informatics and Cybernetics, Baden-Baden, Germany, August 16-20.

Pohl J. (1996); ‘Agents and their Role in Computer-Based Decision Support Systems’;
in Pohl J. (ed.) Advances in Cooperative Environmental Design Systems, focus
symposium: International Conference on Systems Research, Informatics and Cyber
netics, Baden-Baden, Germany, August 14-18 (pp.41-54).

Pohl J., A. Chapman, K. Pohl, J. Primrose and A. Wozniak (1997); ‘Decision-Support
Systems: Notions, Prototype, and In-Use Applications’; Technical Report, CADRU
11-97, CAD Research Center, Design and Construction Institute, College of Archi
tecture and Environmental Design, Cal Poly, San Luis Obispo, California.

Porczak M., K. Pohl, R. Leighton, A. Davis, H. Assal and L. Vempati (1999);
‘IMMACCS: Urban Warrior Advanced Warfighting Experiment After Action
Report’; CAD Research Center, Cal Poly, San Luis Obispo, California, April.

45

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Reboh R. (1981); ‘Knowledge Engineering Technologies and Tools in the Prospector
Environment’; SRI Technical Note 243, Stanford Research Institute, Menlo Park,
California, June.

Schön D. (1983); ‘The Reflective Practitioner: How Professionals Think in Action’;
Basic Books.

Schön D. (1988); ‘Designing: Rules, Types and Worlds’; Design Studies, 9(3), July
(pp.181-190).

Senge P. (1993); ‘Transforming the Practice of Management’; Human Resource
Development Quarterly, Jossey-Bass, San Francisco, California.

Thornton C. (1992); ‘Techniques in Computational Learning’; Chapman and Hall,
Computing Series, London, England.

Wilson G., A. Cremarty, T. Adams, M. Grinberg, C. Tollander and J. Cunningham
(1984); ‘AI Assists Analysts in Identifying Soviet Radar Systems’; Defense Systems
Review, January (pp.23-26).

46

1

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Distributed Intelligent Agents

Katia Sycara, Keith Decker, Anandeep Pannu, Mike Williamson, Dajun Zeng
The Robotics Institute — Carnegie Mellon University

Abstract

We are investigating techniques for developing distributed and adaptive collections of
agents that coordinate to retrieve, filter and fuse information relevant to the user, task
and situation, as well as anticipate a user’s information needs. In our system of agents,
in- formation gathering is seamlessly integrated with decision support. The task for
which particular information is requested of the agents does not remain in the user’s
head but it is explicitly represented and supported through agent collaboration. In this
paper we present the distributed system architecture, agent collaboration interactions,
and a reusable set of software components for constructing agents. We call this reus
able multi-agent computational infrastructure RETSINA (Reusable Task Structure-
based Intelligent Network Agents). It has three types of agents. Interface agents
interact with the user receiving user specifications and delivering results. They ac
quire, model, and utilize user preferences to guide system coordination in support of
the user’s tasks. Task agents help users perform tasks by formulating problem solving
plans and carrying out these plans through querying and exchanging information
with other software agents. Information agents provide intelligent access to a heteroge
neous collection of information sources. We have implemented this system framework
and are developing collaborating agents in diverse complex real world tasks, such as
organizational decision making (the PLEIADES system), and financial portfolio
management (the WARREN system).

Introduction

Effective use of the Internet by humans or decision support machine systems has
been hampered by some dominant characteristics of the Infosphere. First, information
available from the net is unorganized, multi-modal, and distributed on server sites all
over the world. Second, the number and variety of data sources and services is dra
matically increasing every day. Furthermore, the availability, type and reliability of
information services are constantly changing. Third, information is ambiguous and
possibly erroneous due to the dynamic nature of the information sources and potential
information updating and maintenance problems. Therefore, information is becoming
increasingly difficult for a person or machine system to collect, filter, evaluate, and use
in problem solving. As a result, the problem of locating information sources, access
ing, filtering, and integrating information in support of decision making, as well as
coordinating information retrieval and problem solving efforts of information sources
and decision-making systems has become a very critical task.

47

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The notion of Intelligent Software Agents (e.g., [1, 19, 20, 25, 13, 22]) has been
proposed to address this challenge. Although a precise definition of an intelligent
agent is still forthcoming, the current working notion is that Intelligent Software
Agents are programs that act on behalf of their human users in order to perform
laborious information gathering tasks, such as locating and accessing information
from various on-line information sources, resolving inconsistencies in the retrieved
information, filtering away irrelevant or unwanted information, integrating informa
tion from heterogeneous information sources and adapting over time to their human
users’ information needs and the shape of the Infosphere. Most current agent-ori
ented approaches have focussed on what we call interface agents—a single agent with
simple knowledge and problem solving capabilities whose main task is information
filtering to alleviate the user’s cognitive overload (e.g., [15, 16]). Another type of
agent is the Softbot ([6]), a single agent with general knowledge that performs a wide
range of user-delegated information-finding tasks. We believe that such centralized
approaches have several limitations. A single general agent would need an enormous
amount of knowledge to be able to deal effectively with user information requests that
cover a variety of tasks. In addition, a centralized system constitutes a processing
bottleneck and a “single point of failure”. Finally, because of the complexity of the
information finding and filtering task, and the large amount of information, the
required processing would overwhelm a single agent.

Another proposed solution is to address the problem by using multi-agent systems to
access, filter, evaluate, and integrate this information [23, 17]. Such multi-agent
systems can compartmentalize specialized task knowledge, organize themselves to
avoid processing bottlenecks, and can be built expressly to deal with dynamic changes
in the agent and information-source landscape. In addition, multiple intelligent
coordinating agents are ideally suited to the predominant characteristics of the
Infosphere, such as the heterogeneity of the information sources, the diversity of
information gathering and problem solving tasks that the gathered information
supports, and the presence of multiple users with related information needs. We
therefore believe that a distributed approach is superior, and possibly the only one that
would work for information gathering and coherent information fusion.

The context of multi-agent systems widens the notion of intelligent agent in at least
two general ways. First, an agent’s “user” that imparts goals to it and delegates tasks
might be not only a human but also another agent. Second, an agent must have been
designed with explicit mechanisms for communicating and interacting with other
agents. Our notion is that such multi agent systems may comprise interface agents tied
closely to an individual human’s goals, task agents involved in the processes associated
with arbitrary problem-solving tasks, and information agents that are closely tied to a
source or sources of data. An information agent is different from an interface agent in
that an information agent is tied more closely to the data that it is providing, while an

48

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

interface agent closely interacts with the user. Typically, a single information agent will
serve the information needs of many other agents (humans or intelligent software
agents). An information agent is also quite different from a typical World Wide Web
(WWW) service that provides data to multiple users. Besides the obvious interface
differences, an information agent can reason about the way it will handle external
requests and the order in which it will carry them out (WWW services are typically
blindly concurrent). Moreover, information agents not only perform information gath
ering in response to queries but also can carry out long-term interactions that involve
monitoring the Infosphere for particular conditions, as well as information updating.

In this paper, we report on our work on developing distributed collections of intelli
gent software agents that cooperate asynchronously to perform goal-directed infor
mation retrieval and information integration in support of performing a variety of
decision making tasks [23, 2]. We have been developing RETSINA, an open society
of reusable agents that self organize and cooperate in response to task requirements.
In particular, we will focus on three crucial characteristics of the overall framework
that differentiate our work from others:

•	 ours is a multi-agent system where the agents operate asynchronously and
collaborate with each other and their users,

•	 the agents actively seek out information,

•	 the information gathering is seamlessly integrated with problem solving and
decision support

We will present the overall architectural framework, our agent design commitments,
and agent architecture to enable the above characteristics. We will draw examples from
our work on Intelligent Agents in the domains of organizational decision making (the
PLEIADES system), and financial portfolio management (the WARREN system).

The rest of the paper is organized as follows. Section 2 briefly lists some agent char
acteristics we consider desirable. Section 3 motivates the distributed architecture for
intelligent information retrieval and problem solving, and presents an overview of the
system architecture, the different types of agents in the proposed multi agent organi
zation, and agent coordination mechanisms. Section 4 presents in detail the reusable
agent architecture and discusses planning, control, and execution monitoring in agent
operations. Description and examples from the application of RETSINA to everyday
organizational decision making and financial portfolio management are given in
Section 5. Section 6 presents concluding remarks.

49

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

2	 Desirable Agent Characteristics

Many different definitions of intelligent agents have been proposed. In this section,
we give a brief list of what we see as essential characteristics of intelligent agents.

•	 taskable. By “taskable” we mean agents that can take direction from humans or
other agents.

•	 network-centric: by this we mean that agents should be distributed and self
organizing. When situations warrant it, agent mobility may also be desirable.

•	 semi-autonomous rather than under direct human control all the time. For
example, in an information gathering task, because of the large amount of
potential requests for information, humans would be swamped, if they had to
initiate every single information request. The amount of agent autonomy
should be user controllable.

•	 persistent, i.e. capable of long periods of unattended operation.

•	 trustworthy: An agent should serve users’ needs in a reliable way so that users
will develop trust in its performance.

•	 anticipatory: An agent should anticipate user information needs through task,
role and situational models as well as learning to serve as an intelligent cache,
acquiring and holding information likely to be needed.

•	 active: An agent should initiate problem solving activities (e.g. monitor the
infosphere for the occurrence of given patterns), anticipate user information
needs and bring to the attention of users situation-appropriate information,
deciding when to fuse information or present “raw” information.

•	 collaborative with humans and with other machine agents. Collaborative agent
interactions allow them to increase their local knowledge, resolve conflicts and
inconsistencies in information, current task and world models, thus improving
their decision support capabilities.

•	 able to deal with heterogeneity of other agents and information resources.

•	 adaptive to changing user needs, and task environment.

3	 Distributed Intelligent Agents in Information Processing
and Problem Solving

In this section, we motivate and describe the distributed agent framework for intelli
gent information retrieval and problem solving, and then present the agent coordina

50

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

tion mechanisms. The issues of how to engineer these agents are the topics of Section
4. RETSINA has been motivated by the following considerations:

•	 Distributed information sources: Information sources available on-line are inher
ently distributed. Furthermore, these sources typically are of different modalities.
Therefore it is natural to adopt a distributed architecture consisting of many
software agents specialized for different heterogeneous information sources.

•	 Sharability: Typically, user applications need to access several services or
resources in an asynchronous manner in support of a variety of tasks. It would
be wasteful to replicate agent information gathering or problem solving
capabilities for each user and each application. It is desirable that the architec
ture support sharability of agent capabilities and retrieved information.

•	 Complexity hiding: Often information retrieval in support of a task involves
quite complex coordination of many different agents. To avoid overloading the
user with a confusing array of different agents and agent interfaces, it is neces
sary to develop an architecture that hides the underlying distributed informa
tion gathering and problem solving complexity from the user.

•	 Modularity and Reuseability: Although software agents will be operating on
behalf of their individual patrons—human users, or other agents, pieces of
agent code for a particular task can be copied from one agent to another and
can be customized for new users to take into consideration particular users’
preferences or idiosyncrasies. One of the basic ideas behind the distributed
agent-based approach is that software agents will be kept simple for ease of
maintenance, initialization and customization. Another facet of reuseability is
that pre-existing information services, whose implementation, query language
and communication channels are beyond the control of user applications,
could be easily incorporated in problem-solving.

•	 Flexibility: Software agents can interact in new configurations “on-demand”,
depending on the information requirements of a particular decision making task.

•	 Robustness: When information and control is distributed, the system is able to
degrade gracefully even when some of the agents are out of service tempo
rarily. This feature of the system has significant practical implications because
of the dynamic and unstable nature of on-line information services.

•	 Quality of Information: The existence of (usually partial) overlapping of avail
able information items from multiple information sources offers the opportu
nity to ensure (and probably enhance) the correctness of data through cross-
validation. Software agents providing the same piece of information can
interact and negotiate to find the most accurate data.

51

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

•	 Legacy Data: Many information sources exist prior to the emergence of the
Internet-based agent technology. New functionalities and access methods are
necessary for them to become full- edged members of the new information
era. Directly updating these systems, however, is a nontrivial task. A preferable
way of updating is to construct agent wrappers around existing systems. These
agent wrappers interface to the information sources and information consum
ers and provide a uniform way of accessing the data as well as offer additional
functionalities such as monitoring for changes. This agent wrapper approach
offers much flexibility and extensibility. Practically speaking, it is also easier to
implement since the internal data structure and updating mechanism of the
legacy information systems don’t need to be modified.

The above considerations clearly motivate the development of systems of distributed
software agents for information gathering and decision support in the Internet-based
information environment. The critical question then is how to structure and organize
these multiple software agents. Our major research goal is to construct reusable software
components in such a way that building software agents for new tasks and applications
and organizing them can be relatively easy. It seems difficult to engineer a general agent
paradigm which can cover in an efficient manner a broad range of different tasks includ
ing interaction with the user, acquisition of user preferences, information retrieval, and
task-specific decision making. For example, in building an agent that is primarily
concerned with interacting with a human user, we need to emphasize acquisition,
modeling and utilization of user information needs and preferences. On the other hand,
in developing an agent that interacts with information sources, issues of acquiring user
preferences are de-emphasized and, instead, issues of information source availability,
efficiency of data access, data quality and information source reliability become critical.
Therefore, reusable software components must efficiently address the critical issues
associated with each of these three agent categories.

3.1 Agent Types

In the RETSINA framework, each user is associated with a set of agents which
collaborate to support him/her in various tasks and act on the user’s behalf. The
agents are distributed and run across different machines. The agents have access to
models of the user and of other agents as well as the task and information gathering
needs associated with different steps of the task. Based on this knowledge, the agents
decide how to decompose and delegate tasks, what information is needed at each
decision point, and when to initiate collaborative searches with other agents to get,
fuse and evaluate the information. In this way, the information gathering activities of
the agents are automatically activated by models of the task and processing needs of
the agents rather than wholly initiated by the user. The user can leave some of the
information gathering decisions to the discretion of the agents. This saves user time
and cognitive load and increases user productivity. The degree of agent autonomy is

52

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

user-controlled. As a user gains more confidence in the agents’ capabilities, more
latitude over decisions is given over to them. During search, the agents communicate
with each other to request or provide information, find information sources, filter or
integrate information, and negotiate to resolve conflicts in information and task
models. The returned information is communicated to display agents for appropriate
display to the user.

RETSINA has three types of agents (see Figure 1): interface agents, task agents and
information agents. Interface agents interact with the user receiving user specifications
and delivering results. They acquire, model and utilize user preferences to guide
system coordination in support of the user’s tasks. For example, an agent that filters
electronic mail according to its user’s preferences is an interface agent. The main
functions of an interface agent include: (1) collecting relevant information from the
user to initiate a task, (2) presenting relevant information including results and expla
nations, (3) asking the user for additional information during problem solving, and (4)
asking for user confirmation, when necessary. From the user’s viewpoint, having the
user interact only through a relevant interface agent for a task hides the underlying
distributed information gathering and problem solving complexity and frees the user
from having to know of, access and interact with a potentially large number of task
agents and information seeking agents in support of a task. For example, the task of
hosting a visitor in a university (see Section 5.1), one of the tasks supported by our
intelligent agents, involves more than 10 agents. However, the user interacts directly
only with the visitor hoster interface agent.

Task agents support decision making by formulating problem solving plans and carrying
out these plans through querying and exchanging information with other software
agents. Task agents have knowledge of the task domain, and which other task assistants
or information assistants are relevant to performing various parts of the task. In addi
tion, task assistants have strategies for resolving conflicts and fusing information re
trieved by information agents. A task agent performs most of the autonomous problem
solving. It exhibits a higher level of sophistication and complexity than either an inter
face or an information agent. A task agent (1) receives user delegated task specifications
from an interface agent, (2) interprets the specifications and extracts problem solving
goals, (3) forms plans to satisfy these goals, (4) identifies information seeking subgoals
that are present in its plans, (5) decomposes the plans and coordinates with appropriate
task agents or information agents for plan execution, monitoring and results composi
tion. An example of a task agent from the financial portfolio management domain is
one that makes recommendations to buy or sell stocks.

Information agents provide intelligent access to a heterogeneous collection of infor
mation sources depicted at the bottom of Figure 1. Information agents have models
of the associated information resources, and strategies for source selection, informa
tion access, conflict resolution and information fusion. For example, an agent that

53

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

monitors stock prices of the New York Stock Exchange is an information agent. An
information agent’s activities are initiated either top down, by a user or a task agent
through queries, or bottom up through monitoring information sources for the occur
rence of particular information patterns (e.g., a particular stock price has exceeded a
predefined threshold). Once the monitored-for condition has been observed, the
information agent sends notification messages to agents that have registered interest
in the occurrence of particular information patterns (See Section 5.2). For example, in
the financial domain, a human or machine agent may be interested in being notified
every time a given stock price has risen by 10%. Thus, information agents are active,
in the sense that they actively monitor information sources and proactively deliver the
information, rather than just waiting for and servicing one-shot information queries.

An information agent may receive in messages from other agents three important types
of goals: (1) Answering a one-shot query about associated information sources, (2)
Answering periodic queries that will be run repeatedly, and the results sent to the
requester each time (e.g., “tell me the price of IBM every 30 minutes”), and (3) Moni
toring an information source for a change in a piece of information (e.g., “tell me if the
price of IBM drops below $80 within 15 minutes of the occurrence of that event”).

A useful capability that can be added to all types of agents is learning. The agents can
retain useful information from their interactions as training examples and utilize
various machine learning techniques to adapt to new situations and improve their
performance [18, 26, 16].

3.2 Agent Organization and Coordination

In RETSINA, agents are distributed across different machines and are directly acti
vated based on the top-down elaboration of the current situation (as opposed to
indirect activation via manager or matchmaker agents [12], or self-directed activa
tion)1. These agent activations dynamically form an organizational structure “on
demand” that fits in with the task, the user’s information needs and resulting decom
posed information requests from related software agents. This task-based organization
may change over time, but will also remain relatively static for extended periods.
Notice that the agent organization will not change as a result of appearance or disap
pearance of information sources but the agent interactions could be affected by ap
pearance (or disappearance) of agents that are capable of fulfilling task subgoals in
new ways. Information that is important for decision-making (and thus might cause
an eventual change in organizational structuring) is monitored at the lowest levels of
the organization and passed upward when necessary. In this type of organization,
task-specific agents continually interleave planning, scheduling, coordination, and the
execution of domain-level problem-solving actions.

1 Matchmaking is, however used for locating agents.

54

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 1: The RETSINA distributed agent organization

This system organization has the following characteristics:

•	 There is a finite number of task agents that each agent communicates with.

•	 The task agents are eventually responsible for resolving information conflicts
and integrating information from heterogeneous information sources for their
respective tasks.

•	 The task agents are responsible for activating relevant information agents and
coordinating the information finding and filtering activity for their task.

In our organization, the majority of interactions of interface agents are with the
human user, the most frequent interactions of information agents are with informa
tion sources, whereas task agents spend most of their processing interacting with
other task agents and information agents. We briefly describe the distributed coordi
nation processes. When a task-specific agent receives a task from an interface agent or
from another task-specific agent, it decomposes the task based on the domain knowl
edge it has and then delegates the subtasks to other task-specific agents or directly to
information-specific agents. The task-specific agent will take responsibility for col
lecting data, resolving conflicts, coordinating among the related agents and reporting

55

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

to whoever initiated the task. The agents who are responsible for assigned sub-tasks
will either decompose these sub-tasks further, or perform data retrieval (or possibly
other domain-specific local problem solving activities).

When information sources are partially replicated with varying degrees of reliability,
cost and processing time, information agents must optimize information source
selection. If the chosen information sources fail to provide a useful answer, the infor
mation agent should seek and try other sources to re-do the data query. Because of
these complexities, we view information retrieval as a planning task itself[11]. The
plans that task-specific agents have (see 4) include information gathering goals,
which, in turn are satisfied through relevant plans for information retrieval. This type
of intelligent agent differs from traditional AI systems since information-seeking
during problem solving is an inherent part of the system. In effect, the planning and
execution stages are interleaved since the retrieved information may change the
planner’s view of the outside world or alter the planner’s inner belief system.

Information is filtered and fused incrementally by information or task agents as the
goals and plans of the various tasks and subtasks dictate, before it is passed on to other
agents. This incremental information fusion and conflict resolution increases effi
ciency and potential scalability (e.g., inconsistencies detected at the information-
assistant level may be resolved at that level and not propagated to the task agent level)
and robustness (e.g., whatever inconsistencies were not detected during information
assistant interaction can be detected at the task-assistant level). A task agent can be
said to be proactive in the sense that it actively generates information seeking goals
and in turn activates other relevant agents.

Obviously, one of the major issues involved in multi-agent systems is the problem of
interoperability and communication between the agents. In our framework, we use
the KQML language [7] for inter-agent communication. In order to incorporate and
utilize pre-existing software agents or information services that have been developed
by others, we adopt the following strategy: If the agent is under our control, it will be
built using KQML as a communication language. If not, we build a gateway agent
that connects the legacy system to our agent organization and handles different
communication channels, different data and query formats, etc.

In open world environments, agents in the system are not statically predefined but can
dynamically enter and exit an organization. This necessitates mechanisms for agent
locating. This is a challenging task, especially in environments that include large num
bers of agents, and where information sources, communication links and/or agents may
be appearing and disappearing. We have made initial progress in implementing match
maker agents [12, 3] that act as yellow pages[9]. When an agent is instantiated, it adver
tises its capabilities to a matchmaker. An agent that is looking to find another that
possesses a particular capability (e.g. can supply particular information, or achieve a
problem solving goal) can query a matchmaker. The matchmaker returns appropriate

56

4

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

lists of agents that match the query description, or “null” if it does not currently know of
any agent that has this capability. Architecturally, matchmakers are information agents.
A matchmaker is an information agent who can find other agents rather than finding
pieces of information. One nice property that falls out of this matchmaker design is
that, if currently a matchmaker does not know of any agent that can provide a particular
requested service, the requesting agent can place a monitoring request that directs the
matchmaker to keep looking for an agent whose advertised capability matches the
service specification of the requesting agent (the customer). When the matchmaker
finds such an appropriate agent, it notifies the customer.

Matchmaking is advantageous since it allows a system to operate robustly in the face
of agent appearance and disappearance, and intermittent communications (the cus
tomer can go back to the matchmaker, looking for a new supplier agent).
Matchmaking is significant in another respect: it lays the foundation for evolutionary
system design where agents with enhanced capabilities can be gracefully integrated
into the system.

Agent Engineering: How to Structure an Agent?

In order to operate in rich, dynamic, multi-agent environments, software agents must
be able to effectively utilize and coordinate their limited computational resources. As
our point of departure in structuring an agent, we use the Task Control Architecture
[21] and TAEMS[4], which we extend and specialize for real-time user interaction,
information gathering, and decision support.

Figure 2: The agent architecture: a functional view

57

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The planning module takes as input a set of goals and produces a plan that satisfies
the goals. The agent planning process is based on a hierarchical task network (HTN)
planning formalism. It takes as input the agent’s current set of goals, the current set of
task structures, and a library of task reduction schemas. A task reduction schema
presents a way of carrying out a task by specifying a set of sub-tasks/actions and
describing the information-flow relationships between them. That is, the reduction
may specify that the result of one sub-task (e.g. deciding the name of an agent) be
provided as an input to another sub-task (e.g. sending a message). Actions may
require that certain information be provided before they can be executed, and may
also produce information upon execution. For example, the act of sending a KQML
messages requires the name of the recipient and the content of the message, while the
act of deciding to whom to send some message would produce the name of an agent.
An action is enabled when all the required inputs have been provided. (See [24] for a
complete description of our task network representation.)

The communication and coordination module accepts and interprets messages from
other agents in KQML. In addition, interface agents also accept and interpret e-mail
messages. We have found that e-mail is a convenient medium of communicating with
the user and/or other interface agents, for example agents that provide event notifica
tion services. Messages can contain request for services. These requests become goals
of the recipient agent.

The scheduling module schedules each of the plan steps. The agent scheduling process
in general takes as input the agent’s current set of plan instances, in particular, the set
of all executable actions, and decides which action, if any, is to be executed next. This
action is then identified as a fixed intention until it is actually carried out (by the
execution component). Whereas for task agents, scheduling can be very sophisticated,
in our current implementation of information agents, we use a simple earliest-dead
line-first schedule execution heuristic.

To operate in the uncertain, dynamic Infosphere, software agents must be reactive to
change for robustness and efficiency considerations. Agent reactivity considerations
are handled by the execution monitoring process. Execution monitoring takes as input
the agent’s next intended action and prepares, monitors, and completes its execution.
The execution monitor prepares an action for execution by setting up a context
(including the results of previous actions, etc.) for the action. It monitors the action
by optionally providing the associated computation limited resources—for example,
the action may be allowed only a certain amount of time and if the action does not
complete before that time is up, the computation is interrupted and the action is
marked as having failed.

When an action is marked as failed, the exception handling process takes over to
replan from the current execution point to help the agent recover from the failure. For
instance, when a certain external information source is out of service temporarily, the

58

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

agent who needs data from this information source shouldn’t just wait passively until
the service is back. Instead, the agent might want to try another information source or
switch its attention to other tasks for a certain period of time before returning to the
original task.

The agent has a domain-independent library of plan fragments (task structures) that are
indexed by goals, as well as domain-specific library of plan fragments from which plan
fragments can be retrieved and incrementally instantiated according to the current
input parameters. The retrieved and instantiated plan fragments are used to form the
agent’s instantiated task tree that is incrementally executed.

The belief and facts data structures contain facts and other knowledge related to the
agent’s functionality. For example, the belief structures of an interface agent contain
the user profile, and the belief structures of an information agent contain a local data
base that holds relevant records of external information sources the agent is monitor
ing. Since an information agent does not have control of information sources on the
Internet, it must retrieve and store locally any information that it must monitor. For
example, suppose an information agent that provides the New York Stock Exchange
data is monitoring the Security APL Quote Server web page to satisfy another agent’s
monitoring request, for example, “notify me when the price of IBM exceeds $80”. The
information agent must periodically retrieve the price of IBM from the Security APL
web page, bring it to its local data base and perform the appropriate comparison. For
information agents, the local data base is a major part of their reusable architecture. It
is this local database that allows all information agents to present a consistent inter
face to other agents, and re-use behaviors, even in very different information environ
ments [2].

An agent architecture may also contain components that are not reusable. For ex
ample, the architecture of information agents contains a small amount of site-specific
external query interface code. The external query interface is responsible for actually
retrieving data from some external source or sources. The external query interface is
usually small and simple, thus minimizing the amount of site-specific code that must
be written every time a new information agent is built.

Since task structure management, planning, action scheduling, execution monitoring,
and exception handling are handled by the agent in a domain- independent way, all
these control constructs are reusable. Therefore the development of a new agent is
simplified and involves the following steps:

•	 Build the domain-specific plan library

•	 Develop the domain-specific knowledge-base

•	 Instantiate the reusable agent control architecture using the domain-specific
plan library and knowledge-base

59

5

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Application Domains

We have implemented distributed cooperating intelligent agents using the concepts,
architecture, and reusable components of the RETSINA multi-agent infrastructure
for everyday organizational decision making and for financial portfolio management.

5.1 Everyday Organizational Decision Making

In performing everyday routine tasks, people spend much time in finding, filtering,
and processing information. Delegating some of the information processing to Intelli
gent Agents could increase human productivity and re- duce cognitive load. To this
end, recent research has produced agents for e-mail filtering, [15], calendar manage
ment [5], and filtering news [13]. These tasks involve a single user interacting with a
single software agent. There are tasks, however, which have more complex informa
tion requirements and possible interaction among many users. A distributed, multi-
agent collection of Intelligent Agents is then appropriate and necessary. Within the
context of our PLEIADES project, we have applied the distributed RETSINA
framework to multi user tasks of increased complexity, such as

•	 distributed, collaborative meeting scheduling among multiple human attendees
[14, 8]

•	 finding people information on the Internet

•	 hosting a visitor to Carnegie Mellon University [22]

•	 accessing and filtering information about conference announcements and
requests for proposals (RFPs) from funding organizations and notifying
Computer Science faculty of RFPs that suit their research interests [18].

5.1.1 An Extended Example: The Visitor Hosting Task

We will use the task of hosting a visitor to Carnegie Mellon University (CMU) as an
illustrative example of system operation. Hosting a visitor involves arranging the
visitor’s schedule with faculty whose research interests match the interests that the
visitor has expressed in his/her visit request. A different variation of the hosting
visitor task has also been explored in [10].

For expository purposes, we refer to the collection of agents that are involved in the
visitor hosting task as the Visitor Hosting system. The Visitor Hosting system takes as
input a visit request, the tentative requested days for the meeting and the research
interests of the visitor. Its final output is a detailed schedule for the visitor consisting of
time, location and name of attendees. Attendees in these meetings are faculty members
whose interests match the ones expressed in the visitor’s request and who have been

60

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

automatically contacted by the agents in the Visitor Hosting system and have agreed to
meet with the visitor at times convenient for them. The Visitor Hosting system has an
interface agent, referred to as the Visitor Hoster, which interacts with the person host
ing the visit. It also has the following task agents: (1) a Personnel Finder task agent,
who finds detailed information about the visitor, and also finds detailed information
about CMU faculty for better matching the visitor and the faculty he/she meets, (2) the
visitor’s Scheduling task agent and (3) various personal calendar management task
agents that manage calendars of various faculty members. In addition, the Visitor
Hosting system has a number of information agents that (1) retrieve information from a
CMU data base that has faculty research interests (Interests agent), and (2) retrieve
personnel and location information from various university data bases.

We present a detailed visitor hosting scenario to illustrate the interactions of the
various agents in the Visitor Hosting task.

•	 The user inputs a visitor request to the Visitor Hoster agent.

Suppose Marvin Minsky wants to visit CMU CS department. Minsky has
requested that he would prefer to meet with CMU faculty interested in ma
chine learning. The user inputs relevant information about Minsky, such as
first name, last name, affiliated organization, date and duration of his visit, and
his preference as to the interests of faculty he wants to meet with, to the
Visitor Hoster agent.

•	 The Visitor Hoster agent extracts the visitor’s areas of interest and visitor’s
name and organization.

•	 The Visitor Hoster agent passes to the Interests agent the visitor’s areas of
interest and asks the Interest agent to find faculty members whose interest
areas match the request.

•	 The Visitor Hoster agent passes the name and organization of the visitor to
the Personnel Finder agent and asks it to find additional information about
the visitor.

•	 The Personnel Finder agent accesses Internet resources to find requested
information about the visitor, such as visitor’s title, rank, office address etc.
The visitor information is used by faculty calendar software agents, such as
CAP (see [16]), to decide level of interest of a faculty member to meet with
the visitor.

61

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

•	 Meanwhile, the Interests agent queries the faculty interests data base and
returns names of CMU faculty whose research matches the request. Using
“machine learning” as the keyword to search through faculty interests data
base, the Interests agent finds a list of faculty whose interest areas match
machine learning.

•	 The Visitor Hoster agent passes the returned faculty names to the Personnel
Finder agent requesting more information on these faculty.

•	 The Personnel Finder agent submits queries to three personnel information
sources (finger, CMU Who’s-Who, CMU Room Database) to find more
detailed information about the faculty member (e.g., rank, telephone number,
e-mail address), resolves ambiguities in the returned information, and inte
grates results.

Figure 3: Information sources and returned items

Figure 3 shows in detail the information sources used for querying personnel
information about Tom Mitchell, one of the Machine Learning faculty found
by the Interests agent, and the information attributes returned by these
sources. The columns correspond to different information sources. The rows
are the attributes of personnel information that can be obtained from the
sources. The checks and cross marks indicate which information sources
return answers for which attributes. From this figure, we observe that for some

62

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

information attributes (e.g., office room number), more than one information
source (Room Database and finger) offer answers, which may be potentially
conflicting. To resolve this conflict, the Personnel Finder applies one of the
rules kept in its domain-specific knowledge base saying that the office infor
mation based on Room Database is always more relevant and up-to-date than
other sources. In this case, the value as to office room number returned by
finger is overruled by the one returned by Room Database (indicated by the
check mark). The cross mark in the “Office” row and “CS-FINGER” column
means that although finger finds the office information, the retrieved value is
overruled by another information source (Room Database).

•	 Based on the information returned by the Personnel Finder, the Visitor
Hoster agent selects an initial set of faculty to be contacted. The user can
participate in this selection process.

•	 The Visitor Hoster agent automatically composes messages to the calendar
assistant agents of the selected faculty asking whether they are willing to meet
with the visitor and at what time. For those faculty that do not have machine
calendar agents, e-mail is automatically composed and sent.

•	 The Visitor Hoster agent collects responses and passes them to the visitor’s
Scheduling agent.

•	 The visitor’s Scheduling agent composes the visitor’s schedule through subse
quent interaction and negotiation of scheduling conflicts with the attendees’
calendar management agents2. The final calendar is shown in Figure 4.

The Visitor Hosting system has many capabilities. It automates information retrievals
in terms of finding personnel information of potential appropriate meeting attendees.
It accesses various on-line public databases and information resources at the disposal
of the visit organizer. It integrates the results obtained from various databases, clarifies
ambiguities (e.g., the same entity can be referred by different names in different
partially replicated data bases) and resolves the conflicts which might arise from
inconsistency between information resources. It creates and manages the visitor’s
schedule as well as the meeting locations for the various appointments with the
faculty members (e.g., a faculty’s office, a seminar room). It interacts with the user,
getting user input, confirmation or dis-confirmation of suggestions, asking for user
advice and advising the user of the state of the system and its progress.

2 For details on the distributed meeting scheduling algorithm, see [14, 8].

63

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Figure 4: Final schedule of Minsky’s visit

5.2 Financial Portfolio Management

The second domain of applying the RETSINA framework is financial portfolio
management (the WARREN system3). In current practice, portfolio management is
carried out by investment houses that employ teams of specialists for finding, filtering
and evaluating relevant information. Based on their evaluation and on predictions of
the economic future, the specialists make suggestions about buying or selling various
financial instruments, such as stocks, bonds, mutual funds etc. Current practice as
well as software engineering considerations motivate our multi-agent system architec
ture. A multi-agent system approach is natural for portfolio management because of
the multiplicity of information sources and the different expertise that must be
brought to bear to produce a good recommendation (e.g. a stock buy or sell decision).

The overall portfolio management task has several component tasks. These include
eliciting (or learning) user profile information, collecting information on the user’s
initial portfolio position, and suggesting and monitoring a reallocation to meet the
user’s current profile and investment goals. As time passes, assets in the portfolio will
no longer meet the user’s needs (and these needs may also be changing as well). Our
initial system focuses on the on-going portfolio monitoring process.

3 The system is named after Warren Buffet, a famous American investor and author about investment
strategies.

64

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

We briefly describe the main agents in the portfolio management task, shown in
Figure 5:

Figure 5: The portfolio management application

The portfolio manager agent is an interface agent that interacts graphically and textually
with the user to acquire information about the user’s profile and goals. The fundamen
tal analysis agent is a task assistant that acquires and interprets information about a
stock from the viewpoint of a stock’s (fundamental) “value”. Calculating fundamental
value takes into consideration information such as a company’s finances, forecasts of
sales, earnings, expansion plans etc. The Technical Analysis agent uses numerical
techniques such as moving averages, curve fitting, complex stochastic models, neural
nets etc., to try to predict the near future in the stock market. The Breaking News
agent tracks and filters news stories and decides if they are so important that the user
needs to know about them immediately, in that the stock price may be immediately
affected. The Analyst Tracking agent tries to gather intelligence about what human

65

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

analysts are thinking about a company. These agents gather information through
information requests to information agents. The information agents that we have
currently implemented are the Stock Tracker agents that monitors stock reporting
Internet sources, such as the Security APL, the News Tracking agents that track and
filter Usenet relevant financial news articles (including CMU’s Clarinet and Dow
Jones news feeds), and the SEC (Securities and Exchange Commission) fillings of
companies financial information tracker agent that monitors the EDGAR database.
The information retrieved by these information agents is passed to the display agents
which display in an integrated fashion the retrieved information to the user.

Figure 6 shows an example WARREN portfolio. Currently, a user may interact with
his or her own portfolio display (interface) agent via HTML forms and a web
browser.4 The portfolio display consists of a summary of the user’s portfolio, including
which issues are owned, and for each issue the total number of shares owned, the
current price, the date of the last news article, and the current value. Below the port
folio table, the current value of the entire portfolio is displayed along with the
portfolio’s net gain in equity (current values compared to purchase values minus
commissions). The interface also allows the user to buy and sell stocks (Trade) and to
request the preparation of a Financial Data Summary (Fetch FDS), which uses
historical price, earnings, and revenue information from the SEC’s EDGAR database
to do a simple fundamental analysis of the stock.

The other display available to the user (by clicking on a stock’s current value) is a
price/news graph that dynamically integrates intra-day trading prices and news stories
about a stock. Figure 7 shows an example for Netscape Communications (NSCP)
during the period of roughly December 5 to December 23. Prices are plotted at
mostly 1 hour (sometimes 15 minute) intervals, and connected during the trading day
(there’s no trading at night or during the weekends). The numbers on the graphs
correspond to the news articles whose subjects are listed below the graph. The articles
are numbered from earliest to latest (left to right on the graph). Each article number
is positioned at the time the news story appeared, and vertically at the approximate
price of the stock at that time. The article subjects are hyperlinked to the actual news
stories themselves.

The example graph covers a time period just after the $30 price rise in NSCP trig
gered by the joint Sun and Netscape announcement of JavaScript (2). However, the
new record high caused some profit-taking, and then the Dec 7 news hits that Smith
Barney had begun coverage of Netscape and recommended SELL (4,5), dropping the
stock for the rest of the day. Although our University access is to delayed price and
news sources, such information from realtime data feeds is the bread and butter of
many types of institutional investment decision-making.

4 We are currently constructing a more interactive Java interface.

66

6

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 6: WARREN’s Netscape interface.

Conclusions

In this paper, we have described our implemented, distributed agent framework,
RETSINA, for structuring and organizing distributed collections of intelligent
software agents in a reusable way. We presented the various agent types that we
believe are necessary for supporting and seamlessly integrating information gathering
from distributed internet-based information sources and decision support, including
(1) Interface agents which interact with the user by receiving user specifications and
delivering results, (2) Task agents which help users perform tasks by formulating
problem solving plans and carrying out these plans through querying and exchanging
information with other software agents, and (3) Information agents which provide
intelligent access to a heterogeneous collection of information sources. We have also
described and illustrated our implemented, distributed system of such collaborating
agents. We believe that such flexible distributed architectures, consisting of reusable
agent components, will be able to answer many of the challenges that face users as a
result of the availability of the vast, new, net-based information environment. These
challenges include locating, accessing, filtering and integrating information from
disparate information sources, monitoring the Infosphere and notifying the user or an
appropriate agent about events of particular interest in performing the user-desig
nated tasks, and incorporating retrieved information into decision support tasks.

67

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Figure 7: A Price/News graph constructed by the WARREN system for Netscape Communications
(ticker symbol NSCP).

68

7

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Acknowledgements

The current research has been sponsored in part by ARPA Grant #F33615-93-1
1330, by ONR Grant #N00014-95-1-1092, and by NSF Grant #IRI-9508191. We
want to thank Tom Mitchell, Dana Freitag, Sean Slittery, and David Zabowski for
insightful discussions.

References

[1]	 P. R. Cohen and H. J. Levesque. Intention=choice + commitment. In Proceed
ings of AAAI-87, pages 410–415, Seattle, WA., 1987. AAAI.

[2]	 K. Decker, K. Sycara, and M. Williamson. Modeling information agents: Ad
vertisements, organizational roles, and dynamic behavior. In Proceedings of the
AAAI-96 Workshop on Agent Modeling, Portland, Oregon, August 1996. AAAI.

[3]	 K. Decker, M. Williamson, and K. Sycara. Matchmaking and brokering. In
Proceedings of the Second International Conference in Multi-Agent Systems
(ICMAS’96), Kyoto, Japan, December 1996.

[4]	 Keith Decker. Environment Centered Analysis and Design of Coordination Mecha
nisms. PhD thesis, University of Massachusetts, 1995.

[5]	 Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David
Zabowski. A personal learning apprentice. In Proceedings of the Tenth National
Conference on Artificial Intelligence. AAAI, 1992.

[6]	 Oren Etzioni and Daniel Weld. A softbot-based interface to the internet.
Communications of the ACM, 37(7), July 1994.

[7]	 Tim Finin, Rich Fritzson, and Don McKay. A language and protocol to support
intelligent agent interoperability. In Proceedings of the CE and CALS Washington
92 Conference, June 1992.

[8]	 Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling: Prelimi
nary experimental results. In Proceedings of the Second International Conference in
Multi-Agent Systems (ICMAS’96), Kyoto, Japan, December 1996.

[9]	 M. R. Genesereth and S. P. Katchpel. Software agents. Communications of the
ACM, 37(7):48–53,147, 1994.

[10] Henry A. Kautz, Bart Selman, and Michael Coen. Bottom-up design of soft
ware agents. Communications of the ACM, 37(7), July 1994.

69

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

[11] Craig K. Knoblock. Integrating planning and execution for information gather
ing. In Craig Knoblock and Alon Levy, editors, Working Notes of the AAAI Spring
Symposium Series on Information Gathering from Distributed, Heterogeneous Envi
ronments, Stanford, CA, March 1995. AAAI.

[12] D. Kuokka and L. Harada. On using KQML for matchmaking. In Proceedings of
the First International Conference on Multi-Agent Systems, pages 239–245, San
Francisco, June 1995. AAAI Press.

[13] Kan Lang. Newsweeder: Learning to filter netnews. In Proceedings of Machine
Learning Conference, 1995.

[14] JyiShane Liu and Katia Sycara. Distributed meeting scheduling. In Proceedings
of the Sixteenth Annual Conference of the Cognitive Science Society, Atlanta, Geor
gia, August 13-16 1994.

[15] Pattie Maes. Agents that reduce work and information overload. Communica
tions of the ACM, 37(7), July 1994.

[16] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David
Zabowski. Experience with a learning personal assistant. Communications of the
ACM, 37(7), July 1994.

[17] Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooperative infor
mation gathering: A distributed problem solving approach. Technical Report
94-66, Department of Computer Science, University of Massachusetts, Septem
ber 1994.

[18] Anandeep Pannu and Katia Sycara. Learning text filtering preferences. In 1996
AAAI Symposium on Machine Learning and Information Access, 1996.

[19] Anand S. Rao and Michael P. Georgeff. A model-theoretic approach to the
verification of situated reasoning systems. In Proceedings of IJCAI-93, pages
318–324, Chambery, France, 28 August - 3 September 1993. IJCAI.

[20] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

[21] Reid Simmons. Structured control for autonomous robots. IEEE Journal of
Robotics and Automation, 1994.

70

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

[22] Katia Sycara and Dajun Zeng. Towards an intelligent electronic secretary. In
Proceedings of the CIKM-94 (International Conference on Information and Knowl
edge Management) Workshop on Intelligent Information Agents, National Institute
of Standards and Technology, Gaithersburg, Maryland, December 1994.

[23] Katia Sycara and Dajun Zeng. Coordination of multiple intelligent software
agents. International Journal of Cooperative Information Systems, To Appear, 1996.

[24] M. Williamson, K. Decker, and K. Sycara. Unified information and control
flow. In Proceedings of the AAAI-96 Workshop on Theories of Action, Planning and
Control: Bridging the Gap, Portland, Oregon, August 1996. AAAI.

[25] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[26] Dajun Zeng and Katia Sycara. Bayesian learning in negotiation. In 1996 AAAI
Symposium on Adaptation, Co-evolution and Learning in Multiagent Systems,
1996.

71

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

72

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Anticipation, Delegation, and Demonstration:
Why Talking to Agents is Hard*

Katia Sycara and Michael Lewis
The Robotics Institute — Carnegie Mellon University

School of Information Sciences — University of Pittsburgh

Abstract

Interacting with a computer requires adopting a metaphor to guide our actions and
expectations. When we choose to build and use agents we are committing to interact
with a domain indirectly. Whether this is a good choice or not will depend on the
ease and accuracy with which we can instruct our agents. Current approaches range
from specialized agents programmed to perform specific tasks, to learning programs
which get on-the-job training looking over a user’s shoulder. In the expert case very
little communication is needed because the agent already knows what it is going to
do. In the novice case the raison d’etre of agent learning is to relieve the user of the
tedium of instructing it. The vast middle ground of tasks of moderate complexity too
infrequent for targeted implementations or empirical learning goes largely untouched.
Three current projects at our laboratory address aspects of this problem. The first, a
series of experiments in which subjects are aided by fallible agents examines the role
of trust in providing a context for communication. The second project compares the
effectiveness of communication to adapt an agent plan with human planning which is
critiqued by an equally informed agent. The third project uses a variety of learning
and interaction techniques to help a user communicate the information needed to
access and extract information on a subsequent autonomous visit.

1. Introduction

Interacting with a computer requires adopting some metaphor to guide our actions
and expectations. Most human-computer interfaces can be classified according to two
dominant metaphors: agent or environment. Interactions based on an agent metaphor
treat the computer as an intermediary which responds to user requests. In the envi
ronment metaphor a model of the task domain is presented for the user to interact
with directly.

The power of the environment approach which provides advertisement and unique
identification and selectability of available objects and actions is reflected in the
ascendance of graphical user interfaces (GUI’s). The value of the agent metaphor to
interaction only becomes apparent when objects are not present or fully visualizable
and actions are repetitive, delayed, or poorly specified. The distinctions between agent

* A version of this paper will be presented at CIA-99 (Cooperative Information Agents) workshop

73

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

and environment based HCI are very similar to those between manual and automated
action in the physical world. It is much simpler for us to drive a car or set a table than to
instruct a robot to do so, yet we would rather adjust a thermostat or program a milling
machine than repeatedly performing these actions by hand. While the computer offers
the ultimate in flexible automation, instructing it do what we wish may be arbitrarily
hard for humans as demonstrated by the difficulty experienced in using traditional
programming and scripting languages. The growing popularity of “agent-based” interac
tion reflects the emergence of an increasingly powerful and complex computing envi
ronment bringing with it desires to perform flexible tasks involving multiple or un
known objects by users who do not wish or may not have the ability to program.

The greatest impediment to assisting human users lies in communicating their intent and
making results intelligible to them.

By this we mean that today in almost all cases the limiting factor in HCI is not
computing cycles or connectivity to information sources or characteristics of peripher
als (the machine side) but in the user’s ability and/or willingness to communicate
these desires and sift, organize, and represent the machine’s response to satisfy them
(the human side). So, for example, although I have a Perl interpreter for which I could
in principle write a script which would visit a list of web sites, extract particular
information from each, perform comparisons, and return the result to my Inbox, I will
almost certainly not do so. The effort of prescribing how to navigate, how to parse
HTML at each of the sites, and how to analyze and return the results is infinitely
more difficult than pushing buttons and following links on my browser myself. It
would probably remain more difficult even if I had to repeat the search ten or fifteen
times. Even when the time to search repeatedly equaled the time to program, I would
still prefer the manual search because of the lower cognitive effort. As this example
suggests, scripting languages may fit our definition as maximally powerful instructable
“agents”, yet they fail miserably in satisfying Negreponte’s [6] desire for an implacable
butler or mine for a no hassle autonomous web searcher. The problem is a human
variant of Turing equivalency. Scripting languages or for that matter assembly code
may meet the letter of a definition of agents but the spirit clearly lies in the ease with
which our desires can be communicated.

1.1 A Cybernetic Model

Don Norman (1986) characterizes human-computer interaction as the problem of
bridging twin gulfs of execution and evaluation. The execution side of the cycle
involves translating a goal into a sequence of actions for achieving that goal. The
evaluation side involves using feedback from the domain to compare the result of the
action to the goal. The model is cybernetic rather than logical in that attention to
parts of the environment and processing of these inputs are determined by prior
actions and subsequent actions are in turn functions of previous feedback. A crucial

74

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

feature of this model is that tampering with either side of the loop can lead to detri
mental or unanticipated results. If the execution side is automated the human may fail
to observe effects of actions and be unable to correct errors or modulate ongoing
behavior. If the evaluation side is automated the human may be unable to track the
effect of actions and adjust to their results. Norman proposes seven stages of action in
this model to link the user’s goals to the world The stages of execution are: forming an
intention to act, translating this intention into a planned sequence of actions and
executing that sequence. The stages of evaluation are perceiving the state of the world,
interpreting this perception in light of prior action and evaluating that change with
respect to initial goal. The gulfs refer to the interface/metaphor which separates the
user’s goals from the application domain in which they must be realized.

While some agent-based systems may require no more human interaction than a
conventional GUI, they should support the same cycle of action, feedback, and
interpretation. This will in general be more difficult because the greater flexibility and
autonomy which made a task suitable for an agent also make monitoring and evaluat
ing more difficult for the human. Except in cases where task performance is com
pletely correct and deterministic (as in the case of a command to open a file or delete
a document) uncertainties may need to be addressed even in the simplest interactions.

Just as our networked computing infrastructure has given rise to multi-agent systems
and cooperative computing paradigms, it has become a medium for human coordina
tion and cooperation. The role of agents in this environment for facilitating human-
human interactions is a second crucial research issue.

1.2 Desiderata for Human Agent Interaction

Graphical user interfaces have succeeded by providing advertisement, unique identifi
cation and selectability of available objects and actions to their users. To be a viable
alternative, intelligent agents must also convey these types of information. More
precisely they must:

1) Advertise their availability

users must be made aware of the agent’s existence and how to access it

2) Advertise their service domains

users must be made aware of the types of services an agent can perform, or
arrange to have performed (multi-agent systems)

3) Advertise their capabilities

users must be made aware of the precise nature of services actually available

75

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

4) Advertise their “instruction language”

users must be made aware of how to specify parameters and objects to “cus
tomize” the services they request

5) Advertise opportunities for monitoring

users must be made aware of how they may monitor task performance

Over the past three years we have conducted a series of experiments aimed at identi
fying strategies for improving human-agent performance in the presence of errors,
aiding in human-human cooperation, choosing between human/machine initiative,
and hybrid forms of instruction combining programming by demonstration, learning,
and command. In conducting these experiments we have attempted to: identify issues
likely to be important for proposed uses of agents such as aggregation, interpretation,
and presentation of information and test them at simplified tasks which allow us full
experimental control..

2. The Tandem Simulation

Two of our experiments used a low fidelity simulation (TANDEM) of a target identi
fication task, jointly developed at the Naval Air Warfare Center-Training Systems
Division and the University of Central Florida and modified for these experiments.
The TANDEM simulation was developed under the TADMUS (tactical decision
making under stress) program of the US Office of Naval Research and simulates
cognitive characteristics of tasks performed in the command information center
(CIC) of an Aegis missile cruiser.

The cognitive aspects of the Aegis command and control tasks which are captured
include time stress, memory loading, data aggregation for decision making and the
need to rely on and cooperate with other team members (team mode) to successfully
perform the task. The more highly skilled tasks of the individual team members
involving extracting and interpreting information from radar, sonar, and intelligence
displays is not modeled in the simulation. Instead of interpreting displayed signals to
acquire diagnostic information about targets, TANDEM participants access this
information manually from menus. In accessing new information, old information is
cleared from the display creating the memory load of simultaneously maintaining up
to 5 parameter values and their interpretation.

In the TANDEM task subjects must identify and take action on a large number of
targets (high workload) and are awarded points for correctly identifying the targets
(type, intent, and threat). and taking the correct action (clear or shoot). A maximum
of 100 points is awarded per target for correct identification and correct action. Users

76

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

“hook” a target on their screen by left-clicking on the target or selecting “hook” from a
menu and specifying a target’s unique contact number. Only after a target is hooked
can they access information relative to that target. In team configuration TANDEM
consists of three networked pc’s each providing access through menus to five param
eters relative to a “hooked” target. Their tasks involve identifying the type of contact
(submarine, surface, or aircraft), its classification (military or civilian), and its intent
(peaceful or hostile). Each of these decisions is made at a different control station and
depends on five distinct parameter values, only three of which are available at that
station. Subjects therefore must communicate among themselves to assure that they
have all hooked the same target and subsequently exchange parameter values to
classify the target. It the team finds a target to be hostile it is shot, otherwise it is
cleared and the team moves on to another target.

Figure 1. The TANDEM display

In standalone mode all of the information is made available on a single pc with the
station specific parameters accessed using three distinct menus. Menus in standalone
mode present 5 parameters each. In team mode the three menus present 3 (overlapping
among team members) parameters per menu. Just as TANDEM simulates cognitive
aspects of the Aegis missile command and control task, it provides a context to simulate
the gathering, aggregation, and presentation of C2I information by intelligent agents.
The information found on menus remains ground truth while the validity of agent
processed information can be manipulated by the experimenter. To investigate impacts
on human-human coordination presentations of aggregated information can be tailored
to support different aspects of the participants’ cognitive tasks.

77

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

2.1 Trust, Error, and Uncertainty

Many of the complex of issues involving mutual human-machine modeling, aware
ness, and coordination are captured by the anthropomorphic term trust. If we exam
ine the considerations that enter into our decision to delegate a task to a subordinate,
instruct the subordinate in how to perform the task, monitor that performance, or
authorize some class of tasks without follow-up, our trust in the subordinate will
almost certainly play an explanatory role. Closer consideration will show our use of
the term to be multidimensional. The trust we have that our secretary will remember
to pick up the mail, is distinct from our trust that she will compose a postable busi
ness letter, which in turn is distinct from our trust in the lawyer who assures us that
the letter is not actionable. A merger of several taxonomies proposed by Lee and
Moray (1992) distinguishes:

1)	 trust which is based on observed consistency of behavior (persistence or

predictability)I trust my watch to keep relatively accurate time

2)	 trust which is based on a belief in competence or well formedness (competence
or dependability).I trust the recipe for hollandaise

3)	 trust which is based on faith in purpose or obligation (fiduciary responsibility or
faith)I trust my physician to monitor my health

As bases for human modeling of machine agents this taxonomy suggests that agents can
be made predictable by: 1) consistently pairing simple observable actions with inputs, or
2) making the causes and rules governing an agent’s behavior transparent or 3) making
the purpose, capability, and reliability of the agent available to the user. Muir [5] refers
to the process of acquiring predictive models of these sorts as trust calibration. The idea
being that performance will be better for human-machine systems in which trust is
accurately calibrated because the human’s model will allow more accurate predictions.
The greater predictability of consistent or competent agents should also make boundary
conditions and “brittleness” more apparent and remediable. Agents trusted on faith, by
contrast, would require a very high degree of reliability across their range and more
communication to maintain accurate coordination.

Where information sources are unreliable or information processing algorithms are
uncertain, brittle, or error prone, usefulness of their services will depend on how
readily they can be incorporated into their user’s model of the situation. The first
TANDEM experiment manipulates error, error source, and transparency of presenta
tion to address the questions of task allocation (under what conditions should auto
mated information processing be curtailed or eliminated) and information presenta
tion (can choice of presentation context affect the usability of processed information).

78

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

We hypothesize that effective human/agent performance requires a precise calibration
of trust so that the decision maker can accurately interpret an agent’s communications
and anticipate its limitations. This calibration will depend both on experience and
supporting evidence.

2.2 Standalone TANDEM Experiment

We classify information presentations into three types which roughly parallel the level
of trust they rely upon for interpretation:(1) aggregated, (2) integrated, and (3) syn
thesized. The reported experiment pairs error-making and error-free data presenta
tions with differing degrees of inspectability to observe the effects on decision quality,
reliance on agent provided information and reported confidence. .

Displays

Each agent provided one of three possible levels of information.

To manipulate the subjects’ trust of the agents’ presentations, errors were introduced.
In the control condition, both menus and agent presented errorless values. Errors
were of three types: data errors (display levels 1, 2, & 3), classification errors (display
levels 2 & 3), or decision errors (display level 3). Data errors occurred when the agent
displayed different data than the ground truth shown on the corresponding menus.
This type of error was explained to subjects as “problems with the agent’s sensors”.
Classification errors occurred when the agent placed data in the wrong column of the
display table (level 2, placing an altitude reading of 1000 feet in submarine column for
example) or used a wrong classification to determine assignment type and certainty
factor (level 3). Decision errors occurred when the oracle assigned an incorrect “type”
to a target independent of target data. Classification and Decision errors were ex
plained to the subjects as “software problems”. Errors of the different types were
equated by matching corresponding rates to the multinomial reference distribution
followed by data errors (5 independent parameters with 1/3 probability of error {.132,
.33, .33, .164, .04, .004} for 0-5 errors). Only one source of error was presented during
a TANDEM session. Buttons presses to access agent information, menu selections,
target hooks, classifications, and final actions and times were collected along with
simulation states for each subject. Agent displays tested showed:

1)	 aggregated information (list) — a list of parameters and values

2) integrated information (table) — a table showing categorized values

3)	 synthesized information (oracle) — target type assignment with certainty
factor.

79

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Method

Sixty targets were distributed in several concentric rings on the screen. The circle
closest to the center is referred to as the “circle of fear” and the amount of time a
target spent in this circle before being identified was measured as penalty time. The
number of targets identified while in this penalty circle, targets identified outside of
the penalty circle, and targets hooked but not resolved were all measured. Ratings of
“trust” of simulated information agents using scales developed and validated by Muir
[5] were also gathered from each subject. These ratings, on a scale of 1 (low) to 5
(high) focused on issues of dependability, predictability, accuracy, reliability and an
overall “assessment of trust in the agent. Seventy-eight paid subjects recruited from
the University of Pittsburgh community participated in the experiment. Data from
eight subjects were excluded from this analysis due to equipment failure, incomplete
data, or failure to follow instructions. Subjects received standard instructions and a
sheet of tables showing the correspondence between parameter values and identifica
tion decisions. Subjects were assisted through a five minute training session operating
the simulation and then completed two 15 minute experimental trials, concluding the
session by completing a “trust in automation” [5] survey.

Results

Performance was analyzed using a repeated measures analysis of variance with session
as the within subject factor and types of error and level of agent as between group
factors. Effects of session were significant (p < .05) for each of the dependent mea
sures reported. Where differences were found between groups, data was pooled across
the two sessions and Post hoc analyses conducted using Tukey’s HSD to identify
reliable differences among the conditions.

Performance measures reported in preliminary form in Lenox et al. [3] fell into three
groups which can be categorized as targets engaged, targets engaged within penalty
circle, and agent use/correct identification. The number of targets shot or cleared,
number of targets engaged, and score were affected by the type of presentation, the
type of error and the interaction between presentation and error type. Errorless
presentations led to processing more targets and the table presentation led to process
ing more targets (p < .04).

The number of non-penalty targets engaged, number of penalty targets engaged, and
time targets remained in the penalty circle were affected by the presence of errors and
particularly decision errors (p < .04). Subjects’ willingness to activate an agent de
pended on the type of agent and the presence/absence of errors. Subjects activated the
agents more often in the no error condition and activated the oracle more often than
the other agents (p <.05). Subjects’ ratings on 10 of the 11 scales on Muir’s trust in
automation questionnaire were lower for agents committing errors (p < .05)

80

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Ratings of trust in automation using scales developed by Muir [2] were collected at
the conclusion of the experiment. Subjects’ ratings on 10 of the 11 scales were lower
(p < .05) for agents committing errors and were not affected by the level of agent.

The level 2 (table) agent provided the best support for the target identification task.
Although subjects consulted the level 3 (probability assignment) agent more than
either of the other two agents, their scores were lower than subjects using level 2
agents and errors in the probability assignment led to longer penalty times. Regardless
of their source, errors affected subjects’ performance, reliance on agents and ratings of
trust in a similar manner. Contrary to our expectations, presentation did not appear to
affect the subjects’ ratings of trust or penalty times.

These results demonstrate the dangers of using agents to collect, aggregate, and
process information without providing their user the ability to monitor and evaluate
their product. The participants rated their trust of the level-3 oracle as highly as the
others and accessed it more often yet performed more poorly than the others. Equally
clear was the failure of processed information to provide added value when errors
occurred. Subjects using the level-2 (Table) agent with classification errors, for ex
ample, had available on their agent display exactly the same information as those
using the level-1 (List) agent without errors yet performed less well.

2.3 Supporting Individuals vs. Teams

We have developed a framework for examining the different ways that machine
agents can be deployed in support of team performance. One option is to support the
individual team members in completion of their own tasks. Another option is to
allocate to the machine agent its own subtask as if we were introducing another
member into the team. In this case all the issues associated with communication and
coordination among team members become relevant [1], [8], [9].

The third option is to support the team as a whole by facilitating communication,
allocation of tasks, coordination among the human agents, and attention focus. A
basic tenet of this approach is that teamwork skills exist independent of individual
competencies. The performance of teams, especially in tightly coupled tasks, is be
lieved to be highly dependent on these interpersonal skills.

The second TANDEM study examines different ways of deploying machine agents to
support multi-person teams: 1) supporting the individual (within a team context) by
keeping track of the information he has collected and in sense, helping the individual
with his task and with passing information to team mates (Individual Clipboard); 2)
supporting communication among team members by automatically passing informa
tion to the relevant person which should reduce communication errors and facilitate
individual classification (Team Clipboard); and 3) supporting task prioritization and

81

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

coordination by providing a shared checklist (Team Checklist). We hypothesized that
the Individual Agent should aid the individual task and aid communication among
team members (Figure 2). This agent shows all data items available to an individual
team member (in this case, ALPHA) and fills in the values for the data items as the
subject selects them from them from the menu. The values under the TYPE

heading assist the individual with their task while the other team members may need
the remaining values. The Team Clipboard Agent should also aid the individual task
and aid team communication to a greater degree than the Individual Agent (Figure 3)
should. This agent aggregates values from all members of the team to help the indi
vidual with his/her task. It automatically passes values as they are selected from the
menu to the appropriate team member. Thus, when altitude/depth is selected from a
menu, it is passed to an individual team member (ALPHA) who can use it to make
the type identification. We hypothesized that this agent should reduce verbal commu
nication among team members and reduce communication errors. The third agent,
Team Checklist, should aid team coordination (Figure 4). This agent shows who has
access to what data. For example, all three team members (ALPHA, BRAVO,
CHARLIE) have access to speed, but only BRAVO has access to “Intelligence”. The
final condition is a control where we observed team performance without the aid of
any machine agent. This is the standard TANDEM paradigm used by Jentsch, et al
[9]. The goal of the study is to examine the impact of the aiding alternatives on: 1)
communication patterns, 2) data gathering strategies, 3) reliance (i.e., use of) on the
intelligent agents, and 4) performance.

Figure 2: Individual agent

82

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 3 Team clipboard

Figure 4 Team checklist

Method

Teams of three subjects were recruited for this study. Each team was assigned to one
of four conditions: 1) control, 2) individual agent, 3) team clipboard agent, or 4) team
checklist agent. TANDEM was used with three-person teams, each member with a
different identification task to perform (air/surface/submarine, military/civilian, and
peaceful/hostile). One person was assigned to ALPHA, one to BRAVO and one to
CHARLIE. ALPHA, BRAVO and CHARLIE had different items on their menus
and different tasks during the trials. ALPHA identified the type of target (air, surface
or submarine); BRAVO determined whether the target was civilian or military;
CHARLIE determined whether the target was peaceful or hostile. In addition,
CHARLIE acted as the leader by indicating the type, classification and intent of each
target to the system and taking the final action (shoot or clear).

83

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

There were five pieces of information for each identification task, three of which must
agree in order to make a positive identification. These pieces of information were
distributed among the three team members. Each team member saw different data
items on the menus and had three data items required for his/her identification task
and several other items that the other team members might need to complete their
tasks. Thus, the subjects needed to communicate with one another to perform their
tasks for roughly two-thirds of the targets. All five pieces of information might agree
for a particular target, however, in many cases, the ambiguity of the data was manipu
lated such that only three pieces agreed.

The targets were divided into three groups: 1) easy—all three pertinent items on the
individual’s menu agree; 2) medium—only two items on the menu agree, a team
member must ask one or both teammates for data; and 3) hard—two items on the
menu agree, but do not provide the correct solution. For example, ALPHA’s task was
to identify the type of target. If the target was easy, all three items on ALPHA’s menu
indicated the same type (e.g., air). If the target was of medium difficulty, one or two
values would indicate air and the other indicate submarine. If the target was hard,
both of ALPHA’s menu items indicate air, but the remaining three items from
ALPHA’s menu and the other team members indicate surface. Thus, the target is a
surface vessel. Subjects had no way of knowing the difficulty level of the targets.

Each team participated in a 90-minute sessions which began with a 15- minute training
session in which the TANDEM software and team goals were explained. The team was
told to identify as many targets as possible, as accurately as possible during the 15
minute trial. After the training session, the team participated in three 15-minute trials.
At the conclusion, subjects were asked to complete a brief questionnaire.

Several forms of data were collected during the trials: 1) performance data from
Tandem logs including the type and number of targets hooked and classified, the
percentage of targets correctly identified, and the number of times the agents were
activated; 2) communication data encoded from observers or audio tapes including
the number of requests for data (e.g., does anyone have initial range?), the number of
responses (e.g., range is 5.6 nm), the number of target identifications (e.g., it ’s civil
ian), and the number of confirmations (e.g., target is sub, civilian); 3) observer data
including ratings on team communication, situation assessment, leadership ad sup
porting behaviors; and 4) questionnaires completed by the subjects before they leave.

Results

The performance data reported in this paper are based on five teams per condition.
Time per target varies for both the target difficulty and across conditions. For ex
ample, teams took approximately 450 seconds per target to process hard targets in the
control condition, 350 seconds in the individual agent condition, 250 seconds in the
team clipboard condition, and 150 seconds in the team checklist condition.

84

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 5

Using a repeated measures design with four conditions there were significant order
effects across the three trials for the proportion of correct targets (p<.009), the time
per target (p<.0001), and the total targets hooked by a team (p<.0001). Effects were
also found across the target difficulties (easy, medium, and hard) for the proportion of
correct targets (p<.0001) and the time per target (p<.0001). In pairwise comparisons
for time per target, the control condition differed from the team clipboard agent
(p<.03) and the control condition differed from the team checklist agent (p<.02).

Figure 6. Percentage correct for hard targets

Grouping all agent conditions (individual agent, team clipboard agent and team
checklist agent) into one condition, showed that agent aiding was superior to the no

85

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

aiding condition (control) over the three trials on the proportion of correct targets
(p<.0001), time per target (p<.0001) and total targets hooked (p<.0001).

Subjects learned across the trials, hooking more targets, spending less time on any
particular target and getting more targets correct. As Figure 6 shows, aiding team
work directly (team clipboard/checklist) proved more effective than supporting team
members at their individual tasks despite the reductions in memory load and ready
accessibility to parameters for sharing provided by the individual clipboard. The
potential for coordinating human-human interactions through agent systems seems a
particularly promising approach because of the high payoff and the reusable and
largely domain independent character of the agents’ tasks.

3. MokSAF Experiment

Human decision-makers, particularly military commanders, face time pressures and
an environment where changes may occur in the task, division of labor, and allocation
of resources. Information such as terrain characteristics, location and capabilities of
enemy forces, direct objectives and doctrinal constraints are part of the commander’s
“infosphere.” This information is routinely gathered and organized through geo
graphical and other information systems. Information within the infosphere has the
opportunity for data fusion, situation visualization, and “what-if ” simulations. Soft
ware agents have access to all information in the infosphere and can plan, criticize,
and predict the consequences of actions using the information at a greater accuracy
and finer granularity than the human commanders can

These agents cannot consider information outside the infosphere unless it is explicitly
translated in a compatible form.. This extra-infosphere data consists of intangible or
multiple objectives involving morale, the political impact of actions (or inaction),
intangible constraints, and the symbolic importance of different actions or objectives.
Military commanders, like other decision-makers, have vast experiential information
that is not easily quantifiable. Commanders must deal with idiosyncratic and situa
tion-specific factors such as non-quantified information, complex or vaguely specified
mission objectives and dynamically changing situations (e.g., incomplete/changing/
new information, obstacles, and enemy actions). When participating in a planning
task, commanders must translate these intangible constraints into physical ones to
interact with planning agents. The issue then becomes how should software agents
interact with their human team members to incorporate these intangible constraints
into the physical environment effectively.

3.2 The Planning Environment: MokSAF

A computer-based simulation called MokSAF was developed for these experiments
and two agent interfaces are currently undergoing evaluation. MokSAF is a simplified

86

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

version of a virtual battlefield simulation called ModSAF (modular semi-automated
forces). MokSAF allows two or more commanders to interact with one another to
plan routes in a particular terrain. Each commander is tasked with planning a route
from a starting point to a rendezvous point by a certain time. The individual com
manders must then evaluate their plans from a team perspective and iteratively modify
these plans until an acceptable team solution is developed.

Figure 7 MokSAF

Figure 7 shows the MokSAF Environment, including the terrain map and the
toolbar. The terrain consists of soil (plain areas), roads (solid lines), freeways (thicker
lines), buildings (black dots), rivers and forests. The rendezvous point is a red circle
and the start point is a yellow circle on the terrain map. As participants create routes
with the help of the Path Planner Agent or the Critique Agent, the routes are shown
in bright green. The second route shown is from another MokSAF commander who
has agreed to share a route.

The partially transparent rectangles are social constraints that the user has drawn on
the terrain map to indicate to the agents which areas should be avoided. Once these
constraints have been drawn on the map, the Path Planner Agent will not draw a
route through these coordinates and the Critique Agent will inform the user that a
constrained area has been violated.

87

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

3.3 MokSAF Agents

Two different software agents which interact with the human team members in the
planning task have been developed for MokSAF. The first agent, the Path Planner
Agent, guides the human team members through the route-planning task and per
forms much of the task itself. This agent acts much like a “black box.” The agent
creates the route using its knowledge of the physical terrain and an artificial intelli
gence planning algorithm that seeks to find the shortest path. The agent is aware of
physical constraints only. Commanders must translate the intangible constraints into
physical ones by drawing constrained areas on the maps.

The second agent, the Critique Agent, analyzes the routes drawn by the human team
members and helps them to refine their plans. In this mode, the human and agent
work jointly to solve the problem (e.g., plan a route to a rendezvous point). The
workload should be distributed such that each component matched to its strengths.
Thus, the commander, who has a privileged understanding of the intangible con
straints and utilities associated with the mission, can direct the route around these
constraints as desired. However, the commander may not be as knowledgeable about
the terrain and so the agent can indicate where the path is sub-optimal due to viola
tions of physical constraints.

The commander draws the desired route and requests that the Critic Agent review the
route for physical violations or to indicate ways in which the path could be improved. The
commander can iteratively improve the plans until a satisfactory solution is reached.

Method

In the current MokSAF pilot experiments, a deliberative, iterative and flexible plan
ning task is examined. There are three commanders (Alpha, Bravo and Charlie), each
with a different starting point but the same rendezvous point. Each commander
selects units for his/her platoon from a list of available units. This list currently con
tains M60A3 tanks, M109A2 artillery units, M1 Abrams tanks, AAV-7 amphibious
assault vehicles, HMMWVs (i.e., hummers), ambulances, combat engineer units, fuel
trucks and dismounted infantry. This list can be easily modified to add or delete unit
types. With the help of one of the software agents, each commander plans a route
from a starting point to the rendezvous point for the specified platoon.

Once a commander is satisfied with the individual plan, he/she can share it with the
other commanders and resolve any conflicts. Conflicts can arise due to several issues
including shared routes and/or resources and the inability of a commander to reach
the rendezvous point at the specified time. The commanders must coordinate about

88

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

the number and types of vehicles they are planning to take to the rendezvous point.
The mission supplied to the commanders provides them with a final total of vehicles
required at the rendezvous point. In addition, the commanders are told that they
should not plan a route that takes them on the same path as any other commander
and that they should coordinate their routes to avoid shared paths.

MokSAF 1.0 was used for this pilot study. It consists of the standard terrain map and
markings, a toolbar as seen in Figure 5, a communication window where commanders
can send and receive messages and share plans, and a constraint tree. The two differ
ent agent interfaces described above were evaluated. Fifteen teams consisting of
three-persons were recruited (10 teams in the Planner Agent condition and five in the
Critic Agent condition) from the University of Pittsburgh and Carnegie Mellon
University communities. Participants were recruited as intact teams, consisting of
friends or acquaintances. Each team member had a different starting point, but all
had the same rendezvous point. Teammates needed to communicate with one another
to complete their tasks successfully.

Each team participated in a 90-minute session that began with a 30-minute training
session in which the MokSAF environment and team mission were explained. The
team was told to find the optimal path between the start and rendezvous points, to
avoid certain areas or go by other areas, to meet the mission objectives for numbers
and types of units in their platoon, and to avoid crossing paths with the other com
manders. After the training session, the team participated in two 15-minute trials.
Each trial used the same terrain, but different start and rendezvous points and differ
ent platoon requirements. At the conclusion, participants were asked to complete a
brief questionnaire.

Results

We examined time to share a route for the three commanders and found that the
Planner Agent interface had an advantage over the Critic Agent interface (p <.005 for
Alpha, p < .063 for Bravo and p < .006 for Charlie). Groups using the Planner Agent
spent less time creating their individual plans before sharing them with their teammates.

We also examined the individual path lengths for each commander at two points in
each trial when routes were first shared with the team and at the end of the 15
minute trial. The ending path lengths for Alpha (p <.001), Charlie (p < .001) and
combined were better using the Planner Agent Interface than with the Critic.

89

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Figure 8.

It is expected that path lengths between the first time a route was shared and at the
end of a trial would vary due to issues related to conflict resolutions among the team
mates. There was a significant difference in the change in path lengths from these two
points in time (p < .018). Figure 6 shows that participants using the Critic Agent
interface made more changes in their paths. This change could be due to the state in
which the route was in when first shared; that is, the routes drawn by the participants
may have required additional refinement during the trial. Another possible reason for
the change in the paths could be due to interactions with teammates.

Participants were asked to create optimal routes given certain confounding factors
(e.g., avoiding constraints, going to designated areas, and avoiding traveling on the
same paths as other commanders). They were also asked to plan as a group numbers
and types of units at the rendezvous point. We found that there was no difference in
this selection of units in either agent interface condition.

In its current form, the Path Planner has been shown to provide a better interface for
both individual route planning and team-based re-planning. While the individual plans
for Critic users in the Alpha and Bravo roles were not significantly different from
Planner users in quality, it took them substantially more time to construct their routes.
The eventual coordinated routes were uniformly better for each of the individual posi
tions in the planner group and for the team as a whole. Despite this clear superiority,
participants in the Planner group frequently expressed frustration with the indirection
required to arrange constraints in the ways needed to steer the planner’s behavior and
often remarked that they wished they could “just draw the route by hand”.

90

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 9

In the Critic condition complaint s focused more closely on the minutiae of interac
tion. In its current form, the user “draws” a route in MokSAF by specifying a se
quence of points at the resolution of the terrain database. To do this, she clicks to
specify an initial or intermediate point in the path and then clicks again at a second
point. A sequence of points is then drawn in a straight line between these locations. A
route is built up incrementally by piecing together a long sequence of such segments.
Although MokSAF provides tools for deleting unwanted points and line segment
“rubberbanding” for moving control points, the process of manually constructing a
long route is both tedious and error prone. While the Planner automatically avoids
local obstacles such as trees and closely follows curves in roads due to their less costly
terrain weights, a user constructing a manual route is constantly fighting unseen
obstacles which void her path or line segments which stray a point or two off a road
into high penalty terrain. The anticipated advantages of heuristic planning and coop
eration among human users were largely lost due to the necessity of focusing on local
rather than global features of routes.

The experience we have gained in developing and evaluating the critic interface will
be used to redesign and test a new hybrid version of the task in which automated path
planning will be performed within an approximate path drawn by the human user. Of
the lessons learned in this initial test of our agent-based alternatives, the difficulty of
creating good interfaces for communicating human intent stands out. The Planner
interface which minimizes this communication was very successful in its initial imple
mentation. The Critic interface, by contrast, will require substantial revision before it
approaches the planner in articulatory directness and fluency. We hope that subse
quent refinements to the Critic may allow a more thorough comparison of the effects
of agent and human initiative on team planning and re-planning tasks.

91

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

4. InfoWrapper

One of the most commonly cited tasks to be solved by agent technologies is seeking
out and extracting information from the World Wide Web. The problem is actually
much more difficult than it seems and despite many efforts agents do not yet intelli
gently seek out new sites and extract information from them although many systems
will return URLs likely to contain desired information. While parsing HTML is
fairly straight forward, specifying the information to be extracted from a content/user
oriented view is much more complex. A promising approach to this problem is to
treat it as one of human-agent cooperation. Web pages have been designed and
formatted to promote human discriminations and judgements so while the tagging
conventions of HTML may be commonly violated their appearance is tightly con
trolled and “intelligible” to humans. If we can devise the means for the human to
communicate her discriminations and semantic judgements to the agent it should be
possible for the joint system to develop site specific information extractors fairly
efficiently. What is needed is some form of “programming by example” with provi
sions for indicating and discriminating among procedural instructions (accessing
successive pages for instance), informational templates (the boundaries and constitu
ents of classified ads or example) and string constants/variables for matching. From
the user’s perspective, one would like to access a page through a browser, select (high
light) an instance of the items to be searched, and associate the selection’s constituents
with a schema for testing and extracting matching instances. The design challenge is
to build an interface which make this kind of direct manipulation specification as
transparent as circling a classified ad and underlining an object’s name and price.

Unlike the controlled experiments with TANDEM and MokSAF, our efforts in
developing the InfoWrapper follow an iterative prototyping plan where through
development and testing we explore a range of potential interaction schemes for
bridging the gulf between what the user sees and what the agent parses. The
InfoWrapper has by far the most complex task of conveying human intent of the
systems we have studied. Like TANDEM, it must operate in an open environment
where errors are likely and mechanisms for monitoring and evaluation must be de
signed in. Like MokSAF, there are many possible ways to allocate tasks and control
with good choices likely to emerge only after repeated testing. We believe that the
future of human agent systems will lie in such multi- method interactions which can
combine demonstration, direct manipulation, machine learning, and command lan
guage in effective enough ways to bridge Norman’s gulfs and allow communication of
complex intents and perceptions

92

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

References

1. P. M. Jones and C. M. Mitchell. Human-computer cooperative problem solving:
Theory, design, and evaluation of an intelligent associate system. IEEE Transactions
on Systems, Man, and Cybernetics. SMC-25(7), pages 1039-1053, 1995.

2. J. Lee and N. Moray. Trust, Control Strategies, and Allocation of Function in
Human-Machine Systems. Ergonomics 35(10), pages 1243-1270, 1992.

3. T. Lenox, L. Roberts, and M. Lewis. Human-Agent Interaction in a Target Identi
fication Task. In 1997 IEEE International Conference on Systems, Man, and Cybernetics,
pages 2702-2706, Orlando, FL: IEEE, 1997.

4. J.T. Malin, D.L. Schreckenghost, D.D. Woods, S.S. Potter, L. Johannesen, M.
Holloway, and K. D. Forbus. Making Intelligent Systems Team Players: Case Studies &
Design Issues. Human-Computer Interaction Design (NASA Technical Memorandum
104738). Houston, TX: NASA Johnson Space Center, 1991.

5. B. Muir. Trust in Automation: Part I. Theoretical Issues in the Study of Trust and
Human Intervention in a Process Control Simulation. Ergonomics, 39(3), pages 429
460, 1994.

6. N. Negroponte. Being Digital. New York, NY: Alfred Knopf, 1996.

7. D. Norman. Cognitive Engineering. In User Centered System Design: New Perspectives
on Human-Computer Interaction, eds. D. Norman and S. Draper, pages 31-61,
Hillsdale, NJ: Lawrence Erlbaum, 1986.

8. E. M. Roth, J. T. Malin, J. T and D. L. Schreckenghost. Paradigms for Intelligent
Interface Design. In M. Helander, T. K. Landauer, and P. Prabhu (Eds) Handbook of
Human-Computer Interaction, Second Edition, pages 1177-1201, 1997.

9. K. Smith-Jentsch, J. H. Johnston, S. C. Payne (in press). Measuring team-related
expertise in complex environments. To appear in J. A. Cannon-Bowers and E. Salas
(eds.), Decision Making Under Stress: Implications for Individual and Team Training.
Wash., DC: American Psychological Association.

93

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

94

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The Combat Decision Range: Multimedia
Training in Decisionmaking under Stress

Francis J. West
President, GAMA Corporation

In March 1997, the Marine Corps Warfighting Laboratory under the command of
Col. Anthony A. Wood, conducted the Hunter Warrior Advanced Warfighting Ex
periment in multiple sites in Southern California. Among other experimental objec
tives, this week-long experiment deployed individual rifle squads 150 miles from their
parrent platoons and companies located in simulated ships at sea. Each squad had to
rely upon its own skills to survive and ability to employ long-range fire support to
attack a much larger, more mobile enemy force.

The experiment demonstrated the potential capability infantry small units leaders
have to assume an expanded tactical role if given the proper training and equipment It
also demonstrated that the one most important discriminator in effectiveness of the
various squads was the ability of the squad leader as a combat decision maker.

The squad leaders in this experiment were not hand picked superstars. Instead, they
were an average infantry battalion’s non-commissioned officers. They had typical
training in leadership and small unit tactics. They also received some instruction in the
theory of small unit decision making. During pre-experiment training, some failed to
demonstrate the ability to make effective combat-related decisions under pressure.
Where possible these small unit leaders were replaced. Others improved rapidly once
they were put in the role and provided the opportunity to learn on the job.

The experiment identified two specific problems. How do you determine who has the
ability to develop into an effective combat decision makeer? And second, how can the
Marine Corps train small unit leaders to be effective decision makers in the chaos and
confusion of combat?

How to Identify Effective Decision Makers

The Marine Corps Wargaming Division, supported by GAMA Corporation of Falls
Church Virginia, VA, had been seeking answers to these questions through a series of
wargames with the New York Mercantile Exchange. The Wall Street Traders make
hundreds of decision every day in an atmosphere of chaos and confusion that re
sembles combat in its intensity and ambiguity. The Traders are decisive, intuitive
decision makers. They absorb information with all of their senses and make second by
second assessments as to the direction of the market.

95

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The traders indicated that there is no formula for predicting who will make a good
trader and who will not. Some successful traders have advanced degrees; more do not.
Some have a background in business; most do not. The one characteristic all have in
common is an aura of self-confidence. However, the traders indicated that this aura
emerges over time and is not necessarily identifiable in advance.

The only way to identify a successful trader is through watching him trade. The
traders do this through a program of mock trades. To add realism they add as much of
the confusion and chaos as they can to mimic the atmosphere of the actual exchange
floor. Over time, the candidate traders begin to show whether they can intuitively
identify the patterns of trades and prices. The traders often cannot identify why they
made a specific trade. They are making decisions based on ambiguous — and often
conflicting — information. Like combat, they cannot wait for more information. The
profits go to those who first identify the direction of the market.

Those that demonstrate in these mock trades that they have potential are sponsored
onto the actual Mercantile Exchange. They then trade using their sponsors money.
Those that make good decisions — that show a profit — gain the time to make
additional trades. Those that do not, find another line of work. The traders, indicate
that success in the first few trades are essential because only success then earns the
opportunity to gain sufficient experience to truly become an effective trader later.

96

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

This experience is not unlike that of combat. Historically, the only true indicator as to
the effectiveness of combat leaders is success in combat. Many who are very successful
in training cannot handle the chaos and pressure of combat and fail to survive. But
using combat to weed out the effective combat leaders is not only inefficient but leads
to ineffective units in the first battle. There must be a way to simulate the pressures of
combat sufficiently to permit an organization to assess its small unit leaders and to
permit those that are chosen to practice making sound decision making.

Practicing Decision Making

The Marine Corps Warfighting Laboratory turned to analogous organizations that
face similar problems in training. Firefighters offered a possible comparative decision
making problem. On behalf of the Wargaming Division of the Marine Corps
Warfighting Lab, GAMA Corporation conducted a series of exploratory seminars
with the New York City Fire Department — the largest and arguably the best-trained
fire department in the world.

A fire department was chosen because urban fire fighting closely approximates many
of the same situations resident in urban combat. The New York Fire Department
aggressively attacks fires deep inside high-rise concrete buildings on a daily basis that
require communicating in dense smoke and limited visibility.

How do they do it? Their capability appears to have three key components. First,
small handheld UHF radios are distributed throughout the ranks; “breaking news” is
instantly known by all. Second, a fire is geographically “gridded” by use of voice codes;
each firefighter has situational awareness of adjacent unit’s locations and the location
of all “hot zones.” Third, every new fire chief goes through a computer-based class
room training course. Under the tutelage of experienced chiefs, he must fight twelve
different types of city fires. On a large screen, he watches pictures of a spreading fire
while the older, more experienced chiefs act as subordinates and shout confused calls.
As “on-scene commander,” the new chief must respond promptly, determine the
extent of the blaze, deploy his men, and call for reinforcements.

The old fire chiefs stressed that a new chief does not have broad fire fighting experi
ence. He has not yet encountered many types of fires. The scenarios and the tutors are
the means of giving him vicarious experience by placing him under stress and insist
ing he make decisions on the spot. Part of the stress comes from being evaluated by
his peers. When he completes this test, the new chief is prepared to encounter any
conceivable fire in the real world. In short, he is expected to look at a fire and be able
to say, “I have seen this situation before, I know what needs to be done, and I know
how to do it.”

97

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The Combat Decision Range

The fire fighters technique led to the development of a Marine Corps Combat Deci
sion Range to be used to assess the capabilities of small unit combat leaders and to
permit them to practice combat decision making. The first prototype was developed
by GAMA Corporation, based in part on the fire fighters example as modified by
corporate experience in over 200 wargames and simulations conducted over the past
15 years. The prototype was developed specifically to stress and train the squad
leaders to be used in the Urban Warrior experiment. It was called a “range” because
Marines prepare for combat by training on the rifle range. Similarly, with combat
decision making, combat leaders need to train to make sound decisions under stress –
before they go into combat.

GAMA adapted the basic technique, added multimedia computer programming, and
wrote a series of tactical scenarios based on real firefights. These scenarios were then
used in the training of the infantry battalion squad leaders used in Urban Warrior.
Subsequently, these scenarios have been modified and are now being delivered to all of
the infantry regiments in the Marine Corps as the Collins’ Combat Decision Range. It
is named after a retired Marine Colonel Pat “Paddy” Collins, who died while working
for the Marine Corps Warfighting Lab developing prototype squad level training
programs. By the end of this year, the Combat Decision Range will be in use through
out all eight active and three reserve infantry regiments in the Marine Corps.

98

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The CDR technique is simple. In a darkened classroom, the squad leader stands
before a six-foot screen. The video he is watching is as tall as he is, and the virtual
sounds of combat echo from several surround-sound speakers. A company officer or
non commissioned officer gives a succinct order, accompanied by a map, which is also
provided in hard copy. As the squad leader proceeds on the mission, with the video
showing combat scenes, one or two officers or non-commissioned officers request
urgent instructions while acting as his fire team leaders. At the same time, his platoon
commander, or company commander, is on a handheld radio requesting situation
reports. Supporting arms are on-call.

The scenarios vary: Civilian refugees plead for water and offer vague intelligence;
angry mobs block the fire teams; stray shots ring out; a deadly sniper opens up; a
fortified building holds an enemy platoon; a bridge must be seized; enemy attack out
of the darkness and rain, etc. In a half-hour of one scenario, the squad leader must
make 15 to 30 rapid-fire decisions while issuing both orders and situation reports up
and down the chain of command.

There is a plan to this multimedia madness. The squad leader is constantly reading his
map and adjusting to events (Situation Awareness), directing his fire teams (Com
mand), and providing information and seeking support (Coordination). Meanwhile,
his own company officers are able to assess both the squad leader’s level of training
and decision making capabilities against a battlefield scenario.

The Combat Decision Range is running to good reviews from both the squad leaders
and the company staffs. Each scenario takes 30 to 45 minutes to complete. Very
quickly, the company can assess the level of squad leader training and capability.
Under stress, many show difficulty reading grid coordinates even though they exhib
ited little prior problem. Others lose track of the battle while focusing on casualties.
Few are adept at the use of supporting arms, although familiarity and confidence
improves dramatically with practice. Reporting to higher headquarters is rarely ad
equate and information reported often lacks significant intelligence-related informa
tion. Radio traffic is often garbled. These are but a few examples.

The CDR employs a commercially available computer of 150 MHz or faster using
CD-ROMs. The regiments have been successful in employing a lance corporal with
one day of training as an operator. The company officers and NCOs were trained for
two days; then they became the facilitators for their company.

The CDRs stress situation awareness, internal unit command, and external coordina
tion. This situational awareness training requires the squad leaders to identify location
— both his and his fire teams — through map reading and the use of a commercially
available GPS. The command and coordination require the means to communicate,
which is demonstrated through the use of commercially available 14 channel squad

99

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

radios. The intent is for the squad leader to know at all times where he is and to be able
to communicate effectively with his team leaders and platoon commander. Each com
mercial GPS has its own ‘white board’ map, and the radios have multiple frequencies.

Most squad leaders, after the training, are noticeably more confident in their abilities.
They are truly excited about their progress so far, although not without many hard
lessons learned. The point is that the tempo of operations appears to be increasing
dramatically. The result could be similar to the “West Coast Offense” in football. The
San Francisco 49ers do nothing other teams do not do, but they execute faster, and once
they have momentum, they build on it, generating an overwhelming tempo which other
teams cannot match. Similarly, more confident, experienced, and better-equipped squad
leaders add a dimension to maneuver warfare. The CDR provides a valuable inexpensive
tool for training small unit leaders to execute quickly and with confidence. Once that
happens, the operational level of war quickens — not because those in the rear think
they know more — but rather because the senior commanders can seize and exploit the
momentum gained by the initiative of confident small unit leaders.

The goal is to develop a full set of scenarios equivalent to those of the New York City
Fire Department, so that when Marines deploy to the equivalent of our next “fire,” every
Marine squad leader will be able to say: “I have seen this sort of situation before. I can
react fast, because I have confidence in myself and my ability to direct my Marines.”

100

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

The underlying premise behind the CDR is that decisionmaking under stress depends
on matching the crisis at hand with a mental image of a similar case – learning based on
experience. When the direct experience is lacking, the CDR substitutes combat cases
that impart experience. The analogy is to the flight trainer, where a pilot learns by
crashing and walking away unhurt, but vividly remembering what he did wrong.

Theoretically, the technique can be applied across a variety of subject areas. Techni
cally, the technique resembles making a movie. It is an art more than a skill. If the
scenario chosen – the plot – is not credible, or if the actions are stilted, or if the
technical military systems are incorrect, or if the facilitator stumbles, then the CDR
will fail. GAMA proceeds by identifying the lessons to be imparted, designing a
combat situation which will impart the lessons, selecting a venue for filming, writing a
story line and a script, assembling actors (often marines), filming the scenarios,
digitizing the results, adding animation, sound explosions, night shadings, etc., writ
ing both a computer program (in Multimedia Director) and a text for the facilitators,
selecting key strokes to match the action scenes, burning a CD master, debugging,
practicing, changing and finally ‘going public’. It’s hard work, but it is fun when the
squad leader gets so involved he forgets where he is and starts screaming for his
supporting arms or for his fire teams to respond more quickly.

101

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

102

1

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Using Guidelines to Constrain Interactive
Case-Based HTN Planning*

Héctor Muñoz-Avila †‡, Daniel C. McFarlane ‡, David W. Aha ‡, Len Breslow ‡,
James A. Ballas ‡, & Dana S. Nau †

† Department of Computer Science — University of Maryland
‡ Navy Center for Applied Research in AI — Naval Research Laboratory

Abstract.

This paper describes HICAP, a general-purpose, interactive case-based plan authoring
architecture that can be applied to decision support tasks to yield a hierarchical course
of action. It integrates a hierarchical task editor with a conversational case-based
planner. HICAP maintains both a task hierarchy representing guidelines that con
strain the final plan and the hierarchical social organization responsible for these
tasks. It also supports bookkeeping, which is crucial for real-world large-scale plan
ning tasks. By selecting tasks corresponding to the hierarchy’s leaf nodes, users can
activate the conversational case-based planner to interactively refine guideline tasks
into a concrete plan. Thus, HICAP can be used to generate context sensitive plans
and should be useful for assisting with planning complex tasks such as noncombatant
evacuation operations. We describe an experiment with a highly detailed military
simulator to investigate this claim. The results show that plans generated by HICAP
were superior to those generated by alternative approaches.

Introduction

Planning a course of action is difficult, especially for large hierarchical organizations
(e.g., the U.S. Navy) that assign tasks to elements (i.e., groups or individuals) and
constrain plans with guidelines (e.g., doctrine). In this context, a concrete plan must
adhere to guidelines but should also exploit organizational knowledge where appro
priate (e.g., standard procedures for solving tasks, previous experiences when reacting
to unanticipated situations). Case-based reasoning (CBR) can be used to capture and
share this knowledge.

In large planning environments, automatic plan generation is neither feasible nor
desirable because users must observe and control plan generation. We argue that, rather
than relying on an automatic plan generator, users prefer and can greatly benefit from
the assistance of an intelligent plan formulation tool with the following characteristics:

– Guidelines-driven: Uses guidelines to constrain plan generation.

* Presented at the 1999 International Conference on Case-Based Reasoning

103

2

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

–	 Interactive: Allows users to edit any detail of the plan.

–	 Provide Case Access: Indexes plan segments from previous problem-solving
experiences, and retrieves them for users if warranted by the current planning
scenario.

–	 Perform Bookkeeping: Maintains information on the status of and relations
between task responsibilities and individuals in the organizational hierarchy.

This paper describes HICAP, a general-purpose plan formulation tool that we de
signed to embody these characteristics.1 HICAP (Hierarchical Interactive Case-Based
Architecture for Planning) integrates a task decomposition editor, HTE (Hierarchical
Task Editor) (Muñoz-Avila et al., 1998), with a conversational case-based planner,
NaCoDAE/HTN. The former allows users to edit and select guidelines for refine
ment, while the latter allows users to interactively refine plans encoded as hierarchical
task networks (HTNs) (Erol et al., 1994). Refinements use knowledge of previous
operations, represented as cases, to augment or replace standard procedures.

The following sections describe the application task, HICAP’s knowledge representa
tion, its architecture, its empirical evaluation, and a discussion of related work.

Planning Noncombatant Evacuation Operations

Noncombatant evacuation operations (NEOs) are conducted to assist the U.S.A.
Department of State (DoS) with evacuating noncombatants, nonessential military
personnel, selected host-nation citizens, and third country nationals whose lives are in
danger from locations in a host foreign nation to an appropriate safe haven. They
usually involve the swift insertion of a force, temporary occupation of an objective
(e.g., an embassy), and a planned withdrawal after mission completion. NEOs are
often planned and executed by a Joint Task Force (JTF), a hierarchical multi-service
military organization, and conducted under an American Ambassador’s authority.
Force sizes can range into the hundreds and involve all branches of the armed ser
vices, while the evacuees can number into the thousands. More than ten NEOs were
conducted within the past decade. Publications describe NEO doctrine (DoD, 1994),
case studies (Siegel, 1991; 1995), and more general analyses (e.g., Lambert, 1992).2

The decision making process for a NEO is conducted at three increasingly-specific
levels: strategic, operational and tactical. The strategic level involves global and political
considerations such as whether to perform the NEO. The operational level involves
considerations such as determining the size and composition of its execution force. The
tactical level is the concrete level, which assigns specific resources to specific tasks.

1 Implemented in Java 2, the HICAP applet can be run from www.aic.nrl.navy.mil/hicap. HICAP was
introduced in (Muñoz-Avila et al., 1999), which did not include the evaluation described here.

2 See www.aic.nrl.navy.mil/˘aha/neos for more information on NEOs.

104

3

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

JTF commanders plan NEOs in the context of doctrine (DoD, 1994), which defines
general guidelines (e.g., chain of command, task agenda) for designing strategic and
operational plans; tactical considerations are only partly addressed. Doctrine is abstract;
it cannot account for the detailed characteristics of specific NEOs. Thus, JTF com
manders must always adapt doctrine to a NEO’s specific needs, and do so in two ways.
First, they dynamically modify doctrinal guidance by eliminating irrelevant planning
tasks and adding others, depending on the operation’s needs, resource availabilities, and
relevant past experiences. For example, although NEO doctrine states that a forward
command element must be inserted into the evacuation area with enough time to plan
the insertion of the JTF’s main body, this is not always feasible (e.g., in Operation
Eastern Exit, combined elements of the JTF were inserted simultaneously due to the
clear and imminent danger posed to the targeted evacuees (Siegel, 1991)). Second, they
employ experiences from previous NEOs, which complement doctrine by suggesting
tactical refinements suitable for the current NEO. For example, they could draw upon
their previous experiences to identify whether it is appropriate to concentrate the evacu
ees in the embassy or to plan for multiple evacuation sites.

Knowledge Representation

Because HTNs are expressive representations for plans, we used a variant of them in
HICAP. A HTN is a set of tasks and their ordering relations, denoted as N = 〈{T1, …
,T }, p〉 (m≥0). The relation p has the form Ti p Tj (i≠j), and expresses temporal m

restrictions between tasks.

Problem solving with HTNs occurs by applying methods to decompose or reduce tasks
into subtasks. Each method has the form M = 〈 l, T, N, P〉 , where l is a label, T is a
task, N is a HTN, and P = 〈p1, … ,pk〉 a set of preconditions for applying M. When P
is satisfied, M can be applied to a task T to yield N.

HICAP’s HTN consists of three task types. First, non-decomposable tasks are concrete
actions and can occur only at a network’s leaves. Next, uniquely decomposable tasks
correspond to guideline tasks (e.g., doctrine), and are solved by unconditional meth
ods (k = 0). Finally, multi-decomposable tasks must be solved in a specific problem-
solving context.

There are two sources of knowledge for decomposing multi-decomposable tasks:
standard operating procedures (SOPs) and recorded episodes. SOPs describe how to
reduce a task in a typical situation. Recorded episodes describe how tasks were re
duced in situations that are not covered by SOPs. In our representation, SOPs and
recorded episodes are both represented as methods and we loosely refer to both as
cases. However, there is an important difference in the way SOPs and recorded epi
sodes are applied. To apply a SOP to reduce a task, all its preconditions must be
matched because they are typically rigid in their use. In contrast, recorded episodes
can be applied to reduce a task even if some of its preconditions are not satisfied.

105

4

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

When reducing a task T, HICAP retrieves all cases (i.e., standard procedures and
recorded episodes) that can decompose T. If all the preconditions of a SOP are met,
then it should be used to decompose T. Otherwise, a case corresponding to the most
similar episode should be used. For example, standard NEO procedures state that the
evacuees must be concentrated in the embassy prior to troop deployment, but this is
not always possible: in Operation Eastern Exit, only some of the evacuees were
concentrated in the embassy after the Joint Task Force was deployed. This occurred
because escorted transports were not available to gather these evacuees, who were
unable to reach the embassy due to the dangerous conditions in the surrounding areas
(Siegel, 1991). Likewise, the evacuees of Operation Sharp Edge (Sachtleben, 1991)
were concentrated in several places, forcing multiple separate evacuations.

HICAP: An Interactive Case-Based Planner

Fig. 1. The HICAP architecture.

HICAP (Figure 1), which integrates HTE with NaCoDAE/HTN, inputs a HTN
describing the guidelines for an application along with a set of cases for each multi-
decomposable subtask. It displays all uniquely decomposable tasks as expanded.
Under user control, HICAP outputs an elaborated HTN whose leaves are concrete
actions as specified by case applications and manual edits. In this way, HICAP satis
fies the requirements stated in Section 1. First, all plans formulated using HICAP are
in accordance with the guidelines or user modifications of them. Second, HICAP
supports interactive task editing and triggers conversations for tasks that can be
decomposed by case application. Third, it incorporates knowledge from previous
problem solving episodes as cases, which serve as task decomposition alternatives.
Finally, it allows users to visually check that all tasks are assigned to JTF elements,
and to record/update their completion status.

106

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

4.1 Hierarchical Task Editor

In complex environments where dozens of tasks must be performed by many people,
tracking the completion status for each task can be challenging. For example, during
the NEO Operation Eastern Exit, the task to inspect evacuees prior to embarkation
was not assigned (Siegel, 1991). One of the evacuees produced a weapon during a
helicopter evacuation flight. Although it was immediately confiscated, this oversight
could have resulted in tragedy and illustrates the difficulties with planning NEOs
manually.

The Hierarchical Task Editor (HTE) (Muñoz-Avila et al., 1998) serves HICAP as a
bookkeeping tool to track the status of each task. HTE inputs a knowledge base
consisting of a HTN task agenda, its ordering relations, the organization’s command
hierarchy, and an assignment of tasks to command elements. It allows users to edit the
knowledge base and select tasks to refine by invoking NaCoDAE/HTN, thus tailor
ing the plan to the particular circumstances of the current NEO.

For our NEO application, we encoded a HTN to capture critical planning doctrine
(DoD, 1994), yielding 200+ tasks and their ordering relations. Next, we used this
doctrine to elicit the JTF command hierarchy commonly used in NEO operations.
Finally, we elicited relations between tasks and the JTF elements responsible for
them. The mapping of tasks to command elements is many-to-one. Figure 2 displays
(left) the top level tasks that, according to doctrine, must be performed during a NEO
and (right) the elements in the JTF responsible for them.

Fig. 2. Top level NEO tasks and their assignment to JTF command elements (double arrows denote
assignments; arrows denote task orderings; ISB = intermediate stage base).

107

5

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

4.2 Conversational Task Decomposer

NaCoDAE/HTN, an extension of the NaCoDAE conversational case retrieval tool
(Aha & Breslow, 1997; Breslow & Aha, 1997), supports HTN planning by allowing
users to refine selected tasks into concrete actions. When given a task T to refine by
HTE, NaCoDAE/HTN uses T as an index for initial case retrieval and conducts an
interactive conversation, which ends when the user selects a case C = 〈 l, T, N, P〉.
Network N is then used to decompose T (i.e., into a set of subtasks represented as T’s
child nodes). Subtasks of N might themselves be decomposable, but non-decompos
able tasks corresponding to concrete actions will eventually be reached. Task expan
sions are displayed by HTE.

During conversations, NaCoDAE/HTN displays the labels of the top-ranked cases
that can decompose the selected node and the top-ranked questions fromthese cases
whose answers are not yet known for the current situation. The user can select and
answer any displayed question; question-answer pairs are used to compute the similar
ity of the current task to its potential decomposition methods (cases). Cases are
ranked according to their similarity to the current situation (Aha & Breslow, 1997),
while questions are ranked according to their frequency among the top-ranked cases.
Answering a question modifies the case and question rankings. A conversation ends
when the user selects a case for decomposing the current task.

Some of the displayed cases are standard procedures; they can only be selected to
decompose a task after all of their questions have been answered and match the
current planning scenario. That is, preconditions of the standard procedures must
match before they can be applied. In contrast, cases based on previous experiences can
be selected even if some of their questions have not been answered, or if the user’s
answers differ. Thus, they support partial matching between their preconditions and
the current planning scenario.

Example: NEO Planning

During NEO planning, users are first shown the tasks corresponding to doctrine, and
revise them as needed. They can expand any task and view its decomposition. In
Figure 3, the user has selected the Select assembly areas for evacuation & Evacuation
Control Center sites task, which is highlighted together with the command element
responsible for it.

Standard procedure dictates that the embassy is the ideal assembly area. However, it is
not always possible to concentrate the evacuees in the embassy.Alternative methods
can be considered for decomposing this task. When the military planner selects this
task, HICAP displays the alternatives and initiates a NaCoDAE/HTN conversation
(see Figure 4 (top)).

108

6

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Fig. 3. HTE: Task agenda (left) and command hierarchy (right) displays (arrows denote ordering
constraints).

If the user answers Are there any hostiles between the embassy and the evacuees? with
uncertain, a perfect match occurs with the case labeled “Handle situation in which it is
unknown whether hostiles are present,” which now becomes the top-ranked case
(Figure 4 (bottom)). Figure 5 (left) shows the decomposition when selecting this case
to decompose this task in HTE; two new subtasks are displayed, corresponding to
this case’s decomposition network. Send unmanned air vehicle to … is a non-decom
posable concrete action. If the user tells HICAP to decompose Determine if hostiles are
present, HICAP will initiate a new NaCoDAE/HTN dialogue (Figure 5, right).

The user can again prompt a dialogue by selecting the The UAV detects hostiles alterna
tive and decomposing its subtasks. This cycle, in which HICAP displays alternatives
and the user answers questions and selects an alternative, continues until non-decom
posable tasks (i.e., concrete actions) are reached, which form part of the final plan.

The Case-Based Planning Cycle in HICAP

The case-based planning component of HICAP, NaCoDAE/HTN, typically per
forms three steps: retrieval, revise, and retain. As illustrated in Section 5, the adapta
tion process can be viewed as embedded in the conversational retrieval process.

6.1 Case Retrieval

We previously explained that, during a conversation, cases are ranked according to the
proportion of their question-answer pairs that match the current scenario. More
specifically, a case c’s similarity score is computed with a query q using

case_score(q,c) = num_matches(q,c) – num_mismatches(q,c) (1)
 size(c)

where num_matches(q,c) (num_mismatches(q,c)) is the number of matches (mis

109

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

matches) between the states (i.e., 〈q,a〉 pairs) of q and c, and size(c) yields the number
of 〈q,a〉 pairs in c’s state.3

Fig. 4. NaCoDAE/HTN: Before (top) and after (bottom) answering a question. The top window
lists possible answers to selected questions, while the lower windows display the ranked questions
and cases.

6.2 Case Revision

The user can revise the current solution by editing the task hierarchy (in HTE) and
by selecting alternative cases during a NaCoDAE/HTN conversation. In addition,
the user can revise their answers to previously selected questions, which can modify
case rankings. Although, revising an answer does not alter the plan automatically, the
new ranks may prompt the user to change their case selection, which in turn may
prompt additional edits to the task hierarchy.

This ability to explore alternatives (i.e., “what-if ” analyses) is particularly important in
NEO planning for two reasons. First, military planners typically plan for a main
course of actions and for contingency alternatives should certain key events occur.
These events may trigger changes to answers and case rankings, thus helping the user

3 Matching for numeric-valued questions is implemented using a suitable partial matching routine, but
we focus on symbolic and boolean questions here.

110

7

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

formulate these alternatives. Second, NEO planning is dynamic in nature and the
user must be able to replan due to unforeseen contingencies.

Fig. 5. HICAP’s interface after selecting the determine hostile presence task.

6.3 Case Retention

NaCoDAE incorporates an approach introduced by Racine and Yang (1997) for main
taining case libraries. It evaluates whether any case “subsumes” another case (i.e.,
whether its question-answer pairs are a proper subset of the question-answer pairs of
another case). If so, the subsuming case will block the subsumed case from being re
trieved. A case library evaluation function alerts the user to all such pairs of cases in the
case library. The user can then decide which of the two cases to revise and/or delete.

Empirical Validation

An experiment was run to test HICAP’s effectiveness in choosing successful plans for an
example NEO subtask. In particular, we showed the importance of considering episodic
records over standard procedures. A larger experiment, demonstrating the capability of
HICAP to generate a complete NEO plan, is currently under development.

Two researchers performed the experiment: one operated a military simulator while
the other operated HICAP. A strict blind was imposed to ensure that the HICAP
user had no advance knowledge concerning the simulated hostile forces, and had to
take appropriate, realistic actions to acquire this knowledge. This tests HICAP’s
utility for planning under realistic situations where decision makers have uncertain
information about the state of the world. We hypothesized that HICAP would allow
users to choose a relatively successful plan from among known tactical options.
HICAP’s strategy was evaluated versus three other planning strategies: random choice,
heuristic choice, the most frequently used plan used in previous NEOs. Because their
definitions require explaining the scenario, we define them in Section 7.3.

111

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

7.1 The ModSAF Simulation System

We used Marine Corps SAF (MCSF), a variant of ModSAF (Modular Semi-Auto
mated Forces), to evaluate the quality of NEO plans elicited using HICAP. ModSAF,
developed by the U.S.A. Army to inject simulated auxiliary forces into training
exercises, has been deployed to simulate real-world military scenarios (Ceranowicz,
1994). It is a finite state simulation with modular components that represent indi
vidual entities and parts of entities. For example, a simulated tank would have physical
components such as a turret. It would also have behavioral components that represent
its nominal tasks such as move, attack, target, and react to fire. Certain 3D aspects are
also represented (e.g., terrain elevation, trees and vegetation, rivers, oceans, atmo
spheric conditions) that can affect sensory and movement behavior. The realism of
ModSAF/MCSF simulations is sufficient for training exercises.

Figure 6’s MCSF snapshot displays a simulated American embassy, a host country
government compound, and some simulated objects. For example, a simulated trans
port helicopter is positioned at the heliport within the embassy site.

Fig. 6. A MCSF snapshot.

MCSF is a non-deterministic simulator that models several sources of stochastic
variation. Some events are determined by a random number generator; others are
highly sensitive to the initial startup conditions. MCSF simulates the behavior of
military units in context as they follow given tactical orders. Therefore, MCSF can
simulate simplified NEO subtasks in which a single planning decision determines
tactical orders.

112

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

7.2 Experimental Setup

We created a NEO subtask scenario for this evaluation concerning how to move 64
evacuees from a meeting site to an embassy. The meeting site was at a crossroads in an
uninhabited area outside but nearby the embassy’s city. Evacuees had to be trans
ported (8 per vehicle) through this undeveloped area, which had heavy tree cover, and
out through the city to the embassy. Evacuees had to pass near a local government
complex to enter the embassy grounds. This NEO context requires only a single
tactical plan decision with four distinct choices:

1. Land evacuation using 8 armored trucks
2. Land evacuation using 8 armored trucks with an escort of 8 tanks
3. Air evacuation using 8 transport helicopters
4. Air evacuation using 8 transport helicopters with an escort of 8 attack helicopters

The kind of military units used in the simulation are typical of those available to the
Marine Expeditionary Units that frequently perform NEO’s. A detailed terrain
database of the Camp Lejeune (North Carolina, U.S.A.) area was chosen to simulate
the environment. We chose this location because Marine Expeditionary Units train
there for NEOs.

Two scenarios were defined that were identical except for the type of hostile forces.
All hostiles were two-person dismounted infantry teams. Hostile teams in both
scenarios were armed with two automatic rifles and a portable missile launcher. Each
scenario included only one type of missile for hostile teams (i.e., either anti-tank
missiles or anti-air missiles, but not both). These types of infantry teams, positioned
in an urban environment, are typical of the kinds of hostile forces encountered in real
NEO’s. The positions of the hostile teams were the same for both scenarios and
selected to ensure that the opposing forces will meet.

All four plan options were simulated ten times for each of the two scenarios. This
resulted in 80 (2 scenarios × 4 plan choices × 10 simulations) total MCSF runs. Each
of the eight plan-and-scenario combinations was repeated ten times because MCSF is
non-deterministic. For example, slight differences produced by MCSF’s stochastic
movement models yield strikingly different formations of friendly units when they
first encountered the hostile teams. These differences can often yield drastically
different simulated battle outcomes.

Table 1. Summaries of casualties, to individual evacuees and military teams (mean & standard
deviation), averaged over 80 MCSF simulations.

113

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The HICAP user had no knowledge of the scenarios being tested; scenario informa
tion was gradually extracted through the questions prompted by NaCoDAE/HTN.
That is, case-based planning was done with incomplete information about the world.
Furthermore, the effects of actions were uncertain; the only way to learn the effects of
an action was to actually execute it. This contrasts with traditional planning ap
proaches that assume an action’s effects are known a priori (Fikes and Nilsson, 1971).

7.3 Alternative Planning Strategies

HICAP’s decision-making performance was compared with three baseline strategies.
First, random choice simply averaged the results of all four planning choices. Second,
heuristic choice always sent an escort, and its results were the average of the choices
that include escorts. Finally, the most frequently used plan strategy for this subtask in
recent NEOs (i.e., conducted during the past decade) was to move evacuees using
escorted land vehicles.

7.4 Results

Table 7.4 summarizes the casualty results for the 80 total simulations, which each
required approximately 15 minutes to run. The success measures were taken from the
U.S.A. Navy’s Measures of Effectiveness (MOE’s) published in the Universal Naval
Task List. Recommended MOEs are specified for evaluating each kind of military
operation. There are several MOE’s for the tactical aspects of NEO’s, but only three
were chosen as most important for evaluating the results of this experiment: (1) the
number of evacuees safely moved, (2) the number of casualties to friendly forces, and
(3) the number of casualties to hostile forces.

HICAP did not choose the same tactical plan for both scenarios. For the first (anti
tank) scenario, it chose to move the evacuees by helicopter with an attack helicopter
escort. For the second (anti-air) scenario, it chose to move evacuees by armored truck
with a tank escort.

HICAP’s conversational case-based planning method was evaluated by comparing the
success of its chosen plans to plans chosen by the other three plan selection strategies.
Figure 7 compares the effectiveness of these four strategies. Overall, HICAP selected
plans of higher quality than the other strategies because its plan selection decisions are
tailored to the characteristics of each scenario.

114

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Fig. 7. Comparison of plan selection strategies using Navy MOEs for NEOs.

8 Related Research

Case-based planning (CBP) has been extensively researched (Bergmann et al., 1998).
Our research is closely related to studies on hierarchical CBP (e.g., Kambhampati,
1993; Bergmann & Wilke, 1995; Branting & Aha, 1995). HICAP differs from these
other approaches in that it includes the user in its problem solving loop. This is
particularly important for applications like NEO planning, where completely auto
mated tools are unacceptable. MI-CBP (Veloso et al., 1997) uses rationale-directed
CBP to suggest plan modifications in a mixed-initiative setting, but does not perform
doctrine-driven task decomposition.

Some researchers have used CBP with HTNs for military tasks. For example,
Mitchell (1997) used integrated CBP to select tasks for a tactical response planner.
NEO planning requires that each task be addressed — no choice is involved — and
we use CBP to instead choose how to perform a task. HICAP’s interactions instead
focus on retrieval rather than plan adaptation and learning.

9 Conclusion and Future Work

The HICAP case-based planner helps users to formulate a course of action for hierarchi
cal tasks. It is the first tool to combine a task guideline decomposition process with CBR
to support interactive plan formulation. It yields plans that benefit from previous experi
ences and conform to predefined guidelines. HICAP also supports experience sharing,
thus allowing planners to exploit knowledge from other planning experts. These design
characteristics enhance HICAP’s acceptance by military planning personnel.

We are currently integrating HICAP with a generative HTN planner that can evalu
ate numeric expressions (Nau et. al., 1999), which is particularly important for NEOs
because decisions often depend on resource capability and availability (i.e., determin
ing whether a helicopter requires in-flight refueling for a given mission). HICAP will
serve as the plan formulation component for the Space and Naval Warfare Systems
Command’s Interactive Decision Support (IDS) system. When completed, IDS will
perform distributed NEO plan formulation, execution, monitoring, and replanning.

115

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Our collaborative research with IDS partners will focus on associating temporal dura
tions with tasks, developing a resource tracking module (i.e., to solve resource conflicts),
implementing a strategy for justifying case rankings, integrating HICAP with a power
ful dynamic planner (i.e., SIPE-2 (Wilkins, 1998)), and integrating existing GUIs for
plan authoring. We will also investigate methods for performing information gathering
in HICAP using a planning approach (e.g., Carrick et al., 1999).

Acknowledgements

Thanks to ONR Program Managers Michael Shneier and Paul Quinn, and Program
Officer Lt. Cdr. Dave Jakubek, for their encouragement throughout this project. This
research was supported by grants from the Office of Naval Research, the Naval
Research Laboratory, and the Army Research Laboratory. Many thanks to members
of the Center for Naval Analyses and ONR’s Naval Science Assistance Program for
their guidance and support. And thanks to our ICCBR-99 reviewers for their
thoughtful suggestions, which improved this paper.

References

Aha, D. W., & Breslow, L. A. (1997). Refining conversational case libraries. Proceed
ings of the Second International Conference on CBR (pp. 267–278). Providence, RI:
Springer.

Bergmann, R., Muñoz-Avila, H., Veloso, M., Melis, E. (1998). Case-based reasoning
applied to planning tasks. In M. Lenz, B. Bartsch-Spoerl, H.-D. Burkhard, & S.
Wess (Eds.) CBR Technology: From Foundations to Applications. Berlin: Springer.

Bergmann, R. & Wilke, W. (1995). Building and refining abstract planning cases by
change of representation language. Journal of AI Research, 3, 53–118.

Branting, L. K., & Aha, D. W. (1995). Stratified case-based reasoning: Reusing
hierarchical problem solving episodes. Proceedings of the Fourteenth International Joint
Conference on AI (pp. 384–390). Montreal, Canada: Morgan Kaufmann.

Breslow, L., & Aha, D. W. (1997). NaCoDAE: Navy Conversational Decision Aids
Environment (TR AIC-97-018). Washington, DC: Naval Research Laboratory, Navy
Center for Applied Research in Artificial Intelligence.

Carrick, C., Yang, Q., Abi-Zeid, I., & Lamontagne, L. (1999). Activating CBR
systems through autonomous information gathering. To appear in Proceedings of the
Third International Conference on Case-Based Reasoning. Munich, Germany: Springer.

Ceranowicz, A. (1994). Modular Semi-Automated Forces. Proceedings of the Winter
Simulation Conference of the ACM (pp. 755–761). New York, NY: IEEE.

116

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

DoD (1994). Joint tactics, techniques and procedures for noncombat evacuation operations
(Joint Report 3-07.51, Second Draft). Washington, DC: Department of Defense.

Erol, K., Nau, D., & Hendler, J. (1994). HTN planning: Complexity and expressivity.
Proceedings of the Twelfth National Conference on Artificial Intelligence (pp. 1123–1128).
Seattle, WA: AAAI Press.

Fikes, R.E., & Nilsson, N.J. (1971). Strips: A new approach to the application of
theorem proving in problem solving. Artificial Intelligence, 2, 189–208.

Kambhampati, S. (1994). Exploiting causal structure to control retrieval and refitting
during plan reuse. Computational Intelligence, 10, 213–244.

Lambert, Kirk S. (1992). Noncombatant evacuation operations: Plan now or pay later
(Technical Report). Newport, RI: Naval War College.

Mitchell, S.W. (1997). A hybrid architecture for real-time mixed-initiative planning
and control. Proceedings of the Ninth Conference on Innovative Applications of AI (pp.
1032–1037). Providence, RI: AAAI Press.

Muñoz-Avila, H., Breslow, L.A., Aha, D.W., & Nau, D. (1998). Description and
functionality of HTE (TR AIC-98-022). Washington, DC: NRL, NCARAI.

Muñoz-Avila, H., Aha, D.W., Breslow, L. & Nau, D. (1999). HICAP: An interactive
case-based planning architecture and its application to noncombatant evacuation
operations. To appear in Proceedings of the Ninth National Conference on Innovative
Applications of Artificial Intelligence. Orlando, FL: AAAI Press.

Nau, D. S., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999). SHOP: Simple Hierar
chical Ordered Planner. To appear in Proceedings of the Sixteenth National Conference
on Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann.

Racine, K., & Yang, Q. (1997). Maintaining unstructured case bases. Proceedings of the
Second International Conference on CBR (pp. 553–564). Providence, RI: Springer.

Sachtleben, G.R. (1991). Operation Sharp Edge: The Corps MEU (SOC) program
in action. Marine Corps Gazette, 11, 76–86.

Siegel, A.B. (1991). Eastern Exit: The noncombatant evacuation operation (NEO) from
Mogadishu, Somalia, in January 1991 (TR CRM 91-221). Arlington, VA: Center for
Naval Analyses.

Siegel, A.B. (1995). Requirements for humanitarian assistance and peace operations:
Insights from seven case studies (TR CRM 94-74). Arlington, VA: CNA.

117

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Veloso, M., Mulvehill, A.M., & Cox, M.T. (1997). Rationale-supported mixed-
initiative case-based planning. Proceedings of the Ninth Conference on Innovative Appli
cations of Artificial Intelligence (pp. 1072{1077). Providence, RI: AAAI Press.

Wilkins, D.E. (1998). Using the SIPE-2 planning system: A manual for Version 5.0
(Working Document). Menlo Park, CA: Stanford Research International, Artificial
Intelligence Center.

118

1

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Towards an Effective Information Sharing
System: Shared Net

Dr. Thomas McVittie
Jet Propulsion Laboratory

California Institute of Technology

Introduction

Today’s decision-maker (whether they are a corporate executive, military commander,
or spacecraft mission planner) is faced by almost insurmountable challenges. Ever
increasing amounts of data are available from a bewildering number of sources such
as: overhead imagery, sensor nets, telemetry systems, intelligence assets, and in-situ
personnel. The pace at which a decision-maker must make critical choices has de
creased from days to minutes. The decision-maker is expected to manage multiple
simultaneous (and often conflicting) dynamic missions rather than a single monolithic
and statically planned mission. Additionally, the classical hierarchical decision mak
ing approach where decision-makers made all the decisions based on input from a few
individuals is rapidly giving way to a distributed decision-making process where
decisions are made simultaneously at all levels within an organization – often by
people who have never met.

Decision-makers are increasingly being overwhelmed by data, but remain starved for
information. They are surrounded by mountains of data, but don’t have the resources
to turn the data into insightful information they need to make decisions. Also, once
information is discovered, we have only primitive tools to share that information
among a heterogeneous collection of systems and humans that may themselves be
widely distributed.

This paper discusses one approach being jointly investigated by NASA’s Jet Propul
sion Laboratory and the US Marine Corps (USMC) to efficiently gather and share
information among people and systems. The approach advocates the use of collabo
rative agents as a decision support tool, and an object sharing system providing a
powerful mechanism for both representing and sharing information and data.

The paper is organized as follows. Section 2 discussed methods of sharing informa
tion. It contrasts a message passing approach (widely used by the military, NASA,
and industry) to the use of an object sharing system. Section 3 briefly introduces
IMMACCS, an experimental implementation of this approach developed for the
USMC. Section 4 drills into the IMMACCS architecture and briefly discusses the
component which implements the object sharing system – the Shared Net. Finally
section 5 presents concluding remarks and acknowledgements.

119

2

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Models of Sharing Information

Most organizations need to share information in order to make effective decisions.
However, the specific mechanisms that are used to share information between users
and systems vary greatly. For example, information may be exchanged between
people using free text email messages, or between applications using a rigorously
defined language and protocol.

In this section, we’ll examine two methods for sharing and representing information
with an eye towards how they support the decision-making process. The first ap
proach is based on a commonly used message passing approach. This approach is
widely used in both industry and government organizations. The second approach is
based on an object sharing system that can greatly enhance our ability to represent
and share information.

In order to contrast these two approaches, we’ll use the situation depicted in Figure
2-1 below. Lets assume that we have a number of intelligence assets (a.k.a. spotters)
monitoring an evolving situation involving the ABC insurgents. At some time n, one
of our spotters reports that a woman, matching the description of the leader of the
ABC insurgents and wearing a pink dress, was seen in a taxi heading eastbound on
Main Street. At a later time, another spotter, located on the other end of town,
reports that a woman wearing a pink dress was scene exiting a taxi and entering a
building located at 123 Maple Street.

Figure 2-1 Data from the field

Based on this information we need to determine whether both reports reference the
same woman. The information must be effectively communicated to others who will
use this information to make decisions (e.g., to investigate the building further, etc.)

120

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

2.1 Message Passing Systems

In most DoD and industry, message passing is the primary mechanism used to ex
change information between users and systems. For example, email is often used to
convey complex concepts between users. Likewise, most software systems use internal
data structures to represent some facet of the real world, and use structured messages
to communicate some of that data to other systems. In most message based environ
ments, information is fragmented across multiple systems and users (e.g., email boxes,
databases, file formats, etc.) with each user and/or system maintaining only a slice of
the corporate knowledge.

The format and contents of the message may be rigidly defined (as in a military
POSREP message), or may be ad-hoc (say, an email message). Where automatic
processing support is desired, the messages tend to be rigidly formatted and terms/
values are well defined. However, where humans are the intended audience, messages
tend to be free form.

Figure 2-1 depicts how our two messages might be processed in a typical command
center.

Figure 2-2 A message passing environment

First the messages are received by an automated processing center. Once received, the
processing center may:

1)	 Parse the incoming message(s) for key words and route the message in its
entirety to one or more individuals or desks. For example, the Automated
Message Handling System (AMHS), used in most major DoD command
centers, could be used to route messages containing the key word “insurgents”
to the intelligence watch officer.

2)	 Extract data from the message (for example the location where the report was
made) and display the message as an icon on a map. This is traditionally how

121

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

messages such as SALUTE and SPOT reports appear. In some instances,
such as a POSREP (position report), the contents of the message is extracted
and used to update the position of the reporting unit on the display map.

3)	 Simply store the incoming message and present it to a human for routing and
disposition. This is typical of some command centers where all AUTODIN
traffic is routed to a desk that reads the message and based on the reader’s
previous experience, routes it to the appropriate users.

The ability for the automated system to perform each of these activities is based on
the message’s format. Automated systems are best able to handle messages that have
a rigid and well-defined format. For example, in order to display the message on a
map, the automated system must be able to locate the part of the message that con
tains coordinate information. Further, the coordinate information must be in a well-
understood format (e.g., latitude-longitude, or MGRS). However, humans are much
better equipped to process natural language messages and infer structure and format.

Returning to Figure 2-1, we see that both messages have been routed to a user’s inbox
and have also been displayed as icons on the common map. At some point we trust
that some combination of users and computer system will examine the two messages
and determine whether or not the “lady in pink” in both messages is indeed the same
lady. For example, a correlater might be used to determine whether a taxi could move
from the first reported position to the second reported position within the time
allowed. Similarly, a human could ask the spotters for more information about the
reported lady, such as her hair color and height, that could be used to aid in determin
ing whether the reports detail the same lady.

Once the relationship has been identified or disproved, it must be shared with other
interested users. Receiving this new piece of information may also impact the pro
cesses and decisions of other users. For example, the fact that the leader of the ABC
insurgents is located at 123 Maple St. may prompt the intelligence officer to investi
gate the building to determine whether it is an insurgent safe house or whether there
is only a casual relationship between the building and the lady. If the new informa
tion is not shared, then each user receiving the messages must make the inference
independently, and it is likely that some set of users will recognize the relationship
while others will not.

Unfortunately, most message formats provide only limited tools for representing and
sharing complex relationships with other users. For example, the SALUTE report
does not contain the ability to relate the message to another message, nor does it have
the capability to specify a complex relationship in anything other than free text.
Therefore, its likely that the new information and relationship would be transmitted
in the form of yet another message which would go through the same routing system

122

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

as the original messages. Users receiving the message must recognize that this new
message is related to the first messages. Only by reading all three messages is a user
able to construct a mental model of the situation that they can use to make decisions.
This process is repeated for each individual receiving the messages. If the volume of
messages is large, or if messages arrive frequently, users may have difficulty in main
taining a correct model of the situation.

Likewise, agent based decision support systems must rely on complex natural lan
guage processing to extract the information and relationships from free text messages.
Additionally, they must possess a detailed understanding of the format and meaning
(ontology) of the messages produced by each system. For example, they must under
stand that the messages produced by system A express coordinates in latitude/longi
tude, but that system B uses MGRS. Thus in order to reason about the data con
tained in the message, the agent must develop a translator for each message type it
must handle. Further, the agent is responsible for “knowing” how to compare/convert
the similar (but not identical) data provided in different messages (e.g., how to con
vert between latitude/longitude and MGRS). Thus, an agent needing to extract data
from a large number of different message types must be very sophisticated. Unfortu
nately, these approaches often yield poor results and agents are rarely productive in
this type of environment.

We need a better approach if we want to move from data sharing to information
sharing.

2.2 Object Sharing Systems

Object Sharing Systems assume that all users and systems use a common object
model to represent and exchange information about the real world. Objects are
modeled after their real-world counterparts and contain a rich set of attributes. More
importantly, the object model allows us to create relationships between objects which
are immediately available to all other users and system.

To better understand the concept, we’ll examine how the same two messages would
be processed in an Object Sharing System (OSS). First we’ll assume that the object
model has been defined, and populated with a variety of different objects such as:

Infrastructure Objects (buildings, roads, rivers, etc.)

Organization Objects (e.g., ABC Insurgents, our peace keeping forces, etc.)

Transportation Objects (e.g., Taxis, trains, planes, etc.)

To a reasonable extent the attributes for these objects have been populated. For
example, in creating the building infrastructure objects, we may utilize data from
publicly available maps (or GIS systems), but may not have the information necessary

123

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

to populate attributes detailing the type of construction. In our simple example, we’ll
assume that the OSS contains objects for:

ABC Insurgents (an organization)

123 Maple Street (a building)

Main Street (a street)

It also contains object definitions (templates) for defining a Person, and a Vehicle (in
this case a taxi).

Figure 2-3 Objects and relationships

The first report causes an object (of type Person) to be created and populated with
any available attributes about “the lady in pink” (e.g., her sex, color of her clothing,
etc.) The report also causes an object (of type Vehicle) to be created to represent the
reported taxi. Again, the taxi object is populated with any available attribute informa
tion (such as the taxi’s color, current location, and direction/speed of travel.) More
importantly, the report causes relationships to be established between the various
objects. For example, the report’s statement that the “Woman wearing pink dress may
be leader of the ABC insurgents” causes a “leader of ” relationship to be constructed
between the “lady in pink” object and the “ABC Insurgents” object. Similarly, the fact
that the taxi is reported to be driving on Main street would be represented as a “is on”
relationship between the taxi and the “Main Street” object. Finally, the fact that the
woman is in the taxi is likewise represented by an “is in” relationship between the
“lady in pink” and the “taxi”.

The ability to connect objects using relationships is very powerful. It represents
information in a manner that is very close to the way in which humans model infor
mation. For example, the taxi is associated with Main Street, and the “lady in pink” is
associated with the ABC insurgents. However, the model tells us that there is only an

124

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

indirect relationship between the ABC insurgents and Main Street. The approach
also allows us to easily express changing information while preserving other informa
tion. For example, if we later determine that the lady is NOT the leader of the ABC
insurgents, we can easily break the relationship or replace it with a more appropriate
one (e.g., “sympathizes with”). The lady’s association with the taxi is still valid. This
type of flexibility is very difficult to achieve using message passing.

Continuing with our example, we receive the second report that indicates that a lady
wearing a pink dress exited a cab and entered the building at 123 Maple Street. The
report likewise creates objects for a “lady in pink” and a “taxi”. Additionally it indi
cates that the “lady in pink” is “in” the building at 123 Maple, and that she “was in”
the taxi.

Figure 2-1 correctly depicts our understanding of the situation at the moment – i.e.,
we have reports on two women. We still need to apply resources to determining
whether or not the lady reporting in the first and second reports is the same. How
ever, unlike the message-based system, automated decision support systems can
reason about the object model, and therefore can aid in determining whether they are
indeed the same people.

Lets assume that an automated system notices similarities between the two objects and
their associated relationships and suggests to a human decision-maker that they may
indeed be the same people. If the human agrees, he merges the object models. As shown
in Figure 2-2, the object model now correctly depicts our model of the real world.

Figure 2-4 The merged object model

Any other users of the system (be they humans, agents, or software systems) are
automatically aware of the new relationships (Figure 2-3). For example, a user may

125

3

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

wish to be informed of any buildings that are either directly or indirectly associated
with the ABC insurgents. Likewise, we may want to display each of the objects on a
map – i.e., instead of the map displaying the location of the reports, the map displays
an icon representing the lady in pink, the building, and maybe the association be
tween the lady in pink and the ABC insurgents. More importantly, since all of the
systems share the same object model, a user seeing the icon representing the “lady in
pink” could choose to explore the relationships stored in the OSS.

For example, a user recognizing that the suspected leader of the ABC insurgents is in
the building may choose to examine the other objects (say people) which are also
associated with the building. The needed information (the objects and relationships)
is already available in the shared object model.

Figure 2-5 Information sharing in an pobject system

IMMACCS

During the past two years, the Marine Corp Warfighting Laboratory (MCWL) has
been experimenting with various technologies with a focus on improving situational
awareness and supporting rapid decision making. One of the outgrowths of this
experimental process is the Integrated Maritime Multi-Agent Command and Con
trol System (IMMACCS) which has been cooperatively developed by researchers
from government, universities, and industry. The IMMACCS architecture is built
around the object sharing approach, in which all components share and represent
information exclusively through a shared object system.

IMMACCS is an integrated suite of applications with automated decision support
tools. Currently, IMMACCS is composed of five primary components shown in
Figure 3-1: GIDB, MCSIT, Agent Engines, 2-DV/IOB, and the Shared Net.

126

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 3-1 High-Level IMMACCS architecture

Geographic Information Database (GIDB)[1] provides the interface between
IMMACCS and information provided by National Imagery and Mapping Agency
(NIMA). It is responsible for establishing and maintaining all infrastructure objects
(roads, buildings, rivers, topology) stored in the Shared Net.

MCSIT [2] provides the bi-directional interface between IMMACCS and existing
message based Command and Control (C4I) systems that are deployed throughout
DoD. Messages received from these systems are translated into updates to the appro
priate IMMACCS objects and relations. For example, MCSIT takes naval track
updates from JMCIS and uses it to update the coordinates for the appropriate ship
object in IMMACCS. Similarly, updates to the IMMACCS object model may result
in MCSIT constructing and transmitting a correctly formatted message to one of the
Existing C4I systems (for example, a POSREP back to JMCIS). MCSIT allows
IMMACCS integrate with existing C4I systems as peers.

The Agent Engine [3] provides IMMACCS and the users with automated decision
support tools that can be applied to solving a number of problems. For example, a
NBC (nuclear, biological, and chemical) agent may be instructed to watch for signs of
this type of event. Upon detecting the event, the agents could then use other
IMMACCS data (such as wind direction, force deployment, etc.) to suggest courses
of action to fielded troops and their commanders (e.g., safe evacuation routes, appro
priate protective measures, etc.) By providing a tool set rather than a pre-canned
solution to a specific problem, the Agent Engine can be rapidly applied to new
problem domains. Additionally, the agents constantly monitor the object model and
interact with users to suggest and establish new relationships between existing objects.

127

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

IMMACCS provides two user- interfaces, the InCon 2-D viewer (2-DV) [4] and
IMMACCS Object Browser (IOB) [5]. Both interfaces allow users to view and update
the common map (including the location of all friendly and reported hostile forces,
and infrastructure objects), query objects to gain more information (e.g., What is the
construction of this bridge?), issue/receive basic reports (in object form), and add
information into the Shared Net by creating object and relationships. Additionally,
they allow the user to subscribe to information of interest in the Shared Net (e.g.,
automatically update the position of hostile forces within 1 mile of my present posi
tion). The 2-DV can also be integrated with a Global Positioning System (GPS)
receiver, and laser range finding binoculars, both of which allow it to automatically
report the user’s position, and more accurately report the position of any target.
Conversely, the IOB provides more sophisticated tools for interacting with the Agent
Engine’s decision support tools. These interfaces were used to support users in the
Enhanced Combat Operations Center (ECOC) aboard ship as well as Marines
ashore (via an RF network).

The Shared Net provides the Shared Object store, and serves object updates to all
other IMMACCS components. In effect, it is the common object bus for all
IMMACCS component, and ensures that they all have the common information
necessary to provide the same common picture of the battlespace. The Shared Net
supports one-time queries, as well as standing requests for information. In the latter
case, if the information in the Shared Net changes, it is automatically pushed out to
the subscribing client(s). The Shared Net also maintains a local replicative cache on
each subscribing client. This cache contains the latest state of the subscribed objects
and can be used by the client if the network connection to the Shared Net is tempo
rarily unavailable. The capabilities and architecture of the Shared Net will be de
scribed in more detail in the next section.

The functional capability of IMMACCS was demonstrated during the recent Urban
Warrior Advanced Warfighting Exercise in San Francisco. All IMMACCS compo
nents and users were able to share and update the common set of more than 17,000
objects and their associated relations. Changes made by one component were immedi
ately available to all other components. Users were able to successfully tailor their
information feeds and interact with agents to support their decision-making processes.

During the AWE, IMMACCS was employed within the Experimental Combat
Operations Center (ECOC) aboard the USS Coronado, with the city of Monterrey,
CA in their Emergency Operations Center over a wireless LAN, and to Marines
ashore down to the squad level. While operating in the Caribbean, the HMS
Marlborough was also able to employ IMMACCS via an INMARSAT connection to
the servers aboard the USS Coronado in San Francisco bay. During the final phase of
the Urban Warrior AWE, the Common Tactical Picture was posted to an interactive
World Wide Web site. Development of the IMMACCS system is ongoing.

128

4

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Overview of the Shared Net

The Shared Net is the primary information storage, management and distribution
system in IMMACCS. It is intended to provide the tools necessary to get the right
information to the right decision-maker (from General to fielded Marine). Clients may
update information stored in Shared Net, can issue on-time requests for information
(a.k.a. queries), or can set up standing requests for information (a.k.a. subscriptions).
Subscriptions can be at the class, object or attribute level - e.g., a user could subscribe to
the creation of a friendly aircraft, movement of ANY hostile unit within an area, or the
change in life-status of a particular squad-mate. Whenever a change in the Shared Net
satisfies a subscription request, the requesting client is notified.

In addition, the design of the Shared Net is heavily influenced by the following
operational considerations:

1)	 The Shared Net must support the information needs of several hundred
simultaneous clients.

2)	 The Shared Net must be able to support a sustained rate of 100 - 200 object
updates per second from its aggregate clients.

3)	 Shared Net users (a.k.a. subscribers) will likely have widely different informa
tion interests. For example, data concerning the fuel level in a supply truck is
of primary interest to the logistics officer, and generally of little interest to the
intelligence officer.

4) In general, a user will need only a small fraction of the information available in
the Shared Net to support their information needs.

5)	 Similar types of users will likely have common subscriptions. For example,
most members of a squad would subscribe to changes in the reported positions
of their squad-mates as well as any nearby hostile forces.

6)	 Even if users subscribe to the same data, they will assign a different level of
importance (priority) to a change in the data.

7)	 Users must be able to handle higher priority changes before lower priority
changes.

8)	 Users will view the battle space at various levels of detail. For example, a
commander in an ECOC may want to maintain the overview of the
battlespace, while the squad leader may only want information concerning
their local area.

129

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

9)	 A user’s subscriptions may change dynamically. The change may be caused by
the situation or by geography - e.g., in an urban canyon, tell me if enemy
aircraft are within 10 miles. However, on an open field outside of the city,
notify me if they are within 50 miles.

10) The Communication channels used by the Shared Net may be relatively small
and unreliable especially tactical communications to fielded Marines. (RF
communication in Urban Canyons, jamming, equipment failure, etc.)

11) Some (but not all) information handled by the Shared Net is deemed “life/
mission critical”.

12) The Shared Net shall not be a single point of failure.

13) Commercial Off-The-Shelf products should be used where feasible.

These considerations have driven an architecture that uses a hybrid of various distrib
uted computing techniques. A traditional client-server architecture, built on
CORBA, is used when clients need to reliably update the contents of the Shared Net.
A distributed cache model has been used to guarantee that individual clients can
continue to function (to a limited extent) even if the Shared Net is unavailable.
Finally, a modified “publish and subscribe”[6] approach has been used to efficiently
distribute changes in the Shared Net to subscribing clients. By transmitting only the
changes to the object model, we can overcome many of the problems associated with
distributing a large object infrastructure across a narrow communication link.

While many of these objectives were completely met in the initial system, others are
being addressed as part of the on-going Phase II design and implementation.

4.1 Architecture

The Shared Net is comprised of the five major components shown in figure 4-1. The
components are connected via common internet protocols such as CORBA/IIOP or
IP. Servers are hosted on a Solaris Ultra-2 processor and written in C++. Client
applications are hosted on NT, Solaris, and HP platforms and written in Java for
portability.

130

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Figure 4-1 Shared Net components

The major components include:

The Object Instance Store (OIS) is the primary object factory and repository for the
Shared Net. It is responsible for managing object creation, deletion, and modification
of object attributes. The OIS provides a CORBA interface which is invoked by the
clients via the Shared Net API (SNAPI), through a straight CORBA/IIOP interface,
or though a local management interface. The OIS provides object persistence by
periodically saving object changes to an object oriented database. The OIS notifies
the OIS Subscription Server whenever a change is made to the OIS (e.g., an object is
created/destroyed, or the attribute’s value changes.)

The Shared Net Application Programmer Interface (SNAPI) provides an abstract set
of client-side APIs that are used by all clients to access Shared Net services. SNAPI
isolates the client from the particular distributed computing model (CORBA, TCP,
etc.). SNAPI allows the Shared Net to define and manage network diagnosis/recov
ery policies (e.g., when to retry a failed connection). It also distributes the processing
load associated with first order business rules (e.g., data integrity checks) to the clients
rather than the OIS. Finally, SNAPI maintains an up-to-date local cache of sub
scribed objects on each client. Changes made to the OIS, by the client, are automati
cally written to the local cache (write-through policy). Likewise, the cache is auto
matically updated (via the alert and subscription system) if another client changes the
object. The cache also allows the client to read from the local store (rather than
retrieving the value via a CORBA connection to the OIS) which reduces the load on
the OIS for non time-critical retrievals. More importantly, the cache provides the
ability for a Shared Net client to continue to work (albeit on potentially old data)
even if the network connection to the OIS is severed. For example, a fielded Marine
who has lost communications would have, at least, the latest position of friendly and
hostile forces. SNAPI uses the services of both the OIS and the Alert Daemon.

131

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The OIS Subscription Server (SS) is responsible for maintaining the list of client
subscriptions and ensuring that they are notified when a change in the OIS satisfies
one or more of their subscription requests. Clients communicate with the SS via an
SNAPI, and indicate the combination of objects, classes or attributes that make up
their subscription (e.g., hostile tank movement within 1 mile of my current position).
The subscription request also indicates HOW the client needs to be notified (e.g.,
reliable TCP or broadcast), and the priority at which the client wants to be notified
when a subscription is met. Note that several different subscribers may assign differ
ent priorities to the same subscription. The SS stores the subscription information
locally, and passes information concerning whom is to be notified when the subscrip
tion is satisfied to the appropriate Alert Server (AS). When a change is made to the
OIS, the OIS sends a summary of the change to the SS. The summary includes
sufficient information to update the distributed cache maintained by SNAPI on each
client. At a minimum, it includes the object reference, its class, and the name and
value of any attributes that have changed. The SS server compares this information
with its list of subscriptions. If a subscription is met, the SS passes the summary
information to the appropriate AS and requests that it raise the appropriate alert to
any subscribed clients.

The Alert Server (AS) is responsible for notifying subscribing clients when their sub
scriptions have been met. Currently there are two forms of AS, one for reliable TCP
notification, and one for broadcast (currently using UDP, but being modified to support
multicast). The AS receives a summary message from the SS and forwards the message
to the appropriate subscribers using the appropriate model (e.g., via a TCP connection
to each subscriber, or a message sent to a multicast group, etc.) The AS is also respon
sible for maintaining a reasonable cache of previous alerts and ensuring that they are
delivered to the subscriber upon request. For example, the TCP implementation must
be able to maintain a finite ordered set of alerts that meet the subscription request of a
client which is currently out of range. Likewise, the UDP implementation supports a
request to rebroadcast a subset of recent alerts. The alerts generated by the AS are
received and processed by the client’s Alert Daemon (AD).

The Alert Daemon (AD) is responsible for receiving alerts from various Alert Serv
ers. Once it validates the alert as being of interest to the local client (necessary for
some broadcasts), it uses the client’s original subscription request to place the alert in
the appropriate priority queue. It then notifies the client that an alert is waiting to be
processed.

4.2 A Subscription Example

The heart of the Shared Net’s ability to efficiently distribute information to a large
number of clients across possibly unreliable networks is largely provided by the Sub
scription and Alert system. As an example of how these systems functions, we’ll

132

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

assume that we have three clients. The first is a medevac agent that is responsible for
monitoring life status readings and proposing medical evacuations if the life signs of
an individual reach a critical threshold. The second client is a squad leader who is
naturally concerned about the heath of his squad-members. The third client is an
operations agent responsible for monitoring the assets (human and machinery)
assigned to a particular operation to ensure that the operation can be completed
according to plan.

In order to complete their missions, each of these clients subscribes to information
within the Shared Net.

•	 The medevac agent subscribes to “life status of any blue force personnel which
fall outside a specified norm.” The medevac agent indicates that this informa
tion should be processed at the “priority” level. The subscription system
determines that this is a new (unique) subscription and returns a unique alert
ID to the medevac agent. In addition, the medevac agent subscribes to all
changes in blue force position at the “priority” level. The subscription system
again determines that this is a new (unique) subscription and returns a new
unique alert ID.

•	 The squad leader needs the most up-to-date information concerning his team,
and so subscribes to all changes in the life status of members of his squad.
He indicates that this information should be processed at the “critic” level.
The subscription system determines that this is a new (unique) subscription
and returns a unique alert ID. To keep his map current, the squad leader also
subscribes to all blue force position changes, but at the ‘normal’ priority. The
subscription system determines that an identical subscription has already been
entered, and returns the original alert ID to the client. (Note that the priority
assigned to the subscription is ignored by the subscription system.) Finally,
the squad leader indicates that at the moment, he does not want to handle
anything below a “priority” alert.

•	 The operations agent subscribes to the life status of the personnel assigned to
a particular mission. The agent assigns a “flash” priority to this information.
The subscription system determines that this is a new (unique) subscription
and returns a unique alert ID. Like the other system, the operations agent
subscribes to all blue position changes, again at the normal priority. The
subscription system recognizes that an existing subscription meets this request
and returns the original alert ID.

133

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

The subscription system has now been configured to watch for the following sub
scriptions:

1. Changes in blue force life status that falls outside the norm.
2. Changes in the position of any blue force.
3. Changes to the life status of any member of the squad.
4. Changes to the life status of any member of a mission.

Again, the priorities assigned by the client to the subscription impact only the Alert
Daemon, not the subscription or alert servers.

Figure 4-2 Priority-Based alerts

We’ll assume that one of the members of the mission and squad is Corporal Adams.
As part of its normal operation, Corporal Adams’ 2-DV terminal periodically reports
on his position and any significant change in life status. We’ll look at two different
reports issued by Adams’ system.

In the first report, Corporal Adams’ 2-DV updates the Shared Net (via SNAPI) and
indicates that only his position has changed. The OIS updates the appropriate
object’s attribute and notifies the subscription server that a change has been made.
The subscription server examines its subscription list, and determines that subscrip
tion # 2 has been met. It sends a message (including the summary data it received
from the OIS) to the Alert Server and indicates that it should notify subscription #2
clients that their subscription has been met. The AS (in this case we’ll assume a
broadcast server), broadcasts an alert message to the appropriate group. The message
contains the subscription #, and the original summary received from the OIS. Each
client’s AD is responsible for receiving alert messages transmitted by the Alert
Server(s), and determining whether the alert is relevant to the particular machine. In
this case, all three ADs recognize that it is an alert of interest. However, here the
processing for each AD differs. The squad leader has assigned a priority of “normal”
to alerts associated with subscription #2, and has also instructed his system to ignore

134

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

alerts with a priority of less than “priority”. In this case, the AD pends the alert to the
“normal” queue but does NOT notify the client that an alert is waiting to be pro
cessed (note that if at some later time, the squad leader lowers their notification
threshold, the information will still be locally available). The operations agent’s AD
receives the alert, adds it to the “normal” priority queue, and notifies the client that an
alert is waiting to be processed. When the client chooses to process the alert, it uses
the summary information to automatically update the client’s cached copy of the
object to reflect the new coordinates. The medevac agent’s AD performs similarly,
but adds the alert to the “priority” rather than “normal” queue.

In the second report, Corporal Adams’ unit updates the Shared Net (via SNAPI) and
indicates that only his life status has changed and that it is outside normal parameters.
The OIS updates the appropriate object’s attribute and notifies the subscription server
that a change has been made. The subscription server examines its subscription list,
and determines that subscriptions #s 1, 3 and 4 have all been met. It is important to
note that a single object update can satisfy multiple subscription requests. The SS
sends three independent messages to the Alert Server each of which contain a unique
alert ID, but the same summary information. As before, the Alert Server generates
the appropriate alert messages that are received by the subscribing Alert Daemons.
The ADs again determine whether the alert is of interest, append it to the appropri
ate queue, and notify the client that a subscription has been met.

While confusing at first, the priority based publish and subscribe system allows a
great deal of flexibility in dealing with a large number of clients, and subscriptions
which are common to a large number of clients as well as those associated with only a
single client.

4.3 Continuing Work

The first version of the Shared Net was fielded with IMMACCS as part of the Urban
Warrior Exercises in spring of 1999. This “phase I” version of the Shared Net was able
to handle a small number of clients (10-20) and support a sustained transaction rate
of 60 – 70 object updates per second. While it performed well during the exercises, a
number of modification need to be made before the Shared Net (or IMMACCS) can
be fielded. In order of importance the issues are:

•	 The Shared Net must provide and enforce strong authorization and authenti
cation. The Phase I system allowed any client to modify objects. The phase II
system must recognize that only certain users are authorized to modify certain
objects or attributes. We will likely leverage off of the Public Key Infrastruc
ture (PKI) which will be fielded Department of Defense wide by DISA and
NSA in the spring of 2000.

135

5

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

•	 The Shared Net must be distributed across multiple servers in a variety of
configurations. At a minimum we should support both fully and partially
replicated, and cooperating autonomous servers. In the former case, some or
all of the data on one Shared Net server is replicated on another Shared Net
server. In case of a primary failure, or for load balancing, the replicate server
can serve the information. The existing subscription mechanisms can easily
support these requirements. In the latter case, various parts of the object
model are maintained on independent Shared Net nodes. For example,
logistics information could be maintained on the logistics ship, while opera
tional information would be maintained on another ship or even on a Shared
Net node with the Marines ashore. We are currently evaluating techniques
that can be used to support this capability.

•	 The Shared Net must be scalable to support a much larger number of clients
(100 – 200) and a larger transaction rate (hundreds of updates per second).
Currently CORBA and the object-oriented database, that provides persistence
to the OIS, are significant processing bottlenecks. While replicated Shared Net
nodes can be used to distribute some of the processing load across multiple
systems, it is likely that we will investigate the use of Real Time CORBA, as
well as more efficient methods of providing persistence to the OIS.

Conclusion

Today’s decision-makers are faced by almost insurmountable challenges. Ever in
creasing amounts of data are available from a bewildering number of sources, and the
speed at which decisions must be made is rapidly increasing. Efficient methods of
sharing information (not just data) must be employed in order to provide the deci
sion-maker with the right information at the right time.

Government and industry currently rely heavily on message passing systems to sup
port the exchange of information between users and systems. Unfortunately, these
approaches are often inflexible, ill-suited to wide spread information exchange, and do
little to support automated decision support systems.

Object Sharing Systems represent information as objects and relationships. This
approach allows us to express complex relationships in a manner that is not only
flexible, but also able to support the information needs of automated systems, decision
support tools, and users. Changes to the information stored in the Object Sharing
System are immediately available to all participants.

The IMMACCS system is a successful on-going application of the Object Sharing
approach. IMMACCS provided the ability for distributed users and wide variety of
existing and experimental systems to efficiently share information. Decision support

136

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

tools (agents) were able to effectively collaborate with users to recognize dangers and
suggest courses of action.

The Shared Net provides the Object Sharing infrastructure for IMMACCS. The
Shared Net provides a distributed object architecture, and provides a powerful mecha
nism which allows users/systems to subscribe to the information that they need to
make their decisions (i.e., to get the right information to the right user at the right
time.) Development of the Shared Net and IMMACCS is on going.

Acknowledgements

The success of the Shared Net is largely due to the incredible efforts of the program
ming team: Joe Hutcherson, Mike Guadarama, Ken Childress, Nguyen Hiep, Chris
Alexander, and Steve Scandor. Joe also spent countless hours fleshing out the original
designs as well as supervising the development effort. Thanks also to Lt.Col Bull
Durham and Lt.Col Carl Bott for their constant support and motivation.

This work was supported by the Marine Corps Warfighting Laboratory under a
contract with the National Aeronautics and Space Administration.

References

[1]	 Maria A. Cobb, Harold Foley III, Ruth Wilson, Miyi Chung, and Kevin B.
Shaw, “ An OO Database Migrates to the Web”, IEEE Software, Vol. 15, No. 3,
May/June 1998.

[2]	 Multi-C4I System/IMMACCS Translator (MCSIT) Software Requirements
Specification, IMMACCS-MCSIT-SRS-3.6, Space and Warfare Systems
Command (SPAWAR), 15 January 1999.

[3]	 Pohl J., M. Porczak, K. Pohl, R. Leighton, H. Assal, A. Davis, L. Vempati, A.
Wood, and T. McVittie; “IMMACCS: A Multi-Agent Decision-Support Sys
tem;” Technical Report CADRU-12-99, CAD Research Center, Cal Poly State
University, San Luis Obispo, California, August 1999 (Sections 2 and 3.3).

[4]	 InCon‚ is a product of SRI International. Further information is available at
http://sri.systech.com/InCON.

[5]	 Pohl J., M. Porczak, K. Pohl, R. Leighton, H. Assal, A. Davis, L. Vempati, A.
Wood, and T. McVittie; “IMMACCS: A Multi-Agent Decision-Support
System;” Technical Report CADRU-12-99, CAD Research Center, Cal Poly
State University, San Luis Obispo, California, August 1999 (Section 3.5).

137

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

[6] Gamma, Helm, Johnson and Vlissides, “Design Patterns. Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1995.

138

1

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

SPOOK: A System for Probabilistic Object-
Oriented Knowledge Representation*

Avi Pfeffer, Daphne Koller, Brian Milch, Ken T. Takusagawa
Computer Science Department

Stanford University

Abstract

In previous work, we pointed out the limitations of standard Bayesian networks as a
modeling framework for large, complex domains. We proposed a new, richly struc
tured modeling language, Object-oriented Bayesian Networks, that we argued would
be able to deal with such domains. However, it turns out that OOBNs are not expres
sive enough to model many interesting aspects of complex domains: the existence of
specific named objects, arbitrary relations between objects, and uncertainty over
domain structure. These aspects are crucial in real-world domains such as battlefield
awareness. In this paper, we present SPOOK, an implemented system that addresses
these limitations. SPOOK implements a more expressive language that allows it to
represent the battlespace domain naturally and compactly. We present a new inference
algorithm that utilizes the model structure in a fundamental way, and show empiri
cally that it achieves orders of magnitude speedup over existing approaches.

Introduction

Bayesian networks are a graphical representation language in which complex probabi
listic models can be represented compactly and naturally. The power of the represen
tation comes from its ability to capture certain structure in the domain — the locality
of influence among different attributes. This structure, which is formalized as proba
bilistic conditional independence, is the key to the compact representation. It also
supports effective inference algorithms.

In previous work [KP97], we argued that, despite their power, Bayesian networks
(BNs) are not adequate for dealing with large complex domains. Such domains
require an explicit representation of additional types of structure: the notion of an
object a complex structured domain entity with its own properties; and the notion of a
class of objects, that captures properties common to an entire set of similar objects.
Our Object-Oriented Bayesian Networks extended the language of BNs with these
additional concepts.

By introducing objects and classes, OOBNs provide us with a representation language
that makes it much easier to specify large models in a compact and modular way.

* Submitted to UAI-99

139

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

However, these new concepts also reveal the shortcomings of the OOBN framework.
As soon as we have objects, we want to encode various relationships between them
that go beyond part-whole. For example, we may have an object representing some
physical location (with its own properties). We may well wish to assert that another
object, such as a military unit, is at the location. This relation is not a part-whole
relation, and thus does not fit naturally into the OOBN framework.

In [KP98], we described a language that allows a much richer web of relations be
tween objects. It also extends the expressive power of the language in several signifi
cant ways. For example, by making relations first-class citizens in our ontology, we
can express knowledge we might have about them; just as importantly, we can express
lack of knowledge about relations. For example, we can express the fact that we do not
know which of several locations a unit is at; we can even quantify this uncertainty
using probabilities. We can also express uncertainty about the number of subunits that
a unit has.

Although the additional expressive power provided by OOBNs and its extensions is
natural and even desirable, one still needs to make the case that it actually helps
model real-life domains. We need also to show that we have the capability to answer
interesting queries using a reasonable amount of computation. In this paper, we
address both of these points. We present an implemented system called SPOOK —
System for Probabilistic Object-Oriented Knowledge. We show that it can be used to
represent and reason about a real-world complex domain.

The domain we have chosen for this test is military situation assessment [ML96].
This domain is notoriously challenging for traditional Bayesian networks. It involves
a large number of objects, related to each other in a variety of ways. There is also a lot
of variability in the models appropriate to different situations. We started with a set of
Bayesian networks constructed for this domain by IET, Inc. We then used our
SPOOK language to construct a single unified model for this domain, one with a rich
class hierarchy. The resulting model was compact, modular, natural, and easy to build.

We also investigate our ability to answer queries effectively using such a complex
model. One approach (the one we proposed in [KP98]) is based on knowledge based
model construction (KBMC) [WBG92] — converting the complex model into a
traditional BN, and using standard BN inference. The BNs constructed from a
complex SPOOK model are large enough to stretch the limitations of existing infer
ence algorithms. Even the network for a single SCUD battalion involves over 1000
nodes and requires 20 minutes to answer a query. A network for many interacting
units in a battlespace would be orders of magnitude larger.

The challenges posed by real-life complex models require a more sophisticated ap
proach to inference. In our original OOBN paper [KP97], we described an inference

140

2

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

algorithm that makes use of the structure made explicit in the more expressive lan
guage: the encapsulation of one object within another, and the model reuse implied by
the class hierarchy. The OOBN algorithm is too simple to apply to our much richer
SPOOK language. However, it turns out that many of the same ideas can be adapted
to this task. We present a new inference algorithm, implemented in the system, that
utilizes encapsulation and reuse in a fundamental way. We present experimental
results for our algorithm on realistic queries over the battlespace model, and show that
by utilizing encapsulation and model reuse, we obtain orders of magnitude speedup
over the KBMC approach.

The SPOOK Language

In this section we review the SPOOK representation language. The language pre
sented here is based on the probabilistic frame systems of [KP98]; it extends the
language of object-oriented Bayesian networks (OOBNs) [KP97] in several impor
tant ways.

The basic unit in the SPOOK language is an object. An object has attributes, which
may be either simple or complex. A simple attribute is a function from objects to values
in some specified domain; it is similar to a variable in a standard BN. A complex
attribute represents a relationship between objects. If the value of complex attribute A
of object X is Y (notated X.A = Y), the relation A(X,Y) holds. Complex attributes may
be single-valued, corresponding to functional relationships, or multi-valued, corre
sponding to general binary relations. A complex attribute may have an inverse: if the
inverse of attribute A is B, and Y is a value of X.A, then X must be a value of Y.B.

For example, a scud-battalion object has a simple attribute under-fire, whose value
ranges over {none, light, heavy}. It has a single-valued complex attribute at-location,
whose value is an object corresponding to the location of the battalion. It has a multi
valued complex attribute has-battery, each of whose values is a battery in the battal
ion. The has-battery attribute has an inverse in-battalion, which is a single-valued
complex attribute of a battery object. If battery-1 is a value of scud-battalion
charlie.has-battery, then battery-1.in-battalion = scud-battalion-charlie. The dot
notation can be extended to attribute chains A1.A2. … .Ak, denoting the composition of
the relations A1, … ,Ak. If A1, … ,Ak – 1 are single-valued complex attributes, and Ak is a
simple attribute, we call the attribute chain simple.

The probability model for an object is specified by defining a local probability model
for each of its simple attributes. As in BNs, The local probability model consists of a
set of parents, and a conditional probability distribution (CPD). A parent can be
either another simple attribute of the same object, or a simple attribute chain. Allow
ing attribute chains as parents provides a way for the attributes of an object to be
influenced probabilistically by attributes of related objects. If two objects are inverses
of each other, each can be influenced by the other.

141

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

Continuing our example, the under-fire attribute of scud-battalion has a parent at
location.defense-support, and the CPD for under-fire indicates that the battalion is
more likely to be under heavy fire if it is in a location with poor defense support. The
battery object has a hit attribute whose parent is in-battalion.under-fire, thus creating
an in-direct chain of influence from the location, through the battalion at the loca
tion, to the battery in the battalion. Since in-battalion is an inverse of has-battery, the
battalion can in turn be influenced by the battery it contains. For example the at
tribute scud-battalion.next-activity depends on has-battery.launch-capability. (Section
2.2 explains how to specify dependence on multi-valued attributes.)

2.1 Classes and Instances

In SPOOK, a probability model is associated with a class, which corresponds to a
type of entity in the domain. An instance of a class corresponds to a domain entity of
the appropriate type, and derives its probability model from its class. We use object to
denote either a class or an instance. For example, scud-battalion is a class and scud
battalion-charlie is an instance of scud-battalion.

Classes provide reusable probability models, that can be applied to many different
objects. Classes are organized in a class hierarchy. A subclass inherits the probability
model of its superclass, and it can also override or extend it. The inheritance mecha
nism facilitates model reuse by allowing the commonalities between different classes
to be captured in a common superclass. For example, the battalion super-class cap
tures those features common to all battalions.

Classes also provide a type system for the SPOOK language. Every complex attribute
A has a type T(A), and for any object X, the value of X.A must be an instance of T(A).
If A no particular value is specified for X.A, we use the unique names assumption,
which states that the values of X.A are generic, unnamed instances of T(A), that are
not related in any other way to the instances in the model.

The unique names assumption implies that in the class models, no two battalions can be
at the same location. In-stances provide a way to specify such webs of inter-related objects.
In this example, there are two battalion instances, battalion-1 and battalion-2, and a
location instance location-a. By stating that battalion-1.at-location = location-a and that
battalion-2.at-location = location-a, the objects are hooked together appropriately.

2.2 Multi-Valued Attributes and Structural Uncertainty

As discussed above, a complex attribute can be multi-valued, but a parent of a simple
attribute must be a simple attribute chain, in which the attributes are single-valued. In
order to allow the attributes of an object to be influenced by attributes of related objects
when the relationship is multi-valued, we introduce a quantifier attribute. A quantifier

142

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

attribute has the form #(A.ρ = v), where A is a multi-valued complex attribute, ρ is a
simple attribute chain, and v is a possible value of ρ. If X is an object with attribute A,
X.#(A.ρ = v) denotes the number of objects Y such that A(X,Y) ^ Y.ρ = v.

Quantifier attributes allow attributes of an object to depend on aggregate properties
of a set of related objects. Continuing our running example, we may specify that a
parent of scud-battalion.next-mission is the quantifier attribute #(has-battery.launch
capability=high). The value of the quantifier is determined by the value of launch-
capability for each of the batteries in the battalion. If the set of batteries in the battal
ion is fixed, the quantifier simply expresses an aggregate property of the set. However,
we may also have uncertainty over the number of batteries in the battalion. This is an
example of structural uncertainty, which is uncertainty not only over the properties of
objects in the model but over the relational structure of the model itself.

The type of structural uncertainty encountered in this ex-ample is number uncertainty:
uncertainty over the number of values of a multi-valued complex attribute. Number
uncertainty is integrated directly into the probability model of an object using a
number attribute. If A is a multi-valued complex slot, the number attribute #A denotes
the number of values of A. A number attribute is a standard random variable whose
range is the set of integers from 0 to some upper bound n. It can participate directly
in the probability model like any other variable. In our example, scud-battalion.#has
battery depends probabilistically on scud-battalion.country. Under number uncer
tainty, the value of a quantifier depends on the value of the number attribute, as well
as on the values of the related objects.

Another kind of structural uncertainty is reference uncertainty, which is uncertainty
over the value of a single-valued complex attribute. For example, we may have uncer
tainty over whether a battalion is located in a mountain or a desert location. As with
number uncertainty, reference uncertainty can be introduced directly into the prob
ability model of an object using a reference attribute. If A is a single-valued complex
attribute whose value is uncertain, R(A) is a reference attribute whose range deter
mines the possible values of A. An element of the range of R(A) may either be a
subclass C of T(A), or an instance I of T(A). If the value of X.R(A) is the type C, then
the value of X.A is a generic instance of C; if the value of X.R(A) is the instance I,
then the value of X.A is I. As with number attributes, reference attributes participate
in the probability model, and can depend on and be influenced by other attributes.
We call this type of uncertainty “reference uncertainty” because we do not know
which object is being referred to when we refer to the value of A.

A SPOOK knowledge base consists of a set of classes and instance models. In
[KP98], we defined a data structure called a dependency graph that can be used to
make sure that all the probabilistic influences, including the influences between
different objects, are acyclic. We defined a semantics for SPOOK models, based on a

143

3

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

generative process that randomly generates values for attributes of instances in the
domain, including number and reference attributes. We showed that if the depen
dency graph is acyclic, then the knowledge base defines a unique probability distribu
tion over the values of all simple attributes of all named instances in the KB.

Modeling the Battlespace Domain

To demonstrate the representational power of the SPOOK language, we implemented
a model for reasoning about military units in a battlespace. In [LM97], Mahoney and
Laskey describe how they model this domain using network fragments. In this section,
we introduce the domain, discuss why it is difficult to model using BNs, and describe
how we modeled it using SPOOK.

The purpose of the battlespace model is to reason about the locations and status of
enemy military units based on intelligence reports. Our model deals specifically with
missile battalions, the batteries within those battalions, and the individual units —
vehicles, radar emplacements, missile launchers, etc. — within the batteries. A sce
nario consists of multiple battalions, some of which may be at the same location. A
battalion typically has four batteries, each with about 50 individual units. Thus, the
model for a battalion includes about 200 units, and a scenario may include 1000 units.

Let us consider trying to model our domain directly with a BN. With four or five
variables for each unit, a flat BN for a battalion model will typically contain over a
thousand nodes. The sheer size of this network is a major obstacle to its construction.
In addition, the resulting BN will be too rigid for practical purposes. The configura
tion of a battalion is highly flexible, with the exact number of units of each type
varying considerably between different battalions. These difficulties have led to an
alternative approach, in which several different BNs are used, one for each aspect of
the model. Figure 1(a) shows a Bayesian network for an SA3 battalion. There are
similar networks for other types of units, such as Scud battalions and batteries. Al
though a Scud battalion contains Scud batteries, the battalion model does not repli
cate all the details of the battery model; rather, it summarizes the status of all the
batteries with nodes, indicating the initial number of batteries, the number of dam
aged batteries, and the current number. These summaries serve two purposes: to keep
the network reasonably simple; and to account for changing model configuration by
making the initial number of subunits a variable.

A major disadvantage of this approach is that it is very difficult to reason between the
different networks. The only way to reason from one network to another is to reach
conclusions about the state of variables in one network and assert them as evidence in
the other network. For example, the only way to transfer conclusions from a battery to
a battalion is to condition one of the summary nodes in the battalion model; going
from one battery to another requires conditioning the battalion model, reasoning

144

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

about the battalion, and then conditioning the other battery model. This type of
reasoning has no sound probabilistic semantics. There is no way to combine evidence
about multiple different units in a probabilistically coherent manner. Furthermore,
this type of reasoning between fragments must be performed by a human or a pro
gram. It requires some model of the relationship between the fragments, e.g., that the
status node of the battery model is related to the number-damaged-batteries node of
the battalion model. Nowhere is this relationship made explicit.

Another disadvantage is that multiple BNs do not allow us to take advantage of
redundancy within a model and similarities between models. For example, the battal
ion model in Figure 1(a) contains many similar substructures, summarizing groups of
units of different kinds. In addition, different battalions may all have substructures
describing their locations, as shown in the bottom right corner of the figure. In the
multiple BNs approach, the only mechanism for exploiting these redundancies is cut
and-paste. This makes it very hard to maintain these models, because each time one
of the reused components is changed, it must be updated in all the different networks
that use it.

OOBNs solve the problems inherent in the multiple BN approach. By allowing a
battalion to contain a battery as a sub-object, we can easily have the battalion model
encompass the complete models of the different batteries in it, which in turn contain
complete models of their subunits, without making the battalion model impossibly
complex. We can then reason between different objects in the part-of hierarchy in a
probabilistically coherent manner. In addition, by allowing us to define a class hierar
chy, OOBNs allow us to exploit the redundancy in the model.

However, the language of OOBNs is quite restricted, in a way that is problematic in
our domain. If we want to model the effect of a unit’s location on the unit, we need to
represent the relationship between the unit and its location. In our model, this was
the only relationship that did not fall into the part-of hierarchy, but richer models of
the battlespace domain require more sophisticated relationships, such as that between
a unit supporting another unit. In addition, our domain requires multi-valued at
tributes and quantifiers. A battalion contains several batteries, and each battery
contains several units of different types. The higher level objects do not depend
directly on the individual lower level objects, but only on aggregate properties of the
set of objects, expressed through quantifier attributes. The ability to create named
instances and hook them together via relations is also important in our domain, as
illustrated by the example from the previous section of two battalions in the same
location. Finally, the battlespace domain contains a great deal of structural uncer
tainty, in particular number uncertainty over the number of subunits. One may also
have reference uncertainty as to the actual location of a unit.

145

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

SPOOK includes all the capabilities of OOBNs to represent part-of and class hierar
chies, and also handles relations between objects, multi-valued attributes, named
instances, and structural uncertainty, all of which cannot be expressed in OOBNs.
Our SPOOK model of the battlespace domain includes a natural class hierarchy, with
Military-Unit, Environment, Location and Weather as root classes. The Battalion,
Battery, Group, and Unit families are all part of the Military-Unit hierarchy. Simi
larly, part-of relationships are easy to model in SPOOK using inverse relations. The
has-battery attribute of a battalion, and the in-battalion at-tribute of a battery, are
inverses, allowing the battalion and its contained battery to influence each other.
Batteries do not contain individual units directly, but instead contain a Group object
for each type of unit. For instance, a battery has (among others) groups of missile
launchers, command vehicles, and anti-aircraft artillery units. Each Group has a
multi-valued attribute relating it to the individual units, as well as a number attribute
and a set of quantifier attributes that summarize the status of the units. Using Group
objects is convenient because we summarize the same attributes for all types of units.

Figure 1: (a) SA3 Battalion Bayesian network, (b) SPOOK model of Scud Battalion

An object of class Unit has simple attributes reported, operational, damaged and re
ported-damaged. These attributes are influenced by the location of the battalion —
specifically, the location’s support for concealment and defense — and by the battalion
being under fire. We represent these influences in SPOOK by specifying, for example,
at-location.defense-support as a parent of damaged. The number of damaged units in
turn influences the battery’s operational attribute, and a quantifier slot that counts the
number of operational batteries in a battalion influences the battalion’s current-activity.
Subclassing gives us the ability to provide models for certain types of units that are
similar to the general unit model but not exactly the same. For instance, Missile-
Launcher has an additional activity attribute that indicates whether it is launching,
reloading, or idle. While we only modeled the domain up to the battalion level, we
could easily extend our model to higher-level groups in the military hierarchy.

146

4

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

In our current model, all units in a battalion share a common environment, which is
referred to by the in-environment of the battalion. The environment is composed of
Location and Weather objects, which between them determine the current support of
the environment for various activities such as moving, hiding and launching missiles.
We could have associated a different environment with each battery or unit, making
locations of lower-level objects related probabilistically to higher level objects.

To give an example of the power of reasoning at multiple levels of the hierarchy and
between different objects, we present a series of queries we asked the model. First we
queried the prior probability that a particular Scud battery was hit, and found it to be
0.06. We then observed that the containing battalion was under heavy fire, and the
probability that the battery was hit went up to 0.44. We then observed, however, that
none of the launchers in the battery had been reported to be damaged, and the prob
ability that the battery was hit went down to 0.28. We then explained away this last
observation, by observing that the environment has good support for hiding; the
probability that the battery was hit went back up to 0.33. This example combines
causal, evidential and intercausal reasoning, and involves battery and battalion objects,
individual launcher objects, the launcher group, and the environment object.

Inference

In the previous sections we described the SPOOK language, and how we used it to
model the battlespace awareness domain. Of course, in order for the language to be
useful, we need an efficient algorithm for performing inference in it. Ideally, we would
like the language features to lend themselves to efficient inference. Indeed, as we
argued in [KP97], one of the measures of a successful representation language is that
it makes the structure of the domain explicit, so that it can be exploited by an appro
priately designed inference algorithm.

One way to perform inference in SPOOK is to use the technique of knowledge-based
model construction (KBMC) [WBG92]. In this approach, we construct a BN that
represents the same probability distribution as that defined by our model, and answer
queries in this BN using standard BN inference algorithms. We described the KBMC
process for our language in detail in [KP98], and showed that if the dependency
graph is acyclic, it always terminates.

While the KBMC approach provides a sound and complete method for answering
queries in SPOOK it is somewhat unsatisfactory. It fails to exploit the language’s
ability to make explicit the structure of the domain. All notions of objects and rela
tionships are lost when the model is turned into a flat BN. In [KP97], we argued that
the object structure of a model can and should be exploited for efficient inference.

147

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

We argued that two aspects of the structure in particular should be exploited: the fact
that the internal state of each object is encapsulated from the remainder of the model
via its interface, and that locality of interaction typically induces small interfaces; and
the fact that the same type of object may appear many times in a model. Since the flat
BN produced by KBMC has no notion of an object, the KBMC algorithm cannot
exploit these structural features.

We now present an object-based inference algorithm that does exploit the structural
features of a model. The algorithm is based on the ideas presented in [KP97], but it is
significantly more complex due to the increased expressivity of our language. The
added complexity arises principally from four new language features.

First, the “multi-centeredness” of the language implies that each object can be accessed
by a multitude of other objects, in a variety of different ways. In OOBNs, we assumed
that each type of object had a unique set of inputs and outputs, and that we could
precompute a conditional distribution over the outputs given the inputs. This is no
longer the case. Because an object can be accessed in many different ways, its outputs
can be arbitrarily complex. In addition, its inputs are not fixed, but are determined by
the way the object is accessed, and the particular set of outputs required, as will be
explained below. Thus, for each object referred to by another object, our algorithm must
determine its inputs and outputs on the fly, during the processing of a query.

The second relevant language feature is the ability to create instances and hook
instances together via relations. As we shall explain later, this property implies that
encapsulation, although still present, no longer holds in exactly the same way as in
OOBNs. The third feature is multi-valued attributes and quantifier attributes that
depend on them, which do not appear in OOBNs, and require a new treatment.

The final complicating feature is structural uncertainty. The naive approach to dealing
with structural uncertainty, that could be applied to OOBN models, is as follows. To
compute P(Q), enumerate all possible structural hypotheses h, and compute P(Q | h)
for each such hypothesis. P(Q) is then equal to ∑h P(h)P(Q | h). Unfortunately, the
number of structural hypotheses is exponential in the number of structural variables,
rendering this approach completely infeasible with more than a very small number of
structural variables. In the battlespace awareness domain, the number of structural
variables is large, since we have uncertainty over the number of units in many differ
ent groups. Therefore we need a much better way of doing inference with structural
uncertainty.

Our inference algorithm is related to the KBMC algorithms, but its recursive nature
makes it quite different, so we describe it in detail. It is fairly complex, so we present
it in stages. We begin with the basic algorithm, for class objects without multi-valued
complex attributes, we then extend it to deal with instances, and finally we show how

148

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

we deal with multi-valued attributes, quantifier attributes, number uncertainty and
reference uncertainty.

4.1 Basic Algorithm

Our inference algorithm is recursive. The main function of the algorithm answers a
query on an object. The key to understanding the algorithm is to understand how the
function is recursively called, and the relationship between the object calling the
function and the object on which it is called. Suppose that, during the process of
solving a query on an object X, we encounter a complex attribute D of X. For now, let
us assume that D is single-valued. There is some object Y that is the value of X.D. Let
us assume for now that no value is asserted in the knowledge base for X.D, so that Y is
a generic (unnamed) instance of T(D).

Recall that other attributes of X may depend on the value of D, i.e., on Y. Specifically,
let σ1, … ,σn be the complete set of attribute chains, such that attributes of X depend
on each of the Y.σ1 but on no other aspects of the value of Y. In order to solve a query
on X, we will need to solve a subquery on Y, to obtain a distribution over Y.σ1, … ,
Y.σn. Recall, however, that Y may itself depend on X. This will happen if D has an
inverse E, so that the value of Y.E is X. Let τ1, … ,τm be the complete set of attribute
chains through which Y depends on X. The distribution over Y.σ1, … , Y.σn will
depend on the values of X.τ1, … , X.τm. The subquery on Y needs to return a condi
tional distribution over σ1, … ,σn given τ1, … ,τm. The issue is further complicated by
the fact that, while solving a query for object X, we do not yet know the set τ1, … ,τm,
through which Y depends on X. This information can only be computed within Y
itself. Therefore, when answering the subquery on Y, we return not only the condi
tional distribution over σ1, … ,σn, but also the conditioning variables τ1, … ,τm.

The main function of our algorithm, SolveQuery, takes three arguments, one of which
is optional. The two required arguments are an object Y, called the target of the query,
and a set of attribute chains σ = σ1, … ,σn, called the outputs of the query. The optional
argument is an attribute E, called the entry point of the query; E is the entry point into Y
if Y.E is X. The entry point is used for discovering the dependencies of Y on X:Y de
pends on X.τ only when some attribute in Y depends on B.τ. In this case, τ is said to be
an input to the query. SolveQuery returns two values: the set of inputs τ = τ1, … ,τm to
the query, and a conditional probability distribution over σ given τ. A query may have
no entry point if it is the top-level call to SolveQuery or if it was called for an attribute
D of X that has no inverse. In that case, Y cannot get inputs from X, so that τ will be
empty, and the distribution returned over σ will be unconditional.

The basic procedure of SolveQuery is as follows. SolveQuery constructs a local BN,
which it will eventually use to solve the query. The BN consists of nodes for each of
the attributes of the query target Y, nodes for the inputs and outputs, and other nodes

149

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

that help communicate between different attributes. In order to add a node to the
network, we must complete four steps: create it, specify its range, specify its parents,
and specify its conditional probability distribution (CPD). These steps are not always
per-formed together; in some cases, we cannot specify the CPD of a node at the time
that it is created.

SolveQuery begins with an initialization phase. First it creates a node v(A) in the
network for every attribute A of Y. For each simple attribute A, we specify the range of
v(A) to be the range of A. If A is complex, we want the range to be the product of all
the attribute chains through which Y depends on A, but we do not yet know this set.
For this reason, we maintain a set needed(A) for each complex attribute A.

Next, SolveQuery creates an output node v(output),to represent the query output. The
range of v(output) is ×n

i=1 Dom(σi), where Dom(σi) is the range of the simple attribute
at the end of the attribute chain σi. For each σi, we call the function GetChainNode
(see below) to obtain a node v(σi), whose range is Dom(σi), and make it a parent of
v(output). The CPD for v(output) simply implements the cross-product operation: if
the values of v(σ1), … ,v(σ) are v1, … ,v , the value of v(output) is 〈v1, … ,v 〉 withn n n

probability 1.

GetChainNode is called whenever we need to produce a node to represent the value
of an attribute chain σ. If v(σ) is already in the BN, we simply return it. This will
always be the case if σ is just a simple attribute A. Otherwise, σ must have the form
A.ρ, where A is a complex attribute. The algorithm thus needs to ensure that the
processing of A will give the required information about A.ρ. We therefore add ρ to
the set needed(A). We can extract the value from the output of A by creating a new
projection node v(σ), whose range is Dom(σ), and set its lone parent to be v(A). As we
will see below, the projection node performs the inverse operation to that of the cross-
product node.

The main phase of SolveQuery performs a backward-chaining process to determine
the interfaces of complex attributes. First, we order the attributes of Y in an order
consistent with the dependency graph. Such an order must exist if the model is well-
defined. We then process the attributes one by one, in a bottom-up order. Children
must precede their parents, since processing a child tells us what “information” we
need from its parents. Processing a simple attribute A is easy. We simply obtain the set
of attribute chain parents of A, as specified in the model of Y. For each such parent σ,
we convert it into a BN node v(σ) by calling GetChainNode, and add it as a parent
of v(A). We then set the CPD of v(A) as specified in the model of Y.

Processing a complex attribute A requires a recursive call. If A is the entry point of the
query, we ignore it — it gets special treatment later. If needed(A) is empty, we can
simply prune A. Otherwise, we will need to ask a subquery to obtain a distribution

150

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

over needed(A). For now, we assume that Y.A has no asserted value in the knowledge
base, so that the value of Y.A is some unnamed instance Z of class T(A). Since the
model of Z is the same as that of every other unnamed instance of T(A), we can ask
the subquery on the class object T(A). We therefore make a call to SolveQuery, in
which the target is T(A) and the set of outputs is needed(A). In addition, if A has an
inverse B, the entry point is B, otherwise there is no entry point. The call to
SolveQuery will return a set of inputs τA, and a conditional probability distribution
over needed(A) given τA. We treat the inputs τA to A in the same way as the parents of
a simple slot, using GetChainNode. We set the range of v(A) to be ×σ∈ needed(A)Dom(σ),
and set the CPD of v(A) to be that returned by the recursive call.

When we have finished processing all of the attributes, we can fill in the CPDs for
the projection nodes. Each such node v(σ) represents a component of the value of a
complex attribute A. We could not specify the CPDs for these nodes at the time they
were created, since we did not yet know the range of v(A). Once all the nodes have
been created, we simply set the CPD of v(σ) to implement the projection function
from ×σ∈ needed(A)Dom(σ) onto σ.

At this point, we have almost built the complete network for solving the query. Recall
that we have not yet processed the entry point E. The node v(E) is the input node,
representing the input of the query. We set the range of v(E) to be ∏τ∈ needed(E)Dom(τ).
The node v(E) has no parents and no CPD. We are now done building the local BN
for the object Y. If the knowledge base asserts a value v for a simple attribute A of Y,
we assert the value of v(A) to be v as evidence in the network. We then use a standard
BN algorithm to compute the conditional probability of the output node given the
input node, and return this conditional probability, along with the optional set of
inputs needed(E).

To summarize, let us consider how our algorithm exploits the two types of structure
described in [KP97]. Each recursive call computes a distribution over the interface
between two related objects. The algorithm exploits the fact that all the internal
details of the callee are encapsulated from the caller by the interface. Much of the
work of the algorithm, in particular maintaining the needed() sets and returning the
set of inputs τ, is concerned with computing these interfaces on the fly.

As for exploiting the recurrence of the same type of object many times in the model,
observe that different calls to SolveQuery with the same set of arguments will always
return the same value. In order to reuse computation between different objects of the
same type, we maintain a cache, indexed by the three arguments to SolveQuery. Note
that we cannot reuse computation between different queries on the same object,
because they may generate very different computations down the line. However, if the
two queries are similar, many of the recursive computations they generate will be the
same, and we will be able to reuse those.

151

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

4.2 Dealing with Instances

If an instance has a value asserted for one of its attributes, we can no longer use the
generic class model for that instance. In addition, if one instance is related to another,
the internals of the two instances are not necessarily encapsulated from each other.
Consider, for example, three instances I, J and K, such that I.A = J, I.B = K, and J.C =
K. In this case K is not encapsulated from I by J. Hence, the interface between I and J
does not separate the internals of I from the internals of J. When answering a query
on I, we cannot simply perform a recursive call to obtain a distribution over the
interface between I and J, as we would lose the fact that the internals of I and J may
be correlated by their mutual dependence on K. A possible solution to this problem is
to include K in the interface between I and J. However, including entire objects in an
interface creates huge interfaces, and defeats the purpose of using an object-based
inference algorithm.

In order to deal with this issue, we create a new top-level object T in the knowledge
base. This object contains an attribute I::A for every named instance I and each of its
attributes A. If A is simple, Dom(I::A) = Dom(A); if it is complex, T(I::A) = T(A). If
the KB asserts a value for I.A, I::A has the same value. Every user query will be di
rected through the top-level object. More precisely, a user query will have the form
I.σ = I1.σ 1, … ,I .σ , where each Ij is an instance (not necessarily distinct), and σj isn n

an attribute chain on Ij. The query is answered using a call SolveTopLevel(T , I.σ).
Since this is the top-level query, there is no entry point, and we will simply return a
distribution over I.σ.

SolveTopLevel is very similar to SolveQuery, so we omit the details. The main
difference is in the way attribute chains are treated. On the top level, all attribute
chains are attached to an instance. This is true both for the attribute chains required
in the query output, and for the parents of any top-level attribute I::A. We replace
GetChainNode with a function GetTopLevelChainNode that takes two arguments:
an instance and an attribute chain. This function behaves similarly to
GetChainNode, except for one situation. If the chain σ is of the form A.ρ, and I.A =
J, then I.A.σ = J.ρ. The algorithm eliminates this step of indirection, and continues to
follow the rest of the chain.

4.3 Multi-Valued Attributes and Structural Uncertainty

Multi-valued attributes can be dealt with quite easily within the context of
SolveQuery. If A is a multi-valued complex attribute of Y, with n values, then instead
of creating a single node v(A) in the BN, we create an array of nodes v(A1), … , v(An).
The function ProcessMultiValued is very similar to ProcessComplex. The subquery
on T(A) is solved as usual, and the results are then applied to all the nodes in the array.

152

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Dealing with quantifiers requires some care. Consider the quantifier Q = #(A.ρ = v). Q
will depend on the values of A1.ρ, … ,An.ρ. We therefore create n projection nodes for
these different values, and make each projection node v(Ai.ρ) depend on v(Ai). The
chain ρ is added to needed(A). The main issue with quantifiers is specifying their CPD.
The naive approach is to have the quantifier depend directly on all of the Ai.ρ, and have
the CPD implement the counting function. Unfortunately, a naive implementation of
this idea results in a CPD whose size is exponential in n. We can resolve this issue using
an approach similar to the noisy-or decomposition of [HB94]. We decompose the
quantifier node using a cascade of n – 1 intermediate nodes count1, … ,countn – 1. The
node counti represents the number of parents among A1.ρ, … ,Ai.ρ whose value is v. The
node count1 depends only on A1.ρ; its value is 1 if A1.ρ = v and 0 otherwise. For i > 1,
counti depends on counti – 1 and Ai.ρ. Its value is either counti – 1 + 1or counti – 1, depending
on whether Ai.ρ = v or not. The quantifier node v(Q) depends on countn – 1 and An.ρ in
the same way. Using this cascaded series of incrementers, the total size of all the CPDs
used to determine the value of the quantifier is only linear in n.

As mentioned earlier, we cannot deal with structural uncertainty by reasoning about
all possible structures. Instead, we need to exploit the fact that many of the structural
variables do not interact. Each of the complete structural hypotheses can be decom
posed into many independent or conditionally independent sub-hypotheses. For
example, in the battlespace domain, the number of units of each type in a battery may
all be independent of each other given the country to which the battery belongs. This
type of reasoning about the conditional independence between different structural
hypotheses is ideally performed in a BN. We need to express all the possible struc
tures within a single network, so that the BN inference algorithm can exploit these
independencies. We address this issue separately for number uncertainty and for
reference uncertainty, although the solution is quite similar.

Let A be a multi-valued complex attribute with number uncertainty, and let n be the
upper bound on the number of values of A. Even though A may have less than n
values, we create nodes v(A1), … ,v(An) for all of the possible values of A. The number
attribute #A is treated just like any other simple attribute. Now consider a quantifier
Q = #(A.ρ = v). As above, we create the projection nodes v(A1.ρ), … ,v(An.ρ). If the
value of #A is k, then Q depends on v(A1.ρ), … ,v(Ak.ρ), and ignores v(Ak+1.ρ), …
,v(An.ρ). We can simulate this effect by having Q depend on all of v(A1.ρ), …
,v(Ak.ρ), as well as on #A. As above, we can decompose the CPD for Q into a cas
caded series of incrementers, where each incrementer now also depends on #A.

We deal with reference uncertainty in a similar manner. Let A be a single-valued
complex attribute with reference uncertainty. For each value v in the range of R(A),we
create a dummy attribute Av, and a corresponding BN node v(Av). If v is equal to the
type C, we set the type of Av to be C. This operation ensures that Av will later be
processed correctly, as a generic attribute of type C. If v is equal to the instance I, we
set the value of Av to be I. In this case, Av will be processed as a named instance.

153

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

While we do not know the actual value of A, introducing all these nodes into the
network accounts for all possible hypotheses over its value. We can now deal with
dependencies on A. Consider a projection node v(A.ρ). We introduce a set of projec
tion nodes v(A .p) for each value v of R(A).We make v(A.ρ) depend on all the v(A .ρ)
as well as on Rv(A), and set its CPD to select the value of the parent specified by R(vA).
We can think of the CPD of v(A.ρ) as implementing a multiplexer, where the selector
is R(A). (See [BFGK96] for a similar construction.)

5 Experimental Results

Figure 2: Experimental results

We have implemented the SPOOK system for representing models in the SPOOK
language, and performing inference on these models. At the core of the system is a
module containing the data structures necessary to represent the SPOOK data model.
On top of this module is a user interface (see Figure 1)(b) in which the user can create
class and instance objects, build probability models, observe values and query prob
abilities. SPOOK models can be stored in an external knowledge server such as
Ontolingua. SPOOK communicates with the knowledge server using the OKBC
protocol [CFF + 98], a generic protocol for communication between knowledge-based
systems. Inference can be performed in SPOOK either by using the KBMC algo
rithm, or the object-based inference algorithm described in Section 4. Both inference
methods use the same home-grown underlying BN inference engine. While SPOOK
is already a fairly large system (about 80000 lines of code, not counting the BN
inference engine), we have not yet implemented all of the language features and
nuances of the inference algorithm. In particular, the support for structural uncer
tainty is still very basic.

In our experiments, we compared the performance of the object-based algorithm with
the KBMC algorithm on models of different sizes. Each model consists of a single
battalion with four batteries, each containing 11 groups of different kinds with the
number of units in each group varying from 1 to 9. The model also contains objects

154

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

for the environment, location and weather, as described in Section 3. The size of the
constructed BN grows linearly in the number of units per group, and varies from 750
to 5500 nodes.

In order to measure separately the benefits from exploiting interfaces and from reus
ing computation, we tried two different versions of the object-based algorithm, with
and without reuse. We compared the three algorithms on a query on Battalion.Next-
Mission, which depends (indirectly) on the status of most of the individual units in
the model. The results are shown in Figure 2. The first graph compares the perfor
mance of the three algorithms in a model without number uncertainty. For the
KBMC algorithm, the graph shows only the running time of the actual BN inference,
and not the time taken to construct the BN. In practice the cost of inference domi
nated the cost of constructing the BN, which took up to one minute. From the graph,
we see that both versions of the object-based algorithm outperform the KBMC
algorithm by a large margin, and that the algorithm with reuse outperforms the
algorithm without reuse. For example, with four units per group, the object-based
algorithm with reuse takes 9 seconds, without reuse takes 46 seconds, while the
KBMC algorithm takes 1292 seconds.

The reason for this great disparity is that the BN reasoning algorithm is failing to find
optimal junction trees in the flat BN. The largest clique constructed for the flat BN
contains 18 nodes, whereas the largest clique over all of the local BN computations
for the structured algorithm contains only 8 nodes. The BN inference engine uses the
standard minimum discrepancy triangulation heuristic to construct the junction tree.
We see that at least for a standard BN implementation, exploiting the object structure
and the small interfaces between objects is vital to scaling up BN inference. While
algorithms do exist for computing optimal triangulations [SG97], most implementa
tions of Bayes nets do not use them; in addition, these algorithms do not address the
issue of reuse.

As the number of units per group grows, we start to see an exponential blowup for the
object-based algorithm. The reason is that the cascaded decomposition of quantifier
CPDs has not yet been implemented. Thus the size of these CPDs grows exponen
tially in the number of units per group. We believe that when this feature is imple
mented, we will see a much flatter performance curve.

Discussion

An alternative approach to ours to modeling large, complex domains probabilistically
is the network fragments approach of Laskey and Mahoney [LM97]. They provide
network fragments for different aspects of a model, and operations for combining the
fragments to produce more complex models. Network fragments exploit the same
types of domain structure as do OOBNs. Because they allow complex fragments to be

155

6

ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

constructed out of simple fragments, they allow models to be composed hierarchically.
Similarly, because they allow the same fragment to be reused in multiple different
fragments, they exploit the redundancy present in the domain.

The main difference between the two approaches is that ours focuses on building
structured models, while theirs focuses on exploiting the domain structure for the
knowledge engineering process, but the constructed models themselves are unstruc
tured. An analogy from programming languages is that network fragments are like
macros, which are preprocessed and substituted into the body of a program before
compilation. SPOOK class models, on the other hand, are like defined functions,
which become part of the structure of the compiled program. The advantages of the
two approaches are comparable to those of their programming language analogues.
Network fragments, like macros, have the advantage of flexibility, since no assump
tions need be made about the relationship between combined fragments. For example,
the restriction of OOBNs to part-of relationships was never an issue in the network
fragment approach. The SPOOK language, on the other hand, provides a stricter,
more semantic approach to combining models. Like structured programming lan
guages, it allows strong type-checking in the way objects are related to each other.
The most important advantage of the SPOOK approach is that the models are
themselves structured. The domain structure can then be exploited for efficient
inference, as explained in Section 4. As our experimental results in Section 5 show,
exploiting the domain structure can lead to great computational savings. In addition,
because the domain structure is an explicit part of the model, we can now integrate
uncertainty over the structure directly into the probability model.

SPOOK provides a bridge between probabilistic reasoning and traditional logic-based
knowledge representation. Because it utilizes explicit notions of objects and the
relationships between them, SPOOK is able to incorporate and augment the rela
tional models used in many knowledge representation systems. This capability is
enhanced by the ability of SPOOK to communicate with such systems through the
OKBC protocol.

Our experiences with SPOOK are encouraging. Our hypothesis that exploiting the
object structure of a domain can help both in knowledge representation and inference
seems to be correct. Of course, we have only worked with one domain, and it remains
to be seen if the advantages carry over to other domains. If they do, perhaps the door
will be we have opened to a wide range of new applications of Bayesian network
technology.

Acknowledgements

Grateful thanks to Suzanne Mahoney, KC Ng, Geoff Woodward and Tod Levitt of
IET Inc. for their battlespace models; to Uri Lerner, Lise Getoor and all the other

156

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

Phrog hackers; to Barbara Engelhardt and Simon Tong for help with the knowledge
engineering; and to Jim Rice for help with integrating with Ontolingua. This work
was supported by ONR contract N66001-97-C-8554 under DARPA’s HPKB pro
gram, by DARPA contract DACA76-93-C-0025 under subcontract to Information
Extraction and Transport, Inc., and through the generosity of the Powell foundation.

References

[BFGK96] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-
specific independence in Bayesian networks. In Proc. UAI, 1996.

[CFF+98] V.K. Chaudhri, A. Farquhar, R. Fikes, P. Karp, and J.P. Rice. A pro
grammatic foundation for knowledge base interoperability. In Proc.
AAAI, 1998.

[HB94] D. Heckerman and J.S. Breese. A new look at causal independence.
Technical report, Microsoft Research MSR-TR-94-08, 1994.

[KP97] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proc.
UAI, 1997.

[KP98] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proc.
AAAI, 1998.

[LM97] K. Laskey and S.M. Mahoney. Network fragments: Representing knowl
edge for constructing probabilistic models. In Proc. UAI, 1997.

[ML96] S.M. Mahoney and K. Laskey. Network engineering for complex belief
networks. In Proc. UAI, 1996.

[SG97] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal
triangulations. In Proc. AAAI, 1997.

[WBG92] M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to
decision models. The Knowledge Engineering Review, 7(1):35–53, 1992.

157

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

158

CAD Research Center — California Polytechnic State University, San Luis Obispo, CA

159

 ONR Workshop Proceedings — A Decision-Making Tools Workshop — April 1999

160

