
CDM TECHNICAL REPORT: CDM-19-05

The TIRAC™ Development Toolkit: Technical Description
(Software Version 1.00)

Russell Leighton

Lakshmi Vempati

Alan Davis

Mark Porczak

Jens Pohl

15th April 2005

CDM Technologies, Inc.

2975 McMillan Avenue, Suite 272

San Luis Obispo, California 93401

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19135386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Describe is a registered trademark of Embarcadero Technologies, Inc.
Java is a trademark of Sun Microsystems, Inc.
Jess is a trademark of Sandia National Laboratories
Linux is a registered trademark of Linus Torvalds
MapForce is a registered trademark of Altova
Poseidon for UML is a registered trademark of Gentleware AG Corporation
Rational is a registered trademark of International Business Machines Corporation
TIRAC is a registered trademark of CDM Technologies, Inc.
UML and CORBA are registered trademarks of Object Management Group, Inc.
Windows is a registered trademark of Microsoft Corporation

Copyright ©2005 by CDM Technologies, Inc.

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission of CDM Technologies, Inc.

ii

Abstract

This report provides a technical description of the Toolkit for Information Representation and Agent Collaboration
(TIRAC™) software framework for the development of intelligent decision-support applications. An overview
of the transformational forces that have precipitated the need for a development toolkit capable of supporting a
distributed, information-centric software environment, and the objectives of TIRAC are contained in a companion
CDM Technical Report (CDM-17-04) entitled: “The TIRAC™ Development Toolkit: Purpose and Overview.”

TIRAC is an application development framework and toolkit for distributed decision-support systems incorporat
ing software agents that collaborate with each other and human users to monitor changes (i.e., events) in the state
of problem situations, generate, and evaluate alternative plans, and alert human users to immediate and develop
ing resource shortages, failures, threats, and similar adverse conditions. A core component of any TIRAC-based
application is a virtual representation of the real world problem (i.e., decision-making) domain. This virtual
representation takes the form of an internal information model, commonly referred to as an ontology. By provid
ing context (i.e., data plus relationships) the ontology is able to support the automated reasoning capabilities of
rule-based software agents.

Principal objectives that are realized to varying degrees by the TIRAC Toolkit include: support of an ontology-
based, distributed, information-centric system environment that limits internal communications to changes in
information; ability to automatically “push” changes in information to clients, based on individual subscription
profiles that are changeable during execution; ability of clients to generate information queries in addition to their
standing subscription-based requests; automatic management of object relationships (i.e., associations) during the
creation, deletion, and editing of objects; and, the ability to interface with external data sources through translators
and ontological facades.

Most importantly, the TIRAC Toolkit is designed to support the machine generation of significant portions of both
the server and client side code of an application. This is largely accomplished with tools that automatically build
an application engine by integrating Toolkit components with the ontological properties derived from the internal
information model. In this respect, a TIRAC-based application consists of loosely coupled, generic services
(e.g., subscription, query, persistence, agent engine), which in combination with the internal domain-specific
information model are capable of satisfying the functional requirements of the application field.

A TIRAC-based software development process offers at least four distinct advantages over current data-centric
software development practices. First, it provides a convenient structured transition to information-centric soft
ware applications and systems in which computer-based agents with reasoning capabilities assist human users
to accelerate the tempo and increase the accuracy of decision-making activities. Second, TIRAC allows software
developers to automatically generate a significant portion of the code, leaving essentially only the domain-specific
user-interface functions and individual agents to be designed and coded manually. Third, TIRAC disciplines the
software development process by shifting the focus from implementation to design, and by structuring the process
into clearly defined stages. Each of these stages produces a set of verifiable artifacts, including a well defined
and comprehensive documentation trail. Finally, TIRAC provides a development platform for achieving interop
erability by formalizing a common language and compatible representation across multiple applications within a
distributed environment.

2

The TIRAC™ Development Toolkit: Technical Description

(Software Version 1.00)

Table of Contents

1 Overview 11

1.1 Introduction . 11

1.2 Requirements . 12

1.3 Design and Implementation . 12

1.3.1 Object-based Information Representation . 13

1.3.2 Information Services . 13

1.3.3 Object Management Library . 14

1.3.4 Agent-based Information Analysis . 15

1.3.5 Model Processing Tools . 15

1.4 Development Environment . 15

2 Toolkit Usage 17

2.1 Introduction . 17

2.2 Creating An Object Model Document . 17

2.2.1 XMI header and meta-model specification . 17

2.2.2 Model element . 18

2.2.3 Package element . 18

2.2.4 Class element . 19

2.2.5 DataType and Enumeration elements . 19

2.2.6 Attribute element . 20

2.2.7 Association element . 21

3

Table of Contents

2.2.8 AssociationEnd element . 21

2.2.9 Generalization element . 21

2.3 Processing The Object Model . 22

2.3.1 Object model processing suite . 22

2.4 System Execution . 24

2.4.1 Example service execution suite . 25

2.4.2 Example client script . 28

2.4.3 Generic client applications . 28

2.5 Multiple Information Domains . 31

2.5.1 Reference elements and uni-directional associations . 31

2.5.2 Service startup . 32

2.5.3 Client configuration and startup . 32

2.6 Decision Support Example . 33

2.6.1 Agent Status Panel . 34

2.6.2 Agent Session . 34

2.7 System Development . 34

2.7.1 Model Design and Processing Guidelines . 35

2.7.2 Application Programming Guidelines . 36

2.7.3 System Deployment and Configuration Guidelines . 36

3 Model Processing Tools 39

3.1 Introduction . 39

3.2 Architecture Overview . 39

3.2.1 UML Processor . 39

3.2.2 IDL Producer . 40

3.2.3 Java Producer . 40

3.3 Using the Model Processing Tools . 41

3.3.1 Modeling Tools . 41

3.3.2 Modeling Requirements . 41

3.3.3 Processing Tools . 45

4 Object Management Layer 49

4.1 Introduction . 49

4.2 Architecture Overview . 50

4.2.1 Template . 50

4.2.2 POW . 50

4.2.3 Attribute . 51

4.2.4 Object Factory . 51

4

Table of Contents

4.2.5 Object Server API . 52

4.2.6 Class Properties . 52

4.3 Configuration . 52

4.4 Using the Object Management Layer . 52

4.4.1 Object Interaction . 53

4.4.2 Object Query . 54

4.4.3 Object Interests . 55

4.4.4 Object Server Interfaces . 56

4.4.5 Attribute Value Management . 56

4.4.6 XML Import and Export . 56

4.4.7 Example Code . 57

5 Subscription Service 59

5.1 Introduction . 59

5.2 Implementation . 59

5.2.1 Event and Constraint Models . 59

5.2.2 Specifying Attribute Constraints . 60

5.2.3 Old and New Values . 61

5.2.4 Event Ordering . 61

5.3 Configuration . 61

5.3.1 Server Properties . 61

5.3.2 Client Properties . 61

6 Persistence Layer 63

6.1 Introduction . 63

6.2 Architecture Overview . 63

6.2.1 SerialPersistence . 63

6.2.2 JDBCPersistence . 63

6.3 Configuration . 64

6.3.1 Database Administration . 64

6.4 Using the Persistence Layer . 65

6.4.1 Using SerialPersistence . 65

6.4.2 Using JDBCPersistence . 65

6.5 Archiving Capability . 67

6.5.1 The Archive Abstraction . 67

6.5.2 Configuration . 67

6.5.3 Archive File Structure . 67

6.5.4 Archive Creation . 68

5

Table of Contents

6.5.5 Archive Restoration . 68

6.5.6 Archiver Application . 68

6.5.7 ArchiverGUI Application . 69

6.5.8 Configuration Utility . 69

7 JESS Agent Engine 71

7.1 Introduction . 71

7.2 Architecture Overview . 71

7.3 Configuration . 71

7.3.1 Generate Batch and Property Files . 71

7.3.2 Agent Session Modes . 72

7.3.3 Subscriptions . 73

7.4 Writing JESS Agents . 73

7.4.1 Information Representation . 73

7.4.2 Information Management . 74

7.4.3 JESS User functions . 75

7.5 Running an Agent Session . 79

7.6 Debug Utility . 80

7.7 Examples . 81

7.7.1 Attribute Types . 81

8 CLIPS Agent Engine 83

8.1 Introduction . 83

8.2 Architecture Overview . 83

8.3 Installation . 84

8.4 Configuration . 85

8.4.1 Properties . 86

8.4.2 Subscriptions . 86

8.4.3 CLIPS Batch Files . 86

8.4.4 Startup Files . 87

8.4.5 Object Model Requirements . 87

8.5 Writing CLIPS Agents . 88

8.5.1 Defining a Module . 88

8.5.2 Defining a Knowledge Base . 88

8.5.3 Other Conventions . 91

8.6 Running an Agent Session . 92

8.6.1 Stand-alone Mode Agent Sessions . 92

8.6.2 Collaborative Mode Agent Sessions . 92

6

Table of Contents

9 Interoperability Bridge Framework 95

9.1 Introduction . 95

9.2 Architecture Overview . 95

9.3 Implementation . 95

9.3.1 Description of key interfaces . 97

9.3.2 Interoperability Bridge . 98

9.3.3 Translation Service . 99

9.3.4 Connection . 101

9.4 Using the Interoperability Bridge Framework . 101

9.4.1 Connecting two TIRAC-based systems . 101

9.4.2 Connecting an external system to the bridge . 103

9.4.3 Using the Interoperability Web Service . 103

9.4.4 Translation UI . 104

9.5 Examples . 104

9.5.1 Mapping . 104

9.5.2 Example suites . 105

A Release Notes 107

A.1 Core . 107

A.1.1 Requirements . 107

A.2 Support Suite . 108

A.2.1 Requirements . 108

A.2.2 Usage Instructions . 108

A.2.3 Frequently Asked Questions . 109

A.3 Utility Class Library . 109

A.4 Client Support Library . 110

A.4.1 Requirements . 110

A.5 Server Support Library . 110

A.5.1 Requirements . 110

A.6 Persistence Layer . 110

A.6.1 Requirements . 111

A.7 Object Management Library . 111

A.7.1 Requirements . 111

A.8 Meta-Model Support Library . 111

A.8.1 Requirements . 111

A.9 UML Processing Tools . 111

A.9.1 Requirements . 112

7

Table of Contents

A.9.2 Usage Instructions . 112

A.9.3 Frequently Asked Questions . 114

A.10 Agent Management Library . 115

A.10.1 Requirements . 116

A.11 JESS Agent Engine . 116

A.11.1 Requirements . 116

A.11.2 Frequently Asked Questions . 116

A.12 CLIPS Agent Engine . 116

A.12.1 Requirements . 116

A.13 Translation Service . 117

A.13.1 Requirements . 117

A.13.2 Usage Instructions . 117

A.14 Client Facade Support Library . 117

A.14.1 Requirements . 117

A.15 Generic UI Component Library . 117

A.15.1 Requirements . 118

A.16 Instance Viewer Application . 118

A.16.1 Requirements . 118

A.16.2 Frequently Asked Questions . 118

A.17 Object Shell Application . 119

A.17.1 Requirements . 119

A.18 Object Graph Application . 119

A.18.1 Requirements . 119

B Properties 121

B.1 Utility Properties . 121

B.2 Client Properties . 122

B.3 Server Properties . 123

B.4 Persistence Layer Properties . 127

B.5 Object Management Layer Properties . 130

B.6 JESS Agent Session Properties . 133

B.7 CLIPS Agent Session Properties . 136

B.8 Translation Service Properties . 139

8

Table of Contents

C Examples 141

C.1 Example Models . 141

C.1.1 Simple Example model . 141

C.1.2 Decision Support model . 143

C.2 Example Build Suites . 148

C.2.1 System build suite . 148

C.2.2 Simple Example build suite . 150

C.2.3 Decision Support build suite . 151

C.3 Example Execution Suites . 151

C.3.1 Name service suite . 151

C.3.2 System service startup suite . 152

C.3.3 Simple Example service suite . 154

C.3.4 Decision Support service suite . 154

C.3.5 CLIPS Agent Engine suite . 155

C.3.6 Test Execution suite . 156

C.4 Example Test Script . 157

C.5 Example Agents . 158

C.5.1 JESS-based Agent . 159

C.5.2 CLIPS-based Agent . 161

D Execution Framework 165

D.1 Introduction . 165

D.2 Execution Suite Processor . 165

D.3 Execution Suite Presentation . 167

D.4 Execution Suite Schema . 167

D.4.1 suite . 167

D.4.2 case . 169

D.4.3 path . 170

D.4.4 url . 171

D.4.5 source . 171

D.4.6 artifact . 172

D.4.7 command . 172

D.4.8 exec . 173

D.4.9 class . 173

D.4.10 include . 174

D.4.11 classpath . 174

D.4.12 arg . 175

9

Table of Contents

D.4.13 option . 175

D.4.14 condition . 176

D.4.15 property . 176

D.4.16 target . 177

D.4.17 description . 177

D.4.18 link . 177

D.4.19 image . 178

D.4.20 requirement . 178

D.4.21 select . 178

D.4.22 when . 179

D.4.23 otherwise . 179

D.5 Example Suite . 179

E Instance Viewer 185

E.1 Main Window . 185

E.1.1 Class Pane . 185

E.1.2 Object Pane . 185

E.1.3 Instance Pane . 185

E.1.4 Instance Viewer Toolbar Functions . 186

E.1.5 Steps to use the Instance Viewer . 187

E.2 Query Viewer . 189

E.2.1 Query Pane . 189

E.2.2 Query Viewer Toolbar . 190

E.3 Instances Viewer . 190

E.3.1 Instances Pane . 190

E.3.2 Instances Viewer Toolbar . 191

F Object Shell 193

F.1 Overview . 193

F.2 Usage . 193

F.2.1 Examples . 195

F.3 Syntax . 196

F.3.1 Tokens . 196

F.3.2 Productions . 197

G Glossary of Terms and Acronyms 201

Bibliography 205

Keyword Index 206

10

Chapter 1 - Overview

1.1 Introduction

This chapter provides an overview of the TIRAC architecture, design, and implementation. In additional chap
ters, development toolkit usage, component and service descriptions, and release documentation are provided.
The intended audience for this document are software developers and engineers planning to design and develop
systems based on the TIRAC framework and architecture. For a more comprehensive executive overview refer to
reference [16].

The TIRAC toolkit can be best described as a “meta-framework” in that it contains the tools to facilitate the
implementation of a client-server framework for distributed application development. The generated framework
provides a common set of information management services for distributed applications. The architecture of this
generated framework may be viewed in terms of physical layers and logical tiers. Figure 1.1 illustrates the role of
each physical layer with respect to the logical tiers. It is through the exposed physical layers that client applica
tions interact (the presentation tier), with the middle (unexposed) layers providing information management and
distribution (the information tier) and the agents and inference engine providing decision support (the logic tier).
A variety of applications ranging from relatively low-level services to graphical user interface applications may
be built, accessing a common information management system through the low-level object access layer all the
way up to a general user interface layer.

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Service Layer
Object

Access Layer
Object

User
Interface Layer

Inference
Layer

Agent Layer

Object

Layer
Persistence

Object

Presentation Layer

Application
Layer

Logic
Tier

Tier
Information

Presentation
Tier

Figure 1.1: Multi-Layered Architecture.

The process of developing specialized frameworks for distributed collaborative decision-support systems can be
a significant undertaking. However, through use of the “meta-tools” provided by the TIRAC toolkit the effort
required for this process is significantly reduced. The components that comprise the core of TIRAC are shown in
figure 1.2. This figure shows the component dependencies as well as their functional grouping. The components
shown inside the functional groups are provided (or generated) as part of the TIRAC framework. Those compo
nents shown outside of any functional groups are the application specific components. The group highlighted as
“Generated Components” comprises those components that are created from the model processing tools. Note
that it is the object model that drives the process and is therefore the principle component for defining the structure
of a specialized information management system.

11

Overview

Domain

Factory Services

Base Services

Interfaces

Client Object

Factory Interfaces

Domain

Service Interfaces

Agent Engine

Agents User Application

Object Store

Classes

Object Servant

Client Components

Generated Components

Design/Analysis Tools

Model Processing

Client Service API

Layer Interface

Object Management

Service

Subscription Persistence

Service

Server Components

Object Model

Communication Layer

Figure 1.2: TIRAC Component Diagram.

1.2 Requirements

• Architecture

–	 Provide capabilities for developing distributed collaborative decision-support systems.

–	 Provide tools that support use of information and expertise in a form that conveys high-level meaning
and understanding.

–	 Provide reusable services common to distributed collaborative decision-support systems.

• Interoperability

–	 Provide seamless access to information and services across multiple domains.

–	 Provide support for mapping information and data sources to common information domains.

• Support

–	 Provide tools to support development of shared components.

–	 Provide framework and process to support testing and verification of components and systems.

–	 Provide tools for installing and managing components.

1.3 Design and Implementation

The basis for the TIRAC meta-framework is founded on the representation of inherently complex information,
providing an object-oriented service architecture for building decision-support systems. Otherwise stated the

12

1.3 Design and Implementation

architecture of the TIRAC meta-framework is based on the recognition that information is naturally complex
and that through a rich representation, that captures the real-world complexities of information, the design and
implementation of decision-support tools (in the form of software agents or human user interactions through visual
interfaces) are considerably simplified.

1.3.1 Object-based Information Representation

Development of systems tailored for specific decision-support applications begin with development of the infor
mation model. The TIRAC model processing tools are used to produce the domain specific framework, providing
interfaces that correspond to the structure and logic captured by the information model. Generated object inter
faces expose methods (accessors and mutators) for interaction with information model features, such as attributes
and associations, as defined by the model. Client applications interacting with objects through these interfaces
have no specific knowledge of the details required to manage object life-cycles (creation, state maintenance, etc.)
and instead focus on information presentation and analysis. Most of the components that comprise a system,
built on this architecture, interact at some level as clients to the underlying information management services.
For example, both software based agents (decision-support logic modules) as well as user interfaces (providing
information presentation to human users) interact through exactly the same object-based interface.

The logic required to manage object interaction resides in servants that are coupled with the client object interfaces
through an object request broker (e.g., CORBA ORB). These object servants may be physically separate from
their corresponding interfaces (e.g., they may be resident on a host platform separate from the client platform
connected through a network) providing location transparency through the underlying information management
services, such as the object factories.

1.3.2 Information Services

As with object-based information interaction, basic services, either generated or provided as part of the TIRAC
framework, provide interfaces allowing client-level access. The services present an interface exactly analogous to
information objects. Services have client interfaces with the service implementation resident in a possibly remote
servant that, as with objects, provides for service location transparency. Services may be discovered through
the use of a standard lookup service (e.g., name service) enabling the binding of the service to its interface.
Services may also interact with other services through their respective client interfaces; therefore, services may
also be viewed as clients. It is this mechanism (i.e., interaction through client interfaces) that allows services
to be distributed across physical boundaries (e.g., separate processes potentially executing on multiple hosts).
In fact, object servants are clients to the basic services, which further blurs the distinction between information
objects and services. The base information services and their dependencies (cross-service interactions) are shown
in figure 1.3.

Name Service

The name service provides service registration and lookup facilities. It is through the name service that client
applications or services establish interfaces to other registered services. All clients (including services) requiring
access to services depend on the name service. To reduce diagram complexity, figure 1.3 does not include the
name service.

Persistence Service

This service provides access to the persistent store for object state maintenance. It includes support for constrained
queries on persisted information.

13

Overview

Dependancy

Service Interface

Model

<<service>>

modelInterface

Persistence

<<service>>

Factories

<<service>>

Subscription

<<service>>

Clients

Objects

subscriptionInterface

factoryInterface

objectInterface

persistenceInterface

Figure 1.3: TIRAC Services.

Factory Services

The base factory service provides functionality to support interactions with subordinate (domain specific) factory
services. The factory service includes support for object life-cycle maintenance and object instance resolution.
This service utilizes the persistence service, as a client, to provide object state maintenance. It also utilizes the
subscription service to provide notification on object interest satisfaction.

Subscription Service

This service implements an interest and notification management capability enabling clients to register (i.e., sub
scribe) to interests based on detailed, and possibly very complex criteria. Satisfaction of interest criteria results
in notification to the registered client. This capability provides an efficient mechanism for information delivery
to clients - providing information based on an asynchronous push rather than through synchronous pull actions
(requiring client initiation). This is a particularly important feature with respect to initiation of agent-based infor
mation analysis.

Model Service

The model service provides support for object model structure discovery. This service provides object model
information (meta-data), which may be utilized to constrain object instance interaction, such as in reference
constraints imposed through association management.

1.3.3 Object Management Library

The object management library (OML) is a client application programmer’s interface (API) that provides a pre
sentation layer over the client object and service interfaces. This library provides an abstraction layer utilizing
run-time class reflection and information properties allowing application development, decoupled from domain
model specific interactions. Model meta-data (structure) is utilized within the library methods to constrain object
access based on feature (e.g., attribute and association) type. Information is accessed through string values, facil
itating user interface development, with specific data type conversion handled automatically based on the feature
type information. Object-based interest registration and notification handling are provided through a common
listener-based event model.

14

1.4 Development Environment

1.3.4 Agent-based Information Analysis

Agents can be viewed as logical software units that encapsulate patterns and associated actions implementing be
havior that supports human decision making. The rules (patterns and actions) that make up agents can be viewed as
an integral part of the overall model representing the complete knowledge domain (information structure and busi
ness logic). Whereas simple logic may be directly incorporated into the information objects themselves, agents
afford the ability to define complex domain logic (e.g., behavior and reasoning that spans object boundaries).
Agents may be implemented utilizing a rule-based inference engine (e.g., Jess, CLIPS, etc.), which provides an
information analysis environment based on pattern recognition and related action initiation. The TIRAC toolkit
provides this capability in the form of an agent engine which serves as a client to a TIRAC based information man
agement system. This agent engine provides the bridge between the object based information structure provided
by the information management system and the agent knowledge base required by agent logic modules developed
for use within the inferencing environment. The agent engine may also be viewed as a logical collection of agents
that comprise logic specific to an application knowledge domain. This grouping of domain knowledge and agents
is referred to as an agent session. Agent sessions may also be distributed (they are clients after all) providing com
mon domain business logic, possibly affecting information state, and providing decision support to other clients
interacting with the information system. It is helpful to view agents in this context, as collaborators in the analysis
of the information state provided by the system, just as human users collaborate through their client interfaces
with the system. An integral part of the bridge function that the agent engine provides is the initiation of agent
interests based on agent rule patterns. On initialization the agent engine determines agent interests and registers
subscriptions (through the subscription service interface). Subsequent interest satisfaction results in notification
to the agent engine, which in turn updates the agent knowledge base. This update may in turn cause agent rule
activation resulting in possible agent action.

1.3.5 Model Processing Tools

The model processing tools are used to generate a collection of artifacts required, in combination with the base
services, for building a system tailored to a specific knowledge domain. Given an object model in the form of XMI
(XML Metadata Interchange) compliant with the UML (Unified Modeling Language) meta-model the following
artifacts are generated:

• CORBA interfaces defined in IDL (Interface Definition Language)

• Domain factory service for each model package (namespace)

• Object servants

• Client wrappers (classes wrapping calls to CORBA client interfaces)

• Properties for object management information

• Model documentation

1.4 Development Environment

The TIRAC software development environment is provided as a collection of tools. There is no “all-in-one”
integrated development environment provided. In fact, where ever possible, off-the-shelf tools and components
are utilized in the development and system execution environment. It is through the use of open standards (such
as CORBA, XMI, UML, JDBC, etc.) that gives the user of the TIRAC development environment choices in the
tools and components fitting their unique needs. The following chapters discuss specific usage of the various tools
that make up the TIRAC toolkit, but refrain from specific discussions on configuration and use of off-the-shelf
applications (e.g., object modeling tools, databases, etc.) deferring instead to the documentation pertaining to the
appropriate tool or component.

15

Overview

Because of the complexities involved in the development process of a complete system based on the TIRAC
framework, the next chapter discusses usage in terms of specific examples with the subsequent chapters focused on
tool and service details. The intended audience of this document are software developers and engineers interested
in the development of distributed, collaborative decision-support systems. It is assumed that the reader has some
level of knowledge in distributed systems, the Java™ programming language, the extensible markup language
(XML), the unified modeling language (UML), rule-based languages (Jess™ and/or CLIPS), and specifics of any
underlying operating system required.

16

Chapter 2 - Toolkit Usage

2.1 Introduction

This chapter outlines the basic steps required to use the TIRAC development toolkit through the use of a simple
example. The full development process is described, starting with the construction of an object model up to
generation of a complete information management framework. This chapter is intended to be a starting point for
developers to get acquainted with the core development environment, and is therefore not meant to be all inclusive.
The API documentation and example source should be consulted prior to beginning any serious development effort
utilizing the TIRAC toolkit.

2.2 Creating An Object Model Document

The starting point for creating a framework, using the TIRAC toolkit, is the development of an object model
describing the information domain specific to a project application. This section describes this process illustrated
through a description of a simple object model in XMI-UML. The object model is shown in figure 2.1 in terms of
a UML class diagram.

This model, while not all inclusive, illustrates several features that require special attention due to the stronger
constraints and assumptions imposed by the processing tools (see section 3.3.2 for a comprehensive list of addi
tional modeling requirements).

The framework model processing tools require input in the form of XMI-UML (an XMI document adhering to
the UML meta-model - refer to chapter 3 for more information). The creation of this XMI document may be
facilitated through the use of graphical modeling tools, such as Describe® [6], Rational® [8], and Poseidon for
UML® [7]. For the purposes of this example, discussion will be restricted to the description of the required
XMI elements. Dependent on the specific features of the graphical modeling tool, XMI export may be supported.
However, the specific XMI produced may not adhere completely to the specification for UML 1.4. If there are
incompatibilities it may be necessary to develop a translation (e.g., an XSL transform) that will take the exported
XMI and produce a compliant XMI document. One such example is the XSL transform provided to correct a
minor problem in exported XMI from the Poseidon UML modeling tool.

Sections of XMI-UML are shown below for clarity in the discussion. The full model document, for this example,
may be referenced in Appendix C.1.

2.2.1 XMI header and meta-model specification

The root element for the model document must be an XMI element and must contain at least the following exactly
as shown:

<?xml version="1.0"?>

<XMI xmlns:UML="org.omg.xmi.namespace.UML" xmi.version="1.1">

<XMI.header>

<XMI.metamodel xmi.version="1.4" xmi.name="UML"/>

</XMI.header>

<XMI.content>

...

</XMI.content>

</XMI>

17

Toolkit Usage

OrganizationEntity

latitude: double

Position

longitude: double

Person

age: int = 0
lastname: string

gender: eGender = unknown unknown, male, female }
eGender: enum {

Note

referenceName: string

Entity

location: Position

simple

Organization

<<struct>>

members

0...*

1

organizationaddress: string[0...*]

Figure 2.1: Simple Object Model.

2.2.2 Model element

A single Model element is required as the root namespace for the domain. The Model element must have a name
attribute, whose value is unique from any enclosed package or referenced external model, and must contain owned
elements. The following example defines a model (named “exampleModel”) that is defined as the root namespace
containing (i.e., owning) all model elements.

<UML:Model xmi.id="ExampleModel" name="exampleModel">

<UML:Namespace.ownedElement>

...

</UML:Namespace.ownedElement>

</UML:Model>

Note: The model name must coincide with the name given to the XMI document without the .xmi suffix. Addi
tionally, the xmi.id used by many of the XMI elements is required to be unique and will typically be generated by
the modeling tool that produces the XMI file. In these examples, descriptive words will be used for the xmi.id for
ease of reference.

2.2.3 Package element

The Model namespace may contain (as owned elements) any number of Package elements. Each Package element
must have a name (unique from any enclosing or enclosed Package or Class elements), a namespace stereotype
(i.e., a Stereotype element must be defined with its name attribute set to “namespace”), and must contain owned
elements. The following example defines a package (named “simple”) that corresponds to the UML package
depicted in figure 2.1.

<UML:Package xmi.id="SimplePackage" name="simple"

stereotype="Namespace">

<UML:Namespace.ownedElement>

...

</UML:Namespace.ownedElement>

</UML:Package>

...

<UML:Stereotype xmi.id="Namespace" name="namespace"/>

18

2.2 Creating An Object Model Document

Note: If a Package element is not stereotyped as a “namespace” the model processing tools will not process the
package. In fact, if the package has any stereotype not defined as “namespace” it will not be processed. This may
be useful in cases where packages may be defined as place-holders of content that should not be included in the
generated system but could easily be “turned on” later by setting the stereotype to “namespace.”

2.2.4 Class element

The Model namespace and/or Package may contain (as owned elements) any number of Class elements. Each
Class element must have a name unique from any other Class or DataType elements defined within the immediate
enclosing namespace. Class elements may reference a generalization if the class participates in one (i.e., it inherits
from another class). Also, a Class element may be defined as abstract (i.e., non-instantiable). Additionally, Class
elements may contain features such as attributes and operations. The following example defines an abstract class
(named “Entity”) that corresponds to the Entity class depicted in figure 2.1.

<UML:Class xmi.id="EntityClass" name="Entity" isAbstract="true">

<UML:Classifier.feature>

...

</UML:Classifier.feature>

</UML:Class>

A Class element may also contain Enumeration elements as owned elements. The following example defines
a concrete class (named “Person”) which extends the Entity class previously defined. In addition, the example
illustrates the definition of an enumeration defined within the scope of the class.

<UML:Class xmi.id="PersonClass" name="Person"

isAbstract="false" generalization="PersonEntity">

...

<UML:Namespace.ownedElement>

<UML:Enumeration xmi.id="GenderType" name="eGender">

...

</UML:Enumeration>

</UML:Namespace.ownedElement>

</UML:Class>

2.2.5 DataType and Enumeration elements

The Model namespace and/or Package may contain (as owned elements) any number of DataType and Enu
meration elements. Additionally, Class elements may contain (as owned elements) any number of Enumeration
elements. Data types used to define primitive types may be defined, refer to chapter 3 section 3.3.2 for a list of
supported primitive types. For example, the following defines a DataType element named “int.”

<UML:DataType xmi.id="IntType" name="int"/>

Struct data types (data type classifiers with structural features only) may be defined using a DataType element
stereotyped as “struct” (i.e., a Stereotype element must be defined with its name attribute set to “struct”). Struct
data types must define one or more attributes. The following example defines a DataType element representing a
struct with the fields defined as attributes (classifier features) corresponding to the Position data type depicted in
figure 2.1.

19

Toolkit Usage

<UML:DataType xmi.id="PositionType" name="Position" stereotype="Struct">

<UML:Classifier.feature>

<UML:Attribute name="latitude" visibility="public"

changeability="changeable" type="DoubleType"/>

<UML:Attribute name="longitude" visibility="public"

changeability="changeable" type="DoubleType"/>

</UML:Classifier.feature>

</UML:DataType>

...

<UML:Stereotype xmi.id="Struct" name="struct"/>

Note: Data types may not participate in any generalization (i.e., data types may not extend or be extended by
other data types).

Enumerations (data types constrained to a fixed set of literal values) may be defined using an Enumeration
element. Enumeration elements must contain at least one enumeration literal. For example, the following defines
an enumeration data type named “eGender” with a set of enumeration literals.

<UML:Enumeration xmi.id="GenderType" name="eGender">

<UML:Enumeration.literal>

<UML:EnumerationLiteral name="unknown"/>

<UML:EnumerationLiteral name="male"/>

<UML:EnumerationLiteral name="female"/>

</UML:Enumeration.literal>

</UML:Enumeration>

2.2.6 Attribute element

Attribute elements may be defined as features within a Class element. Each Attribute element must have a name
that is unique from any Attribute element defined within the scope or inherited scope of the class, a visibility
(“public,” “protected,” “private”), a changeability (“changeable,” “frozen”), and a type reference. The following
example defines a simple modifiable (changeable) attribute with name “referenceName” and type referring to a
previously defined data type (in this case the “StringType” data type).

<UML:Attribute name="referenceName" visibility="public"

changeability="changeable" type="StringType"/>

Attribute elements may also define an initial value. For example:

<UML:Attribute name="gender" visibility="public"

changeability="frozen" type="GenderType">

<UML:Attribute.initialValue>

<UML:Expression body="unknown"/>

</UML:Attribute.initialValue>

</UML:Attribute>

Attribute elements may also define their multiplicity (range of cardinality or number of element values). Sup
ported multiplicity ranges currently include 0...1 or 0...* (upper range set to -1). For example, the following
defines an address attribute typed as a string but having any number of values (unbounded multiplicity range).

20

2.2 Creating An Object Model Document

<UML:Attribute name="address" visibility="public"

changeability="changeable" type="StringType">

<UML:StructuralFeature.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:StructuralFeature.multiplicity>

</UML:Attribute>

2.2.7 Association element

The Model namespace may contain, as owned elements, any number of Association elements. Association ele
ments must have a name that is unique from any other Association element and must contain association connec
tions (AssociationEnd elements). For example, the following defines an Association element named “Organiza
tionEntity” that relates entities (as members) to an organization through association connections.

<UML:Association xmi.id="OrganizationEntityAssoc"

name="OrganizationEntity">

<UML:Association.connection>

...

</UML:Association.connection>

</UML:Association>

2.2.8 AssociationEnd element

Association elements must contain, as connections, two AssociationEnd elements. AssociationEnd elements
must have a name that is unique from any AssociationEnd elements defined within the scope of the referring
class and its scope of inheritance, navigability, a reference to the participating Class element and must contain
a definition of its multiplicity (range of cardinality or number of element values). Supported multiplicity ranges
include 0...1 or 0...* (upper range set to -1). Additionally, AssociationEnd elements may be defined as an ag
gregation (aggregation attribute set to “aggregate”). The following example defines an AssociationEnd element,
describing the “members” role that an entity plays with respect to an organization. The multiplicity range is
defined as unbounded (any number of entities can be members of an organization).

<UML:AssociationEnd name="members" isNavigable="true"

aggregation="none" participant="EntityClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

2.2.9 Generalization element

Generalization links are defined using this element. Generalization elements must define a parent and child
referencing defined Class elements. The following example defines the Generalization link between the entity

21

Toolkit Usage

and person classes. All child classes (classes extending other classes) must reference an appropriate generalization
(see example PersonClass above).

<UML:Generalization xmi.id="PersonEntity" parent="EntityClass"

child="PersonClass"/>

2.3 Processing The Object Model

Having produced an object model, in the form of an XMI-UML document, the model may now be processed into
a TIRAC framework utilizing the model processing tools provided in the toolkit. The toolkit provides convenience
scripts (see Appendix A.9 for script usage) for invoking the processing tools to produce the individual artifacts
that ultimately constitute the domain specific framework. Processing the object model into an executable system
will be described using the execution framework (see Appendix D) and the requisite XML suite documents, which
utilize the convenience scripts provided.

2.3.1 Object model processing suite

The following describes the process cases that make up an example build suite defined in the execution suite XML
schema. This example build suite (see Appendix C.2) will take in the example object model (shown in figure 2.1
and provided in XMI form in Appendix C.1) and produce the client interface library, server support library (object
servants, factories, etc.), and object management class properties.

makeserver.pl <xmi> −out <lib> −gen <gen>

makeproperties.pl <xmi> −out <lib>

makeclient.pl <xmi> −out <lib> −gen <gen>

<lib>/exampleModel_c.jar

<lib>/exampleModel.jar

<lib>/exampleModel.properties

build suite

The build suite defines a series of execution cases that, when processed, will result in a complete system frame
work that may be executed (services started up) with interacting generic client applications. The following sec
tions describe specific execution cases that make up this build suite.

client interface library

This process case executes the convenience Perl script makeclient.pl, taking the example object model XMI
document as input, and producing the client interface library jar as an output artifact.

<command id="perl"><exec>perl</exec></command>

<case id="client" name="Generate Client Library">

<command ref="perl">

<exec path="uml.path">makeclient.pl</exec>

<option id="out"><path ref="lib.path"/></option>

<option id="gen"><path ref="gen.path"/></option>

22

2.3 Processing The Object Model

<option id="seq">object</option>

<arg><path ref="xmi.path">exampleModel.xmi</path></arg>

</command>

<artifact path="lib.path">

exampleModel_c.jar

</artifact>

</case>

This case is equivilent to executing the following1:

perl <uml.path>/makeclient.pl <xmi.path>/exampleModel.xmi �→

-out <lib.path> -gen <gen.path> -seg=object

where “<uml.path>” is a defined path to the installed model processing scripts, “<xmi.path>” is a defined path to
the example xmi directory, “<lib.path>” is a defined path to the build suite lib directory (i.e., example/build/lib),
and “<gen.path>” is a path to the current suite output directory (i.e., example/build/simplemodel/gen defined
by the path “.”). See chapter 3, section 3.3.3 for more detailed description of the model processing tools and
convenience Perl scripts.

servant class library

This process case executes the convenience Perl script makeserver.pl, taking the example object model XMI
document as input, and producing the servant class library jar as an output artifact.

<case id="server" name="Generate Server Library">

<command ref="perl">

<exec path="uml.path">makeserver.pl</exec>

<option id="out"><path ref="lib.path"/></option>

<option id="gen"><path ref="gen.path"/></option>

<option id="seq">object</option>

<arg><path ref="xmi.path">exampleModel.xmi</path></arg>

</command>

<artifact path="lib.path">

exampleModel.jar

</artifact>

</case>

This case is equivilent to executing the following (see above for path descriptions):

perl <uml.path>/makeserver.pl <xmi.path>/exampleModel.xmi �→

-out <lib.path> -gen <gen.path> -seg=object

object management class properties

This process case executes the convenience Perl script makeproperties.pl taking the example object model XMI
document as input, and producing the class properties file as an output artifact.

1The �→symbol at the end of a line indicates that the following line is a continuation (i.e., no carriage return).

23

Toolkit Usage

<case id="properties" name="Generate Class Properties">

<command ref="perl">

<exec path="uml.path">makeproperties.pl</exec>

<option id="out"><path ref="lib.path"/></option>

<arg><path ref="xmi.path">exampleModel.xmi</path></arg>

</command>

<artifact path="lib.path">

exampleModel.properties

</artifact>

</case>

This case is equivilent to executing the following (see above for path descriptions):

perl <uml.path>/makeproperties.pl <xmi.path>/exampleModel.xmi �→
-out <lib.path>

defclasses (COOL)

This process case executes the convenience Perl script makecool.pl taking the example model XMI document as
input, and producing the COOL defclass definition file as an output artifact.

<case id="defclasses" name="Generate COOL Defclasses">

<command ref="perl">

<exec path="uml.path">makecool.pl</exec>

<option id="out"><path ref="kb.path"/></option>

<arg><path ref="xmi.path">exampleModel.xmi</path></arg>

</command>

<artifact path="kb.path">exampleModel.kbc</artifact>

</case>

This case is equivilent to executing the following (see above for path descriptions):

perl <uml.path>/makecool.pl <xmi.path>/exampleModel.xmi �→

-out <kb.path>

2.4 System Execution

After building a system, the services may then be started, along with clients interacting with the information
served by these domain specific services. As examples, some simple execution suites are provided (shown in
Appendix C.3), illustrating startup of the base services and model domain services (factories), as well as, the
execution of some simple clients.

java StartServer_exampleModel
java org.jacorb.naming.NameServer

javascript example1.js

24

2.4 System Execution

2.4.1 Example service execution suite

The execution suite used to startup the basic services is described below.

name service

Startup of the name service is provided through the use of an included execution suite. The first process case
configures the JacORB CORBA ORB (specifies name service IOR URL) by creating a Java property file. The
property file is generated from a property template file (a file containing core property settings with placeholder
tokens for those property settings requiring configuration) using the MakeFile tool. In this case the token nsref
is specified as an argument to the MakeFile, which processes the template file (jacorb.properties.tpl), replacing
all occurances of the token nsref with the specified value. This Java tool is executed within the suite execution
process - inheriting the launcher classpath - through specification of the Java application main class and the
absense of a defined classpath. If a classpath had been defined then the suite execution launcher would have
launched the case as a separate process.

<case id="jacorbproperties">

<command>

<class>com.cdmtech.core.tool.build.MakeFile</class>

<arg><path ref="tpl.path">jacorb.properties.tpl</path></arg>

<arg><path ref="lib.path">jacorb.properties</path></arg>

<arg>nsref=<url protocol="file" ref=".">NS_Ref</url></arg>

</command>

<artifact path="lib.path">jacorb.properties</artifact>

</case>

This case is equivilent to executing the following (see above for path descriptions):

java com.cdmtech.core.tool.build.MakeFile �→

<tpl.path>/jacorb.properties.tpl �→

<lib.path>/jacorb.properties nsref=<suite.url>/NS_Ref

where “<tpl.path>” is a defined path to the installed file templates, “<lib.path>” is a defined path to the execu
tion suite lib directory (i.e., example/exec/lib), and “<suite.url>” is a URL to the current suite output directory
(i.e., file:<suite root>/example/exec defined by the protocol and path “.”). Note that this results in the cre
ation of a JacORB properties file with just the single token nsref replaced, defining the value for the ORBIni
tRef.NameService property. Under most circumstances this will be the only property requiring modification in
this file.

The subsequent case starts the name service as an asynchronous process after the case condition is satisfied (the
string “JacORB V 2.1” is matched in the standard output of the process). Note the use of the artifact element to
provide for conditional case execution. If the specified artifact exists prior to case execution then the case process
will not be started. This particular artifact (a file named with the case id appended with “.run”) is created when the
case process is started. Hence, if a previous case has been successfully executed that starts up the name service,
then this case will not execute (only one name service is required for system execution). The option element
is used here to pass options to the Java run-time, setting the boot.classpath to a previously defined class path.
The argument passed to the name service specifies the path to a file that will contain a serialized Initial Object
Reference (IOR) to the name service. This IOR is utilized by clients needing access to the name service. This can
be thought of as a boot strap process since once client applications have access to the name service, references to
all other registered services can be obtained through the name service. This name service IOR file can be accessed
through various protocols using a URL defined in the property file generated by the previous execution case. This
property file, and therefore the URL reference to the name service IOR, will be loaded and used by the JacORB
ORB after initialization by the client application. All of this may seem rather complex, but for the most part is
handled transparently when client applications utilize the client API provided by the TIRAC framework.

25

Toolkit Usage

<case id="nameserver" name="Name Service">

<command>

<classpath><path ref="lib.path"/></classpath>

<class>org.jacorb.naming.NameServer</class>

<option>-Xbootclasspath/p:<classpath ref="boot.classpath"/></option>

<arg><path ref=".">NS_Ref</path></arg>

</command>

<artifact path=".">nameserver.run</artifact>

<condition>JacORB V 2.1</condition>

</case>

This case is equivilent to executing the following:

java -Xbootclasspath/p:<boot.classpath> -cp <lib.path> �→

org.jacorb.naming.NameServer <suite.path>/NS_Ref

where “<boot.classpath>” is a defined class path to libraries (JAR files) required by the JacORB name service,
“<lib.path>” is a defined path to the execution suite lib directory (i.e., example/exec/lib), and “<suite.path>” is a
path to the suite output directory (i.e., example/exec defined by the path “.”).

domain service

This process case starts the domain specific services as an asynchronous process after condition satisfaction. These
services include the domain factory services, the persistence service, and the notification/subscription services.
The properties defined within this case are passed to the Java run-time as system properties. As with the name
service the artifact exampleModelServer.run serves as a pre-condition to execution. If the base services have
been previously started (by a case with the same fully qualified suite path and id) then this case process will not
be executed. Note: if for any reason these processes are interupted without allowing for normal shutdown (e.g.,
a power outage, etc.) then these “.run” files will remain even though the processes are no longer running. The
existence of these files will prevent subsequent execution of the process cases that define these “.run” files as
artifacts. Removing the files will allow execution of these process cases.

<case id="exampleModelServer" name="Start exampleModel Server">

<command>

<classpath ref="add.classpath">

<path ref="*">lib</path>

<path ref="*">lib/core_server.jar</path>

<path ref=".">lib</path>

<path ref="/">example/xmi</path>

<path ref="lib.path"/>

<path ref="lib.path">exampleModel_c.jar</path>

<path ref="lib.path">exampleModel.jar</path>

</classpath>

<class>StartServer_exampleModel</class>

<property id="org.omg.CORBA.ORBClass">

org.jacorb.orb.ORB

</property>

<property id="org.omg.CORBA.ORBSingletonClass">

org.jacorb.orb.ORBSingleton

</property>

<property id="core.properties">

exampleModel_server.properties

26

2.4 System Execution

</property>

<property id="core.persist.serial.location">

<path ref=".">data/exampleModel</path>

</property>

</command>

<artifact path=".">exampleModelServer.run</artifact>

<condition>factories are started and ready</condition>

<condition type="failure" pattern="EXCEPTION">

exception occurred during service initialization

</condition>

</case>

The classpath defined for this execution case includes paths required for both Java class archives (JAR files) as
well as resource access. These paths are used specifically to obtain the following:

•	 <path ref="*">lib</path> => ./lib

Path to directory containing base properties.

•	 <path ref="*">lib/core_server.jar</path> => ./lib/core_server.jar

Path to JAR file containing base services and support classes.

•	 <path ref=".">lib</path> => ./example/exec/lib
Path to directory containing jacorb.properties required by JacORB (created by previously defined execution
case in name service startup suite).

•	 <path ref="/">example/xmi</path> => ./example/xmi

Path to directory containing model XMI file required by model service.

•	 <path ref="lib.path"/> => ./example/build/lib
Path to directory containing exampleModel_server.properties specified by the core.properties system prop
erty.

•	 <path ref="lib.path">exampleModel_c.jar</path> => ./example/build/lib/exampleModel_c.jar
Path to JAR file (created by build suite) containing model domain specific client object and service inter
faces.

•	 <path ref="lib.path">exampleModel.jar</path> => ./example/build/lib/exampleModel.jar
Path to JAR file (created by build suite) containing model domain specific object servants and services.

The properties defined for this execution case are used for the following:

•	 org.omg.CORBA.ORBClass

System property defining the name of the class implementing the CORBA ORB.

•	 org.omg.CORBA.ORBSingletonClass

System property defining the name of the class implementing the CORBA ORB singleton.

•	 core.properties
System property defining the name of the properties file used by various core services (must be located in
class path).

•	 core.persist.serial.location
Property defining the location that will contain the root directory to hold serialized objects (persisted ob
jects) - in this case the location is set to the path ./example/exec/data/exampleModel.

27

Toolkit Usage

2.4.2 Example client script

The execution suite provided, illustrating simple client interaction, is described below. This suite will condition
ally startup the base services (if the services were not previously started, as indicated by the existence of the “.run”
artifacts, with the service execution suite described in section 2.4.1) then configures and executes the client script.

example client

This process case runs a javascript (see Appendix C.4) using the Mozilla JavaScript interpreter. This script invokes
methods on various OML class methods illustrating simple object interactions. The objects created and modified
by this script will be visually presented in the object graph client, as described below.

<case id="simpleexample" name="Simple Client">

<command>

<class>org.mozilla.javascript.tools.shell.Main</class>

<classpath>

...

</classpath>

...

<property id="core.logLevel">

Information

</property>

<property id="core.properties">

exampleModel_om.properties

</property>

<arg><path>simpleExample.js</path></arg>

</command>

</case>

2.4.3 Generic client applications

object graph

A simple visualization client is started by this process case. This suite will conditionally startup the base services
(if the services were not previously started with the service execution suite described in section 2.4.1), then execute
the object graph client.

28

2.4 System Execution

<case id="objectgraph" name="Object Graph Client">

<command>

<class>com.cdmtech.core.client.gui.objectGraph.ObjectGraph</class>

<classpath>

...

</classpath>

...

<property id="core.logLevel">Warning</property>

<property id="core.properties">

exampleModel_om.properties

</property>

<property id="simple.Entity.class.disAttrName">referenceName</property>

<arg>simple.Organization</arg>

</command>

<condition>Initialized exampleModel_SubscriptionClient</condition>

</case>

The argument defined for the case process is used by the object graph client to establish an initial creation interest.
In this example, the class “simple.Organization” is specified, which results in an interest in creation of organization
objects. Upon notification of the creation of an organization the object graph will react by displaying an object
node. The object graph presented is produced through registration of interests in object instance modification
(initially on the root object). Directly associated objects are shown with links to the root object through link nodes
(the small circles). With each object addition an object node is added and linked to the appropriate link node. If
any links exist between the current root object (shown with a red background) and any other objects through their
association roles, then those objects are also displayed with links to the relevant role (link node). Additionally,
any objects associated with these immediate linked objects are shown with direct links (no link nodes) without
regard to association roles. Objects outside this immediate neighborhood are not displayed. However, selecting
an object node will result in the object being set as the root object node with the display updated based on the
above display rules. Any link nodes shown in red may also be selected resulting in the opening or closing of the
node links (display of linked objects).

object shell

A generic client, providing a command-line interface to information objects served by the system, is started by
this process case. This suite will conditionally startup the base services (if the services were not previously started
with the service execution suite described in section 2.4.1), then execute the object shell client.

29

Toolkit Usage

<case id="objectshell" name="Object Shell">

<command>

<class>com.cdmtech.core.client.shell.ObjectShell</class>

<classpath>

...

</classpath>

...

<property id="core.logLevel">Warning</property>

<property id="core.properties">

models_om.properties

</property>

</command>

<condition>Initialized exampleModel_SubscriptionClient</condition>

</case>

This client application uses the object management layer (OML) and therefore, discovers the structure of the in
formation provided by the domain specific system at run-time. Usage of the object shell is described in Appendix
F. The object shell provides commands for creating, deleting, modifying, and querying for objects.

instance viewer

Another generic client, this time providing a graphical interface to information objects served by the system,
is started by this process case. This suite will conditionally startup the base services (if the services were not
previously started with the service execution suite described in section 2.4.1), then execute the instance viewer
client.

<case id="instanceviewer" name="Instance Viewer">

<command>

<class>com.cdmtech.core.client.iv.InstanceViewer</class>

<classpath>

...

</classpath>

...

30

2.5 Multiple Information Domains

<property id="core.properties">

example_iv.properties

</property>

</command>

<condition>Initialized exampleModel_SubscriptionClient</condition>

</case>

This client application also uses the OML and therefore, is independent of any specific information domain (struc
ture discovered at run-time). Usage of the instance viewer is described in Appendix E. The instance viewer
provides functionality for creating, deleting, modifying, and querying for objects.

2.5 Multiple Information Domains

A principal aspect of the TIRAC architecture is centered around the distribution of information and the services
that manage information. Client applications requiring access to information that is serviced across a distributed
network of information services that need only to specify the model domains that define the information they
require. Additionally, it is possible to design model domains that require access to other separately managed
information domains through the use of associations to reference classes (classes defined in the external domain).
Typically these associations will be one-way (uni-directional), as the reference class will usually have no require
ment for accessing the referring class. Uni-directional associations provide a reference mechanism while retaining
a high degree of decoupling, allowing access to established information domains where modification of the in
formation model may not be desirable or even possible. An example of an information model that illustrates an
association to an external reference class is described in section 2.6 and shown in figure 2.2.

2.5.1 Reference elements and uni-directional associations

In this model the class representing Entity is shown as a reference class (stereotype set to “reference”). Within
the XMI model file this reference class is defined as follows.

<UML:Model xmi.id="DecisionModel" name="decisionModel">

<UML:Namespace.ownedElement>

<UML:Package xmi.id="SimplePackage" name="simple"

stereotype="Reference">

<UML:Namespace.ownedElement>

<UML:Class xmi.id="EntityClass" name="Entity"

stereotype="Reference"/>

</UML:Namespace.ownedElement>

</UML:Package>

...

</UML:Namespace.ownedElement>

</UML:Model>

Notice that the Package (not the Model) element containing the Entity Class element is also included and stereo
typed as a reference. These referenced elements must be defined as owned elements of the model (i.e., the
reference elements, not the actual elements, are owned by the referring model). Reference elements do not need
to be fully replicated from the source model. However, the structure must be fully defined (element names and
packaging must reflect the defined structure). Having defined these reference elements, they may then be referred
to in associations within the referring model. For example, the following defines the Association element showing
the “targets” end with the participant set to the entity class. Even though this association is uni-directional both
ends of the association must be defined.

31

Toolkit Usage

<UML:Association xmi.id="ActionTargetAssoc" name="ActionTarget">

<UML:Association.connection>

<UML:AssociationEnd name="targetAction" isNavigable="false"

aggregation="none"

participant="ActionClass">

...

</UML:AssociationEnd>

<UML:AssociationEnd name="targets" isNavigable="true"

aggregation="none"

participant="EntityClass">

...

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

2.5.2 Service startup

Similar to the startup for the example model services (see section 2.4.1), the following execution case specifies the
startup class for the domain specific services and all required class paths and properties. Additionally, the class
path includes the client library for the example model domain (exampleModel_c.jar). This library is required since
the decision-support model requires access to features of the example model (notably the Entity class through the
Action associations, see figure 2.2).

<case id="decisionModelServer" name="Start decisionModel Server">

<command>

<class>StartServer_decisionModel</class>

<classpath>

...

<path ref="buildpath">exampleModel_c.jar</path>

<path ref="buildpath">decisionModel_c.jar</path>

<path ref="buildpath">decisionModel.jar</path>

</classpath>

...

<property id="core.properties">

decisionModel_server.properties

</property>

<property id="core.persist.serial.location">

<path ref=".">data/decisionModel</path>

</property>

...

</command>

<artifact path=".">decisionModelServer.run</artifact>

<condition>factories are started and ready</condition>

<condition type="failure" pattern="EXCEPTION">

exception occurred during service initialization

</condition>

</case>

2.5.3 Client configuration and startup

Client applications requiring access to multiple information domain services require some additional configuration
(see chapter 4, section 4.3).

32

2.6 Decision Support Example

Observation

report: string
acknowledged: boolean

Action

priority: int
timeOfAction: long
duration: long

Entity

Agent

activity: int
id: string

referenceName: string

Support

decisionSupport

simple

Session

subActions
0...*

0...*

actions
<<reference>>

targets
0...*

0...*
triggers

objects
0...*

<<reference>>

Figure 2.2: Decision Support Model.

Additionally, access to the client interfaces for both model domains must be provided to client applications. For
example, startup of the object shell client may be defined using the following execution case.

<case id="objectshell" name="Object Shell">

<command>

<class>com.cdmtech.core.client.shell.ObjectShell</class>

<classpath>

...

<path ref="buildpath">exampleModel_c.jar</path>

<path ref="buildpath">decisionModel_c.jar</path>

</classpath>

...

</command>

</case>

2.6 Decision Support Example

The object model (shown in figure 2.2) and execution suites are presented to illustrate a more concrete and com
plete example system that provides decision support.

This simple example model describes object classes that will be used to represent software agents (software mod
ules incorporating decision-support logic applied to specialized information domains) and their possible actions.
Software agents can be viewed simply as additional knowledge experts analogous to their human counterparts
at least in the context of information assessment. Therefore, it makes sense to represent agents in the same way
individual people collaborating in the decision-making process might be represented. Through this representa
tion, agents (and for that matter human collaborators) can provide feedback as additional information entering the
system (in this case in the form of actions and observations) allowing interested parties to receive this feedback
using exactly the same mechanisms that would be applied to any other information interests.

This model defines a general action as an object with temporal characteristics (start time and duration) and pri
ority. Actions can be applied to targets (represented through the targets association to Entity) and be caused
by triggers (also an association to Entity). Actions may have subsequent actions (represented by the recursive
association subActions) which could be interpreted to mean actions performed as a consequence of a previous
action. The sub-class Observation is defined as a kind of Action, adding the notion of a reportable observation and

33

Toolkit Usage

acknowledgment. Common feedback provided by agents (defined within the context of this particular example
model) is typically in the form of observations, to indicate possible conditions requiring attention.

Note: This model is simply an example of one possible representation for agents and their feedback. There is no
constraint on how (or even if) agents are represented. However, there are benefits associated with explicit agent
representation. It is often desirable to present agent feedback with respect to the agent that produced the feedback.
Presenting this association further highlights the meaning of the feedback. One such presentation device is the
Agent Status Panel client application provided as part of the TIRAC toolkit.

2.6.1 Agent Status Panel

This client is provided as an example to illustrate one possible method for displaying agent feedback and also
serves to further illustrate the architecture provided by the TIRAC framework. The Agent Status Panel is in
fact a very simple client that knows how to graphically display agents (as icons) and their associated feedback
(alerts presented textually in a dialog) but otherwise has no knowledge of specific agents or their purpose. To
effectively utilize the Agent Status Panel there should be a domain model defined that contains a class that would
be suitable for agent representation. This class should also define an association to another class representing agent
feedback. In this example, the decision support model, shown in figure 2.2, defines an Agent class that defines
an association to Action which in turn defines an Observation subclass. These classes (Agent and Observation)
satisfy the requirements for utilizing the Agent Status Panel.

2.6.2 Agent Session

Execution suites are provided to illustrate startup of agent sessions utilizing both the JESS and CLIPS inference
engine implementations.

Note: use of the JESS based agent engine will require installation of JESS (see chapter 7).

Agents

Example agents are provided to illustrate use of both the JESS and CLIPS based agent engines. Dependent
on which agent session is started the appropriate set of agent rules will be loaded. In either case, the example
agent will react to the creation of organization objects by posting an observation providing an organization size
classification (small, medium, or large). See Appendix C.5 for listings of both sets of agent rules.

2.7 System Development

Once a domain specific framework is created, specialized system development may begin. Typically, if definition
of an information domain is part of the overall system design then specialized applications should also be designed
in parallel to the domain model development. For highly specialized systems the end user applications will have a

34

2.7 System Development

significant impact on the required underlying information structure. Likewise, required decision support will also
have an impact and, therefore, agent logic design should begin early in the overall system design. However, even
the best formulated system design will require some iteration after development has begun. There will be cases
where information structure will have to change to accommodate system design changes. These structural changes
can have minimal impact on system development if the environment for building the underlying infrastructure is,
to high degree, automated. The tools provided in the TIRAC toolkit aid in the process of system development by
automating the building of the system infrastructure driven solely by the domain model design. Turn around time
for incorporating information structural changes is minimized allowing development to be focused on end user
applications and decision support.

Distributed system frameworks, while providing tremendous flexibility, tend to be complex in their underlying
infrastructure. While this complexity is typically hidden from the application user and developer, when problems
surface, finding the cause and solution can be difficult. To minimize the impact of these problems it is highly rec
ommended that a well defined test process and capability be developed and incorporated early in the development
process. Additionally, there are other principle guidelines that can help prevent particularly difficult problems
(e.g., performance and resource utilization, etc.) The following sections briefly outline some common guidelines
that may help reduce problems with respect to system development based on a TIRAC framework.

2.7.1 Model Design and Processing Guidelines

These general guidelines are suggestions that, if utilized, may reduce model processing and maintenance prob
lems. Refer to chapter 3 for specific information regarding model processing.

• Use packages (namespaces) to logically group model sub-domains. This helps to reduce the complexity of
the overall model and provides some additional flexibility in system deployment (separate object factory
generated for each model sub-domain).

• Use consistent naming conventions (e.g., lowercase “camel” style for attribute and association role names,
uppercase “camel” style for classes, etc.)

• Define enumerations only if absolutely required. Hard-coded enumerations limit model use.

• Limit read-only accessible attributes. Accessibility is a hard constraint which requires a system rebuild to
change.

• Avoid large enumerations. Large flat lists are generally best broken up into categories or taxonomies. They
can also be an indication that the type is a catch-all.

• Avoid cross package associations, or if required then define as uni-directional. This avoids possible cyclic
package dependencies and enables more effective domain reuse.

• Avoid multiple aggregate owners. May cause confusing results when an aggregation is destroyed where its
aggregate parts are also owned by another aggregation.

• Avoid class generalization links between sibling packages. This avoids possible cyclic package dependen
cies and enables more effective domain reuse.

• Avoid defining any class generalization links that define parent in nested package with respect to child. This
avoids possible cyclic package dependencies and enables more effective domain reuse.

• Avoid use of language (Java, CORBA IDL, CLIPS, etc.) specific keywords for any model elements or
features. Errors in compilation (IDL, Java) or agent engine initialization (agent load) may indicate keyword
name collisions.

• Run makereport.pl script on model XMI file. Make note of any errors reported and correct as required.

• Process model XMI to clean location (i.e., to a location that contains no other source code). Errors in Java
source compilation may result from old source code from a previous failed build.

35

Toolkit Usage

• Use sequence type “object” (i.e., use option setting -seq=object when executing model processing scripts).
This results in a system built using the servant sequence type supporting association management. Servant
association management is more robust than client association management especially in systems with
multiple client applications interacting together.

2.7.2 Application Programming Guidelines

These general programming guidelines address issues specific to the Object Management Layer (OML) program
mer’s interface. For details on the OML refer to chapter 4.

• Minimize the number of calls made to methods that require remote method invocations (POW.get, POW.post,
Template.getObject, etc.) Although the OML tries to limit remote calls internally, it is best to avoid calling
these methods unnecessarily.

• Set all attribute values prior to posting an object. This is especially true for read-only accessible attributes
(value can only be set at initial post). Setting attribute values after initial post will result in possibly unnec
essary remote method calls.

• Avoid calls to POW.getAssoc method unless required. This method is especially expensive on first access
since any objects referenced by the association end will be resolved to, resulting in possibly many remote
method calls. This call would be exactly the same as getting object references, through a call to POW.get,
and then resolving to each object (i.e., calling Template.getObject).

• Any POW instances passed to the POW.set method must have been previously posted (i.e., the object must
be instantiated prior to reference in an association role).

• Object deletion listeners should not attempt to get the object referenced in the deletion event (i.e., do not
call the Template.getObject method).

• Association role modification listeners should not attempt to get any objects referred to in the removed
object list of the event. These objects may have been deleted and attempts to get (resolve to) them will
result in exceptions.

• As a general rule it is best to avoid listening for association role modifications, instead, if possible, listen for
associated object instance creation and deletion (may require use of constraint-based subscription service,
see chapter 5).

• If a large number of instance based listeners are required consider using a class based listener instead.

2.7.3 System Deployment and Configuration Guidelines

These general guidelines are suggestions that, if utilized, may reduce problems encountered during system exe
cution.

• Run the name service on a host machine that is also running a Web server.	 Specify a location for the
name service Initial Object Reference (IOR) accessible through the Web server as a URL using the HTTP
protocol. This gives greater flexibility for distributing services and clients across a network. For example,
if the following IOR URL for the name service is specified in the JacORB properties file (see section 2.4.1),
then the name service should be started on the machine “webhost.com” with the IOR file located at the root
document directory for the Web server running on “webhost.com.” All client applications requiring access
to the system would need this JacORB properties file to obtain the initial reference to the name service
which, in turn, is used to obtain references to system services.

36

2.7 System Development

In jacorb.properties: ORBInitRef.NameService=http://webhost.com/NS_Ref

On webhost.com: java ... org.jacorb.naming.NameServer <web root>/NS_REF

• Distribute CPU-intensive client applications.	 If possible, do not execute an agent engine on the same
machine along with any other client applications, especially user interface clients. Ideally, an agent engine
should be isolated on a separate host machine.

• Use a database back-end for the object instance store. Compared with simple object serialization, databases
may perform better, utilize less resources, and scale better as information content increases.

• If using object serialization for persistence, isolate the domain services (persistence, subscription, factories)
to a separate host machine (i.e., do not execute client applications on the same machine hosting the domain
services).

37

38

Chapter 3 - Model Processing Tools

3.1 Introduction

A key capability provided by the TIRAC toolkit is the ability to process an object based information model to
produce a complete information management infrastructure. The Unified Modeling Language (UML) standard
[14] was chosen as the high-level language for describing object models within the context of the TIRAC frame
work. Additionally, the Extensible Markup Language (XML) and, in particular, the XML Metadata Interchange
(XMI)[11] for the UML meta-model (version 1.4)[14] was selected as the storage format for object model de
scriptions. The XMI-UML meta-model format is a standard that is supported by a number of modeling tools and,
therefore, allows for a significant amount of flexibility in the selection of supporting applications. Models devel
oped for use with the TIRAC toolkit must adhere to some additional modeling requirements. These requirements
are described in section 3.3.2. Model processing tools have been developed that produce various artifacts (code,
reports, etc.) utilizing the XMI-UML output. These tools make extensive use of a UML meta-model based parser
built using a parser generator provided by the NovoSoft Meta-Data Framework (NSMDF) [10].

3.2 Architecture Overview

3.2.1 UML Processor

The UMLProcessor abstract class provides basic functionality for processing UML models (XMI). It defines
production methods (implemented empty) that are invoked in a prescribed order, based on natural hierarchal and
associative relationships, during processing of a defined namespace. This class must be subclassed to satisfy
specific production requirements (overriding the defined empty production methods).

The order of production is defined as follows:

1. Process package (or model) namespace

(a) process package scoped enum datatypes (see process datatype)

(b) process package scoped struct datatypes (see process datatype)

(c) process package root classes (see process class)

(d) optionally process child (nested) packages (recursive)

(e) process associations

2. Process class

(a) process class scoped enum datatypes (see process datatype)

(b) process features (attributes, association roles)

(c) process inherited features

(d) process operations

(e) optionally process child (specializing) classes (recursive)

3. Process datatype

(a) process nested enum datatypes (structs only)

39

Model Processing Tools

(b) process features (enum values, struct fields)

This prescribed order (based on the model hierarchy), dictated by the UMLProcessor, enables specific producers
to easily create a consistent output structure.

Specialized producers should be defined to produce specific parts of a required artifact with a top-level producer
managing the complete production. The top-level producer typically instantiates sub-producers to handle process
ing of nested model elements (such as classes, datatypes etc.). The following sections illustrate this by describing
some of the implementations of the artifact production tools provided as part of the UML processing tools.

3.2.2 IDL Producer

The IDLProducer extends UMLProcessor to implement production management for the creation of CORBA
IDL [12, 13]. Figure 3.1 shows the class diagram comprising the complete IDL production. The IDLProducer
class implements basic functionality required to produce IDL interface definitions. The CoreIDLProducer class
extends this functionality by adding core specific production requirements, including the production of namespace
factory definitions (through the FactoryProducer). Additionally, the IDLUtility class provides specific utility
functions useful for generation of IDL.

UMLUtility

IDLUtility

TIRACIDLUtility TIRACIDLProducer

IDLProducer

UMLProcessor

DeclarationProducer DataTypeProducer

InterfaceProducer

FactoryProducer

Figure 3.1: IDL Production Class Diagram.

3.2.3 Java Producer

The JavaProducer extends UMLProcessor to implement production management for the creation of Java classes.
The JavaProducer class implements basic functionality required to produce Java classes and must be extended to
implement specialized requirements. Additionally, the JavaUtility class provides general utility functions useful
for output of Java class code.

Servant Producer

The ServantProducer is an example of a production that extends the JavaProducer. The ServantProducer im
plements specific functionality for the production of Java servant implementations of CORBA skeleton classes
produced by processing IDL. Figure 3.2 shows the class diagram comprising the complete servant production.
The ServantProducer specifically manages the production of servant and factory classes. The ServantClassPro
ducer, in turn, manages production of class member declarations, constructor, and get/set methods.

40

3.3 Using the Model Processing Tools

ServantProducer

JavaProducer

ServantUtility

JavaUtility

UMLUtility UMLProcessor

FactoryProducer

MemberProducer

ConstructorProducer

GetMethodProducer

SetMethodProducer

ServantClassProducer

Figure 3.2: Java Servant Production Class Diagram.

3.3 Using the Model Processing Tools

A set of tools is provided to process UML models (XMI) into specific artifacts. The provided tools generate
code for CORBA IDL, simple Java classes and types for localized implementations, and the servant and wrapper
classes for distributed implementations. Additional tools include producers for OML (Object Management Layer
- see chapter 4) class properties, as well as documentation (in LATEX [15, 9]).

3.3.1 Modeling Tools

A number of graphical modeling tools [7, 6, 8] are available that support the UML methodology with export
to XMI. The Poseidon for UML™ [7] modeler uses XMI as its native storage format. The XMI produced by
Poseidon may be used directly, with the notable exception that Poseidon does not yet support enumeration datatype
definition as defined by the UML 1.4 specification. Therefore, output from Poseidon must be transformed if any
enumerations are defined in the model. A transform to correct this problem is provided and also serves as a simple
example.

3.3.2 Modeling Requirements

This section outlines the additional modeling constraints imposed by the TIRAC toolkit on usage of the UML
meta-model as defined in the OMG Unified Modeling Language (UML) Specification Version 1.4 [14]. The
following is a checklist summarizing these additional modeling requirements.

41

Model Processing Tools

• Packages

–	 A Model element must be defined as the top-level container of all model elements.

–	 The Model element must define a name that matches the name of the XMI file (without its “.xmi”
suffix).

–	 Package elements must be defined with “namespace” Stereotype (for factory generation required for
packages with concrete classes/elements).

–	 Package element names must be unique (i.e., no packages defined in the model with duplicate names).

–	 Package elements must not define any cross-package class generalizations that would result in circular
dependence (i.e., traversal of compete inheritence path should never return to the same package).

–	 Referenced Package elements (defined in another model) must be defined with “reference” Stereotype.

• Classes and Datatypes

–	 Struct datatypes must be defined using DataType with “struct” Stereotype.

–	 Datatype elements may only be referenced within the scope (containing and/or inheriting) in which
they are defined.

–	 Class and DataType element names must be unique within the containing scope.

–	 Enumeration literal names must not duplicate any Class or DataType name defined within the con
taining scope.

–	 Referenced DataType and Class elements (defined in another model) must be defined with “reference”
Stereotype.

–	 DataType elements defining primitive types are restricted to types supported by the IDL to Java map
ping specification [13].

–	 DataType elements may not participate in any generalization (i.e., datatypes cannot extend or be
extended).

• Attributes

–	 All Attribute elements must be defined with ownerScope set to “instance.”

–	 All Attribute elements must be defined with changeability set to “changeable” or “frozen.”

–	 All Attribute element names are unique within the scope (self and inheriting) of a Class.

–	 Attribute elements defined using an Enumeration datatype must have an initialValue.

–	 Optionally defined “unitsOfMeasure” TaggedValue (with dataValue set to unit of measure - see sec
tion 3.3.2) for numeric typed attributes.

• Associations

–	 All Association elements must have at least one navigable end (isNavigable set to “true”).

–	 All Association elements must have a unique association name (i.e., no Association elements defined
in the model with duplicate names).

–	 All Association element role (AssociationEnd) names are unique within the scope (self and inheriting)
of a Class.

–	 For cross-domain uni-directional associations:

The navigability of the AssociationEnd with participant set to the referenced Class must be set *
to navigable (i.e., isNavigable set to “true”).

The navigability of the AssociationEnd with participant set to the referring Class must be set to
 *
non-navigable (i.e., isNavigable set to “false”).

42

3.3 Using the Model Processing Tools

The stereotype of the referenced Class (the participant at the navigable end) must be set to “ref*
erence.”

The package containing the referenced Class, as well as all containing packages, must also be
 *
included and stereotyped as “reference.”

• Operations

–	 Only Class elements may contain Operation definitions.

–	 All Operation elements must be defined with ownerScope set to “instance.”

–	 Operation implementation must be defined with “implementation” TaggedValue with dataValue set
to implementation definition.

Packages

Multiple packages may be defined in either model or package scope (packages may be nested). Any package that
contains concrete (non-abstract) classes must be stereotyped as a “namespace.” For each namespace a separate
factory will be generated by the code generation tools. It is through these factories that object instances are
constructed. Any classes defined outside of package scope will be managed by a generated “domain” namespace
(i.e., a factory will be generated for the domain object model to manage all non-packaged classes).

Classes

Classes may be defined as concrete or abstract. Classes may be stereotyped as “reference,” which will result in no
code generated for the class. However, references to the class will be generated (e.g., inheritance, associations,
etc.)

Attributes

All attributes must be instance scoped (i.e., no static or class scoped members are supported). All accessible
attributes must be visible externally (i.e., public). Attributes that are not visible externally will result in no gen
erated code exposing the attribute in the client interface (code will be generated supporting the attribute in the
object servant class only providing internal access with persistence). Attribute changeability may be set to either
“frozen” or “changeable.” If set to “frozen” then no public set accessor method will be generated (i.e., the attribute
is read-only).

The following primitive types are supported:

• string (unbounded character array)

• bool or boolean

• char (8 bit signed character)

• short, unsigned short (16 bit integer number)

• int, unsigned int (32 bit integer number)

• long, unsigned long (64 bit integer number)

• float (32 bit floating point number)

• double (64 bit floating point number)

43

Model Processing Tools

Numerical attributes (e.g., type short, int, long, float, or double) may be given a unit of measure by including
a tagged value with name “unitsOfMeasure”. Two units of measure may be specified using a colon to delimit
the pair. The first measure defined is assumed to be the internal storage unit of measure, where the second is
the default display unit of measure. Note that no code will be generated to support unit of measure conversion,
instead client-side support is provided by the OML (see chapter 4), which in-turn utilizes the generated properties
to identify and perform requisite conversions. The supported units of measure (supported tag value shown in
parentheses) include the following:

• displacement - millimeter (mm), centimeter (cm), meter (m), inch (in), foot (ft), yard (yd), kilometer (km),
mile (mi), nautical mile (nm)

•	 area - square millimeter (mm2), square centimeter (cm2), square meter (m2), square inch (in2), square foot
(ft2), square yard (yd2), square kilometer (km2), square mile (mi2), square nautical mile (nm2)

•	 volume - cubic millimeter (mm3), cubic centimeter (cm3), cubic meter (m3), cubic inch (in3), cubic foot
(ft3), cubic yard (yd3), liter (ltr), gallon (gal)

• speed - meters per second (m/s), feet per second (ft/s), kilometers per hour (km/hr), miles per hour (mi/hr),
knots

• weight - gram (gm), kilogram (kg), metric ton (mt), ounce (oz), pound (lb), ton

• time - date, millisecond (ms), second (s), minute (min), hour (hr)

• temperature - celsius (C), farenheit (F), kelvin (K), rankine (R)

• angle - degree (deg), latitude (lat), longitude (lon)

• rate - liter per hour (ltr/hr), gallon per hour (gal/hr), pint per hour (pt/hr), ounce per hour (oz/hr)

• usage - hours per day (hrs/day), minutes per day (mins/day), seconds per day (secs/day)

Associations

All associations between classes must be either a simple association or an aggregation. General composition is
not currently supported, however, the ability to define structured data types (structs) may be considered a kind of
composite relationship (i.e., an instance of a structured data type is a physical part of its owner and cannot exist
outside of the context of its owner). All associations must have at least one navigable end. Note that even for
uni-directional associations (i.e., associations with only one navigable end) roles will be defined for both ends.
Uni-directional associations that span model domains must be defined with the referenced end (participant class
stereotyped as “reference”) navigable. All associations and aggregations must have a unique association name
(within the scope of the complete domain) and all roles defined in the scope of a class must be unique.

Dependant on the sequence type selection specified in model processing, association (and aggregation) ends
may be managed by servant sequences. For the simple sequence type support. Basic array type management is
provided for the simple sequence type. Additionally, association management functionality is provided for the
object sequence type.

Operations

All operations must be instance scoped (i.e., no static or class scoped methods are supported). The operation
implementation is defined using a tagged value with the tag name set to “implementation.” The value specified
will be placed verbatim into the body of the implemented operation method. For complex operations it is highly
recommended that use of a “delegate” class be employed to contain the actual implementation as opposed to
including the code directly into the model.

44

3.3 Using the Model Processing Tools

3.3.3 Processing Tools

The following sections describe use of the model processing tools and some specific issues to be aware of. All
processing tools may be executed directly from their respective Java main class or through use of a Perl con
venience script. In either case, a summary of command line usage may be obtained through use of the -help
option. Use of the Perl script simplifies command line usage (e.g., no Java class path need be specified) and is
therefore recommended. For details on tool script command line usage and syntax please refer to the release notes
in Appendix A.9.

Model report generation

This tool produces a simple model report (in XML) that provides basic model structure and highlights model
problems. An XSL transform is provided to extract model problem reports and output to simple text. This
provides for a quick summary of modeling issues that require attention before subsequent model processing.

The Java main class for execution of the model report producer is ReportProducer (com.cdmtech.core.tool.
uml.model package). A Perl convenience script called makereport.pl is provided in <install dir>/scr/uml. The
following is an example use of this script:

-> perl <install dir>/scr/uml/makereport.pl exampleModel.xmi

This results in the creation of a file called exampleModel.xml (in the current directory), which contains the XML
report. Additionally, the makereport.pl script produces and displays a model summary (using an XSL transform)
if any model problems are detected.

The XSL transform, ModelReportSummary.xsl may be used to obtain a quick summary of model problems. The
makereport.pl script uses this transform to produce a model summary if any model problems are detected. For
example, using the transform.pl script provided in <install dir>/scr the following will produce the summary
output for the above example model report1:

-> perl <install dir>/scr/transform.pl �→
-xsl <install dir>/doc/xsd/ModelReportSummary.xsl exampleModel.xml

Additionally, the XSL transform, ModelReportToHTML.xsl is provided to produce an HTML report suitable for
display in a Web browser. For example:

-> perl <install dir>/scr/transform.pl �→

-xsl <install dir>/doc/xsd/ModelReportToHTML.xsl �→

-out exampleModel.html exampleModel.xml

Client interface library generation

The Java code used to build the client object interface library is produced by the client wrapper producer. The
code produced consists of classes that reflect the system domain model structure and wrap calls to the underlying
CORBA object interface methods. The CORBA client interfaces are produced by an IDL (Interface Definition
Language) compiler. The IDL in turn is produced by the IDL producer.

The Java main class used for executing the IDL producer is CoreIDLProducer (com.cdmtech.core.tool.uml.
idl package). The Java main class for execution of the client wrapper producer is WrapperProducer (com.
cdmtech.core.tool.uml.java.wrapper package). A Perl convenience script called makeclient.pl is provided in
<install dir>/scr/uml. This script calls the client wrapper producer, the IDL producer, and the IDL compiler to
generate Java source code. The script then compiles all the code, and packages the resulting Java bytecode into a
JAR file. The following is an example use of this script:

1The �→symbol at the end of a line indicates that the following line is a continuation (i.e., no carriage return).

45

Model Processing Tools

-> perl <install dir>/scr/uml/makeclient.pl exampleModel.xmi �→
-gen temp -out lib -seq=object

This results in the creation of the JAR file exampleModel_c.jar, which is placed in the lib directory. All generated
code is placed temporarily in the temp directory. The generated code is deleted after code compilation (unless the
-keep option is used).

Note: Notice the use of the -seq option. This option is used to indicate to the code producer which sequence type
management support, for association ends, is required in the generated code. In this case, the “object” value indi
cates that the sequence type supporting object association management is required. It is important that this option
value be specified for the servant class generation (described in the next section) as well. Additionally, selection
of the sequence type will also affect the configuration of client applications that use the Object Management Layer
(see chapter 4, section 4.3).

Servant class library generation

The Java code used to build the servant object class library is produced by the servant producer. The code produced
consists of classes that reflect the system domain model structure and implement object life-cycle management
behavior (i.e., creation, access, and modification). The CORBA servant skeleton classes (classes providing struc
ture but no implementation) are produced by an IDL (Interface Definition Language) compiler. The IDL in turn
is produced by the IDL producer.

As above, the Java main class used for executing the IDL producer is CoreIDLProducer (com.cdmtech.core.
tool.uml.idl package). The Java main class for execution of the servant producer is ServantProducer (com.
cdmtech.core.tool.uml.java.servant package). A Perl convenience script called makeserver.pl is provided in <in
stall dir>/scr/uml. This script calls the servant producer, the IDL producer, and the IDL compiler to generate Java
source code. The script then compiles all the code, and packages the resulting Java bytecode into a JAR file. The
following is an example use of this script:

-> perl <install dir>/scr/uml/makeserver.pl exampleModel.xmi �→
-gen temp -out lib -seq=object

This results in the creation of the JAR file exampleModel.jar which is placed in the lib directory. All generated
code is placed temporarily in the temp directory. The generated code is deleted after code compilation (unless the
-keep option is used).

Note: The value used for the -seq option is the same value specified for the client wrapper producer, as described
in the previous section.

Object management class property generation

The Object Management Layer (OML) requires additional information describing model structure and features.
This information is provided as Java properties in a structure reflecting the class hierarchy of the object model.
These class properties are produced by the OML class property producer.

The Java main class for execution of the class property producer is CoreOMLProducer (com.cdmtech.core.tool.
uml.oml package). A Perl convenience script called makeproperties.pl is provided in <install dir>/scr/uml. The
following is an example use of this script:

-> perl <install dir>/scr/uml/makeproperties.pl exampleModel.xmi �→
-out lib

This results in the creation of a file called exampleModel.properties (in the lib directory) which contains the
generated class properties.

46

3.3 Using the Model Processing Tools

COOL defclass generation

The CLIPS Object-Oriented Language (COOL) extensions requires definition of object classes. These object
classes are provided in the CLIPS COOL language syntax in the form of defclass constructs. These class defini
tions are produced by the COOL defclass producer.

The Java main class for execution of the COOL defclass producer is CoreCoolProducer (com.cdmtech.core.
tool.uml.cool package). A Perl convenience script called makecool.pl is provided in <install dir>/scr/uml. The
following is an example use of this script:

-> perl <install dir>/scr/uml/makecool.pl exampleModel.xmi -out kb

This results in the creation of a file called exampleModel.kbc (in the kb directory), which contains the COOL
defclass definitions.

File generation from templates

Application specific startup scripts and property files typically contain a significant amount of content that does
not require modification from general or default settings. Therefore, to simplify the creation of these files, a set of
template files - files that contain required content with “place-holder” tokens for content needing specific values
- are provided along with a Perl convenience script to process these template files into application specific files.
This Perl convenience script is called makefile.pl and is provided in the <install dir>/scr directory. The script
takes, as required input, the name of a template file and the name of an output file. If the template file is not
found at the specified path then it will be looked for in the <install dir>/scr/tpl directory. Subsequent arguments
define token/value (in the form of <token name>=<value>) pairs that will be used to replace “place-holders” in
the template file with the specified values. The following is an example use of this script:

-> perl <install dir>/scr/makefile.pl jacorb.properties.tpl �→

jacorb.properties nsref=file:/home/user/NS_Ref

This results in the creation of a file called jacorb.properties in the current directory with the token “nsref” replaced
with the value “file:/home/user/NS_Ref”.

Complete system generation

In addition to the scripts used for generation of specific system artifacts, a script is provided that will produce all
artifacts required for a complete system. This script is called makeall.pl and is located in <install dir>/scr/uml.
This script requires setting the environment variable PROJECT_HOME to point to a location containing project
sub-directories. Each project sub-directory must contain a sub-directory called “xmi.” The project domain model
XMI file must be placed within this sub-directory. If, for example, a project called “example” is defined with a
domain model XMI file called “exampleModel.xmi” then a sub-directory called “example” would be created in
the directory pointed to by PROJECT_HOME. The “xmi” directory within this “example” sub-directory would
contain the “exampleModel.xmi” file. The following then would be an example use of the makeall.pl script:

-> perl <install dir>/scr/uml/makeall.pl example

Artifacts produced by this script will be placed into the project sub-directory called “lib.”

47

48

Chapter 4 - Object Management Layer

4.1 Introduction

The Object Management Layer (OML) class library provides a decoupling presentation layer for accessing func
tionality to manage the life-cycle of objects. The layer provides functionality that wraps interaction with un
derlying information objects providing run-time discovery of object class structure and value type constraint.
Internally, this class structure is utilized to find and invoke the specific methods required to access and modify
object instances. Additionally, type information is obtained and utilized internally to constrain value input. From
the client application perspective, interaction with object instances is reduced to interaction with an interface that
uses simple strings with attribute value constraint and translation (to the specific, required data type) handled
internally. The benefits of utilizing the OML interface (as opposed to direct object interaction) are most apparent
when run-time input and output requirements dictate flexibility. Examples of applications requiring this flexibility
are user interfaces, as well as interfaces to external information sources where, in both cases, information input is
not strictly controlled. Additionally, the OML provides a presentation layer where information output can be more
easily tailored. Again, this is helpful when applied to user interfaces and interaction with external information
sources.

In addition to information object access and presentation, the OML provides functionality for the management
of interests, which is implemented internally and exposed to using applications through the standard Java event
model (listener registration with event method callbacks). In addition, support is provided for accessing multiple
object information sources (domains) simultaneously and transparently.

An object-oriented representation of information incurs a requirement for managing objects and their associations.
The OML is designed to simplify client application object management functionality through the use of run-time
information structure (meta-data) discovery and value presentation.

The specific functionality provided by the OML library is outlined as follows:

• Run-time discovery of class meta-data

– introspection through Java reflection

– supplemental meta-data through class properties

• Value presentation and constrained input

– string formatting and conversion based on value type

• Information discovery through ad-hoc query and interest notification

• Plugins for specialized management and information access requirements

– array type management

– association management

– struct type management

– numeric unit of measure conversion

• Server interface for accessing specialized information sources

– multiple interface implementations for simultaneous access to various sources

49

Object Management Layer

0...* 1
1

0...*
0...1

0...*

1...*

1

Template

POW

ClassProperties

ObjectServerAPI

ObjectFactory

Association EnumAttr NumAttr StructAttr

Aggregation BoolAttr

Attribute

Figure 4.1: The Object Management Layer Classes.

4.2 Architecture Overview

The design of the OML centers around the Template, Proxy Object Wrapper (POW), and Attribute classes. Under
lying functionality is provided by the ObjectFactory and various plugin classes supporting specialized information
source implementations. Figure 4.1 presents a class diagram showing these classes and their relationships.

4.2.1 Template

The Template class supports domain object class management by providing the following features:

• Class introspection through Java reflection and supplemental class properties

• Object construction and destruction

• Class based interest management

Object class introspection, provides the functionality required to expose object access and constrain value input
and presentation through the use of Java reflection and supplementary information provided through ClassProp
erties (utility class that manages additional class information through properties). Instances of the Template class
provide object class structural information and are utilized internally for the management of object instances.
Template instances may also be viewed as producers of Proxy Object Wrappers (POW).

4.2.2 POW

The Proxy Object Wrapper (POW) class supports object instance management by providing the following fea
tures:

• Object creation and deletion

• Queued object interactions

• Constrained object instance interaction

• Attribute values passed as strings with type constraint enforced

50

4.2 Architecture Overview

• Instance based interest management

Utilizing Template instances, POW instances may be created to manage instances of specific classes defined by the
Template. Interaction with values, through POW instances will be constrained by Attribute instances managed by
the Template. Additionally, object value modifications are queued with proxy object method invocation initiated
by a post operation. Queued values may be cleared (reset to previous state) without proxy object interaction.

4.2.3 Attribute

The Attribute class (and subclasses) provides attribute value management through use of the following features:

• Type introspection

• Set/get accessor discovery and invocation

• Data type to string and string to data type conversion

• Specialized plugin classes may be used to override provided classes

Attribute instances utilize ClassProperties (provided by Template) to obtain type information for subsequent
access and input validation. Specialized classes may be provided (as plugins) to handle specific access/constraint
requirements. Some classes are provided for common requirements, and are outlined below:

•	 NumAttr - support for numeric attributes with optional unit of measure (provides unit of measure conversion
functionality).

•	 EnumAttr - support for attributes constrained to a limited set of enumerated values.

•	 BoolAttr - extends EnumAttr for specialized boolean value constraint (constrained to two values).

•	 StructAttr - complex struct type support utilizing Template to manage struct fields.

•	 Association - simple association management (assumes management handled by object proxy/servant).

•	 Aggregation - extends Association to provide support for more constrained relationship (implied owner
ship).

•	 ManagedAssociation - extends Association by adding association management (required for simple object
servant implementations that do not provide association management).

•	 ManagedAggregation - extends ManagedAssociation to provide support for more constrained relationship
(implied ownership).

4.2.4 Object Factory

The ObjectFactory class provides an Application Programmer Interface (API) to specialized object server APIs
(plugins). This class is implemented as a singleton (only one instance is created) to maintain object server APIs
(associated to specialized object domains/models) and to provide methods for interaction with specific, appropri
ate object servers. Based on an information class’ containment within a domain (or model), the specific object
server API is selected by the ObjectFactory.

51

Object Management Layer

4.2.5 Object Server API

The ObjectServerAPI is an interface that defines standard functionality that must be provided by implementing
server API classes. The functions described by this interface include the following:

• Information object discovery (query)

• Information object retrieval (resolve)

• Information object destruction

• Interest management (addition/removal)

4.2.6 Class Properties

In addition to class reflection, information required to manage instances, their attributes and associations, is pro
vided through the use of properties. The additional information provided includes:

• Class/Type meta-information

– constructor parameter list (ordered attribute names as expected by full constructor)

– name of attribute defined as object key (class only)

– name of parent class (class only)

• Attribute meta-information

– attribute type (must correspond to type with defined attribute manager plugin - see Appendix B.5)

– default (or initial) value

– allowed values

– display values (corresponding to allowed values)

– derived attribute? (attribute not included in constructor, but read accessible)

– hidden attribute? (attribute not normally accessible)

– unit(s) of measure (numeric only)

– association name (association only)

– associated class name (association only)

– attribute mapping defined using subset of OCL (Object Constraint Language) (mapped attribute only)

4.3 Configuration

Client applications that utilize the OML must supply a properties file to tailor the OML for use with specific
domains. This properties file is loaded as part of the OML initialization process and is specified through the
com.cdmtech.core.properties system property (defined on the Java runtime command line using the -D option).
The property file is defined by name only and will be loaded as a system resource, which is assumed to be
located somewhere in the Java class search path (specified using the Java runtime command line option -cp). The
properties used by the OML are described in detail in Appendix B.5.

4.4 Using the Object Management Layer

The following sections provide an introduction to programmatic use of the OML. Details on available methods
and their function can be found in the API documentation (JavaDoc).

52

file:core/om/index.html

4.4 Using the Object Management Layer

Fuel
fuelType: eFuelType={GAS, DIESEL}

Asset SupplyEntity

Environment Track
speed: float (km/hr)
affiliation: eAffiliation={FRIEND,HOSTILE}

referenceName: string

Object

Physical

location: Position
validated: boolean

latitude: double

Position

longitude: double

Platform

platformType: ePlatformType={CAR,TANK,SHIP,AIRCRAFT}

View

places occupants

<<struct>>

platformFuel

assets owner consumer supplies

objects

platform

view

0...* 0...*

0...* 0...*0...1

0...1

0...1

0...*0...1

0...1

Figure 4.2: Example Object Model.

4.4.1 Object Interaction

The POW class adds generic functionality to the object model classes to aid in object manipulation. To illustrate,
consider the example model in figure 4.2 and the following code statements:

POW myTank = Template.getTemplate("Platform").createObject();

myTank.set("referenceName", "my tank");

myTank.set("platformType", "TANK");

POW myFuel = Template.getTemplate("Fuel").createObject();

myFuel.set("referenceName", "my diesel fuel");

myFuel.set("fuelType", "DIESEL");

It should be noted that object creation and attribute modification transactions are queued locally and will not be
reflected in the object server instance store until a call is made to the POW post method. However, calls to object
delete are not queued and will result in immediate object deletion. For example, the method call myTank.post()
results in the creation of the myTank object with all attribute values passed in as arguments to the Platform object
constructor. Any subsequent calls to the POW instance set methods will result in calls to the proxy object set
methods (with the next call to the post method).

The Template class implements functionality to support attribute constraints and validation. Additionally, it con
tains support for class constructor and access (set and get) method determination through runtime class reflection
and properties. A Template instance is created for each class, as required, with each class represented through the
defined hierarchy. The associated Attribute class and its subclasses provide constraints on attribute values. One
of the benefits incurred through the use of the POW is the fact that all attribute values are entered and obtained
as strings. The constraint on attribute values is handled internal to the Attribute classes. The benefit, from a user
interface point of view, is that specialized attribute value management becomes unnecessary or at least highly
simplified since only strings need be dealt with. As an example, consider the following code statements:

myFuel.set("fuelType", "DIESEL");

myTank.set("speed", speed.toStore("40 mi/hr"));

53

Object Management Layer

myFuel.set("fuelType", "WATER");

myTank.set("speed", "incredibly slow");

The first two statements result in successfully setting the indicated attribute values. The first sets the enumeration
attribute fuelType to “DIESEL” which is a valid value contained in the enumerated value set (defined in the object
model). The second sets the numerical attribute speed to 40 miles per hour and is internally converted to the store
unit of measure (kilometers per hour) by the Attribute subclass NumAttr. The third and fourth statements result
in exceptions thrown, because neither are valid values for those particular attributes.

Association Interaction

The management of object associations is a particularly important aspect of any system requiring interaction
with complex information representation. The OML framework allows for the inclusion of plugins to support
specialized value management requirements. As implemented, associations are exposed through their object class
roles, and, as such, are simply treated as specialized attributes. Several plugins are provided that implement, to
varying degrees, the additional functionality required to manage associations (see section 4.2.3). To illustrate
typical interaction with object association roles consider the following code statements:

myTank.add("platformFuel", myFuel);

myTank.remove("platformFuel", myFuel);

The first statement adds an object (myFuel) to the association whose role is platformFuel. In this case, the object
model defines this attribute as an aggregation. The myFuel object’s role for this association (in this case platform)
is updated to now include a reference to the platform object (in this case myTank). Finally, the last statement
removes this newly added association (object references are removed from both ends of the association).

It should be noted that object creation and attribute modification transactions are queued locally and will not be
reflected in the object server instance store until a call is made to the POW post method (note, however, that calls
to the object delete, as well as any object modifications resulting from the deletion, are not queued). For example,
the method call myTank.post() results in the creation of the myTank object with all attribute values passed in as
arguments to the Tank object constructor. Any subsequent calls to the POW instance accessor methods will result
in calls to the proxy object accessor methods (with the next call to the post method). The using class does not
need to be concerned about these details since this object management behavior is provided by the OML classes.

Finally, the method call myTank.delete() results in the deletion of the myTank object. If the myTank object is
associated to a fuel object (e.g., myFuel) then the fuel object will also be deleted. This behavior is dictated by the
stronger link implied by the aggregate relationship between the Platform and Fuel objects.

4.4.2 Object Query

The POW class provides methods for querying for references to objects that satisfy a particular object state pattern.
This capability is accessed through temporary POW instances whose attribute and association role values are set
to reflect the desired object pattern match criteria. Constraints may be set as values passed in a form expected by
the attribute or association role datatype in which case the value constraint will be treated as an equality condition.
Additionally, dependent on the attribute type, condition test operators may also be used. Condition operators are
passed as symbols prepended to the input value. Note that value condition operators are only supported on single
valued attributes and association ends whose datatype is either a primitive, string, or enumeration type. The
supported test condition operators are the following:

= Equals

!= Not equals

54

4.4 Using the Object Management Layer

The following operators are only supported for attribute value criteria where string values are tested lexicograph
ically (see Java String.compareTo method) and enumeration values are tested positionally.

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

For example, to find all “hostile,” moving Platform objects that are owned by an Entity object called “enemy” the
following query operations could be used:

Template entity = Template.getTemplate("Entity");

POW tmp = entity.getObject(null);

tmp.set("referenceName", "enemy");

POW enemy = entity.getObject(tmp.query()[0]);

Template platform = Template.getTemplate("Platform");

Attribute speed = platform.getAttr("speed");

tmp = platform.getObject(null);

tmp.set("owner", enemy);

tmp.set("affiliation", "HOSTILE");

tmp.set("speed", speed.toStore(">0"));

Object[] platforms = tmp.query();

The POW query method returns an array of object keys that may, in turn, be used to obtain POW instances through
use of the Template getObject method as shown.

4.4.3 Object Interests

The POW and Template classes also include methods for managing both instance and class based interests. The
implementation of these methods follows the design pattern specified by the Java event model. Specifically,
instances of the POW and Template classes are event producers and contain methods defined for registering
listeners (instances of classes that implement an appropriate listener interface). When the POW and/or Template
instance fires an event, methods defined by the listener interface are invoked passing in the event as an argument.
Subscriptions (interest criteria linked to client application) registered with the object server are managed internally
through calls to these listener registration methods. For example, take a component that is interested in the creation
and deletion of Track objects. This component would implement the ObjectListener interface and the methods
objectCreated and objectDeleted. The component would then register itself as a listener with the following code
statements:

Template.getTemplate("Track").addObjectCreateListener(this);

Template.getTemplate("Track").addObjectDeleteListener(this);

Internally, these method calls will add subscriptions through the object server API, linking an interest in Track
object creations and deletions to the client application. Subsequent creations and deletions of Track objects in
the object server will result in a notification to the client with the firing of the appropriate event to the registered
listener (i.e., the method objectCreated or objectDeleted will be called on the listener) passing in an event object.
In this case, the event object defines methods that can be used to obtain the object identifier and class name for
the object that has either been created or deleted.

55

Object Management Layer

4.4.4 Object Server Interfaces

A generic interface is provided in the OML framework to support client interaction with object servers. Each
implementation of an object server interface may provide access to servers based on different architectures. The
only requirements are that object interaction take place through client-side instance methods, client-side classes
adhere to a prescribed pattern, and interest notification be event based. Object server interfaces are tied to unique
domains (class namespaces).

Objects that are remotely serviced by an object server provide for a distributed, collaborative framework, how
ever, the use of purely local objects (i.e., objects that are not maintained outside of the local client application
environment) provides additional flexibility. Examples include objects whose characteristics are all derived (e.g.,
facades/views), objects that implement behavior alone (e.g., private agents), or client-side user-interface objects
(i.e., objects that interact directly with client-side functionality). By providing an object server interface to local
objects, interaction with these objects may take place through the same client interface (i.e., the OML). Addition
ally, the classes that model these objects may be defined and implemented utilizing the same tools provided in the
TIRAC toolkit - supporting code and property generation.

Both the POW and Template classes make use of the ObjectFactory class, which provides the client access entry-
point to the object server interfaces. With each domain associated with a single server interface, the ObjectFactory
can determine which server interface to use through class identification within a domain. Therefore, interaction
with objects and classes (through POW and Template instances) is handled transparently without any direct do
main specification by the client application. The association of domains to object server interfaces are specified
as properties (see Appendix B.5).

4.4.5 Attribute Value Management

The Attribute class and its subclasses (Association, Aggregation, etc.) provide specialized management func
tionality for various attribute types. Additional management classes may be added by extending the appropriate
Attribute subclass. These additional classes may be used to replace or add to existing management classes.

4.4.6 XML Import and Export

The OML also provides the capability to import and export instances to XML. The schema for the XML file can
be generated from the domain model XMI file. The two classes that provide the import and export capability are
XMLToPOWImport and POWToXMLExport. To export instances to XML the following steps must be followed:

• XMLExportInterface exporter = AbstractXMLExport.getInstance(schemaFile);

where schemaFile is the generated schema from the domain XMI.

•	 exporter.exportObjects(objects);

where objects can be an array of POW’s or objectKey values.

The current export capability supports exporting only the given list of objects. Associated objects are not exported
automatically.

Optionally, only a subset of attributes can be exported as follows:

•	 exporter.exportObjects(objects, attrList)
where attrList is a string array containing the attributes for the given object class to export and objects is an
array of objects to export (either keys or pows).

Likewise, to import instances from a previously exported XML document:

56

4.4 Using the Object Management Layer

• XMLImportInterface importer = AbstractXMLImport.getInstance(schemaFile);

where schemaFile is the generated schema from the domain XMI.

• importer.importObjects(xmlDocument);

where xmlDocument is the xml Document object.

The specific import or export classes to use can be specified in the following properties if using other than the
default classes (see Appendix B.5).

<domain>.importClassName=<import class name>

<domain>.exportClassName=<export class name>

4.4.7 Example Code

Basic object operations

• Create objects.

POW track = Template.getTemplate("Platform").createObject();

POW fuel = Template.getTemplate("Fuel").createObject();

POW timbuktu = Template.getTemplate("Environment").createObject();

• Set the referenceName attribute and post object (results in an instantiation). Note that in this example
referenceName is a non-unique displayable name, the unique id was generated internally.

timbuktu.set("referenceName", "timbuktu");

timbuktu.post();

• Set the referenceName for the track object.

track.set("referenceName", "track");

• Get the attribute manager for the speed attribute defined in the object model Track class. Note that there is
no requirement that classes must have been defined in the same package.

Attribute speed = Template.getTemplate("Track").getAttr("speed");

• Set more attribute values for the track object. Note that the location attribute is defined in the object model
as using a complex datatype (i.e., struct), and may be set by either supplying a string of tab delimited values
in the order defined by the model, setting individual fields, or using a Position instance.

track.set("affiliation", "HOSTILE");

track.set("validated", "TRUE");

track.set("location", "35\t-121");

track.set("location.latitude", "40");

POW location = Template.getTemplate("Position").createObject();

location.set("longitude", "-100")

track.set("location", location);

• Set the speed attribute using the attribute manager to convert from a unit of measure to the expected internal
storage format.

track.set("speed", speed.toStore("100 mi/hr"));

• Link a place to the track object.

57

Object Management Layer

track.add("places", timbuktu);

• Add fuel (this time an aggregation as defined in the object model).

track.add("platformFuel", fuel);

• Post the object (results in an instantiation), print it, and then delete it. The deletion of the track object will
also result in its fuel being deleted and its link to the place being removed.

track.post();

track.print();

track.delete();

• Query for some objects with constraints. In this example, find Platform objects contained in “testview” that
are “HOSTILE” and moving faster than 50 miles per hour.

POW view = Template.getTemplate("View").getObject("testview");

POW tmp = Template.getTemplate("Platform").getObject(null);

tmp.set("view", view);

tmp.set("affiliation", "HOSTILE");

tmp.set("speed", speed.toStore(">50 mi/hr"));

Objects[] objs = tmp.query();

Listener registration for simple interests

• Register creation interest on Track class (notification will be sent if any object of this class is created).

ObjectListener listener = new MyObjectListener();

Template.getTemplate("Track").addObjectCreateListener(listener);

• Register modification interest on track object speed attribute (notification will be sent only if the attribute
value is modified on this specific object).

ObjectModificationListener listener = new MyModificationListener();

track.addObjectModificationListener("speed", listener);

Listener registration for complex interests1

• Register a complex subscription.

Note: This is supported only with the constraint-based subscription service (see chapter 5).

• Create interest on track object speed attribute with value greater than 50. Create the criteria using classes
defined in the event constraint model (see figure 5.1). For object-based interests, use the actual objectKey
instead of null as the second argument to the EventCriteria class.

EventCriteria criteria =

new EventCriteria("Track", null, true, eEventType.MODIFY);

criteria.addConstraint(

new FieldConstraint("speed", eOpType.GREATER_THAN,

new Float(50.0)));

• Register the interest. For object-based interests, register directly with the proxy object wrapper.

ObjectModificationListener listener = new MyModificationListener();

Template.getTemplate("Track").addListener(criteria, listener);

1Requires constraint-based subscription service and installation of the Java Expert System Shell (JESS), see Appendix A.5.

58

Chapter 5 - Subscription Service

5.1 Introduction

There are currently two Subscription Service implementations: the simple Subscription Service and the constraint-
based Subscription Service1. Both implementations provide a publish and subscribe capability for domain object
events. Subscriptions can be class-based (creation, modification, and deletion), object-based (modification and
deletion) or attribute-based (modification). The constraint-based Subscription Service extends the basic capa
bilities of the simple Subscription Service by also allowing subscriptions that are constrained to very specific
conditions, such as an attribute modification which is within a particular value range of interest.

As domain objects are created, modified, and/or deleted, corresponding object events are published with the Sub
scription Service by the domain object factories. In turn, the Subscription Service determines which subscribers,
if any, need to be notified of the object event(s) and then notifies each subscriber.

5.2 Implementation

The Subscription Service is implemented as one of the core base services, with one Subscription Service per
object model domain. Each object model domain can be configured to use a different Subscription Service im
plementation. However, all factories of a given object model domain will use the same Subscription Service.
Likewise, clients interact with a specific Subscription Service when registering interests in objects of a particular
object model domain.

Each Subscription Service has a single dispatch thread and multiple notifier threads, one per subscriber. As domain
object events occur, the events are published by the object factories and queued by the Subscription Service. The
Subscription Service dispatch thread then determines which subscriptions are satisfied by each published event
and dispatches satisfied events to the event queue of the notifier threads for the relevant subscribers. The simple
Subscription Service uses a set of subscription maps to efficiently determine which subscribers to notify. In the
case of the constraint-based Subscription Service, object events are filtered through an inference engine to make
this determination.

The subscriber’s notifier thread then processes all queued events by sending notifications to the subscriber. On the
client side, these notifications are queued as they are received until the client processes them.

If any event notification fails, the service will retry sending the notification based on the property EventRetry. If
a given event notification fails after the configured number of retires, the service will drop the event notification
for the particular subscriber. If communication with a subscriber fails, the service will attempt to re-establish
communication for a maximum number of retries as configured by property SubscriberRetry. If the service
determines that a subscriber no longer exists (e.g., a client application terminates without cleaning up its registered
subscriptions), then service will clear all of the subscriber’s subscriptions and free up any associated resources.
See Appendix B.2 for more information.

5.2.1 Event and Constraint Models

The event model (shown in figure 5.1) illustrates the set of classes used to subscribe to and publish object events.
The EventCriteria class represents a single subscription (or interest) by a single listener (or client). Instances of
EventCriteria are created by a client and used to register an interest with the service in a particular type of object
event.

1Requires installation of the Java Expert System Shell (JESS), see Appendix A.5.

59

Subscription Service

IS_EQUAL

eOpType

NOT_IS_EQUAL
LESS_THAN
LESS_THAN_EQUAL
GREATER_THAN
GREATER_THAN_EQUAL
IS_NULL
NOT_IS_NULL
IS_EMPTY

CONTAINS
NOT_IS_EMPTY

AND_OP

eLogicalOp

OR_OP

fieldName: string

FieldConstraint

value: Object
opType: eOpType = IS_EQUAL

CREATE
DELETE

eEventType

MODIFY

Constraint

negated: boolean = false

Criteria

className: string

logicalOp: eLogicalOp = AND_OP
includeSubclasses: boolean

EventCriteria

objectKey: string
eventType: eEventType

eventID: string

Event

objectKey: string
className: string
eventType: eEventType

EventAttribute

attrName: string
newValue: Object
oldValue: Object

<<enum>>

<<enum>>

<<enum>>

constraints

0...*

criteria

1

0...*

attributes

Figure 5.1: Event and Constraint Model.

Object model domain factories create instances of the Event class to represent a single object event. In the case
of object modifications, the Event instance will also contain the EventAttribute instance(s), which contain the
old and new values for the modified attribute(s). The Event instances are then published by a factory with its
appropriate Subscription Service.

The Subscription Service determines which clients to notify of which published events by checking for satisfied
EventCriteria. Notifications sent by the service and received by the client include the EventCriteria and the
Event(s), which satisfied the criteria. If the received Event is a modification (eventType = MODIFY), then the
client can extract the old and new attribute values directly from the EventAttribute without having to interrogate
the object itself (see section 5.2.3).

A common constraint model (shown in figure 5.1) was developed for registering subscriptions with the constraint-
based Subscription Service as well as for performing queries with the Persistence Service. This constraint model,
together with the event model, define all the classes necessary for registering subscriptions and publishing object
events with the Subscription Service.

The simple Subscription Service makes uses of the FieldConstraint class to indicate modification interests in
specific attributes. The constraint-based Subscription Service extends the simple Subscription Service, providing
additional support for constraint-based subscriptions.

5.2.2 Specifying Attribute Constraints

The constraint-based Subscription Service supports specification of a single attribute constraint. This is done by
adding one or more FieldConstraint instances to an EventCriteria instance.

For example, consider a Track class with an attribute speed. An interest can be specified to receive all modification
events for a Track object whose speed is greater than 50. The user would first create an EventCriteria instance
with className = "Track" and eventType = MODIFY. Then a FieldConstraint instance with fieldName ="speed",
opType = GREATER_THAN, and value = 50 would be added to the constraints of the EventCriteria instance.
The user would then use this EventCriteria to register an interest in Track.speed modifications with a value over
50. All modifications to the speed attribute will be received as long as the speed is greater than 50. If the speed

60

5.3 Configuration

goes below 50, an event whose valid flag is set to false will be received. Further changes to the attribute value, as
long as it is less than 50, will not be received.

The supported constraints for the various attribute types are as follows:

1. For numeric attributes the supported constraint opTypes are LESS_THAN, LESS_THAN_EQUAL, IS_
EQUAL, NOT_IS_EQUAL, GREATER_THAN, and GREATER_THAN_EQUAL.

2. For enumeration and boolean type attributes the supported constraint opTypes are IS_EQUAL, and NOT_
IS_EQUAL.

3. For associations and aggregations the supported constraint opType is CONTAINS.

4. For array type attributes the supported constraint opTypes are CONTAINS, IS_EMPTY, and NOT_IS_
EMPTY.

5. There is no support for specifying constraints on struct type attributes except general modifications.

6. For all other attributes such as strings etc., the supported constraint opTypes are IS_EQUAL, NOT_IS_
EQUAL, IS_NULL, NOT_IS_NULL, IS_EMPTY and NOT_IS_EMPTY.

7. General attribute modification interests can be registered by setting the opType to IS_UNDEFINED for a
given attribute.

5.2.3 Old and New Values

As indicated previously, both implementations of the Subscription Service provide accurate old and new attribute
value information. These values are made available via the EventAttributes associated with a particular object
modification event. In the case of array type attributes (including associations), the old value will contain any
values removed from the array while the new value will contain any values added to the array. Again, these values
can be used directly as a performance enhancement, rather than having to interrogate the object itself.

5.2.4 Event Ordering

Events are normally received and dispatched in the same order that events are produced in the object model
domain. This order can be modified by configuring the queue type for the Subscription Client (see property
orderPolicy, section B.2).

5.3 Configuration

5.3.1 Server Properties

Both the simple and constraint-based Subscription Servers can be configured to customize runtime behavior.
Configuration is done via properties provided to the server during initialization (refer to Appendix B.3 for a
complete list of properties).

5.3.2 Client Properties

Each client can define a set of properties that affect the runtime behavior of the Subscription Server for the
particular client.

Note: These properties are specified in the client properties file and passed along to the Subscription Server (refer
to Appendix B.2 for a complete list of properties).

61

62

Chapter 6 - Persistence Layer

6.1 Introduction

The Persistence Layer provides the capabilities for saving, restoring, updating, deleting, and querying for Java
objects. The Persistence Layer is a general purpose utility and is completely independent of the core components.
The Persistence Service, on the other hand, is dependent upon the Persistence Layer, and uses the Persistence
Layer capabilities to save, restore, update and delete servant objects, and perform queries.

Additionally, there are archiving tools included with the Persistence Layer component. These tools allow for the
creation and restoration of archive files with respect to a set of persistence domains. The archiving capability is
described in the Archiving Capability section (6.5).

6.2 Architecture Overview

The central feature of the Persistence Layer object model (figure 6.1) is the Persistence interface. This inter
face declares the public API for all of the major capabilities of the Persistence Layer. There are currently two
implementations of this interface: SerialPersistence and JDBCPersistence.

6.2.1 SerialPersistence

SerialPersistence is the default implementation of the Persistence interface provided by the Persistence Layer.
This implementation uses serialized object files as its back-end object instance storage. Java objects are stored
in a format independent of any particular object class version. They are instead stored as a set of DataTransfer
objects and their associated Attribute objects (see figure 6.1). Thus, classes can be recompiled without losing the
ability to restore previously stored Java object instances (assuming the “persistence signature” of the object class
has not changed).

This implementation is low maintenance and requires minimal configuration (typically, no configuration is re
quired.) The drawbacks with the SerialPersistence implementation include high memory utilization and slow
query performance. These drawbacks become more pronounced as the number of object instances increases. This
implementation is a good choice for average use patterns with a relatively small set of objects (approximately a
few thousand). However, it is not recommended for use in production level systems where large instance sets will
be used.

The primary limitation with SerialPersistence is that all persistence operations require objects to reside in memory.
By default, SerialPersistence maintains an object cache of unlimited size and all objects are kept in memory.
The more objects that are saved to persistence storage, the larger the cache grows and the more memory that is
required by SerialPersistence. However, SerialPersistence can be configured with a maximum object cache size,
which helps to reduce memory utilization at the expense of having to read objects back into memory from disk as
needed. See Appendix B.4 for more information.

6.2.2 JDBCPersistence

JDBCPersistence is another implementation of the Persistence interface provided with the Persistence Layer. This
implementation, as the name implies, uses a database via JDBC for back-end object instance storage. It can, in
principle, use any relational database that has a valid JDBC 1.0 driver (JDBCPersistence only uses features of the
JDBC 1.0 API.) It can also use ODBC data sources via a JDBC-ODBC bridge driver. JDBCPersistence has been

63

Persistence Layer

Persistence

fieldName: String
className: String

fieldType: String
fieldValue: Object

Attribute

attributes

0..*

SerialPersistence JDBCPersistence

retrieve(String oid): DataTransfer
save(DataTransfer dto): String

update(String oid, Attribute attr): boolean
delete(String oid): boolean
queryForIDs(Criteria query): String[]

timeStamp: long

DataTransfer

className: String
parentNames: String[]

ObjectID

1

oid

implements

Figure 6.1: The Persistence Layer Classes.

tested with the MySQL database using the MySQL Connector/J JDBC driver, the Microsoft SQL Server database
using the jTDS JDBC driver, and also with the Microsoft Access database using the JDBC-ODBC bridge driver
distributed with the Sun Java Development Kit (JDK). Other databases should work, but have not been specifically
tested for compatibility.

Unlike SerialPersistence, this implementation requires some configuration and database maintenance (see section
6.3). The advantage of using JDBCPersistence over SerialPersistence is the ability to work with very large instance
sets (limited only by disk space where the database is installed) and a more efficient query capability. Both of
these advantages are realized by JDBCPersistence primarily because objects are stored only in the database and
are not kept in memory (as is the case with SerialPersistence.) The disadvantage with the current JDBCPersistence
implementation is that, depending on the object model, database and configuration options used, it can be slower
than SerialPersistence for certain operations (such as object deletions.)

6.3 Configuration

As mentioned above, there may be some configuration required in order to use the Persistence Layer in your
operating environment. Configuration is done primarily through properties (see Appendix B.4). However, when
using the JDBCPersistence implementation, some minimal database administration is required as well.

6.3.1 Database Administration

When using the JDBCPersistence implementation of the Persistence interface, there may be some database ad
ministration required. In particular, the Persistence Layer will not create a new database or ODBC data source.
As a result, these must be established prior to using the Persistence Layer via JDBC. Since the mechanisms for

64

6.4 Using the Persistence Layer

database creation vary, database specific documentation should be consulted. It may also be necessary to config
ure the database and JDBC driver to implement particular security requirements. Refer to the appropriate database
and JDBC driver documentation for security configuration details.

6.4 Using the Persistence Layer

The following are example use-case scenarios for using the Persistence Layer with the core base services. The first
scenario is the simplest and illustrates the use of SerialPersistence. The second and third scenarios demonstrate
the use of JDBCPersistence. All scenarios assume that the core_persist and core_server components have already
been installed, and that the <domain>_server.properties have been generated for each project domain. Also, for
the JDBC based use-cases, it is assumed that the desired database server has already been installed and configured.

6.4.1 Using SerialPersistence

You can optionally modify <domain>_server.properties (or just core_persist.properties in the case of a single
domain) to change the storage location or behavior. However, the defaults should work in most situations. Start
the Name Server and then the core base services and domain factories for each project domain using the generated
StartServer_<domain> script(s). Typically, no additional configuration is required unless the persistence location
or the object cache management behavior needs to change. Creation of objects can be verified by performing
queries on the object set or by looking in the subdirectories of the top-level storage location directory.

6.4.2 Using JDBCPersistence

Using the JDBC based persistence implementation is slightly more involved than using the serial based persis
tence.

Using the MySQL Database and the MySQL Connector/J JDBC Driver

1. Copy the MySQL Connector/J jar file to the lib directory of the core installation folder or other desired loca
tion. The MySQL database and Connector/J JDBC driver are available for download from www.mysql.com.

2. Extend the classpath for each set of domain services. This can be accomplished by modifying the <do-
main>_server.properties file(s) or StartServer_<domain> script(s) for each project domain to include the
MySQL Connector/J jar file in the classpath. See Appendix B.4 for details on which properties to modify.

3. Create a new MySQL database for each project domain. This is most easily accomplished as follows:

• Start the mysql client application.

• Enter the command CREATE DATABASE <database>; where <database> is the name of the database.

• Configure the security permissions for this database if necessary (refer to the MySQL user manual).

• Exit the mysql client application.

4. Modify <domain>_server.properties file(s) for each project domain as follows:

• Set the persistence type equal to jdbc or set com.cdmtech.core.util.persist.jdbc.JDBCPersistence as
the Persistence implementation class.

• Set com.mysql.jdbc.Driver as the JDBC driver implementation class.

65

http://www.mysql.com

Persistence Layer

• Set jdbc:mysql://<hostname>/<database> as the JDBC URL where <hostname> is the host where
the MySQL server is running (this can be set to localhost for the local machine) and <database> is
the name of the database created in step 3. Depending on security requirements, a user and password
may need to be added to the URL definition. Refer to the MySQL and MySQL Connector/J user
manuals for more on security permissions configuration.

• Make sure that the domain services classpath is extended as described above (if done via properties)

Start the core base services and domain factories for all project domains using the StartServer_<domain> script(s),
and the Persistence Layer should successfully initialize using the specified MySQL database(s). If any exceptions
are thrown during initialization, it is probably due to an incorrect value for the URL property, or forgetting to in
clude the JDBC driver jar file as a part of the extended classpath. Creation of objects can be verified by performing
queries on the object set or by using the mysql client application and entering the commands USE <database>;
followed by SELECT COUNT(*) FROM OBJECT_CLASS;.

Using the Microsoft Access Database and the JDBC-ODBC Bridge Driver

The Microsoft Access database is nearly ubiquitous on the Microsoft Windows platform. If Microsoft Office is
installed on your Windows machine, then you probably also have the Microsoft Access database. Configuration of
the Persistence Layer to make use of a Microsoft Access database is actually easier than configuration for use with
a MySQL database. However, establishing an ODBC data source is a bit more involved than simply creating a
new database. The steps that follow assume that Access and ODBC has been installed on your Windows machine.

1. Create a new ODBC data source. This is typically done using the the ODBC Data Source Administrator as
follows:

• Open the ODBC Data Sources control applet found in the Control Panel.

• Select the User DSN tab.

• Select MS Access Database from the list of data sources.

• Click the Add button.

• Select Microsoft Access Driver (*.mdb) from the driver list.

• Click the Finish button.

• Enter a name and optionally a description for the new data source.

• Click the Create button.

• Provide a database name, select where to put the database and then click OK. A new empty Access
database should have been created.

• Exit the ODBC Data Source Administrator.

2. Modify <domain>_server.properties for each project domain as follows:

• Set the persistence type equal to jdbc or set com.cdmtech.core.util.persist.jdbc.JDBCPersistence as
the persistence implementation class.

• Set sun.jdbc.odbc.JdbcOdbcDriver as the JDBC driver implementation class.

• Set jdbc:odbc:<ODBC data source> as the JDBC URL where <ODBC data source> is the name of
the ODBC data source created in step 1.

Start the core base services and domain factories for all project domains using the StartServer_<domain> script(s),
and the Persistence Layer should successfully initialize using the specified ODBC data source (which in turn is
configured to use the new Access database.) If any exceptions are thrown during initialization, it is probably due
to specifying an incorrect ODBC data source name in the URL property. Creation of objects can be verified by
performing queries on the object set or by using the tools that come with the Access database.

66

6.5 Archiving Capability

6.5 Archiving Capability

There are two primary functions provided by the archiving capability (archiver): creation and restoration of
archives. An archive is created by retrieving one or more sets of domain objects from persistence and saving
them to an archive file. An archive is restored by retrieving one or more sets of domain objects from an archive
file and saving them to persistence. The archiving tools available with the Persistence Layer component take the
form of two stand-alone applications (one command line based and one GUI based) and support classes and inter
faces. The main archiver API is located in the com.cdmtech.core.util.persist.archive package. The GUI specific
archiver API is located in the com.cdmtech.core.util.persist.archive.gui package.

6.5.1 The Archive Abstraction

Both the create and restore archive capabilities operate over a set of persistence instances (one per domain) and
require a physical archive file. Managing this relationship can become quite complex. The ArchiveAdapter
class helps to simplify this complex archive abstraction. It does so by creating and maintaining a logical archive
abstraction as an association between a physical archive file and a set of persistence instances. Each persistence
instance is configured as required for a specific object model domain (as previously described). Persistence
instances are added to or removed from the set managed by the ArchiveAdapter, referenced by the domain name.

6.5.2 Configuration

The API of the archiving capability allows for flexible control over the use of the archiver tools. The archiving
capability can be configured and reconfigured programatically during runtime to accommodate a variety of use
cases. However, the most common use case may be to simply provide a set of non-changing configuration proper
ties as part of the standard core.properties file. Ultimately, the purpose of configuring the archiver tool is to create
and maintain the archive abstraction that is managed by the ArchiveAdapter.

Properties

The set of properties used by the archiver tools primarily define the set of domains and the persistence config
uration for each domain (as described previously.) When using the PropertiesFactory, PersistenceFactory or
ArchiveFactory utility classes, the only difference is that each set of persistence properties is prefixed by the
domain name. For example, for the domain “MyDomain,” the persistence property core.persist.serial.location
would become MyDomain.core.persist.serial.location. Again, this change to the persistence property names is
only required when using the Factory utility classes. This is the situation for the use case where the properties are
included as part of the core.properties file.

6.5.3 Archive File Structure

The current archive file structure takes the form of a Java Archive (JAR) file. This representation makes it easy
to include pertinent archive information as part of the archive file within the JAR’s manifest. Use of JAR files
provides a standard format which is widely accepted and will enable future enhancements such as secure signing.

The JAR file manifest contains attributes and entries specific to the archive. These attributes include the original
archive file name, the creation timestamp, and the archive tag value (if provided at the time of archive creation.)
There is also one entry per domain, which includes domain specific attributes. These attributes and entries are
used during archive restoration to verify that a selected archive file is a valid archive.

67

Persistence Layer

6.5.4 Archive Creation

The first of the primary archiving tool capabilities is the creation of archives. This involves first creating and
configuring an ArchiveAdapter for a desired set of domains, and then initiating archive creation. Archive creation
is initiated on the ArchiveAdapter by calling createArchive. When archive creation is initiated, if a file already
exists with the name provided, then the existing file is backed up (renamed) first. This behavior is configurable via
the ArchiveAdapter. If a tag value was specified for the ArchiveAdapter, then the new archive will be “tagged”
with that value. If a tag value is not provided, then the new archive will be “un-tagged.” Finally, the set of objects
for each configured persistence domain is retrieved from persistence and saved to the specified archive (JAR) file.
See section 6.5.3 for more details.

6.5.5 Archive Restoration

The second of the primary archiving tool capabilities is the restoration of archives. This also involves first creating
and configuring an ArchiveAdapter for a desired set of domains, and then initiating archive restoration. Archive
restoration is initiated on the ArchiveAdapter by calling restoreArchive. The specified archive file is first verified
as a valid archive. If a tag value was specified for the ArchiveAdapter, then the archive must be tagged with the
same tag value (case insensitive). If a tag value was not specified for the ArchiveAdapter, then tag comparison is
not performed.

After the archive is successfully verified and tags match (if specified), the archive will be restored. The set of
objects for each configured persistence domain will be read from the archive (JAR) file and saved to persistence. If
the archiver tool is configured for domains not contained in the archive, then those domains are ignored. Likewise,
if the archive contains domains that are not currently configured for the archiver tool, then those domains will also
be ignored. Only domains which are both configured for the archiver tool and are contained in the archive will be
restored.

6.5.6 Archiver Application

The command line (non-GUI) stand-alone application is implemented by the Archiver class. This application
accepts a number of options that affect the configuration of the archiving capability. With no command line
options, the core.properties file must contain all of the configuration parameters and the default archive file is
archive.jar. In order to cause an archive to be created or restored, the -c or -r option must be provided, respectively.
The command line options for the Archiver application are:

•	 -f file name - specify the archive file name to use for create or restore (for restore, the file must exist). If not
specified, the default archive file name will be archive.jar.

•	 -p file name - specify a properties file to load for archiver configuration in addition to any existing core.
properties. If not set, only the current core.properties will be used for configuration.

•	 -t tag value - specify the archive tag value (optional). If not specified, the archive will be created “un
tagged”. For restore, the archive’s tag (if it exists) will not be used for verification.

•	 -c - indicate to create a new archive.

•	 -r - indicate to restore an existing archive.

•	 -v - indicates more detailed output during create or restore, and to output the archive report afterward
(default is false).

68

6.5 Archiving Capability

6.5.7 ArchiverGUI Application

The GUI stand-alone application is implemented by the ArchiverGUI class. This application accepts a num
ber of options which affect the configuration of the archiving capability. With no command line options, the
core.properties file must contain all of the configuration parameters. The command line options for the Archiver-
GUI application are:

•	 -p file name - specify a properties file to load for archiver configuration in addition to any existing core.
properties. If not set, only the current core.properties will be used for configuration.

•	 -f file name - specify the initial archive file name. If not set, there will be no initial archive file name. It will
have to be provided via the file chooser dialog.

•	 -t tag value - specify the initial archive tag value. If not set, there will be no initial archive tag value. It will
have to be provided via the tag text field.

•	 -w - specify to use the windows look and feel. If not specified, then the default look and feel is used.

The ArchiverGUI application simply provides an application frame GUI component for the ArchiverPanel. From
the ArchiverPanel, the user can set the archive tag value, choose to Open an archive... or Save an archive... and
view archiver log messages.

Open Archive

When the user chooses to Open an archive... the Open Archive ArchiveFileChooser dialog is opened, allowing
the user to select an existing archive file. If the user provided a tag value, then only those archive files with
matching tags (case insensitive) will be viewable. The user can also choose to view all files in the current directory
by changing the Files of type combo box setting to All Files. After selecting an archive file, the user can choose to
open (restore) the archive by clicking on the Open button. Alternatively, the user may cancel the Open operation
by clicking on the Cancel button.

Save Archive

When the user chooses to Save an archive... the Save Archive ArchiveFileChooser dialog is opened, allowing the
user to select an existing file or enter a new file name. After providing an archive file name, the user can choose
to save (create) the archive by clicking on the Save button. Alternatively, the user may cancel the Save operation
by clicking on the Cancel button.

6.5.8 Configuration Utility

A configuration utility is included with the archiving tools to assist in the creation of the archiver properties and
start-up scripts for the archiver applications. This utility is in the form of a Perl script named archiver_config.pl.
It is located in the scr/archiver directory of the core installation folder.

The parameters to this script are a project name followed by one or more domain names. For example, if con
figuring the archiver on a Windows machine for a project named “MyProject” with domains “MyDomain1”,
“MyDomain2,” and “MyDomain3” the configuration utility would be invoked as:

<installation directory>\scr\archiver\archiver_config.pl MyProject MyDomain1 MyDomain2 MyDomain3

This will produce three files in the current working directory: MyProject_archiver.properties, MyProject_Start
Archiver.bat, and MyProject_StartArchiverGUI.bat. The default properties generated will configure the archiver
tools to use serial persistence for each project domain. The properties file may need to be modified if the default
properties are not appropriate for your project.

69

70

Chapter 7 - JESS Agent Engine

7.1 Introduction

The JESS[1, 2] based agent engine1 provides a complete environment to start and manage a JESS based agent
session. It provides an automated mechanism for representation and management of information within the JESS
environment reflective of the underlying information object state. This chapter describes, in detail, how to install,
configure, and run a JESS based agent engine.

7.2 Architecture Overview

The JESS based agent engine is comprised of several key pieces that provide the required functionality:

•	 an Agent Session Manager to manage the overall agent session. It manages the tasks relating to starting,
pausing, resuming, stopping and ending the agent session.

•	 an Agent Manager to initialize agents and process any agent activations.

•	 a SemanticNet Manager to manage object based events, mainly involved with mapping events to/from the
inference engine.

The Agent Session Manager manages the overall working of the agent session. During each cycle of operation it
allows both the Agent Manager and SemanticNet Manager to process any agent based and object based events,
respectively. The SemanticNet Manager establishes and manages subscriptions for a given agent session. It
queues and processes any object events and maps them to the JESS inference engine. The Agent Manager cycles
through all the agent modules and processes any agent activations. It queues and processes any JESS events and
maps them to equivalent object events.

7.3 Configuration

The following sections outline the steps that should be followed to setup and run the JESS based agent engine.
Refer to Appendix B.6 for specific definitions of the properties used to configure an agent session.

7.3.1 Generate Batch and Property Files

Template files can be used along with a provided Perl script (makefile.pl) to generate the batch and properties
files needed to run a JESS agent engine for a given project. Two batch files - one to run the agent engine in
INITIALIZE mode and the other in NORMAL mode and one properties file must be generated.

• Generate a startup batch file to start the agent engine in INITIALIZE and NORMAL mode.

1Requires installation of the Java Expert System Shell (JESS), see Appendix A.11.

71

JESS Agent Engine

<install dir>/scr/makefile.pl�→
JessAgentSessionInit.bat.tpl JessAgentSessionInit.bat�→
project=projectName domain=<comma delimited list of domains>

<install dir>/scr/makefile.pl�→
JessAgentSession.bat.tpl JessAgentSession.bat�→
project=projectName domain=<comma-delimited list of domains>

• Generate a properties file using the template properties file that is used by the agent engine.

<install dir>/scr/makefile.pl�→
JessAgentSession.properties.tpl ./lib/JessAgentSession.properties�→
project=<projectName> outputDirectory=<directory>�→
agentsLoadFile=<your agent load file>�→
agentInterestsFileName=<interests file to generate interests>

• The specified command line properties are key properties that are required to start an agent engine. Other
optional properties, such as Agent class name, Container class name, and so on can also be specified in the
properties file. View the generated properties file to set some of these optional properties.

7.3.2 Agent Session Modes

The JESS based agent engine can be started in three possible modes, namely INITIALIZE, NORMAL, and
DEBUG.

• INITIALIZE Mode: In this mode of operation the agent engine pre-processes all the agent rules to generate
an interests and an attributes file. The interests file is generated by processing all the LHS patterns for
the agent rules defined in the load file. The attributes file is generated by processing all defqueries and
defrules.

• NORMAL Mode: This is the mode that should commonly be used to start the JESS based agent engine. If
the interests and attributes files previously generated are specified in the agent engine properties file, they
are used during the initialization process.

• DEBUG Mode: In this mode, the JESS agent engine generates a JessAEDebug.xls file containing informa
tion, such as all the facts asserted into the system, the rules that were activated, and/or fired and the facts
that caused the activation/firing.

For better performance and memory utilization, the JESS based agent engine should first be run in the INI
TIALIZE mode to generate the interests and attributes profile. Generating the attributes profile limits the JESS
deftemplates to only contain the minimum class definitions that are necessary for the agent rules. This not only
lowers the memory footprint but also reduces the number of network calls that are necessary during initialization
and whenever a new object is created.

INITIALIZE Mode

The JESS based Agent Engine must first run in the INITIALIZE mode in order to generate agent engine specific
data to improve performance. Each time changes are made to the agent rules, this step must be executed to ensure
that the data files generated in this step are current. To generate the JESS based agent engine specific data files
the following steps must be followed:

1. Create a JESS load file (e.g., agents.load) and load all the “kb” files defining agent logic in this file.

72

7.4 Writing JESS Agents

2. Ensure the following properties are set in the agent engine properties file generated in a previous step:

a) core.client.agentLoadFile=<agent load file name created in step 1>

b) core.client.interestsFile=<interests file name (gets generated in this step)>

c) AgentSession.includeAttributeFileName=<attributes file name (gets generated in this step)>

d) AgentSession.outputDirectory=<directory name (where the two output files above are saved)>

3. Use the generated startup batch file for running the agent engine in the INITIALIZE mode.

4.	 This should result in the creation of two files - the interests file and attributes file specified in steps (b) and (c)
in the directory specified in step (d).

NORMAL Mode

The same property file used in the previous section can be used to run the agent engine in NORMAL mode. This
mode should be set when running an agent session (agents loaded and active). Verify that the following property
is set:

• AgentSession.currentMode=NORMAL

7.3.3 Subscriptions

The JESS based agent engine relies on event notification to map information to JESS instances. There are two
possible ways in which interests can be registered: dynamically by processing agent rules at runtime or statically
through the use of an interests file. For dynamic subscriptions, as new constructs are added and removed, the
Subscription Manager retrieves class and attribute information by parsing the left hand side patterns and registers
(or unregisters) interests on behalf of the agent engine. For static interests, an interests file for a given set of agent
rules, can be generated by running the JESS agent engine in INITIALIZE mode. In this mode, all agent rules
are pre-processed to generate an interests file. During normal operation of the agent Engine, the interests file is
used to initialize subscriptions. The following properties are used to affect the subscription behavior of the agent
engine:

• core.client.interestsFile=<agent interests file>

• AgentSession.outputDirectory=<location of interests file>

• AgentSession.useDynamicSubscription=true | false

7.4 Writing JESS Agents

7.4.1 Information Representation

The JESS based agent engine adheres to certain conventions to represent the information within the inference
engine:

• For each domain class (including subclasses) used by the agent rules an equivalent JESS defclass definition
is generated.

• Each domain class definition further defines all fields utilized by the agent rules using the following con
vention:

73

JESS Agent Engine

–	 All simple attributes are represented as a SLOT, with the data type set to the equivalent JESS type
such as RU.INTEGER, RU.STRING, RU.FLOAT and RU.LONG. All numeric types of short and
byte are assumed to be of type RU.INTEGER. All numeric types of double are assumed to be of type
RU.FLOAT.

–	 All single-valued enumeration type attributes are represented as SLOT, with data type set to JESS type
RU.ATOM.

–	 All single-valued struct type attributes are represented as SLOT, with data type set to JESS type RU.
STRING.

–	 All associations with a multiplicity of one are represented as SLOT, with data type set to JESS type
RU.STRING whereas all associations with multiplicity greater than one are represented as MULTI
SLOT, with data type set to JESS type RU.LIST.

–	 All array type attributes are represented as MULTISLOT, with data type set to JESS type RU.LIST. In
addition, the specific list value defines the data type of individual elements in that list.

• Each domain class further defines an additional slot called “OBJECT,” which contains a reference to the
POW (Proxy Wrapper Object, see chapter 4) object, a slot called “class,” which contains the actual (trun
cated - without the prefix com.cdmtech.core.client.corba) class name for the java object, a slot called
“name,” which is a unique name (normally the objectKey for all domain classes or a unique identifier
for all struct classes)

• Each struct class further defines an additional slot called “_owner,” which holds the unique identifier of the
owning instance.

Attributes file

The JESS agent engine simplifies the generation of defclass definitions further by making use of an attributes
file (if one is available), which contains only a subset of domain classes (and subclasses) and attributes that are
of importance to the agent logic. This not only reduces the memory footprint but also reduces time spent in
initializing and updating definstances (and/or facts). An attributes file can be generated automatically by first
running the agent engine in the INITIALIZE mode. In this mode of operation, agent logic is pre-processed to
generate an attributes file containing all classes and attributes being used within the agent rules. This file is later
used in NORMAL mode, to generate defclass definitions. The format for the generated attributes file is similar
to the interests file above. Every attribute in a given class that is being used, is written on a single line as follows:

className:attributeName

where className is the domain class name and attributeName is the attribute that is being used.

The following properties must be specified to generate and use an attributes file:

AgentSession.usePartialTemplates=true

AgentSession.includeAttributeFileName=<attributes file name>

AgentSession.outputDirectory=<directory to save (or read) the attributes file (optional property)>

7.4.2 Information Management

The JESS agent engine manages the filtering of the pertinent information that is processed by the inference engine
by establishing clearly defined subscriptions based on the agent logic. The specific subscriptions for a given agent
session can be provided via an interests file. This file like the attributes file described in the previous section,
can be automatically generated by running the JESS agent engine in INITIALIZE mode. The next subsection
provides a brief description of the format for this file.

74

7.4 Writing JESS Agents

Description of interests file

The agent engine uses an interests file (if one is available) to initialize subscriptions for a given agent session. This
limits the information that is processed by the underlying inference engine to only that which is of importance to
the agent rules. An interests file can be automatically generated by first running the agent engine in INITIALIZE
mode. The following example interests file using the sample object model (see chapter 4, figure 4.2) is only
provided as a sample. A single subscription must be specified on a line. For each class specified creation and
deletion interests are registered. Attribute modification subscriptions are specified by the classname followed by
the attribute name delimited by the “:“.

CLASS:Physical

CLASS:Environment

CLASS:View

Physical:location

Track:affiliation

Object:referenceName

View:objects

Platform:platformType

Platform:platformFuel

7.4.3 JESS User functions

This section provides an overview of the JESS functions that are included with the JESS agent engine.

Interaction with definstances

The JESS based agent engine provides convenience user functions to assist in the assertion, deletion, and modi
fication of JESS definstances. The use of these functions is mandatory, owing to the fact that the TIRAC toolkit
does not follow the standard “java bean” component model. All arguments enclosed in square braces are optional
and + is used for one or more argument values.

• make-instance

To create a JESS definstance for a given class, the following user function must be used. It servers the dual

purpose of not only persisting an instance of the given Java class, setting all the given attribute values via

the proxy object wrapper (POW), but also asserting the equivalent JESS definstance to the knowledge base

Usage:

(make-instance <className> [(<attributeName> <attributeValue>)]+)

Examples:

(bind ?tank (make-instance Track (speed 50.0) (referenceName “tank”)))

(make-instance Entity (referenceName “blue unit”) (asset ?tank))

The function supports the usage of most slot value types and bound variables at this time. Once a fact is

bound, as shown in the first example, it can be modified at a later time on the JESS command line or on

the right hand side of a rule by using the “modify” userfunction included in the original JESS distribution.

When a new definstance is asserted, all associated struct values are also asserted as associated definstances

in JESS.

75

JESS Agent Engine

•	 delete-instance

Retracts the definstance and clears the associated java object from the object instance store and cleans up

all composite facts (i.e. structs) :

Usage:

(delete-instance <FACT>)

•	 get

Retrieves the value for an attribute <attrName> directly from the java instance <POW>

Usage:

(get <POW> <attrName>)

•	 set

Sets the value for an attribute <attrName> of a java instance <POW> to <attrValue>

Usage:

(set <POW> <attrName> <attrValue>)

•	 send

Usage:

(send <FACT> <functionName>)

where <functionName> can be one of print, delete, update-slot, get-, add-assoc, remove-assoc

Examples:

(send <FACT> print)

Pretty print the <FACT> using print-fact

(send <FACT> delete)

Deletes the <FACT> using delete-instance user function.

(send <FACT> update-slot <slotName> <slotValue>)

Updates the slot using modify deffunction

(send <FACT> get-slotName)

Returns the slot value for the given <slotName> for the given <FACT>.

(send <FACT> add-assoc <slotName> <FACT>)

Adds the second <FACT> to the first <FACT> association role name suing add-assoc deffunction.

(send <FACT> remove-assoc <assocName> <FACT>)

Removes the second <FACT> from the first <FACT> association role name given by <assocName> using

remove-assoc deffunction.

Utility functions

The following utility functions are automatically included and available for use:

•	 class-instances

Prints a list of all the java objects (i.e., <POW> proxy object wrapper objects) existing locally.

Usage:

(class-instances <className>)

where <className> is an existing class name in the object model.

•	 instances

Returns a list of all java objects (i.e., <POW> proxy object wrapper objects). Optionally, if a list of class

names is provided as argument, only objects belonging to those classes is returned.

Usage:

(instances [<class name>+])

(instances)

76

7.4 Writing JESS Agents

(instances Track)

(instances (create$ Track Asset))

•	 save-snor

Writes the given <FACT> to <fileName> in SNOR format. Use restore-snor to restore the <FACT> in
future.

Usage:

(save-snor <FACT> <fileName>)

•	 restore-snor

Restores any objects stored in the given SNOR <fileName> and asserts definstances for each object that is
restored.

Usage:

(restore-snor <fileName>)

•	 print

Pretty prints the fact whose <fact-id> is provided as a two column list of slot name and value pairs. If a list
of <slotName> (s) is provided then only those slot name/value pairs are printed

Usage:
(print <fact-id> [<slot name>+])

(print 2)

(print 2 ?slotName)

(print 2 $?slotNames)

•	 print-fact

Pretty prints the given <FACT> as a two column list comprising of slot name and value pairs. If a list of
slot names is provided then only those slot name/value pairs are printed

Usage:
(print-fact <FACT> [<slot name>+])

(print-fact <FACT>)

(print-fact <FACT> ?slotName)

(print-fact <FACT> $?slotNames)

•	 add-assoc

Associates then second <FACT> to the first <FACT> association role <slotName>.

Usage:
(add-assoc <FACT> <slotName> <FACT>)

•	 remove-assoc

Dis-associates the second <FACT> from the first <FACT> association role <slotName>

Usage:
(remove-assoc <FACT> <slotName> <FACT>)

•	 add-value

Usage:

(add-value <FACT> <slotName> <newValue>)

Adds the <newValue> to the given <FACT> attribute array list represented by the <slotName> if it is not
already present in the array list.

77

JESS Agent Engine

•	 remove-value

Usage:

(remove-value <FACT> <slotName> <oldValue>)

Removes the given <oldValue> from the slot attribute <slotName> array list, if it exists, from the give
<FACT>.

•	 add-struct

Usage:

(add-struct <FACT> <slotName> <FACT>)

Adds the second struct <FACT> to the first owner <FACT> struct role represented by <slotName> whose
multiplicity is greater than 1.

•	 remove-struct

Usage:

(remove-struct <FACT> <slotName> <FACT>)

Removes the second struct <FACT> from the first owner <FACT> struct role represented by <slotName>,
whose multiplicity is greater than 1.

•	 update-struct

Usage:

(add-struct <FACT> <slotName> <structFieldName> <structFieldValue>)

Updates the given <structFieldName> slot for the corresponding struct fact whose struct role is specified
by <slotName> (multiplicity 1), for the owner fact <FACT> to the new value, <structFieldValue>.

•	 get-slot-value

Returns the current slot value for the attribute <slotName> from the java object <POW>. This function can
be used to retrieve the current slot value, especially if the fact slot value has not been updated, which is
quite possible if no interests have been registered for the particular class and/or attribute modifications.
(get-slot-value <POW> <slotName>)

•	 fact-for-key

Returns the <FACT> for the given <objectKey> or nil, if it cannot be found. Now uses the defquery defined
in CoreUtil.kbf file, which needs to be included in the load file. Instead use the deffunction get-fact-for-key
defined in the file CoreUtil.kbf.

Usage:

(fact-for-key <objectKey>)

•	 isKind

Returns true if the <childClass> is a sub-class of the <parentClass>.

Usage:
(isKind <parentClass> <childClass>)

•	 get-facts

Returns the list of facts in the knowledge base. Optionally a list of class names can be provided as arguments

in which case, only returns facts for those classes.

Usage:

(get-facts [<className>+])

(get-facts Track)

(get-facts (create$ Track Asset))

78

7.5 Running an Agent Session

•	 is-assoc

Returns true if the given <slotName> is an association role name in the given <className>.

Usage:

(is-assoc <className> <slotName>)

•	 is-writable

Returns true if the given <slotName> has write access in the given <className>.

Usage:

(is-writable <className> <slotName>)

•	 get-struct-for-name

Returns a struct fact for the given <uniqueName> it if it can be found or nil otherwise.

(get-struct-for-name <uniqueName>)

•	 get-structs-for-owner

Returns a list of struct facts for the given owner unique <objectKey> if any can be found or an empty list

otherwise.

(get-structs-for-owner <objectKey>)

Optional User Functions

Optional math and geo-spatial user functions available are defined in two different packages:

• Math functions such as sin, cos etc.	 are defined in com.cdmtech.core.client.aml.jess.javaFunctions.Jess-
MathFunctions.

• GeoNavigational functions (e.g., distance between two points etc.) are defined in com.cdmtech.core.client.
aml.jess.javaFunctions.GeoNavigationFunctions.

To load these functions into JESS, add the following lines to your load file.

(load-package com.cdmtech.core.client.aml.Jess.javaFunctions.JessMathFunctions)

(load-package com.cdmtech.core.client.aml.Jess.javaFunctions.GeoNavigationFunctions)

7.5 Running an Agent Session

Follow the steps enumerated in section 7.3 to generate batch and properties files. Then follow the steps below to
start a JESS based agent session:

• Create the following directory PROJECT_HOME/kb/jess and put your kb files in this directory where all
project specific files reside in PROJECT_HOME.

• Create an agents.load file in this directory and include your “kb” files and other JESS commands for
initializing the JESS environment in this file. To load files without providing an absolute path, place files
in a directory called “jess” and include the path up to but not including the “jess” directory in the classpath
being used to start the JESS based agent engine.

• Edit your agent engine properties file to set the following property (if not already done).

core.client.agentLoadFile=<agent load file name>

79

JESS Agent Engine

• Generate an interests and attributes file by running the agent engine in the INITIALIZE mode. Make sure
the following properties are specified in your agent engine properties file.

core.client.interestsFile=<interests file name>

AgentSession.includeAttributeFileName=<attributes file name>

AgentSession.outputDirectory=<directory where these files are to be generated>

AgentSession.useDynamicSubscription=false

AgentSession.usePartialTemplates=true

• Start the naming server, base services, and domain factories before starting the JESS agent engine.

–	 Use the generated batch file JessAgentSession.bat or InteractiveJessAgentSession.bat to start the
agent engine in NORMAL mode. The InteractiveJessAgentSession.bat file starts the agent engine in
interactive mode allowing runtime interaction with the inference engine.

• If necessary an optional container can be used to attach the agent session to a particular container. If using
a container object, edit the following properties in the agent session properties file:

core.client.containerClassName=<container class name>

core.client.containerObjectName=<specific container object name>

core.client.collectionRoleName=< collectionRoleName >

The container object name need not be the objectKey but can be a display value. In which case, the following

class property must be defined for the container class defined in the above property:

<containerClassName>.class.disAttrName=<valid display attribute name>

For example:

Container.class.disAttrName=containerName

The agent engine provides additional management if the above properties are specified. Only those exter
nal objects associated to the specified Container object are loaded into the inference engine. All objects
created by the agent engine are automatically associated with the specified Container. Further, if either
core.client.removeCollectablesAtStartup or core.client.removeCollectablesAtShutdown are set to “true”
then the agent engine performs cleanup operations at startup and shutdown.

7.6 Debug Utility

In order to debug agent rules, a simple debug utility is available. All events such as object creations, modifications,
and deletions that were propagated to the inference engine, all fact assertions, retractions, modifications, and what
objects triggered what rules can be recorded to an output file. To enable recording of these events, the following
property must be set to true:

AgentSession.debugMode=true

Data is recorded in a tab-delimited format and can be viewed easily using any spreadsheet software such as Excel.

The default file name to which data is recorded is JessAEDebug.xls. This can be changed by setting yet another
property:

AgentSession.debugLogFile=<filename>

The values that are tabulated are: LogType, Index, ModuleName, RuleName, ClassName, ObjectKey, Attribute
Name, New Value, Old Value and Remarks.

• LogType - the logType is a descriptive string that describes the event. For JESS events it can be: FACT
ASSERTED, FACT RETRACTED, FACT MODIFIED, DEFINSTANCE ASSERTED, DEFINSTANCE
RETRACTED, DEFINSTANCE MODFIED, ACTIVATION, DEACTIVATION and FIRED. For Java based
events it can: CREATION, DELETION and MODIFICATION.

80

7.7 Examples

• Index – denotes the number of logs for the given LogType. Usually this is 0. But for “ACTIVATION”,
“DEACTIVATION” etc multiple logs are recorded. For example for “ACTIVATION” log, all matches for
the LHS patterns are also logged.

• ModuleName – the module name.

• RuleName – the Defrule name if any.

• ClassName – the Class name for the Fact or Java Object being recorded.

• ObjectKey – the unique object key if any for the Fact or Java Object.

• AttrName – the attribute name for modification type events.

• NewValue – the new value for the attribute for modification type events.

• OldValue – the old value for the attribute if any for modification type events.

• Remarks – Not currently used.

For each Activation, Deactivation, and Rule Firing, all the facts that match the corresponding action are logged to
the file, with their current values.

7.7 Examples

7.7.1 Attribute Types

The following examples provide some insight on handling the various simple and complex attributes such as
structs, enumerations, associations (and aggregations), and arrays. All examples are written using the example
domain model in Figure 4.2.

1. Simple Attributes - comprise of string and numeric attribute types. All string and character types are defined
as JESS type RU.STRING, boolean as RU.ATOM and numeric types are defined as the JESS equivalent type
- all short, byte, and integer as RU.INTEGER, all float and double as RU.FLOAT, and long as RU.LONG.

(a) Numeric - to test a Track’s speed is greater than 50

(Track (speed ?speed &: (> ?speed 50.))

(b) Boolean - to test for validated attribute being set to TRUE

(Physical (validated TRUE))

(c) String - to test that referenceName is not equal to “blue”

(Object (referenceName ?name ~”blue”))

2. Enumeration - single valued enumeration types are defined as JESS RU.ATOM type. To pattern match (or
define a condition) on particular affiliation type on the Track class:

(a) Single-valued enumeration

(Track (affiliation FRIEND | NEUTRAL))

(b) Multi-valued enumeration

(TestClass (enums $?enums &: (member$ FRIEND $?enums))

3. Struct - single valued struct types are handled similar to association (and aggregation) types. All composite
classes are represented as defclasses and an “owner” slot defines the owning instance. In addition the
owning instance contains a reference (a unique identifier) for each composite relation. In the case of multi
valued structs, the owning instance contains a list of string values representing the unique keys of the
composite objects (i.e. structs)

81

JESS Agent Engine

(a) Single-valued struct

(Track (location ?locKey))

(Position (name ?locKey) (latitude ?lat) (longitude ?lon))

(b) Multi-valued structs

(Track (locationHistory $?locHist) (name ?trackKey))

(Position (name ?posKey&:(member$?posKey $?locHist))

4. Associations and aggregations - are defined similar to structs. The associate or aggregate contains a refer
ence to one or more unique object keys based on multiplicity.

(a) Single-valued association (and aggregation)

(View (name ?viewKey))

(Object (view ?viewKey))

(b) Multi-valued associations (and aggregations)

(Asset (name ?assetKey))

(Entity (assets $?assets &: (member$?assetKey $assets)))

82

Chapter 8 - CLIPS Agent Engine

8.1 Introduction

The CLIPS Agent Engine is an application for managing and running a group of CLIPS based agents. An instance
of the CLIPS Agent Engine configured and initiated for a specific purpose is called an agent session. Each agent
session can manage zero or more agents and can be configured independently from other agent sessions. Agents
of a given agent session may collaborate among themselves and in a distributed fashion, using a distributed object
application framework developed using the TIRAC toolkit.

An agent session can optionally be associated with a specific container object. If configured as such, only col
lectible objects contained by this container will be processed by the agent session. However, the agent session can
be configured to allow all non-collectible objects to be processed. See section 8.4 for more information.

8.2 Architecture Overview

The CLIPS Agent Engine component is comprised of several pieces that fit together to provide the required
functionality. These pieces are:

• Agent Session - This is the main entry point for the application.

• Session Manager - Manages an agent session runtime context switch between the CLIPS based agents and
other management pieces.

• Semantic Network Manager - Synchronizes the state of the CLIPS COOL instances with their correspond
ing distributed objects in the application framework.

• Agent Manager - Manages the CLIPS run cycle for agents of an agent session.

• System Time Manager - If configured to do so, creates and periodically updates a SYSTEM-TIME COOL
instance to be used for time sensitive pattern matching.

After initialization, an agent session calls on the Session Manager to begin the context switch cycle (loop). Each
time through this loop the agents are given an opportunity to execute and events are processed. When the agents
have nothing to do and there are no events to process, the Session Manager blocks waiting for external object
events.

The Session Manager allows the agents to execute by passing control to the Agent Manager. In turn, the Agent
Manager gives each agent with work to do (agents which have rule activations) a chance to run. Each agent
is allowed to run, at most, its current number of activations (to prevent any one agent from monopolizing the
process).

After one cycle through the runnable agents, the Agent Manager returns control to the Session Manager. The
Session Manager then passes control to the Semantic Network Manager to process any events (both external and
internal) that may have been queued while the agents were executing.

The Semantic Network Manager receives, queues, and processes external object events originating from the dis
tributed object server and internal CLIPS events originating from the CLIPS agents. External object events result
in COOL instances being created, deleted, or modified. Internal CLIPS events result in distributed objects being
created, deleted, or modified.

The Semantic Network Manager uses the Subscription Service to create interests only in the class of objects
relevant to the agents of an agent session. By narrowing the focus of interest in this way, the number of external
events that the Semantic Network Manager must process can be greatly reduced.

83

CLIPS Agent Engine

8.3 Installation

The CLIPS Agent Engine is a component of the TIRAC toolkit. The TIRAC toolkit software distribution currently
provides Windows and Linux versions of the CLIPS Agent Engine. Versions of the Agent Engine for other target
platforms are available, but will require an additional, platform specific installation.

The TIRAC toolkit installation directory contains the kb subdirectory, which in turn contains all of the CLIPS
constructs files that come with the CLIPS Agent Engine. These files are:

•	 Core.kbm - Redefines the MAIN CLIPS defmodule so that all constructs are exported to other modules that
wish to import them.

•	 Core.kbc - Provides the definition of the top-level COOL defclasses: STRUCT (from which all object model
structs directly inherit) and CoreObject (from which all object model classes inherit, perhaps indirectly.)

•	 Core.kbf - Contains the deffunctions and defmessage-handlers of the Agent Engine.

•	 Core.load - A CLIPS batch file which loads the basic set of Agent Engine CLIPS constructs for use in
collaborative mode.

•	 Core_sh.kbf - Provides user function definitions to allow the use of the Agent Engine in a stand-alone
CLIPS shell. These functions emulate collaborative mode user functions (methods that are normally only
defined in collaborative mode) and the collaborative mode agent management control cycle. These functions
only need to be loaded if you are running in stand-alone mode. Also see the description of user functions
that follows.

•	 Core_sh_ext.kbf - Provides an extended set of user function definitions to allow the use of the Agent Engine
in a stand-alone CLIPS shell, other than the one provided (e.g., CLIPSWin). These are merely “stubbed
out” functions of those user functions built into the provided CLIPS shell. These functions need to be
loaded if you are running in stand-alone mode with an alternative CLIPS shell. Also see the description of
user functions that follows.

•	 Core_sh.load - A CLIPS batch file which loads the basic set of Agent Engine CLIPS constructs plus the
function definitions required for use in a stand-alone CLIPS shell.

•	 generic.kbm - Defines the GENERIC CLIPS defmodule used for the example GENERIC agent.

•	 generic.kb - Defines the CLIPS rules for the example GENERIC agent.

•	 setUtil.kbf - Defines functions used by the subscription utility.

•	 SubscritionUtil.kbf - Defines functions of the subscription utility. See makesubs batch file below.

In addition to the CLIPS files, a number of template files can be found in the scr/tpl directory along with a
configuration utility Perl script ae_config.pl located in the scr/agentEngine directory. The configuration utility
script makes use of the template files to provide the initial configuration of a project specific agent engine. The
usage of this configuration utility is described in section 8.4. The template files are:

•	 AgentSessionSuite.xml.tpl - A template XML file for running an agent session via the execution framework
(see Appendix D).

•	 StartAgentSession.bat.tpl - A template batch file for starting a Windows agent session.

•	 StartAgentSession.tpl - A template shell script for starting a Linux agent session.

•	 makesubs.bat.tpl - A template batch file for generating an interest file for the agent engine from Windows.

•	 makesubs.tpl - A template shell script for generating an interest file for the agent engine from Linux.

84

8.4 Configuration

•	 agents.properties.tpl - A template properties file for defining the runtime behavior of an agent session.

•	 agents.load.tpl - A template CLIPS batch file for loading agent constructs in collaborative mode.

•	 agents_sh.load.tpl - A template CLIPS batch file for loading agent constructs in stand-alone mode.

8.4 Configuration

The CLIPS Agent Engine, as distributed, will need to be configured prior to use. There is a configuration utility
and a number of template files, which are meant to help with this configuration. As described above, a Perl script
is provided in the scr/agentEngine subdirectory of the TIRAC toolkit installation directory which can be used
to setup your project specific agent engine. This script requires three parameters: the destination directory, the
project name, and the domain name(s). The most straightforward approach to use this configuration utility under
Windows is as follows:

1. Verify that a file type has been associated with Perl scripts.

2. Create a shortcut to the ae_config.pl Perl script.

3. Right-click on the shortcut and select Properties.

4. Add to the end of the Target text field your destination directory, project library directory, project name, and
domain name(s) separated by spaces. For example, if your project name is “FOO” with domains “FOO1_0”
and “BAR1_0,” then your additions will resemble <project home>\kb <project home>\lib FOO FOO1_0
BAR1_0.

5. Execute the shortcut by double-clicking on it. If prompted for property information, enter values for the
requested properties.

6. After running this Perl script, there should be six new files in the specified destination directory (where
<project> indicates the given project name):

•	 <project>_makesubs.bat - A batch file for invoking the subscription utility that generates an interests file
for a set of agents. See section 8.4.2 below.

•	 <project>_agents.load - The default CLIPS batch file used to load agent engine constructs for collaborative
mode. This generated file will need to be modified to include the CLIPS constructs specific to a project.
See comments in this file for more information.

•	 <project>_agents_sh.load - The default CLIPS batch file used to load agent engine constructs for stand
alone mode. This generated file will need to be modified to include the CLIPS constructs specific to your
project. If using an alternative CLIPS shell for testing the agents in stand-alone mode, it is necessary to
uncomment the appropriate line in this file. See comments in this file for more information.

•	 <project>_AgentSessionSuite.xml - An execution framework XML document for starting an agent session
in collaborative mode. A container name for which to start an agent session may be added to this document
as a command line argument, or defined in the generated agent properties file. This generated XML docu
ment might need to be modified to add project specific classes or jars to the classpath. By default, the only
project specific jars included in the generated file are the <domain>_c.jar files for each specified domain.

•	 <project>_StartAgentSession.bat - A batch file for starting an agent session in collaborative mode. A
container name for which to start an agent session may be provided as a command line argument, or defined
in the agent properties file. This generated batch file might need to be modified to add project specific classes
or jars to the classpath. By default, the only project specific jars included in the generated batch file are the
<domain>_c.jar files for each specified domain.

•	 <project>_agents.properties - The Java properties required for running an agent session in collaborative
mode. This generated properties file might need to be modified for specific project requirements. See
Appendix B.7 CLIPS Agent Session Properties for more information on property settings.

85

CLIPS Agent Engine

8.4.1 Properties

There are a number of properties (see Appendix B.7) used to configure the Agent Engine to be run as a project
specific agent session. Some are required, whereas others are optional. These properties are typically defined
in the Java properties file indicated by the core.properties system property (e.g., -Dcore.properties=<project>_
agents.properties as specified in the <project>_AgentSessionSuite.xml and <project>_StartAgentSession.bat
files.)

As mentioned in the Introduction (8.1), it is necessary to determine a collectible class during initialization. The
collectible class can be specified explicitly by setting the collectible class property. Alternatively, it can be deter
mined implicitly by setting both the container class and the collection role name properties. If neither of these
methods are used to define a collectible class, then the root class (typically CoreObject) will be used by default.
Once a collectible class has been determined, it is possible to optionally specify a container class and an associa
tion between the collectible class and the container class, and additional properties related to the collectible class.
Refer to the optional session management properties section of Appendix B.7.

8.4.2 Subscriptions

The set of subscriptions (interests) used by a particular agent session is defined in the subscriptions configuration
file (e.g., <project>_agents.interests). As described in Appendix B.7, the interests file property indicates the
location and name of the interests file and must be located in your Java classpath.

Each line of the interests file defines either a class based subscription or an attribute based subscription. Class
based subscriptions have the form CLASS:<qualified class name> and result in a subscription to the creation
and deletion of objects of the specified class. Attribute based subscriptions have the form <qualified class
name>:<attribute name> and result in a subscription to the modification of the specified attribute for all ob
jects of the specified class. All lines in the interests file beginning with “//” (double forward slash) are considered
to be a comment and are ignored. Class names defined in the interests file can be fully qualified or partially
qualified, but must be contained in one of the domains specified by the core domains property.

As an example, to have an agent session notified about all FOO.DomainObject creations and deletions, and also
whenever an FOO.DomainObject’s owner attribute is modified, the interests file might be defined as:

CLASS:FOO.DomainObject

FOO.DomainObject:owner

You may either create and edit the interest file by hand, or use the generated ’makesubs’ batch file to help create
the interests file for your project specific set of agents.

The configuration utility described above assumes your interest file will be named <project>_agents.interests.
This is the default value assigned to the interests file property. It is also the default output file used by the generated
makesubs batch file <project>_makesubs.bat.” The default defclass file names assumed by the configuration
utility and used by the generated makesubs batch file take the form of <domain>.kbc for each domain. Optionally,
you may provide the name of the interests file as a command line argument. See comments in the generated
’makesubs’ batch file for more information.

The makesubs batch file will search the current working directory (the directory in which the batch file is executed)
and its subdirectories for all files with the “.kb” extension which contain the “defrule” CLIPS keyword. Each of
these files is then parsed to identify object patterns on the LHS of each rule. Finally, an interests file is generated
for all of the identified object patterns. See notes under section 8.5.3 Other Conventions for additional information
about object patterns.

8.4.3 CLIPS Batch Files

The purpose of a CLIPS batch file is to load CLIPS constructs into and initialize the CLIPS environment. The
next part of the CLIPS Agent Engine configuration deals with the CLIPS batch files used to load CLIPS constructs
and COOL instances into the CLIPS environment during the initialization of an agent session.

86

8.4 Configuration

CLIPS Constructs

As previously mentioned, the CLIPS batch file for loading constructs into a collaborative mode agent session
is specified by the agent load file property. The agent load file is ’batched’ during agent session initialization
prior to resetting the CLIPS environment. It must contain valid CLIPS batch file commands (typically CLIPS
environment settings and load statements). Refer to the CLIPS Basic Programmer’s Guide for more information
on CLIPS batch file commands.

The CLIPS batch file <project>_agents.load generated by the configuration utility should be used as a starting
point for defining a project specific agent session load file. The configuration utility will have added commands
in the generated agent load file to load the Agent Engine CLIPS constructs from the “kb” subdirectory of the core
installation directory. These load commands may need to be modified if the core installation directory used for
runtime is different than what was used during configuration. Also, the configuration utility will have added to
the agent load file commands to load the project specific <domain>.kbc defclass file(s). Again, this is based on
the domain name(s) provided during configuration, and may need modification.

Typically, however, the only hand modifications required to the generated agent load file are to append project
specific agent construct load commands. Each agent should have at least a module definition (defmodule) file and
a knowledge base (defrules, etc.) file that need to be loaded. As an example, see the GENERIC agent included
in the CLIPS Agent Engine software distribution and the comments contained in the generated agent load file.
You will probably want to similarly modify the generated <project>_agents_sh.load file to load the desired agent
constructs for running a stand-alone mode agent session.

COOL Instances

COOL instances can be instantiated during the initialization of a collaborative mode agent session by specifying
an instances load file using the instances load file property. If specified, the instances load file is ’batched’ during
agent session initialization following a reset of the CLIPS environment. Any valid CLIPS batch file commands
may be included in the instances load file, but typically only the CLIPS commands restore-instances and load-
instances will be used. Note that instances loaded using the load-instances command will be instantiated both in
CLIPS and in the distributed object environment. However, COOL instances loaded using the restore-instances
command will be instantiated only in CLIPS (i.e., not in the distributed object environment).

8.4.4 Startup Files

Depending on your project specific use of the CLIPS Agent Engine, it may be necessary to modify the collabora
tive mode execution framework XML document <project>_AgentSessionSuite.xml or startup script <project>_
StartAgentSession.bat that was generated by the configuration utility. These files expect the Agent Engine run
time libraries (Windows DLLs) to be installed somewhere on the execution path or, in the case of the startup
script, to be in the lib subdirectory of the core installation directory. These startup files further assume that the
lib subdirectory of your project directory contains the project specific jar files and other required Java resources.
If these assumptions are not valid for your project, you’ll need to modify these files to reflect the correct project
specific locations. See section 8.6 Running an Agent Session below for more information.

8.4.5 Object Model Requirements

As described in section 8.4.1 and in Appendix B.7, the CLIPS Agent Engine can make use of certain classes
that are part of your application domain object model. Specifically, you should have the notion of a high-level
domain object class (from which all of your domain objects inherit). Optionally, a container class can be defined
which is associated with the domain object class. With the specification of a container class (and identification of
a container object), the agent session will interact only with collectible objects which are part of the container’s
collection. Finally, an agent class can also be defined, which directly or indirectly inherits from the high-level
domain object class. Specifying an agent class, and its agentId and activity attributes, allows the Agent Manager
to update agent objects as they become active or inactive in CLIPS.

87

CLIPS Agent Engine

8.5 Writing CLIPS Agents

The primary purpose of the CLIPS Agent Engine is provide an environment in which CLIPS based agents may
execute, reason, and ultimately support decision making. The Agent Engine itself does not provide any decision
support. Hence, to provide this, agents will need to be developed in the CLIPS language, which can then be added
to the base-level Agent Engine using the agent load file (as described above).

This guide does not attempt to explain the details of CLIPS based agent programming, and the reader is assumed
to already have a good knowledge of the CLIPS language and execution environment. The CLIPS user’s guide and
programmer’s guide should be referred to for specific information on usage of the CLIPS shell and programming
language. To utilize the Agent Engine successfully certain conventions are required and others suggested. These
conventions are described below.

8.5.1 Defining a Module

It is strongly suggested that for each domain agent in a given agent session, that a corresponding CLIPS module
be defined. In general, each agent instance (object) defined should have some kind of identifier (e.g., agentId) that
corresponds to a module definition. This agent identifier should be unique among all agents of a particular agent
session. This allows the Agent Manager to update the activity level of each agent instance as it prepares to run
that agent’s module. It is possible to use the same module for multiple agent instances, or to not use a module at
all. However, this does deviate from the normal use pattern of the Agent Engine, and great care should be taken to
avoid unexpected behavior. It is recommended that the module definition for the GENERIC agent (generic.kbm)
be copied and modified for each domain agent of your agent session.

8.5.2 Defining a Knowledge Base

The knowledge base of an agent will include rules, and possibly other CLIPS constructs. It is strongly suggested
that a rule be included, which creates an appropriate agent instance. See the knowledge base definition for the
GENERIC agent (generic.kb) for an example of how to create this ’bootstrapping’ rule.

The defrules provided for an agent define its logical behavior. Patterns are established on the left-hand side (LHS)
of a rule, which, when satisfied, cause some action or actions to take place as defined on the right-hand side (RHS)
of the rule. In general, all standard CLIPS patterns and actions can be used when writing rules. However, there
are certain conventions to adhere to when creating your rules.

Rule Patterns

The LHS of rules define the patterns on which a rule matches. Some of these patterns can be object pattern-
matching and joins. Briefly, a join pattern literally “joins” two (or more) patterns using some kind of constraint.
The constraint is typically a bound variable. For non-association joins (join patterns that do not use any association
slots) no special consideration is required. However, when creating joins on object associations, always use the
objectKey or name slot value of a matched object. Both of these slots are of type INSTANCE-NAME, which is
also the type used for association slots.

For example, a join pattern which matches on all Alert instances of a particular Agent instance might be formed
as:

?agent <- (object (is-a Agent)

(objectKey ?agentKey))

?alert <- (object (is-a Alert)

(alertAgent ?agentKey))

88

8.5 Writing CLIPS Agents

Here you see that the bound variable ?agentKey is used to join the objectKey attribute of the Agent object to the
association role alertAgent of the Alert object. This convention applies to more complex joins as well (such as
multislot associations).

Additionally, take note that when generating a set of interests the subscription utility only considers the object
patterns defined by the LHS of your rules. It does not generate interests for objects or slot values obtained using
methods such as ’find-instance’ or ’get-<slot>,’ and does not consider the RHS of your rules at all. Therefore, it
may be necessary to define patterns that would normally be considered ’bad form’ for CLIPS programming. For
example, normally it is considered ’good form’ to only bind variables on the LHS of a rule that are to be used on
the LHS of that rule (e.g., to join two patterns, or to pass to a test condition function call.) However, unless you
plan to manually modify your interests file, you must include a pattern (and possibly a variable binding) for all
values used on the LHS and the RHS of your rule. In this way, the subscription utility will automatically provide
an interest for the pattern-matched slot or object, and the value will be kept ’in sync’ with the distributed object’s
value.

Rule Actions

The RHS of a rule is where the action is. The typical kinds of actions performed by an agent are to create, modify
or delete objects. It is also possible to have rules with actions that do not perform these kinds of actions, but in
order to have an agent do anything meaningful (collaborate), one or more of these kinds of actions must be defined
on the RHS of one or more rules. In order to perform these actions in a collaborative mode, there are a few special
message-handlers defined on the CoreObject COOL defclass. These message-handlers are:

• init after - this message is implicitly sent to the object by using make-instance to create a new COOL
instance. This results in a CLIPS CREATE event being sent to the Semantic Network Manager, which in
turn creates a distributed object from the new COOL instance.

• update-slot <SLOT NAME> <SLOT VALUE> - this message must be explicitly sent to a COOL instance in
order to set the slot value and cause a CLIPS UPDATE-SLOT event to be sent to the Semantic Network
Manager. This message-handler will only work with single-slot values (non-multifield).

• update-struct <SLOT NAME> <STRUCT VALUES> - this message must be explicitly sent to a COOL instance
in order to update a STRUCT object associated with the COOL instance. It results in a CLIPS UPDATE
SLOT event being sent to the Semantic Network Manager. This message-handler will only work with
single-slot associations with STRUCT objects.

• update-struct-at <SLOT NAME> <INDEX> <STRUCT VALUES> - this message must be explicitly sent to
a COOL instance in order to update the STRUCT object at the given index associated with the COOL
instance. It results in a CLIPS UPDATE-SLOT event being sent to the Semantic Network Manager. This
message-handler will only work with multi-slot associations with STRUCT objects.

• add-struct <SLOT NAME> <STRUCT INSTANCE NAME> - this message must be explicitly sent to a COOL
instance in order to associate a new STRUCT object to a COOL instance. It results in a CLIPS UPDATE
SLOT event being sent to the Semantic Network Manager. This message-handler will work with both
single-slot and multi-slot associations with STRUCT objects.

•	 remove-struct <SLOT NAME> <STRUCT INSTANCE NAME> - this message must be explicitly sent to a
COOL instance in order to disassociate a STRUCT object from a COOL instance. It results in a CLIPS
UPDATE-SLOT event being sent to the Semantic Network Manager. This message-handler will work with
both single-slot and multi-slot associations with STRUCT objects.

• delete before - this message-handler is activated when a delete message is explicitly sent to the object. It
results in a CLIPS DELETE event being sent to the Semantic Network Manager.

• add-assoc <SLOT NAME> < OBJECTKEY> - this message must be explicitly sent to a COOL instance in
order to associate another object with this object. It results in a CLIPS ADD-ASSOC event being sent

89

CLIPS Agent Engine

to the Semantic Network Manager. This message-handler will work with both single-slot and multi-slot
associations.
Note: The other end of the association will also be set in the associated distributed object, but only after
the Semantic Network Manager processes this event. The other end of the association will not be set in
the associated COOL instance unless there is an object slot pattern defined (and consequently an interest
defined) for the associated object’s role in the association.

•	 remove-assoc <SLOT NAME> <OBJECTKEY> - this message must be explicitly sent to a COOL instance in
order to disassociate another object from this object. It results in a CLIPS REMOVE-ASSOC event being
sent to the Semantic Network Manager. This message-handler will work with both single-slot and multi-
slot associations.
Note: The other end of the association will also be removed from the associated distributed object, but only
after the Semantic Network Manager processes this event. The other end of the association will not be set
in the associated COOL instance unless there is an object slot pattern defined (and consequently an interest
defined) for the associated object’s role in the association.

You may use other message-handlers on COOL instances such as get-<slot> and put-<slot> or some you’ve
defined yourself. However, be aware that the put-<slot> message-handlers are ’non-collaborative’ and only affect
the COOL instance (the change is not propagated to the distributed object). Also, if you decide to provide your
own specialized message-handlers be careful to not overwrite any of the specific message-handlers described
above.

When sending a message to a instance, you’ll typically want to only send to the INSTANCE-ADDRESS of the
instance. If you try to send a message to the INSTANCE-NAME of an instance, the COOL message dispatcher
might not be able to find the instance. This can happen if the defclass for the instance you’re sending a message to
is defined in a module other than the current module. This is a minor annoyance, perhaps even a bug, in CLIPS.
Fortunately, the INSTANCE-ADDRESS of an instance is easily obtained by binding to it on the LHS of a rule or by
using the InstanceAddress function provided with the CLIPS Agent Engine and defined below.

In addition to the set of message-handlers just described, there are several functions which can be used with the
Agent Engine. These functions are:

• InstanceAddress <INSTANCE-NAME> - Attempts to get the INSTANCE-ADDRESS for the given instance
name. It does this by looking for the given instance in each module, starting with the current module, until
the named instance is found. If the instance is not found, the given INSTANCE-NAME is returned.

• GetUniqueName <CLASS NAME> - Generates a unique name for the given class (expected to be a symbol).
Return type is INSTANCE-NAME.

• GetPropertyValue <PROPERTY NAME> - Attempts to get the Java property value for the given property if
in collaborative mode. If in stand-alone mode, treats the given property as an environment variable and
attempts to get the environment variable value. Return type is STRING.

• GetObjectId <INSTANCE-NAME> - Attempts to get the identifier of the object mapped to the given
COOL instance. This provides a mechanism to access the internal object mapping information of the
Semantic Net Manager. Return type is STRING.

• GetInstanceName <SYMBOL> | <STRING> - Attempts to get the name of COOL instance mapped to
the given object identifier. This provides a mechanism to access the internal object mapping information of
the Semantic Net Manager. Return type is INSTANCE-NAME.

• get-env <SYMBOL> | <STRING> - Attempts to get the value of the given environment variable. This is most
useful in stand-alone mode, but can be used in collaborative mode also. Return type is STRING.

• agenda-length [* | <MODULE NAME>] - Determines the number of rule activations for one or more mod
ules. If no arguments are provided, only the current module is used. If a specific module is named, then
only that module’s agenda-length is returned. If ’*’ is provided as the argument, then the sum of all rule
activations for all modules is returned. Return type is INTEGER.

90

8.5 Writing CLIPS Agents

• manage-agent <MODULE NAME> - Attempt to focus and run the given module (agent). If the given module
name is not a defined module, an error is printed an no action takes place. Otherwise, if the given module
has rule activations, then that module is focused and allowed to run a maximum of its activation count
number of rules. This is only available in stand-alone mode.

• manage-agents [<maximum cycles>] - Cycle through all defined modules for at most the given number of
cycles (if provided). If a maximum number of cycles is not provided, a default of 100 is used. Each cycle
’manage-agent’ is called for each defined module. This is only available in stand-alone mode.

• system-time - Returns the current system time as an integer which is the number of seconds since the
Epoch (January 1, 1970 00:00:00 GMT). For more information, lookup the ’time()’ function in a C library
reference.

• format-date <FORMAT> <DATE> [UTC] - Returns a formatted date (time) as specified by the given FORMAT.
A valid FORMAT string must conform to the requirements of the ’format’ parameter of the C library function
“strftime.” The DATE argument is an integer representing the number of seconds since the Epoch (such as
is returned from “system-time”). By default, the formatted date assumes “local” time and the given date is
converted to the current timezone. The optional argument UTC indicates the date should not be converted
and UTC (GMT) time is used instead of local time. For more information, lookup “time(),” “localtime(),”
“gmtime(),” and “strftime()” in a C library reference.

8.5.3 Other Conventions

There are a few other conventions that should be considered when working with CLIPS and the Agent Engine
(and other parts of the TIRAC toolkit.) Most are common sense, but sometimes it helps to enumerate the known
’gotchas.’

• Do not use language specific reserved keywords in your object model. For example, a problem was found
where an object model had a class attribute called name. During code generation, this results in a COOL
defclass with a slot called name which is a reserved slot name in COOL.

• Limit the use of logical blocks in your rule patterns especially for object slots which are modified frequently.
The behavior of a logical block on the LHS of a rule is to perform ’truth maintenance’ by automatically
retracting facts or deleting instances that were created on the RHS of a rule whenever patterns within the
logical block change. Creation and deletion of instances, especially in a distributed object environment, is
time intensive. Using logical blocks can therefore incur a lot of extra overhead and can seriously degrade
the performance of the Agent Engine when running in collaborative mode. Normally, truth maintenance
can be achieved without using logical blocks by using a set of three rules: one for the initial existence of a
condition (a ’create’ rule), one for changes to the condition (a ’modify’ rule), and one for non-existence of
a condition (a ’delete’ rule).

• Be as specific as possible with your subscriptions (interests). Generally, the more focused your interests,
the better performance you’ll experience. Also, some patterns are required in order to cause interests to be
properly generated. See section 8.5.2 Rule Patterns above for more information.

• Avoid the use of heavyweight function calls on the LHS of rules. This can’t always be avoided, but limiting
the use of such functions can greatly improve performance of the CLIPS pattern-match network. Also, take
note that function calls on the LHS will not be re-evaluated unless some other fact or object pattern of the
rule changes.

• Code your agents defensively. Anticipate invalid or incomplete information and decide how to handle this
situation. Make sure it is handled on both the LHS and RHS of your rules and in your functions. In certain
situations, it may be desirable to use ’object-pattern-match-delay’ when manipulating instances to allow
for the complete definition of instance slot values prior to performing pattern matching. See the CLIPS
Reference Manual for more information.

91

CLIPS Agent Engine

• Test each agent individually: first in stand-alone mode and then in collaborative mode. Once successful
tests have been carried out on each agent individually, then you can integrate your agents. Even then it
is recommended that the agent integration proceed one at a time, with testing performed after each agent
addition. Avoid the temptation to begin the testing of your agents in a fully integrated, collaborative mode
environment. Simply put, the collaborative mode is too complex and can be quite time consuming for this
level of testing.

8.6 Running an Agent Session

With the CLIPS Agent Engine properly installed and configured, and after writing your agents, it is possible to
start an agent session in either stand-alone or collaborative mode.

8.6.1 Stand-alone Mode Agent Sessions

Running an agent session in stand-alone mode is very useful for testing and verifying your agent code before
attempting to run in collaborative mode. It is highly recommended that agent developers get in the habit of using
the stand-alone mode to do individual agent testing as well as agent integration testing. In practice, it has been
found that this process provides very good results and much more reliable agent code.

To run a stand-alone agent session you will need a CLIPS interpreter, such as the CLIPS shell provided with
the core distribution, or a 3rd party CLIPS interpreter, such as CLIPSWin. Either will work, although certain
functions that are built-in to the provided CLIPS shell will not be available if using CLIPSWin. However, as
described in section 8.3, there is a set of deffunctions provided in the Core_sh_ext.kbf file that provide ’stubbed
out’ definitions of the built-in functions to allow the use of a 3rd party (external) CLIPS interpreter.

Begin by verifying the commands contained in the stand-alone CLIPS batch file (e.g., <project>_agents_sh.load)
as described in section 8.4.3 CLIPS Batch Files. Then use this batch file with the provided or 3rd party CLIPS
shell to run the stand-alone agent session. For instance, when using the provided CLIPS shell, the command
clips -f <project>_agents_sh.load can be used to start the CLIPS shell using the generated stand-alone CLIPS
batch file. If instead, you are planning to use CLIPSWin (or some other external CLIPS interpreter), make sure
to modify the generated stand-alone CLIPS batch file by uncommenting the line that loads the Core_sh_ext.kbf
file. Then follow the instructions for running a batch file using the 3rd party CLIPS interpreter.

8.6.2 Collaborative Mode Agent Sessions

Note: Before starting an agent session in collaborative mode, make sure the Object Server is running.

Once you’ve tested your agent code using a stand-alone mode agent session, you’ll probably want to try it out
“for real” in collaborative mode. Using either the generated execution framework suite <project>_AgentSession
Suite.xml or startup script <project>_StartAgentSession.bat is typically the simplest way to run a collaborative
mode agent session. There are a number of default assumptions made by these startup files which are identified
in section 8.4.

You may provide zero or one command line arguments when starting an agent session. The first argument, if
provided, indicates the objectKey for the container object to use with this agent session. If this argument is not
provided on the command line, it can be defined in the properties file. If a container objectKey is not specified
by either mechanism, and a container class has been defined, then a new container object (with an arbitrary
objectKey) will be created for you. See CLIPS Agent Session Properties (Appendix B.7) for more information.

Once started, an agent session will load the CLIPS constructs you’ve placed in your “agents load file” (e.g.,
<project>_agents.load) and reset the CLIPS environment. Next, the interests file you’ve configured (e.g., <pro
ject>_agents.interests) will be processed and appropriate subscriptions made. Once the subscriptions are defined,
the agent session queries the object server for all objects of the subscribed to classes (optionally, which are also

92

8.6 Running an Agent Session

associated to the identified container.) Each of these objects is then instantiated in CLIPS as a COOL instance. At
this point, if an ’instances load file’ was defined in your agents properties, these constructs will now be loaded.
The final part of agent session initialization is to process any initial external events before dropping into the control
cycle loop.

Once an agent session has entered the control cycle loop, it will continue to run until explicitly shutdown. A
collaborative mode agent session can be shutdown using the CTRL-c key sequence, a kill signal, or by sending
a remote shutdown command. If shutdown gracefully, the agent session will attempt to ’clean-up’ after itself
(assuming the properties are configured to do so). Note that the agent session will only catch the CTRL-c key
sequence or kill signal and shutdown gracefully if using Java 1.3 or higher. If using an older version of Java, the
agent session simply exits.

93

94

Chapter 9 - Interoperability Bridge
Framework

9.1 Introduction

The Interoperability Bridge Framework [17] provides a generic framework for seamless interaction and/or in
tegration of multiple heterogeneous systems. A system can transparently connect to the Interoperability Bridge
(either stand-alone or web-based) via a generic Connection API, request remote services and/or provide services
to other remote systems. Information sent across the bridge is always in the native format of the originating system
albeit in a valid XML format. As information representation can be quite dissimilar between different systems, a
Translation Service plays the key role in transforming information from one system format to another.

The presence of a generic Connection API enables systems to register services with the Interoperability Bridge,
publish local system requests and responses, and receive remote requests and responses without knowing intimate
details about the remote system. All interaction for a system is directly with the Interoperability bridge. Remote
requests are brokered by the bridge to a remote system that can service that request. Information published to the
bridge is in XML format of the native system. Translators can be configured to translate the XML messages from
a given remote system to native system format.

9.2 Architecture Overview

Figure 9.1 provides an overview of the Interoperability Bridge framework architecture. The Interoperability
Bridge serves as a central publication and messaging service enabling systems to register services, lookup avail
able services and publish remote requests and responses.

A remote request undergoes transformation in various stages as it passes through the different layers of the frame
work (see figure 9.2) before it is finally serviced. A remote request in the native format of the originating system,
is first formated into the remote system XML format by the Remote Connector and published to the Interoper
ability Bridge. The Interoperability Bridge forwards this request without any transformation to the Translation
Service where the remote XML is translated to local XML format and forwarded to the Local Connector. The
Local Connector reformats the XML to the local request format. The transformed request is then processed via
a Connection Delegate, which connects directly to the external system to service the request. Results from the
remote request follow a similar path back to the requesting system.

9.3 Implementation

The Interoperability Bridge framework implementation provides the flexibility to transparently use either the local
or the web-based remote bridge implementation. All communication between systems happens via the bridge. A
Connector implementation connects a, possibly external, system to the bridge. Each system can configure the
Translation Service to perform translation of documents received across the bridge from remote (or external)
systems. Translation can be achieved using XSL-based transformation, inference-based transformation using an
inference language such as JESS, or a combination of both. XSL mappings can be generated using tools such as
MapForce™ [5].

The Interoperability Bridge Framework provides flexibility to easily develop extensions to support scenarios
requiring specialized handling. Figure 9.3 provides the logical layout of the core framework classes.

95

Interoperability Bridge Framework

Figure 9.1: Interoperability Bridge Design.

96

9.3 Implementation

Translation Service

Translation Service

Interoperability Bridge

System 2 Connector

System 1 Connector

System 1 Formatted Request

System 2 Formatted XML

System 2 Formatted XML

System 2

System 1

System 1 Formatted XML

System 2 Formatted XML

System 1 Formatted XML

System 1 Formatted XML

System 1 Formmated Response

System 2 Formatted Request

System 2 Formatted Response

Figure 9.2: Request/Response path.

9.3.1 Description of key interfaces

• TranslationService – services the translation needs of a system using a series of translators to perform
translation.

• TranslationInterface – interface definition for a Translator that performs translation of an XML document
from one format to another.

• ConnectorInterface – interface definition for a Connector that connects a single system with the Interoper
ability Bridge.

• ConnectionDelegate – interface definition for a Connection delegate that connects to a single system and
provides support for remote service requests such as query and subscription.

• XMLExportInterface – defines generic API to export instances to XML. For TIRAC-based systems the
POWToXMLExport provides an implementation to export POW (refer to chapter 4) to XML.

• XMLImportInterface – defines API to import instances from XML. For TIRAC-based systems the XML-
ToPOWImport provides an implementation to import XML to POW instances.

• AbstractTransformer – defines API to transform data from one system to another. XMLBasedTransformer
and InferenceBasedTransformer are two concrete implementations of this interface.

97

Interoperability Bridge Framework

InteroperabilityBridgeImpl

InteroperabilityBridge

ConnectorInterface

Connector

ConnectionDelegate

XMLExportInterface

XMLImportInterface

*

XMLBasedTransformation InferenceBasedTransformation

AbstractTransformerTranslator

TranslatorInterface

*

TranslationService

*

Figure 9.3: Class Diagram.

• InteroperabilityBridge – defines API for the central registration and publication service. Interoperabili
tyBridgeImpl (local implementation that requires all Connectors to co-exist) and RemoteInteroperability-
Bridge (connects with the InteroperabilityWebService to publish service requests and retrieve response from
external systems) are two implementations.

9.3.2 Interoperability Bridge

The Interoperability Bridge framework employs a Web service architecture to enable multiple systems to com
municate with each other using a standard XML documents to describe service requests and responses. A system
can register, with the bridge, services (e.g., query, subscription, etc.) it is able to provide. Remote service request
results can be published back to the bridge. All documents received by the bridge are first translated to the target
format before being forwarded to the target Connector for processing. Registration of services is accomplished
by providing a description of available services in the form of an XML document conforming to the Service XML
Schema (see Service.xsd). Each service request and response document must contain the following attributes
specified on the root element:

sourceID – a unique identifier identifying the document originating system.

targetID – a unique identifier identifying the destination system if known. If targetID is not provided, an attempt
is made to send the document to all registered systems.

requestID – an identifier uniquely identifying the particular service request. This id can be used at a later time to
determine the state of a request (optional, but essential, if feedback is required or to determine status of a particular
request).

serviceType – a string describing the nature of the request. Can be one of “data,” “query,” “subscribe,” “unsub
scribe” or “status.” The default value is “data.”

Two particular implementations are provided for the InteroperabilityBridge interface within the framework: a
local InteroperabilityBridge and a RemoteInteroperabilityBridge. The InteroperabilityBridgeImpl is a local im
plementation that requires all Connectors to co-exist in the same virtual machine. The other implementation is
the RemoteInteroperabilityBridge that connects to the InteroperabilityWebService and does not require all Con
nectors to exist in the same virtual machine. Using the RemoteInteroperabilityBridge requires a Web server such
as Jakarta Tomcat to be running. A Connector in this instance would connect to one known system and the Re
moteInteroperabilityBridge. Before service requests from a given system can be fulfilled by another system, both

98

9.3 Implementation

systems must be connected. Requests are queued indefinitely until retrieved, by the Interoperability Bridge, so
the order of connection is not a matter of concern. The choice of implementation to use can be specified in the
following property (see Appendix B.8):

InteroperabilityBridge.serviceClassName=com.cdmtech.core.translation.RemoteInteroperabilityBridge

The default value for this property is the InteroperabilityBridgeImpl (i.e., local implementation that does not
require a web server). If using the RemoteInteroperabilityBridge the following property must also be specified:

InteroperabilityWebService.url=http://localhost:8080/axis/services/InteroperabilityWebService

The above value is the default value. If a different setting is required then this property must be defined.

9.3.3 Translation Service

Translation plays a key role in the Interoperability Bridge framework. The ability to dynamically translate doc
uments at runtime enables systems to collaborate seamlessly without requiring drastic changes in information
representation in either system. Translation of data from one format to another can be achieved either by XSL
transformation or via inferencing capability. Both types of transformation require XML schema files defining the
data structure for the source and target data sources. When a system registers with the Interoperability Bridge,
the Translation Service is configured to provide translation capability for the system. The Translation Service
maintains a set of Translators to perform translation of documents received from external systems to the local
system format.

A Translator employs all available transformations to transform an XML document from the external format to the
local format. Two types of Transformer implementations are provided by the framework, namely an XSL-based
transformation and an inference-based transformation (using the JESS inference engine).

XSL-based transformation

Simple translation of data from one format to another can be achieved using a XSL transformation file. Given
XML schema definition files for the source and target data format, the XSL transformations can be easily gener
ated off-line using tools such as MapForce. For TIRAC-based systems, a schema file can be generated directly
from the XMI file by utilizing the makeSchema.pl perl script included with the distribution. For sample schema
and XSL transformation files, see the example files included with the distribution.

JESS-based transformation

Complex translation can be accomplished by embedding an inference engine such as JESS or CLIPS. Employing
an inference engine, complex logic can be specified based on the system state in addition to the already complex
transformations between the two systems thus adding an extra level of filtering capability. For non TIRAC-based
systems, the inference-based translator requires an implementation of XML import and export functionality to
import the external XML to JESS facts and export JESS facts to XML or directly to java objects (or instances)
recognized by the external system.

For a typical JESS-based transformation, it is necessary to provide a definition of information within the inference
engine (i.e., deftemplates). An XML import to import the XML to JESS facts or a JESS user function named xml
import is required. Likewise an XML export to export the JESS facts to XML (or objects) or a JESS user function
named xml-export is required.

For TIRAC-based systems, the LoadClasses userfunction can be used to automatically generate the deftemplate
definitions by providing the schema file as input argument. To generate partial deftemplates from a subset of the
domain, an attributes file containing class and attribute information can be provided. The format for this file is as
follows:

<className>:<attrName>

99

Interoperability Bridge Framework

where className is a valid class in the domain and attrName is a valid attribute in that class. Each entry must be
on a new line.

To import from XML to facts the import class CoreXMLToFactImport can be used and to export facts to XML
the FactToCoreXMLExport or FactToCoreExport (that transforms facts directly to TIRAC recognized instances)
can be used.

LoadClasses userfunction provides the ability to define only a subset of classes and attributes as deftemplates by
employing an attributes file containing a list of class and attribute names. The format for this file is as follows:

<class name>.<attribute name>

where <class name > is the root class where the <attribute name > should be defined

and <attribute name> is a valid attribute in the given class.

Each entry must be on a single line.

In addition to the attributes defined in a given schema file, the LoadClasses user function also defines the following

additional slots:

•	 _class – contains the exact class name.

•	 _uniqueKey – a unique key for all classes except struct classes and usually containing the value of objectKey
if it exists or a generated value. For query and subscription this is a generated value.

•	 _owner – for all struct classes in order to tie a given struct with the parent instance.

•	 _name – for all struct classes containing a unique generated value.

Mapping Requirements

Certain assumptions are made by the TIRAC-based import classes when importing a translated XML document.
The schema generated from the XMI for a TIRAC-based system defines some additional attributes to support
handling of not only query and subscription but also mapping of instances. When defining mappings, care must
be taken to provide a suitable mapping of the required attributes, for the proper functioning of the translation and
import capability for TIRAC-based systems.

1. Creation, deletion and modification of instances.
A boolean attribute named clear is added to the CoreObject class whose default value is false and indicates a
creation event. The core XML import maintains a mapping of external instance keys and the corresponding
object keys. Future updates to an instance created in the current session is treated as modification and results
in updating the instance. If the clear attribute value is set to true, then it is assumed to be a deletion and the
mapped instance is deleted from the object store. (Required for deletions)

2. Query and subscription requests.
Two new attributes are further added to the CoreObject class to support query and subscription:
constraintType – which is an enumeration type defining the type of constraint. For possible values see
eOpType class in the constraint/event model. (Required)
eventType – which is an enumeration type defining the type of event with possible values “CREATE,”
“DELETE,” and “MODIFY.” (Required)

3. Document root element.
The following attributes are added to the root element:
serviceType – which is an enumeration type with possible values “data”, “query,” “subscribe,” “unsub
scribe,” and “status.” (Required)
sourceID – a unique identifier for the source where the request or response originated. (Required)
targetID – a unique identifier to send the request or response. (Optional)
requestID – a unique identifier to identify a request or the response to a request. (Optional)

100

9.4 Using the Interoperability Bridge Framework

4. The core import class maintains a mapping between an external system instance unique identifier and the
corresponding local system instance identifier if a unique key is mapped to the objectKey attribute in an
instance of type CoreObject. Thus to maintain a link between an external system and a TIRAC-based
system instance, a unique objectKey value must be defined. This enables future updates to be handled as
modifications instead of as a creation. See figures 9.4 and 9.5 for possible ways to define a unique identifier.

9.3.4 Connection

Once the remote XML document has been translated to the local format, it is forwarded to the Connector for pro
cessing. If the document contains data (as specified in the “serviceType” field), it gets published to the local system
by importing the XML to the local system instances if an XML import class is specified (see com.cdmtech.core.
client.xml.XMLToPOWImport for TIRAC-based systems). If the document contains a remote service request
(such as query, subscribe or unsubscribe as specified in the “serviceType” field), the Connector delegates the
request via a suitable Connection Delegate. The TIRAC specific implementation provides both a CoreConnector
class that initializes both XML import and export capability and a CoreConnectionDelegate class that connects
directly to a TIRAC-based system and provides support for both remote query and subscription requests. The
following properties (see Appendix B.8) can be specified to indicate the ConnectionDelegate interface implemen
tation class, the XMLExportInterface implementation class and the XMLImportInterface implementation class:

<sourceID>.connectionDelegateClassName=<ConnectionDelegate implementation class name>

<sourceID>.exportClassName=<XMLExportInterface implementation class name>

<sourceID>.importClassName=<XMLImportInterface implementation class name>

9.4 Using the Interoperability Bridge Framework

This section provides information on how to configure and connect different systems to the Interoperability
Bridge. See Appendix B.8 for a description of all properties used for configuration.

9.4.1 Connecting two TIRAC-based systems

The framework provides an implementation of the ConnectorInterface to connect a TIRAC-based system to the
Interoperability Bridge. Multiple TIRAC-based systems can be connected without any further implementation.
The steps to follow to connect two TIRAC-based systems is as follows:

1. Using the makeSchema.pl script generate schemas for the two systems using the domain model XMI as
input. For example, to generate a schema file for the basicModel domain with XMI file basicModel.xmi:
<install_dir>/scr/translation/makeSchema.pl -xmi <path to schema file/basicModel.xmi -out <path to out
put directory>

2. Likewise, follow step 1 to generate the schema for the second TIRAC-based system.

3. Generate mappings to/from system 1 to system 2 using say MapForce and save the resulting XSL file. Both
to/from mappings are necessary, even if only uni-directional flow of information is desired. This is because
remote query/subscription requests from system 1 need to be translated before system 2 can interpret the
request and once results are received back at the system 1 they need to be translated back for system 1 to
consume. Instead of, or in addition to an XSL file, additional logic to perform complex mapping can be
provided as JESS rules.

4. Add the following properties to your properties file - (assume for example that the domains for system 1
and system 2 are basicModel and basicTranslationModel, respectively).

101

Interoperability Bridge Framework

• Specify schema files for the two system domains.
<namespace1>.schemaFile=<schema file name>

<namespace2>.schemaFile=<schema file name>

For example:

basicModel.schemaFile=basicModel.xsd

basicTranslationModel.schemaFile=basicTranslationModel.xsd

• Specify transformation file to go from one system1 to system 2 (can be either XSL or JESS load files
or a combination of both).

– To specify XSL transformation file.
<namespace1>To<namespace2>.xslTransformationFileName=<XSL file name>

– To specify JESS load file containing transformation rules.
<namespace1>To<namespace2>.inferenceTransformationFileName=<JESS load file name>

• Specify namespaces each system is interested in (values can be a comma-delimited list enclosed in
square braces).
<namespace1>.interestedNamespaces=[<namespace2>,...]

<namespace2>.interestedNamespaces=[<namespace1>,...]

For example:

basicModel.interestedNamespaces=[basicTranslationModel]

• A complete list of domains must be provided in the following property.
com.cdmtech.core.domains=[<comma-delimited list of domains>]

5. Within your application initialize the various connectors as follows:
CoreConnector connector1 = new CoreConnector(namespace1)
CoreConnector connector2 = new CoreConnector(namespace2)
For example
CoreConnector connector1 = new CoreConnector(“basicModel”)
CoreConnector connector2 = new CoreConnector(“basicTranslationModel”)

6. To perform remote query, assuming namespace1 is the local system and namespace2 is the remote system
and localClassName is a valid class name in the local system:

• Build a com.cdmtech.core.util.constraints.Criteria object containing the query constraints to query for
objects of a given class name:
Criteria criteria = new Criteria(localClassName);

• and send the request to the remote system by invoking:
connector1.remoteQuery(namespace2, new Criteria[] {criteria});
If namespace2 is null, the request is forwarded to all systems registered with the Interoperability
Bridge, except the system where the request originated.

7. To subscribe with a remote system for the creation, deletion, or modification of instances for the same
localClassName (See chapter 5 for more information on the event model):

• Build an com.cdmtech.core.util.events.EventCriteria object containing the subscription criteria:
EventCriteria criteria = new EventCriteria(localClassName,true,eEventType.CREATE);

• and send the request to the remote system by invoking:
connector1.remoteSubscribe(namespace2,new EventCriteria[]{ criteria });
If namespace2 is null, the request is forwarded to all systems registered with the Interoperability
Bridge except the system where the request originated.

• To unsubscribe a previous subscription request use:
connector1.unsubscribe(namespace2, new EventCriteria[] {criteria });

102

9.4 Using the Interoperability Bridge Framework

9.4.2 Connecting an external system to the bridge

In addition to all the steps above, a ConnectorInterface (or a ConnectionDelegate) implementation must be de
veloped to connect the external system to the Interoperability Bridge. A Connector can be implemented either by
:

1. Extending the Connector class or implementing the ConnectorInterface interface. If implementing the Con
nectorInterface from scratch, care should be taken to ensure the external Connector provides the following
functionality.

• Registers with the Interoperability Bridge, services offered by the system using the schema description
provided in the Services.xsd schema file on initialization.

• Likewise, unregisters the services on shutdown.

2. Using the existing Connector implementation class, and providing an implementation of the Connection-
Delegate interface. An implementation for the XMLImportInterface and XMLExportInterface must also be
provided. In this case the following properties must be provided in the properties file to specify the imple
mentation classes:
<sourceID>.connectionDelegateClassName=<class name>

<sourceID>.importClassName=<class name>

<sourceID>.exportClassName=<class name>

In general, the steps involved to connect two systems are as follows:

1. Provide a schema file for each system.

2. Generate mappings between any two systems intending to communicate with each other in XSL (using
MapForce) or JESS. Even if communication is expected to be uni-directional, it is necessary to have bi
directional mappings.

3. For an external system, develop a Connector implementation following the steps enumerated above to
connect the external system to the Interoperability Bridge.

4. Configure the Translation Service by providing all the properties.

9.4.3 Using the Interoperability Web Service

To decouple the individual connectors, the Web service implementation of the Interoperability Bridge can be
utilized in addition to all the steps in the above two sections.

1. Download and install a Web server such as Tomcat [3].

2. Download and install Axis [4] and follow the installation instructions.

3. Use the provided makewebservice.pl script to copy all required artifacts to the Web server Web applications
directory as follows:
<install_dir>/scr/translation/makewebservice.pl -out $TOMCAT_DIR/webapps/axis
where $TOMCAT_DIR is the TOMCAT installation directory.

4. Start the TOMCAT server using the startup batch file.

5. Verify the Interoperability Web service is running.

6. Edit the client properties file to include:
InteroperabilityBridge.serviceClassName=com.cdmtech.core.translation.RemoteInteroperabilityBridge
InteroperabilityWebService.URL=<url to locate web service >

7. Start up two clients that both connect to the Interoperability Web service. Follow steps outlined in previous
two sub sections to configure the clients.

103

Interoperability Bridge Framework

9.4.4 Translation UI

An extension of the Instance Viewer application, the Translation UI, provides a user interface component to rapidly
setup two systems to interact with the Interoperability Bridge. When connecting two TIRAC-based systems, only
the transformation files to translate information from one system to another are required to utilize this component.
This component must be installed separately in order to use it.

9.5 Examples

The distribution contains examples to demonstrate functionality making use of two example domains, namely
basicModel and basicTranslationModel. Both XSL and JESS-based transformations are provided to transform
all instances from basicModel to basicTranslationModel and vice-versa. The XMI files for the two domains
can be found in the <install_dir>/example/xmi directory. The XSL transformation files used by the XSL-based
transformation can be found in the <install_dir>/example/suite/translation/lib directory while the JESS rules to
perform the mapping can be found in the <install_dir>/example/suite/translation/jess directory. The source files
for the examples are located in the <install_dir>/example/translation/src directory. A description of the various
source files is as follows:

• CreateObjects.java - creates instances of the given class argument and all sub-classes. For each instance,
both simple and complex attribute values are set. In the case of associations, an instance of the associated
class is also created.

• TestQuery.java - initializes the two Connectors, formulates a query constraint, and requests a remote query.

• TestSubscription.java - initializes two Connectors, formulates a remote subscription criteria, and requests a
remote subscription.

• TestQueryAndSubscription.java – initializes two Connectors, registers remote subscriptions, and performs
remote query.

9.5.1 Mapping

All XSL-based transformation files are generated by describing the mappings in MapForce. All JESS-based
mappings are defined by writing JESS rules. The following techniques are used by the JESS transformations used
in the examples provided with the distribution:

• All classes along with all attributes in each class are mapped as JESS deftemplates.

• The corresponding JESS deftemplate name for a given class does not contain the prefix such as com.
cdmtech.core.client.corba.

• A JESS defrule is written for each class mapping only those attributes defined in that class.

• As it is critical for the right mapping class fact to be generated as a result of the transformation, salience
values are used in the various rules in order to trigger the rules in the right order. For example, consider
the following class hierarchy: BaseObject is the parent of Track; Track is the parent of Aircraft. The JESS
rule defining Aircraft mappings has higher salience than the Track rule. Likewise the Track rule has higher
salience than the BaseObject rule. This enables the Aircraft rule to fire first, thereby generating the correct
mapped fact for the Aircraft instance. On the right hand side of each rule, first an attempt is made to find
a fact for the given _uniqueKey. A new fact is asserted only if one does not already exist, else the existing
fact is modified.

• As same rules are used for mapping instances and to transform query and subscription criteria, the _unique-
Key slot plays an important role. Note that query and subscription criteria rarely contain a value for object-
Key slot. In those cases, the import class generates a unique value and sets the _uniqueKey slot value.

104

9.5 Examples

Figure 9.4: Mapping an instance in one system to two instances in the target system that are associated with each
other.

9.5.2 Example suites

The provided example suites1 demonstrate some of the salient features of the interoperability bridge framework,
key among which are the translation capability employing XSL, JESS or a combination of both, ability to perform
remote query and subscription, client-side and server-side import functionality. The various example suites are
described below:

1. querySuite.xml – contains three examples demonstrating remote query:

(a) xmlquerySuite.xml – demonstrates remote query employing XSL-based transformation and client-
side import.

(b) jessquerySuite.xml – demonstrates remote query employing JESS-based transformation and client-
side import.

(c) xmlqueryServerImportSuite.xml – demonstrates remote query employing XSL-based transformation
and server-side import.

2. subscriptionSuite.xml – contains two examples demonstrating remote subscription:

(a) xmlsubscriptionSuite.xml – demonstrates remote subscription employing XSL-based transformation
and client-side import.

(b) jesssubscriptionSuite.xml – demonstrates remote subscription employing JESS-based transformation
and client-side import.

3. xmlassociationSuite.xml – demonstrates transforming a single instance in one domain to two instances in
the target domain and associating the resulting two instances. In this case, the generated unique identifier

1See Appendix D for information on running execution suites.

105

Interoperability Bridge Framework

Figure 9.5: Mapping an instance of one class to an instance in the target system that is associated with a single
instance of another class (in this case ContainerObject).

for the new instance must be somehow tied to the original instance in order to support future modifications
(i.e., the mapping should not generate a new instance with each update, but should reuse the instance created
the first time). A unique identifier is generated using the concat function. To insure that there is a binding
between the mapped object and the original object, one of the inputs to the concat function is the objectKey
value of the original object. Moreover, to keep the generated objectKey the same with each update, a
constant value is concatenated to the objectKey value. Take note that the objectKey value cannot be used
as is as it has to be unique for each instance and cannot be mapped to two instances at the same time. In
order to associate the two resulting instances, a mapping can be made between the association role and the
corresponding unique identifier of the new instance (see figure 9.4). This example demonstrates how an
instance in one system can be mapped to multiple instances in the target system and the resulting instances
further associated with each other. Every OuterClassMap in basicTranslationModel domain results in
two new instances OuterClass and ObjectC in the basicModel. Further the resulting two instances are
associated via the role OuterClass_role in ObjectC (Note that the role c in the OuterClass could also have
been used).

4. xmlcontainerSuite.xml – demonstrates transforming an instance in one domain to another instance in the
target domain and aggregating the resulting instance with a Container. Each new instance must contain a
unique object identifier in order to map future modifications to the same mapped instance (see figure 9.5). In
this example a BaseObject instance in the domain basicModel is mapped to a BaseObjectMap in the do
main basicTranslationModel. In addition, each BaseObjectMap is always associated to a ContainerOb
ject in the basicTranslationModel domain. As there is only a single ContainerObject, a constant unique
identifier is generated for the ContainerObject by using the constant function. The BaseObjectMap is
associated with the ContainerObject by mapping the objectKey of the BaseObject (which gets mapped to
the BaseObjectMap objectKey) to the association role xobjects in the ContainerObject class.

5. mixedSuite.xml – demonstrates combining both XSL-based and JESS-based transformation to achieve the
desired results. In example 4 above, all new BaseObject instances are associated with a given Container.
When a BaseObject is deleted, the Container is automatically updated to remove the aggregate instance
from its association role. Once all BaseObject instances are deleted, the Container still remains. To demon
strate usage of a mix of both JESS and XSL-based transformation, this example suite defines a JESS-based
mapping to handle the Container removal when all BaseObject instances are deleted.

106

Appendix A - Release Notes

The following sections are the release notes for each individual component contained in the TIRAC toolkit. These
release notes are provided as additional reference material and should not be the primary source of information.
Since a good portion of this material is historic the information provided may be out of date (e.g. links may
no longer reference existing or accessible documents). Some of the capabilities discussed in these notes pertain
to the build and component maintenance infrastructure utilized internally and, therefore, may not be useful in
development environments outside of CDM Technologies, Inc.

A.1 Core

Version 5.00

The Core toolkit can be best described as a "meta-framework" in that it contains the tools to facilitate the im
plementation of a client-server framework for distributed system development. The generated framework would
be used to provide services for maintenance of a common information repository for any number of distributed
applications. A reasonably complete capability is provided enabling generation of knowledge domain specific
frameworks driven solely by the domain model (model driven architecture). Additionally, applications are in
cluded supporting implementation of rule-based agents facilitating incorporation of decision support acting on
information maintained by generated services.

A.1.1 Requirements

• Agent Engine v5.00 - see section A.12

• Agent Management Layer v3.00 - see section A.10

• Client Support Library v4.00 - see section A.4

• Client Facade Support Library v2.00 - see section A.14

• Generic UI Components v4.00 - see section A.15

• Instance Viewer Application v3.00 - see section A.16

• JESS Agent Engine v3.00 - see section A.11

• Meta-Model Support Library v2.00 - see section A.8

• Object Graph Client Application v2.00 - see section A.18

• Object Management Library v5.00 - see section A.7

• Persistence Layer v2.00 - see section A.6

• Server Support Library v4.00 - see section A.5

• Object Shell v2.00 - see section A.17

• Support Suite v4.00 - see section A.2

• Interoperability Bridge v2.00 - see section A.13

• UML Processing Tools v2.00 - see section A.9

• Utility Class Library v4.00 - see section A.3

107

Release Notes

A.2 Support Suite

Version 4.00

The Core Support collection of tools contains scripts (written in Perl with particular attention paid towards pro
viding platform independence) useful for maintaining an installation of components and applications.

A.2.1 Requirements

• Utility Class Library v4.00 - see section A.3

•	 xalan v2.5.0 - XSLT processor for transforming XML documents - Copyright ©1999-2003 The Apache
Software Foundation. All Rights Reserved.- The Apache Software License, Version 1.1

•	 xml-apis v2.5.1 - Xerces XML Parser Library- Copyright ©1999-2002 The Apache Software Foundation.
All Rights Reserved.- The Apache Software License, Version 1.1

•	 xercesImpl v2.4.0 - Xerces Implementation Library - Copyright ©1999-2002 The Apache Software Foun
dation. All Rights Reserved.- The Apache Software License, Version 1.1

•	 jtidy v04aug2000r6 - HTML parser and pretty printer - Copyright ©1998-2000 World Wide Web Consor
tium (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en Automa
tique, Keio University). All Rights Reserved.

•	 getopt v1.0.9 - Command-line Option Processor - Copyright ©1998-2002 Aaron M. Renn

A.2.2 Usage Instructions

• update.pl -auto|a -dest|d=STRING <component name>[ver] ...

–	 Requires environment variables TMP (path to directory to contain temporary downloads) and DEP_
URL (resource locator for component repository). Note: these environment variables may be specified
on the command line in the form <variable name> = <value>.

–	 If specified the ’-auto’ option will flag the script to perform the update(s) without any prompting.

–	 The ’-dest’ option may be used to specify an alternative installation location (default is location
pointed by CDM_HOME).

–	 examples:

update.pl core
 *
update.pl core_om -auto *
update.pl core_om3_01 *
update.pl core_uml core_support DEP_URL=http://humpback TMP=/tmp *
update.pl immaccs_iob -dest=e:\immaccs\iob*

•	 remove.pl -dest|d=STRING <component name>[ver]...

–	 Requires environment variables TMP (path to directory to contain temporary downloads) and DEP_
URL (resource locator for component repository). Note: these environment variables may be specified
on the command line in the form <variable name> = <value>.

–	 The ’-dest’ option may be used to specify an alternative installation location (default is location
pointed by CDM_HOME).

•	 version.pl <component name> -dest|d=STRING

–	 If no component name is specified then version information will be output for each installed compo
nent.

108

http://xml.apache.org/xalan-j/
file:xalan_v2_5_1.lic
http://xml.apache.org/xerces2-j/
file:xerces_v1_2_1.lic
http://xml.apache.org/xerces2-j/
file:xerces_v1_2_1.lic
http://sourceforge.net/projects/jtidy/
file:jtidy-04aug2000r6.cop
file:jtidy-04aug2000r6.cop
file:jtidy-04aug2000r6.cop
http://www.urbanophile.com/arenn/hacking/download.html

A.3 Utility Class Library

–	 The ’-dest’ option may be used to specify an alternative installation location (default is location
pointed by CDM_HOME).

• transform.pl -out|o=STRING -param|p=STRING -xsl|x=STRING <input file name>

–	 The ’-out’ option may be used to specify the name of a file for the result document.

–	 The ’-param’ option may be used to specify a stylesheet parameter in form <name> <expression>.

–	 The ’-xsl’ option may be used for specification of the XML Style Sheet document.

•	 validate.pl -xs|x=STRING <input file name>

–	 The ’-xs’ option may be used for specification of the XML Schema document. If not given then the
XML Schema or DTD must be defined within the document (using DOCTYPE element).

A.2.3 Frequently Asked Questions

• How can I easily transfer existing release notes (using HTML) into XML conforming to the ReleaseNotes
schema?

–	 Remove all tags (opening and closing) from HTML source.

–	 Ensure, if the following sections are present, that the section titles contain the indicated text (within
the <h2> element):

<h2>Description</h2>: general description of component/application.
 *
<h2>Requirements</h2>: external requirements (components/applications that must be installed *
separately).

<h2>Distribution</h2>: description of component/application distribution contents.
 *
<h2>Installation</h2>: installation procedure. *
<h2>Usage</h2>: component/application usage. *
<h2>Change</h2>: component/application release log entries. *
<h2>Frequently</h2>: list of frequently asked questions with solutions. *
<h2>Contact</h2>: list of points of contact. *

–	 Ensure HTML source is XML compliant HTML.

use supplied script, for example -> transform.pl core_support.html -o core_support.xhtml *
correct problems as identified. *

–	 Edit resulting source to remove DTD preamble and namespace specification in root <html> tag.

–	 Transform XHTML source into XML conforming to Schema for release notes (ReleaseNotes.xsd).

use supplied script, for example -> transform.pl core_support.xhtml -x HTMLToReleaseNotes.xsl *
-o core_support.xml

correct problems as identified.
 *

–	 Validate resulting XML document against XML schema for release notes.

use supplied script, for example -> validate -x ReleaseNotes.xsd core_support.xml *
correct problems as identified. *

–	 Note: do not assume that this process will result in a complete transfer of all the original content.
Inspect resulting document carefully for missing and incorrectly formatted output.

A.3 Utility Class Library

Version 4.00

Library of utility classes including support for error log management, property management, and assorted general
purpose utility functionality.

109

Release Notes

A.4 Client Support Library

Version 4.00

The Core client support library provides all of the client-side services for working with distributed domain objects.
These services include CorePersistence, CoreSubscription, and the base behavior for domain object factories and
domain objects. The client support library provides ’wrappers’ used to establish communication and interact with
these services, which are implemented by the Core server support library.

A.4.1 Requirements

• Utility Class Library v4.00 - see section A.3

• Persistence Layer v2.00 - see section A.6

•	 jacorb v2.1 - Java CORBA Implementation - Copyright ©Gerald Brose, Freie Universitaet Berlin/XTRADYNE
Technologies AG, Germany, 1997-2004- GNU Library General Public License/The Apache Software Li
cense, Version 1.1

A.5 Server Support Library

Version 4.00

The Core server support library (core_server) provides all of the server-side services for working with distributed
domain objects. These services include CorePersistence, CoreSubscription, ModelServer, and the base behavior
for domain object factories and domain objects. The domain factories are generated from a domain object model
XMI file. Domain objects are created and their life-cycle managed by the appropriate domain factories. The
factories ensure object state is persisted and kept up-to-date via CorePersistence. Object factories also publish
object events (creation, modification, deletion) with CoreSubscription as they occur. Notification of these object
events is then sent to interested client subscribers by either CoreSubscription. The ModelServer provides runtime
’meta’ information which is used for activities such as server-side association management.

A.5.1 Requirements

• Client Support Library v4.00 - see section A.4

• Persistence Layer v2.00 - see section A.6

• Meta-Model Support Library v2.00 - see section A.8

•	 jess v6.1 - Java Expert System Shell - Copyright ©2002 by Ernest J. Friedman-Hill and the Sandia Corporation-
JESS License (Sandia National Laboratories) Note: The JESS JAR must be copied into the Core installation
lib directory as jess6.1.jar

A.6 Persistence Layer

Version 2.00

The Core Persistence Layer provides a general purpose set of persistence capabilities for Java objects. These
capabilities include create, restore, update, and delete (CRUD) operations as well as constraint based query.

110

http://www.jacorb.org/
file:jacorb_v2_1.lic
file:jacorb_v2_1.lic
http://herzberg.ca.sandia.gov/jess/
file:jess.lic

A.7 Object Management Library

A.6.1 Requirements

• Utility Class Library v4.00 - see section A.3

A.7 Object Management Library

Version 5.00

The Object Management Layer class library provides general functionality for complete life-cycle management
of objects, their attributes (characteristics) and associations (relationships). Interaction with object instances is
simplified through the use of simple strings with attribute value constraint handled internally. Association man
agement is also provided internally, alleviating the requirement (and complexity) to insure referential integrity
by the using application. Management of interests is also provided - implemented internally and exposed to us
ing applications through the standard Java event model. Additionally, support is provided for accessing multiple
servers simultaneously and transparently. The primary application of this library would be for use by applications
requiring little to no apriori knowledge of the object domain model(s). Internally, the required management and
information is provided through runtime reflection and properties. A good example of such applications are user
interfaces where a hard coded notion of the domain is expensive to both develop and manage.

A.7.1 Requirements

• Utility Class Library v4.00 - see section A.3

A.8 Meta-Model Support Library

Version 2.00

A.8.1 Requirements

• Utility Class Library v4.00 - see section A.3

•	 xalan v2.5.0 - XSLT processor for transforming XML documents - Copyright ©1999-2003 The Apache
Software Foundation. All Rights Reserved.- The Apache Software License, Version 1.1

•	 xml-apis v2.5.1 - Xerces XML Parser Library- Copyright ©1999-2002 The Apache Software Foundation.
All Rights Reserved.- The Apache Software License, Version 1.1

•	 xercesImpl v2.4.0 - Xerces Implementation Library - Copyright ©1999-2002 The Apache Software Foun
dation. All Rights Reserved.- The Apache Software License, Version 1.1

•	 nsmdf v0.1.1 - Novosoft Metadata Framework for Java - Copyright ©1999-2001, NovoSoft- GNU Library
General Public License

A.9 UML Processing Tools

Version 2.00

A key capability provided by the Core toolkit is the ability to process project specific information representation
in terms of an object model. The Unified Modeling Language (UML) standard was chosen as the high-level
language for describing object models within the context of the Core framework. Additionally, the Extensible

111

http://xml.apache.org/xalan-j/
file:xalan_v2_5_1.lic
http://xml.apache.org/xerces2-j/
file:xerces_v1_2_1.lic
http://xml.apache.org/xerces2-j/
file:xerces_v1_2_1.lic
http://nsuml.sourceforge.net/
file:lgpl_v2.lic
file:lgpl_v2.lic

Release Notes

Markup Language (XML) and, in particular, the XML Metadata Interchange (XMI) for the UML meta-model
(version 1.3) was selected as the storage format for object model descriptions. The XMI-UML meta-model format
is a standard that is supported by a number of modeling tools and, therefore, allows for a significant amount of
flexibility in the selection of supporting applications. The UML Processing toolkit includes tools that produce
various artifacts (code, reports, etc.) utilizing the XMI-UML output. These tools make extensive use of a UML
meta-model based parser generated from the UML Meta-Object Facility (MOF) specification provided by the
Object Management Group (OMG).

A.9.1 Requirements

• Support Suite v4.00 - see section A.2

• Utility Class Library v4.00 - see section A.3

• Meta-Model Support Library v2.00 - see section A.8

• Server Support Library v4.00 - see section A.5

•	 idl v2.1 - JacORB IDL to Java Compiler- Copyright ©Gerald Brose, Freie Universitaet Berlin/XTRADYNE
Technologies AG, Germany, 1997-2004- GNU Library General Public License/The Apache Software Li
cense, Version 1.1

•	 getopt v1.0.9 - Command-line Option Processor - Copyright ©1998-2002 Aaron M. Renn

A.9.2 Usage Instructions

• makeall.pl < project name > -jikes -keep -nsref=STRING -trace -seq=STRING -xmi=STRING

–	 Requires environment variable PROJECT_HOME (path to directory containing specific project direc
tory(s)).

–	 The CLASSPATH environment variable may be set (or defined on the command line) to include a
path to any source code required by class implementations (such as for derived attributes or general
operations).

–	 The ’project name’ argument is required (name of specific project directory located in PROJECT_
HOME).

–	 The ’-seq’ option may be used to specify the type of sequence support generated for managing as
sociation ends. The available types are: primitive, sequence, or object. If not specified then simple
sequence (sequence) support is generated (server-side array-type management without association
management). The ’primitive’ type will result in the generation of primitive array types (without
server-side array-type management). The ’object’ type will result in support for full server-side array-
type and association management.

–	 The ’-xmi’ option may be used to specify a single XMI file (contained in PROJECT_HOME/project
name/xmi). If this option is not used then all XMI files contained in PROJECT_HOME/project name/
xmi will be processed.

–	 If specified the ’-jikes’ option will flag the script to use the ’jikes’ Java compiler instead of the default
’javac’ compiler.

–	 If specified the ’-keep’ option will flag the script to not delete generated artifacts (in PROJECT_
HOME/gen).

–	 The ’-nsref’ option may be used to specify the initial reference used to bind to the name service
(defaults to http://humpback/jacorb/NS_Ref). The value specified is used to generate the properties
file required by JacORB.

–	 If specified the ’-trace’ option will turn on remote method invocation logging (useful for testing and
troubleshooting, but will impact performance).

112

http://www.jacorb.org/
file:jacorb_v2_1.lic
file:jacorb_v2_1.lic
http://www.urbanophile.com/arenn/hacking/download.html

A.9 UML Processing Tools

• makeclient.pl < XMI file name > -gen=STRING -jikes -keep -out=STRING -seq=STRING

–	 The CLASSPATH environment variable may be set (or defined on the command line) to include a
path to any source code required by class implementations (such as for derived attributes or general
operations).

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

–	 The ’-gen’ option may be used to specify the directory for generated output (default is the output
directory).

–	 The ’-seq’ option may be used to specify the type of sequence support generated for managing as
sociation ends. The available types are: primitive, sequence, or object. If not specified then simple
sequence (sequence) support is generated (server-side array-type management without association
management). The ’primitive’ type will result in the generation of primitive array types (without
server-side array-type management). The ’object’ type will result in support for full server-side array-
type and association management.

–	 If specified the ’-keep’ option will flag the script to not delete generated interim artifacts.

–	 If specified the ’-jikes’ option will flag the script to use the ’jikes’ Java compiler instead of the default
’javac’ compiler.

• makecool.pl < XMI file name > -out=STRING

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

• makelatex.pl < XMI file name > -gen=STRING -out=STRING -pdf -pre=STRING

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

–	 The ’-gen’ option may be used to specify the directory for generated output (default is the output
directory).

–	 If specified the ’-pdf’ option will generate a PDF document from the generated LaTeX. Note: this
requires installation of TeX/LaTeX including the PDF variations.

–	 If specified the ’-pre’ option allows specification of an include file providing pre-content for the doc
ument (e.g., a title page).

• makelocal.pl < XMI file name > -gen=STRING -jikes -keep -out=STRING

–	 The CLASSPATH environment variable may be set (or defined on the command line) to include a
path to any source code required by class implementations (such as for derived attributes or general
operations).

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

–	 The ’-gen’ option may be used to specify the directory for generated output (default is the output
directory).

–	 If specified the ’-keep’ option will flag the script to not delete generated interim artifacts.

–	 If specified the ’-jikes’ option will flag the script to use the ’jikes’ Java compiler instead of the default
’javac’ compiler.

• makeproperties.pl < XMI file name > -out=STRING

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

113

Release Notes

• makereport.pl < XMI file name > -out=STRING

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

• makeserver.pl < XMI file name > -gen=STRING -jikes -keep -out=STRING -seq=STRING

–	 The CLASSPATH environment variable may be set (or defined on the command line) to include a
path to any source code required by class implementations (such as for derived attributes or general
operations).

–	 The ’XMI file name’ argument is required (full path name of specific XMI file).

–	 The ’-out’ option may be used to specify the output directory (default is current directory).

–	 The ’-gen’ option may be used to specify the directory for generated output (default is the output
directory).

–	 The ’-seq’ option may be used to specify the type of sequence support generated for managing as
sociation ends. The available types are: primitive, sequence, or object. If not specified then simple
sequence (sequence) support is generated (server-side array-type management without association
management). The ’primitive’ type will result in the generation of primitive array types (without
server-side array-type management). The ’object’ type will result in support for full server-side array-
type and association management.

–	 If specified, the ’-keep’ option will flag the script to not delete generated interim artifacts.

–	 If specified, the ’-jikes’ option will flag the script to use the ’jikes’ Java compiler instead of the default
’javac’ compiler.

• HTMLProducer

–	 This tool will convert an xmi file generated by a UML program into a set of HTML pages in a Java
API style format for ease of viewing model elements and their heirarchy, slots, and associations

–	 The ’-d’ option may be used to specify the output directory (default is the same directory as the XMI)

–	 The ’-w’ option may be used to specify a Web report URL. This is only used for the class diagrams
generated by some UML applications. The images are expected to follow the format URL_ROOT/
Package/Package.jpg where package is the locally scoped package name.

–	 The ’-m’ option may be used if a Web report is being used and a package name does not match the
format URL_ROOT/Package/Package.jpg. In this case, the mappings should be specified in the format
A:B,C:D,... where A,C,... are local package names and B:D,... are the related directories stemming
from the specified Web report root. This option is ignored if no Web report is specified.

–	 Alternatively, a simple GUI has been supplied for ease of use.

A.9.3 Frequently Asked Questions

• The code generation scripts fail (exceptions are thrown)

–	 If the exceptions are thrown within the XMI parser it is likely that there are problems with the model
XMI document. Validate the model XMI document file using the procedure described below and
correct any problems indicated.

• How can I validate a model XMI file?

–	 Make sure XMI model document conforms to the UML 1.4/XMI 1.1 specifications. Use the transform.
pl script as described below.

–	 The DTD is specified in the DOCTYPE element (included by the XSL transform, if used) and must
be defined as

114

A.10 Agent Management Library

<!DOCTYPE XMI SYSTEM "http://humpback.cdm.calpoly.edu/pub/doc/omg/uml/01-02-16.dtd"> *
–	 Use the validate.pl script (provided by the Core Support distribution).

validate.pl <model file>
 *

• How can I transform a model XMI file into a model document conforming to the current XMI/UML speci
fications?

–	 Use the transform.pl script (provided by the Core Support distribution) along with the XSL transform
provided to transform a model document file from UML 1.3/XMI 1.0 to UML 1.4/XMI 1.1 (provided
by the Core Meta Support Library distribution).

transform.pl <input model file> -out <output model file> -xsl uml1_3xmi1_0-uml1_4xmi1_1.xsl *
–	 Note: It is not absolutely necessary to transform model documents to utilize the UML processing

tools. Model files supplied in the older format will be transformed internally, however, at a slight cost
in required processing time.

• How can I transform a model XMI file exported from Poseidon into a model document that can be pro
cessed?

–	 Use the transform.pl script (provided by the Core Support distribution) along with the XSL transform
provided to transform a model document file from Poseidon into a compliant XMI model file.

transform.pl <input model file> -out <output model file> -xsl PoseidonToCore.xsl *

• What do the error codes, output by the scripts, mean?

–	 The error codes appear to be codes output by the underlying operating system with Perl just passing the
code. Unfortunately, no definitive source explaining these codes appears to be available and because
they are operating system specific there will never be any platform independant definitions. However,
most of these errors are typically caused by either problems in the object model or other requirements
not being met (see notes above).

• The -pdf option for the makelatex.pl script fails.

–	 This option requires installation of TeX/LaTeX including the PDF variations.

• The generated code fails to compile with the jikes compiler.

–	 Check to make sure the JAVA_HOME environment variable is set.

• The system now successfully compiles but associations are failing when using the OML.

–	 If the system was built using the -seq option set to "object" then make sure that the association man
ager plugins used with the OML are the "non-Managed" variants (i.e., AssociationSeq). See Object
Management Layer properties for details.

–	 Likewise, if the system was built using the -seq option set to "sequence" then make sure that the associ
ation manager plugins used with the OML are the "Managed" variants (i.e., ManagedAssociationSeq).
See Object Management Layer properties for details.

A.10 Agent Management Library

Version 3.00

The Agent Management Layer component comprises of a generic framework API for rapid development of an
agent engine for a given Rete implementation. The JESS Agent Engine distribution, which makes use of the
Agent Management Layer to provide a JESS-based agent engine.

115

file:core_support.xml
file:core_support.xml
file:core_meta.xml
file:core_support.xml
file:core_om_properties.xml
file:core_om_properties.xml
file:core_om_properties.xml
file:core_jessae.xml

Release Notes

A.10.1 Requirements

• Object Management Library v5.00 - see section A.7

A.11 JESS Agent Engine

Version 3.00

The JESS agent engine component provides the ReteInterface implementation for the JESS inference engine.
Together with the Agent Management Layer , it can be used to start and run a JESS-based agent engine.

A.11.1 Requirements

• Agent Management Layer v3.00 - see section A.10

•	 jess v6.1 - Java Expert System Shell - Copyright ©2002 by Ernest J. Friedman-Hill and the Sandia Corporation-
JESS License Note: The JESS JAR must be copied into the Core installation lib directory as jess6.1.jar

A.11.2 Frequently Asked Questions

• How can I turn on dynamic subscriptions?

–	 Change the following property in your JessAgentSession.properties file. If an interest file is also
specified, subscriptions will be registered for those as well.

AgentSession.useDynamicSubscriptions=true *

• AgentSessionImpl vs InteractiveAgentSession which should I use?

–	 The InteractiveAgentSession class internally starts the AgentEngine using AgentSessionImpl in a
separate thread and provides interaction with the JESS inference engine. If you are using javaw or
console-less start, it is preferable to use AgentSessionImpl to start the JESS Agent Engine.

A.12 CLIPS Agent Engine

Version 5.00

The Core agent engine provides management over a set of CLIPS based agents. An instance of the agent engine
with a particular set of agents is called an agent session. Agents of an agent session can collaborate with each
other locally using standard CLIPS mechanisms. Since the agent engine is an OML based client, agents can also
collaborate in a distributed fashion with other agents, applications or human users.

A.12.1 Requirements

• Support Suite v4.00 - see section A.2

• Utility Class Library v4.00 - see section A.3

• Object Management Library v5.00 - see section A.7

• Client Support Library v4.00 - see section A.4

•	 clips v6.10 - C Language Integrated Production System - CLIPS License

•	 CLIPS User Guide v6.10

•	 CLIPS Programmers Guide v6.10

116

file:core_aml.xml
http://herzberg.ca.sandia.gov/jess/
file:jess6.1.lic
http://www.ghg.net/clips/CLIPS.html
file:clips.lic

A.13 Translation Service

A.13 Translation Service

Version 2.00

The Interoperability Bridge provides a framework to connect two or more systems.

A.13.1 Requirements

• Utility Class Library v4.00 - see section A.3

•	 jess v6.1 - Java Expert System Shell - Copyright ©2002 by Ernest J. Friedman-Hill and the Sandia Corporation-
JESS License Note: The JESS JAR must be copied into the Core installation lib directory as jess6.1.jar

A.13.2 Usage Instructions

• To generate the XML Schema, use the script provided with the distribution as follows:

–	 scr/translation/makeSchema.pl -out=<outdir> -xmi=<xmiFile>

–	 The various values that need to be provided are as follows

outdir – the output directory
 *
xmiFile – the full path to the xmi file *

•	 Steps to start and run the example suites on the command-line, cd to your installation directory and
execute as follows:

–	 ./runsuite example/suite/translationSuite.xml

A.14 Client Facade Support Library

Version 2.00

Provides support for client-side facades implementing object event notification. In addition to an object server
API, this library provides a base object class, which provides instance interest management (listener registration/
notification), and a class management class, which provides class interest and base object instance management.
For simplified derived attribute definition, the Derived abstract class is also provided.

A.14.1 Requirements

• Utility Class Library v4.00 - see section A.3

• Object Management Library v5.00 - see section A.7

A.15 Generic UI Component Library

Version 4.00

The Generic User Interface components provide some common components such as the following:

• Properties Editor (package: com.cdmtech.core.client.gui.prop) - The Properties Editor provides a simple
user interface to view, edit, save, add, and remove properties at runtime. A component can register a
BoundPropertyListener to receive notification when a property value is changed in order to dynamically
update the state of the component.

117

http://herzberg.ca.sandia.gov/jess/
file:jess6.1.lic

Release Notes

• Customize Window (package: com.cdmtech.core.client.gui) - The Customize Window provides a user in
terface to enable selection of attributes to display for a given class. Other components such as the Instance-
Viewer and the AgentReport make use of this component to enable the user to select attributes to display.

• Debug Viewer (package: com.cdmtech.core.client.gui) - The Debug Viewer provides a minimal user in
terface to track ObjectListeners, ObjectModificationListeners, ObjectSelectionListeners, and ObjectActi
vationListeners registered with the POW and Template classes. The current used and available memory
information is also provided.

Additional classes are included providing generic user interface capabilities common to a number of core user
applications.

A.15.1 Requirements

• Object Management Library v5.00 - see section A.7

A.16 Instance Viewer Application

Version 3.00

The Instance Viewer component provides a generic user interface component that enables interaction with objects.
It can be used to create, delete, and modify instances. It may also be used to formulate, perform queries, and
display the results. The Instance Viewer component is comprised of

• InstanceViewer - that can be used to create, delete, edit, and to perform queries.

• QueryViewer - that can be used to display the results of a query.

• InstancesViewer - that can be used to view multiple instances.

A.16.1 Requirements

• Generic UI Components v4.00 - see section A.15

A.16.2 Frequently Asked Questions

•	 How can I specify a display name for a given class object? Specify for the ’disAttrName’ class property
for a given class as follows: <className>.class.disAttrName = <attrName> where <className> is a valid
class name and <attrName> is a valid attribute in the class. Note: For each class a different attribute can
be specified. Setting this property, results in this attribute value being set to the value typed in the ’Name’
field in the InstanceViewer when creating a new object. Specifying the ’toString’ class property will result
in displaying this attribute value when the object is rendered in the InstanceViewer (e.g., <className>.
class.toString = <attrName>).

•	 How can I display different images to display objects in the InstanceViewer? Specify the class toSym
bol property as follows: <className>.class.toSymbol = image:<imageFileName>. The default image
used to render objects in the InstanceViewer is ’object.gif,’ which can be found in the core_images.zip file.
The following property can be edited to use a different image: core.client.gui.objectImage = <imageFile-
Name>. Likewise, the image used for rendering class names in the Class Pane is ’class.gif,’ also found in
the core_images.zip file. To use a different image: core.client.gui.classImage = <imageFileName> where
<imageFileName> is the image file name to use. Do not forget to add the image path to your classpath in
the InstanceViewer batch file.

118

A.17 Object Shell Application

•	 I don’t see all the attributes in my class in the InstanceViewer. Did you remember to set the following
property to true: core.client.gui.template.showHidden = true? If this property is set to false, then all at
tributes defined as hidden (e.g., meta attributes) are not displayed in the InstanceViewer. Default value for
this property is false.

•	 How can I configure my InstanceViewer to view only some useful attributes in a given class instead of
all? For any class, the attributes to display in the InstanceViewer can be defined by specifying the attribute
list in the following property: <className>.class.InstanceViewer.customize = <attribute list>. Where
the <attribute list> is a valid set of attributes in the given class (e.g., CoreObject.class.InstanceViewer.
customize = [objectKey, created]).

A.17 Object Shell Application

Version 2.00

The Object Shell is a generic command-line based user interface. The syntax is defined by grammer specified in
an annotated Java source file. Additionally, Java code is imbedded to directly invoke methods through the Object
Management Layer (OML) in response to the parsing of commandline production segments (groups of tokens
matching a prescribed pattern). Additionally, the Object Shell supports command completion.

A.17.1 Requirements

• Object Management Library v5.00 - see section A.7

A.18 Object Graph Application

Version 2.00

Simple graphical application for displaying objects and their associations.

A.18.1 Requirements

• Object Management Library v5.00 - see section A.7

119

120

Appendix B - Properties

B.1 Utility Properties

General utility properties.

Properties denoted with an asterisk (*) are required.

• core.logLevel = <logLevel>: Information
Defines the log level. Valid values are (in descending order): Test, Debug, Information, Time, Warning,
Error, Exception, and Fatal. Test, being the ’highest’ log level will produce the most output, whereas Fatal,
being the ’lowest’ log level will produce the least output. Each ’higher’ log level includes the output for that
level as well as all ’lower’ levels (e.g. Error also includes Exception and Fatal log levels.) If not specified,
the default log level is Information.
<logLevel> - Error log level.

– Test

– Debug

– Information

– Time

– Warning

– Exception

– Fatal

• core.logFile = <fileName>

Dump error log output to file.

<fileName> - Name of file.

• core.writeOutputToScreen = false

Flag to control output to screen console.

• core.outputDirectory = <directoryName>

Output directory for error log files.

<directoryName> - Name of directory.

• core.load.properties = [<fileName>,...]
Additional property files to load. Each property file must be located relative to a path defined in the appli
cation’s classpath.
<fileName> - Name of file.

• core.properties.priority = <priority>: 0

Priority of properties defined in property file. Higher priority takes precedent.

<priority> - Property file priority.

121

Properties

B.2 Client Properties

Properties used by client applications. Refer to utility properties for additional property definitions.

Properties denoted with an asterisk (*) are required.

• core.domains = [<domain>,...]
List of object model domains.
<domain> - An object model domain name. This can be fully qualified (e.g. ’com.cdmtech.core.client.
corba.domain’) or simply the ’domain’ name.

• core.debugMode = false
Flag to turn on log for debug event information. For each subscription client a log file is generated contain
ing information of all events received by that client.

• Properties used by client CORBA components.

–	 core.client.corba.CoreServerAPI.shutdownHook = true
Enable or disable the CoreServerAPI shutdown hook, which is used to unsubscribe from all subscrip
tions when a client exits normally.

–	 core.client.corba.invocationRetries = 2

Number of times to retry failed RMI before giving up.

–	 core.client.corba.invocationBackoff = 500

Amount of time (ms) to backoff between invocation retries.

• Properties used by the Subscription Service.

–	 core.client.corba.events.dispatchImmediately = true
Flag indicating whether event notifications are dispatched immediately or periodically. If set to "false"
then event notifications will be dispatched to listeners periodically as determined by dispatchFre
quency. If set to "true," or not set, then event notifications will be dispatched to listeners as soon as
possible after they are received.

–	 core.client.corba.events.dispatchFrequency = 0
Positive integer that specifies the number of milliseconds to wait in-between event dispatching. There
is no minimum or maximum value. The default is 0 if dispatchImmediately is true or 1000 if dis
patchImmediately is false.

–	 core.client.corba.events.orderPolicy = 1
Integer that indicates the type of event queue to use. The default is 1 (FIFO).

LIFO - 0 (Last in First Out)
 *

FIFO - 1 (First in First Out) *

Priority - 2 (Priority Ordering – not supported yet) *

122

B.3 Server Properties

Deadline - 3 (Deadline Ordering) *

–	 core.client.corba.events.eventRetry = 3
Integer that indicates to the server the number of times to retry sending a notification of event(s) to a
subscriber before "dropping" the event(s).

–	 core.client.corba.events.subscriberRetry = 60
Integer that indicates to the server the number of times to retry connecting to a subscriber (Subscrip
tion Client callback object) before assuming the subscriber no longer exists, and removing all of the
subscriber’s subscriptions. There is no minimum or maximum value.

–	 core.client.corba.events.maxEventCount = 1000
Maximum number of events to send in a single notification. Setting this value too small can sig
nificantly degrade performance if a client can be expected to receive a large number of events in a
relatively short period of time. It is recommended to use the default unless the client has specific
memory resource considerations. Must be between 1 and 1000 (inclusive). Default is 1000.

B.3 Server Properties

Properties used by domain base services. All server properties (properties that begin with "core.server.corba") can
optionally be prefixed with the domain name. This is useful if services for multiple domains will be configured
from the same properties file. Refer to persistence layer properties and utility properties for additional property
definitions.

Properties denoted with an asterisk (*) are required.

• Properties used by the Subscription Service.

–	 [<domain>.]core.server.corba.events.useConstraintBasedSubscriptionService = <flag>: false
For each domain, either the simple or constraint based Subscription Service will be used. By default,
the simple Subscription Service is used.
<domain> - Unqualified model domain name.
<flag> - Boolean flag.

true | on | enabled*

false | off | disabled
*

–	 Properties that control event dispatch.

[<domain>.]core.server.corba.events.dispatchImmediately = <flag>: false *
Flag indicating whether queued events are dispatched immediately or periodically. If set to "false"

then events will be dispatched periodically as determined by dispatchFrequency. If set to "true"

then events will be dispatched as soon as possible after they are received.

<domain> - Unqualified model domain name.

<flag> - Boolean flag.

· true | on | enabled

· false | off | disabled

123

Properties

[<domain>.]core.server.corba.events.dispatchFrequency = 5000*
Positive integer that specifies the number of milliseconds to wait in-between queued event dis
patching. There is no minimum or maximum value.

<domain> - Unqualified model domain name.

–	 Log debug information to file about subscription events being sent to client.

[<domain>.]core.server.corba.events.debugMode = <flag>: false *
Enable or disable events debug mode.

<domain> - Unqualified model domain name.

<flag> - Boolean flag.

· true | on | enabled

· false | off | disabled

[<domain>.]core.server.corba.events.logQueuing = <flag>: false
 *
Enable or disable logging of event queuing when in debug mode.

<domain> - Unqualified model domain name.

<flag> - Boolean flag.

· true | on | enabled

· false | off | disabled

• Properties used specifically by the Constraint Based Subscription Service.

–	 [<domain>.]core.server.corba.events.useCreateConstraints = <flag>: true

Flag indicating whether or not constraints are used with object creation events.

<domain> - Unqualified model domain name.

<flag> - Boolean flag.

true | on | enabled*
false | off | disabled*

–	 [<domain>.]core.server.corba.events.checkHasSubscriptions = <flag>: true
Flag indicating whether or not to check if there is an interest in a particular object event before sending
the object event to the filter engine.
<domain> - Unqualified model domain name.
<flag> - Boolean flag.

true | on | enabled*
false | off | disabled*

–	 [<domain>.]core.server.corba.events.filter.loadFile = <cbssLoadFile>: events.load

Can be used to change the default Constraint Based Subscription Service load file.

<domain> - Unqualified model domain name.

<cbssLoadFile> - Name of Constraint Based Subscription Service load file.

–	 [<domain>.]core.server.corba.events.filter.debugMode = <flag>: false

<domain> - Unqualified model domain name.

<flag> - Boolean flag.

true | on | enabled*

124

B.3 Server Properties

false | off | disabled*
–	 [<domain>.]core.server.corba.events.filter.debugFile = <logFileName>: cbss_filter.out

<domain> - Unqualified model domain name.

<logFileName> - Name of file to log information to.

• Properties used by domain factories. Defines behavior for all factories or for specific factories.

–	 The lazyActivation property defines when objects are activated. Set to ’on,’ ’enabled,’ or ’true’ to
have objects activated lazily (i.e., only when actually used via a method invocation). This can provide
performance enhancements for object creation and resolution, but should be set based upon intended
object usage. If not set or if set to anything other than ’enabled,’ ’on,’ or ’true’ then lazy object acti
vation will not be used (objects will be activated during object creation or resolution).

[<domain>.]core.server.corba.factory.lazyActivation = <flag>: disabled *
The lazyActivation property for all factories

<domain> - Unqualified model domain name.

<flag> - Boolean flag.

· true | on | enabled

· false | off | disabled

[<domain>.]core.server.corba.factory.<factory>.lazyActivation = <flag>: disabled *
The lazyActivation property for specific factories

<domain> - Unqualified model domain name.

<factory> - Factory name.

<flag> - Boolean flag.

· true | on | enabled

· false | off | disabled

–	 The servantMgr property defines which servant manager implementation to use. Set to ’activator’
(case ignored) to use the ServantActivator implementation, which uses the POA active object map
(AOM). This can result in a small performance enhancement, with the tradeoff being resource utiliza
tion and a modest risk of thread race conditions (hopefully to be eliminated in the future.) If not set
or if set to anything other than ’activator,’ then the ServantLocator implementation will be used. The
locator approach does not use the AOM, thus resulting in a minimal performance penalty.

[<domain>.]core.server.corba.factory.servantMgr = <servantMgr>: locator *
The servantMgr property for all factories

<domain> - Unqualified model domain name.

<servantMgr> - Servant manager type indicator.

· locator

· activator

[<domain>.]core.server.corba.factory.<factory>.servantMgr = <servantMgr>: locator *
The servantMgr property for specific factories

<domain> - Unqualified model domain name.

<factory> - Factory name.

<servantMgr> - Servant manager type indicator.

·	 locator

125

Properties

·	 activator

–	 The ’maxSize’ property defines the maximum number of active objects to cache. If not set to a valid
(maxSize >= 1) integer value then defaults to 100.

[<domain>.]core.server.corba.factory.objectCache.maxSize = 100*
The maxSize property for all factories

<domain> - Unqualified model domain name.

[<domain>.]core.server.corba.factory.<factory>.objectCache.maxSize = 100*
The maxSize property for specific factories

<domain> - Unqualified model domain name.

<factory> - Factory name.

–	 The ’freeFactor’ property defines the percentage of active objects to free-up (deactivate) before adding
to an already full cache. If not set to a valid (0.0 <= freeFactor >= 1.0) float value then defaults to
0.25F (i.e., the 25% least active objects of the object cache will be deactivated before activating an
object when the object cache is full).

[<domain>.]core.server.corba.factory.objectCache.freeFactor = 0.25*
The freeFactor property for all factories

<domain> - Unqualified model domain name.

[<domain>.]core.server.corba.factory.<factory>.objectCache.freeFactor = 0.25*
The freeFactor property for specific factories

<domain> - Unqualified model domain name.

<factory> - Factory name.

–	 The ’timeToLive’ property defines the minimum number of seconds that objects will remain in the
active object cache during periods of inactivity. The maximum number of seconds that objects will
remain in the active object cache during periods of inactivity is twice the minimum. If not set to a
valid (timeToLive >= 1) integer value, then defaults to 300 (i.e., the active object cache will be cleared
after between 5 and 10 minutes of inactivity).

[<domain>.]core.server.corba.factory.objectCache.timeToLive = <period>: 300 *
The timeToLive property for all factories

<domain> - Unqualified model domain name.

<period> - Time period (in seconds).

[<domain>.]core.server.corba.factory.<factory>.objectCache.timeToLive = <period>: 300 *
The timeToLive property for specific factories

<domain> - Unqualified model domain name.

<factory> - Factory name.

<period> - Time period (in seconds).

–	 Event priority for events generated in a given factory. Default behavior is first in first out (FIFO)
policy. Clients wishing to prioritize events must not only set a value greater than 0 for those factory
events but also specify PRIORITY ordering in their client properties file.

[<domain>.]core.server.corba.factory.eventPriority = 0*
The eventPriority property for all factories

<domain> - Unqualified model domain name.

126

B.4 Persistence Layer Properties

[<domain>.]core.server.corba.factory.<factory>.eventPriority = 0*
The eventPriority property for specific factories

<domain> - Unqualified model domain name.

<factory> - Factory name.

B.4 Persistence Layer Properties

Properties used by the Core Persistence Layer. All persistence layer properties (properties that begin with "core.
persist") can optionally be prefixed with the domain name. This is useful if services for multiple domains will be
configured from the same properties file. Refer to utility properties for additional property definitions.

Properties denoted with an asterisk (*) are required.

• Properties used by all persistence implementations.

–	 [<domain>.]core.persist.class = <persistClass> | com.cdmtech.core.util.persist.serial.SerialPersistence
| com.cdmtech.core.util.persist.jdbc.JDBCPersistence
Defines the implementation class of the Persistence interface. If not specified, SerialPersistence will
be used.
<domain> - Unqualified model domain name.
<persistClass> - Name of class implementing Persistence.

–	 [<domain>.]core.persist.type = serial | jdbc
Defines the type of com.cdmtech.core.util.persist.Persistence implementation. This is a convenience
for indicating the kind of desired persistence without having to specify the actual implementation
class. There is no default value.
<domain> - Unqualified model domain name.

–	 [<domain>.]core.persist.autoConnect = <flag>: enabled
Indicate whether the connection to persistence is automatically established. If not set, or set to any
thing other than ’disabled,’ ’off,’ or ’false’ then autoConnect is enabled.
<domain> - Unqualified model domain name.
<flag> - Boolean flag.

true | on | enabled*
false | off | disabled*

–	 [<domain>.]core.persist.autoClose = <flag>: disabled | <period>
Indicate whether the connection to persistence is automatically closed (after a period of inactivity). If
set to ’enabled,’ ’on,’ or ’true’ then auto-close is enabled with the default inactivity period. If set to
a positive integer, then auto-close is enabled using the specified inactivity period (in seconds). If not
set, or set to some other value, then auto-close is disabled.
<domain> - Unqualified model domain name.
<flag> - Boolean flag.

true | on | enabled*
false | off | disabled*

<period> - Time period (in seconds).

127

Properties

–	 [<domain>.]core.persist.cleanUp = <flag>: disabled | <period>
Indicate whether periodic clean-up (garbage collection) is to be performed. If set to ’enabled,’ ’on,’ or
’true’ then clean-up is enabled with the default clean-up period of 60 seconds (once a minute). If set
to a positive integer, then clean-up is enabled using the specified clean-up period (in seconds). If not
set, or set to ’disabled,’ ’off,’ or ’false’ then clean-up is disabled.
<domain> - Unqualified model domain name.
<flag> - Boolean flag.

true | on | enabled*

false | off | disabled
*

<period> - Time period (in seconds).

• Properties used by com.cdmtech.core.util.persist.serial.SerialPersistence.

–	 [<domain>.]core.persist.serial.location = data
Defines the root persistent object store directory of CorePersistence when using the SerialPeristence
implementation. The directory path specified can be absolute (e.g. C:/my_data) or relative to the di
rectory in which CorePersistence is started. If not specified, defaults to relative directory path ’data.’
NOTE: if base services for multiple domains are all started from the same directory, be sure to specify
a different data location for each. Also, it is STRONGLY advised to put your root directory at a fairly
high level (i.e., do NOT specify a deeply nested directory).
<domain> - Unqualified model domain name.

–	 [<domain>.]core.persist.serial.storage = <storage>: enabled
Defines the persistent object storage configuration of CorePersistence when using the SerialPeristence
implementation. Set to ’initialize’ to allow for initialization only (initialize CorePersistence from the
object instances pre-existing in the object instance store, but then disable persistent storage following
initialization.) Set to ’disabled,’ ’off,’ or ’false’ to completely disable use of persistent object store.
If not set or if set to anything other than ’initialize,’ ’disabled,’ ’off,’ or ’false’ then persistent object
storage will be enabled.
<domain> - Unqualified model domain name.
<storage> - Storage type indicator.

true | on | enabled*

false | off | disabled
*

initialize
*

–	 Properties relating to the object cache of SerialPersistence.

[<domain>.]core.persist.serial.objectCache.maxSize = 0*
If maxSize is specified as a positive integer, the object cache will have this maximum size. Oth
erwise, the object cache will have an unlimited size.

<domain> - Unqualified model domain name.

[<domain>.]core.persist.serial.objectCache.freeFactor = 0.25
*
If freeFactor is specified as a percentage in the range of 0.0 to 1.0 (inclusive), this percentage of

objects will be removed from the object cache whenever the object cache reaches its maximum

size. If maxSize is not specified, freeFactor is not used.

<domain> - Unqualified model domain name.

128

B.4 Persistence Layer Properties

[<domain>.]core.persist.serial.objectCache.timeToLive = <period>: 0 *
If timeToLive is specified as a positive integer (in seconds), the object cache will be flushed after

the specified period of inactivity. Otherwise, the object cache will not be flushed periodically.

<domain> - Unqualified model domain name.

<period> - Time period (in seconds).

[<domain>.]core.persist.serial.objectCache.delayedUpdate = <period>: 0
 *
If delayedUpdate is specified as a positive integer (in seconds), updates to cached object attributes

will only be written (to disk) after the specified period. Otherwise, delayed updates are disabled,

and all attribute updates will be written immediately.

<domain> - Unqualified model domain name.

<period> - Time period (in seconds).

• Properties used by com.cdmtech.core.util.persist.jdbc.JDBCPersistence.

–	 *[<domain>.]core.persist.jdbc.driver =

Defines the JDBC driver class name.

<domain> - Unqualified model domain name.

–	 *[<domain>.]core.persist.jdbc.url =

Defines the JDBC database URL.

<domain> - Unqualified model domain name.

–	 [<domain>.]core.persist.jdbc.classpath =

Defines the classpath to JAR containing driver.

<domain> - Unqualified model domain name.

–	 The JDBC-ODBC bridge driver

[<domain>.]core.persist.jdbc.driver = sun.jdbc.odbc.JdbcOdbcDriver *

<domain> - Unqualified model domain name.

[<domain>.]core.persist.jdbc.url = jdbc:odbc:[ODBC data source name] *

<domain> - Unqualified model domain name.

–	 The MySQL Connector/J native-protocol pure Java driver

[<domain>.]core.persist.jdbc.driver = com.mysql.jdbc.Driver*

<domain> - Unqualified model domain name.

[<domain>.]core.persist.jdbc.url = jdbc:mysql://[hostname]/[database name] *

<domain> - Unqualified model domain name.

[<domain>.]core.persist.jdbc.classpath = mysql-connector-java.jar *

<domain> - Unqualified model domain name.

129

Properties

B.5 Object Management Layer Properties

Properties used by the Object Management Layer (OML). Refer to client properties for additional property defi
nitions.

Properties denoted with an asterisk (*) are required.

• *core.domains = [<domain>,...]
This is a required property that specifies a list of object domains that the client application needs to access.
The domain com.cdmtech.core.client.corba contains the object classes defined in the base domain model
and is required for interaction with systems built using this toolkit. Technically, this is the only required
domain, however, this domain defines only abstract object classes and would not be useful for client ap
plications requiring access to object instances (which can only have been produced from concrete classes).
Therefore, typically, an application will be configured with at least two additional domains - one domain
defining specialized classes and the other containing any user defined data types required by the domain
classes. The type domain is not an absolute requirement, but is typically defined.
<domain> - Fully qualified domain name.

• *<domain>.properties = [<propertyFile>,...]
For each domain specified in the core.domains property, a set of class properties, contained in separate files,
must be defined and referenced. When an object domain model is processed using the UML processing
tools (see UML Processing Tools) a set of class properties are generated as part of the general build pro
cess. These class property files will be loaded as a system resource, searching the class path specified in the
Java runtime used to start the client application.
<domain> - Fully qualified domain name.
<propertyFile> - Name of file containing domain class properties.

• *<domain>.serverAPI = <serverAPIClass>
For each domain specified in the core.domains property, a Java class implementing the com.cdmtech.core.
client.om.ObjectServerAPI interface must be provided. Domains that define distributed object classes must
specify the com.cdmtech.core.client.corba.CoreServerAPI. Data type domains must use the com.cdmtech.
core.client.om.NullServerAPI since instances defined from these domains are not distributed objects - they
have no remote servant counterpart and therefore have no requirement for a server interface.
<domain> - Fully qualified domain name.
<serverAPIClass> - Name of class implementing object server API.

• *<domain>.objectServer = <serverClass>

For each class domain an object server management implementation class must be specified.

<domain> - Fully qualified domain name.

<serverClass> - Name of class implementing object server management functionality.

• <domain>.isCacheable = true

Enable/disable client-side caching

<domain> - Fully qualified domain name.

• The following properties specify what mechanism to use for cache clearing, and the properties that mecha
nism should use. These properties must be specified on each domain and the above ’isCacheable’ property
must also be set to true for that domain.

130

B.5 Object Management Layer Properties

–	 <domain>.resourceManager = <resourceManagerClass>

Cache resource management implementation.

<domain> - Fully qualified domain name.

<resourceManagerClass> - Name of class implementing cache resource management.

–	 <domain>.resourceManager.retirementAge = 300000
When memory clearing begins, objects that have not been read since the retirement age will first be
cleared. If this does not meet the deallocation percentage of all objects, the retirement age will be
decreased by 1/3 and cache will be cleared with the lower retirement age. If this does not meet the
deallocation percentage of all objects, the cache will simply be cleared object by object until the deal-
location percentage is met or all objects are cleared. When memory runs low, the frequency of cache
clearing will increase, and (approximately) the entire cache will be cleared before an out of Mem
ory Error occurs. Only uncleared objects are counted towards meeting the deallocation percentage
requirement.
<domain> - Fully qualified domain name.

–	 <domain>.resourceManager.deallocationPercentage = 0.2
When a cache clearing is triggered, the percentage (represented as a float 0.0 to 1.0) of all objects that
must be cleared. Only uncleared objects are counted towards satisfying the deallocation percentage
requirement.
<domain> - Fully qualified domain name.

–	 <domain>.resourceManager.memoryThreshold = 0.1
A percentage (represented as a float 0.0 to 1.0) indicating at what percentage of maximum memory
availability should the resource manager start clearing cached values.
<domain> - Fully qualified domain name.

• <domain>.<attrType>.class = <attrManagerClass>
For each class/type domain a series of attribute manager plugin classes may be specified. Attribute manager
plugin classes implement functionality required to manage specific types of attributes (e.g., array typed at
tributes, association ends, etc.) If not specified then simple attribute manager plugins will be utilized (e.g.,
primitive array type support, etc.)
<domain> - Fully qualified domain name.
<attrType> - Attribute type (ATTRIBUTE, ENUMERATION, STRUCT, ASSOCIATION, AGGREGA
TION, NUMERIC, BOOLEAN, or user defined type).
<attrManagerClass> - Name of class specializing Attribute manager.

–	 *<domain>.ATTRIBUTE.class = com.cdmtech.core.client.om.Attribute

–	 *<domain>.ENUMERATION.class = com.cdmtech.core.client.om.EnumAttr

–	 *<domain>.STRUCT.class = com.cdmtech.core.client.om.StructAttr

–	 *<domain>.ASSOCIATION.class = com.cdmtech.core.client.om.Association

–	 *<domain>.AGGREGATION.class = com.cdmtech.core.client.om.Aggregation

– *<domain>.NUMERIC.class = com.cdmtech.core.client.om.NumAttr

– *<domain>.BOOLEAN.class = com.cdmtech.core.client.om.BoolAttr

131

Properties

• <domain>.<attrType>.accessor = <attrAccessorClass>
For each class domain a series of accessors must be defined for all attribute types.
<domain> - Fully qualified domain name.
<attrType> - Attribute type (ATTRIBUTE, ENUMERATION, STRUCT, ASSOCIATION, AGGREGA
TION, NUMERIC, BOOLEAN, or user defined type).
<attrAccessorClass> - Name of class implementing attribute accessor.

–	 *<domain>.ATTRIBUTE.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.AttributeAccessor

–	 *<domain>.ENUMERATION.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.-

EnumAttrAccessor

–	 *<domain>.STRUCT.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.StructAttrAccessor

–	 *<domain>.ASSOCIATION.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.-

AssociationSeqAccessor

–	 *<domain>.AGGREGATION.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.-

AggregationSeqAccessor

–	 *<domain>.NUMERIC.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.NumAttrAccessor

–	 *<domain>.BOOLEAN.accessor = com.cdmtech.core.client.mgmt.implementation.core.accessor.BoolAttrAccessor

• <domain>.<attrType>.memberTypeClass = <memberTypeClass>
For each class/type domain a series of type manager classes must be defined for all member types.
<domain> - Fully qualified domain name.
<attrType> - Attribute type (ATTRIBUTE, ENUMERATION, STRUCT, ASSOCIATION, AGGREGA
TION, NUMERIC, BOOLEAN, or user defined type).
<memberTypeClass> - Name of class implementing member type manager class.

–	 *<domain>.ATTRIBUTE.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.
membertype.AttributeType

–	 *<domain>.ENUMERATION.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.
membertype.EnumerationType

–	 *<domain>.STRUCT.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.membertype.-
AssociationType

–	 *<domain>.ASSOCIATION.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.
membertype.AssociationType

–	 *<domain>.AGGREGATION.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.
membertype.AssociationType

–	 *<domain>.NUMERIC.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.membertype.-
AttributeType

132

B.6 JESS Agent Session Properties

–	 *<domain>.BOOLEAN.memberTypeClass = com.cdmtech.core.client.mgmt.implementation.core.membertype.-
EnumerationType

• Properties used for XML import/export.

–	 <domain>.importClassName = <class>: com.cdmtech.core.client.xml.XMLToPOWImport

The XML import class to use for each domain.

<domain> - Fully qualified domain name.

<class> - Class name.

–	 <domain>.exportClassName = <class>: com.cdmtech.core.client.xml.POWToXMLExport

The XML export class to use for each domain.

<domain> - Fully qualified domain name.

<class> - Class name.

• Root.class = <class>

<class> - Class name.

• *<class>.class.refAttrName = <attrName>

<class> - Class name.

<attrName> - Name of reference (key) attribute.

• core.client.om.interestThread = true

Indicates whether interest management will be handled in a separate thread.

• core.client.om.invocationRetries = 5

Number of client retries on object remote method invocations.

B.6 JESS Agent Session Properties

Properties used by the JESS agent engine. Refer to utility properties for additional property definitions.

Properties denoted with an asterisk (*) are required.

• Core Properties

–	 *core.client.agentLoadFile = <agentLoadFile>

The load file to load constructs

<agentLoadFile>

–	 core.client.interestsFile = <agentInterestsFile>

The interests file to register for event notification

<agentInterestsFile>

133

Properties

–	 AgentSession.usePartialTemplates = true
Uses the attribute file defined below to generate partial templates if set to true. To default back to the
previous version of the JessAE set this property to false

–	 AgentSession.includeAttributeFileName = <fileName>
The file that is to be loaded in NORMAL mode or saved to in INITIALIZE mode to generate partial
templates. This file contains class and attribute names being used in agent rules
<fileName> - Name of file.

–	 AgentSession.currentMode = <sessionMode>
The mode in which the Agent Session is started (can be overriden by a system property)
<sessionMode> - Agent session mode. INITIALIZE mode is used to generate the attributes file and
interests file, while NORMAL mode is used for normal execution of the Agent Engine. In DEBUG
mode a debug file is generated containing all Fact creations, modifications, and retractions. Default
value is NORMAL and can be overridden by specifying system property on the command line when
starting the Agent Engine.

NORMAL*
INITIALIZE*
DEBUG *

–	 AgentSession.useDynamicSubscription = false
Setting this property to false makes use of an interests file to register subscriptions. If not using an
interests file, then this property must be set to true. Default value is false.

–	 AgentSession.avoidClasses = [<class>,...]
Deftemplates for the given classes and subclasses will not be automatically generated by the AgentSes
sion. Default value is an empty list. So deftemplates for all classes are generated. (deprecated: This
property need not be set if you are using partial templates.)
<class> - Class name.

• Properties useful for debuging

–	 AgentSession.debugMode = false

Log debug information to file JessAEDebug.xls.

–	 AgentSession.debugFileName = <fileName>

The filename to log debug information

<fileName> - Name of file.

–	 AgentSession.logAgentMgrInfo = false
Logs AgentManager details such as times taken to process given activations etc, when the log level is
set to ’Time’

–	 AgentSession.logSNMgrInfo = false
Logs SemanticNetManager details such as times taken to process given object events etc, when the
log level is set to ’Time’

• Optional properties used by the Agent Engine

134

B.6 JESS Agent Session Properties

–	 Properties defining extension clases to use in lieu of existing classes. Do not modify these properties
unless you know what your are doing. These are only provided as convenience to enable experienced
users who may write their own extensions. If you want to use the default classes you do not need to
set these properties.

AgentSession.agentSessionTypeClassName = <class> *
Agent session implementation class.

<class> - Class name.

·	 AgentSession.agentSessionTypeClassName = core.client.aml.jess.JessReteImpl
Jess Rete Implementation.

AgentSession.snMgrClassName = <class> *
Agent session manager implementation class.

<class> - Class name.

·	 AgentSession.snMgrClassName = core.client.aml.jess.JessSNMgr

Jess SNMgr Implementation.

AgentSession.agentMgrClassName = <class> *
Agent manager implementation class.

<class> - Class name.

·	 AgentSession.agentMgrClassName = core.client.aml.jess.JessAgentMgr

Jess AgentMgr Implementation.

AgentSession.agentSessionClassName = <class> *
Agent session main class.

<class> - Class name.

·	 AgentSession.agentSessionClassName = core.client.aml.AgentSessionImpl
Jess Agent session main class.

AgentSession.subscriptionMgrClassName = <class> *
The SubscriptionManager class to use.

<class> - Class name.

·	 AgentSession.subscriptionMgrClassName = core.client.aml.SubscriptionManager
Default SubscriptionManager class. Does not add dynamic subscriptions, but only uses the
interests file.

·	 AgentSession.subscriptionMgrClassName = core.client.aml.jess.JessSubscriptionManager
Jess SubscriptionManager class. This class performs dynamic subscription management as
new rules are added if the property to use dynamic subscriptions is set to true. In addition, if
an interest file is provided, additional subscriptions are registered from that file.

AgentSession.writeOutputRouters = false*
Record all JESS output to log file. This output is recorded to file only if a log file name has been
provided in the property core.client.logFile.

–	 AgentSession.outputDirectory = <directoryName>
The directory to which the interests file and the attributes file is saved. Do not forget to add the path

135

Properties

up to but not including this directory to your classpath.

<directoryName> - Name of directory.

–	 core.logFile = <agentLogFile>
The log file to log debug output. If defined then all AgentSession output is recorded to the given file.
<agentLogFile>

–	 Optional Agent class properties.

core.client.agentClassName = <className> *
The Agent class name.

<className>

core.client.agentIdAttrName = <attrName>
 *
The Agent identification attribute name.

<attrName>

core.client.activityAttrName = <attrName>
 *
The Agent activity attribute name.

<attrName>

–	 Optional container properties.

core.client.containerObjectName = <containerName> *
A display name can be specified for the container object instead of objectKey. In case a display

name is being provided make sure the display name property is defined for the container class

(see below)

<containerName> - Container name (either object key or display name)

core.client.containerClassName = <className>
 *
Container class name.

<className>

core.client.collectionRoleName = <roleName>
 *
Container collection role name.

<roleName>

<class>.class.disAttrName = <attrName>
 *

<class> - Class name.

<attrName> - Display attribute name.

core.client.removeCollectablesAtStartup = true*
Remove collectables at startup (if a container is defined)

core.client.removeCollectablesAtShutdown = true*
Remove collectables at shutdown (if a container is defined or will delete all objects created by
the AgentSession)

B.7 CLIPS Agent Session Properties

Properties used by the CLIPS agent engine. Refer to utility properties for additional property definitions.

Properties denoted with an asterisk (*) are required.

136

B.7 CLIPS Agent Session Properties

• Core properties used to initialize an agent session.

–	 *core.client.agentLoadFile = <fileName>

The batch file used to load CLIPS constructs.

<fileName> - Name of file.

–	 *core.client.interestsFile = <fileName>

The interests file used to register for event notification.

<fileName> - Name of file.

–	 core.client.instancesLoadFile = <fileName>

A batch file used to load CLIPS COOL instances.

<fileName> - Name of file.

• Optional session management properties.

–	 core.client.containerObjectName = <containerObjectName>
Unique object name of the container for which to initiate an agent session.
<containerObjectName> - Unique object name.

–	 core.client.containerClassName = <className>

Name of the container class.

<className> - Class name.

–	 core.client.collectionRoleName = <roleName>

Collection role name of the container class.

<roleName> - Association role name.

–	 core.client.collectableClassName = <className>

Name of the collectable class.

<className> - Class name.

–	 core.client.containerRoleName = <roleName>

Container role name of the collectable class.

<roleName> - Association role name.

–	 core.client.collectableTimestampAttrName = <attrName>

Name of the integer timestamp attribute of the collectable class.

<attrName> - Attribute name.

–	 core.client.collectableOwnerAttrName = <attrName>

Name of the owner attribute of the collectable class.

<attrName> - Attribute name.

–	 core.client.collectableOwnerName = <attrValue>: AGENTS
The owner attribute value to use for all collectable objects created by the agent session.
<attrValue> - Attribute value.

137

Properties

– core.client.removeCollectablesAtStartup = false

Boolean that indicates whether or not to remove collectables at startup (if a container is defined).

–	 core.client.removeCollectablesAtShutdown = false
Boolean that indicates whether or not to remove collectables at shutdown (if a container is defined).

–	 core.client.ae.allowNonCollectableObjects = false
Boolean that indicates whether or not to allow objects which are not part of the container’s collection
(if a container is defined).

–	 core.client.ae.systemTimeUpdate = <flag>: false | <period>
Boolean flag that indicates whether or not the system time manager will create and update a ’SYSTEM
TIME’ COOL instance, which can be used for time sensitive pattern matching.
<flag> - Boolean flag.

true | enabled | on*
false | disabled | off *

<period> - Time period (in seconds).

–	 core.client.ae.enableCommandServer = false
Boolean flag that indicates whether or not to enable the command server that opens a server socket to
listen for commands. The command server is disabled by default.

• Optional agent management properties.

–	 core.client.agentClassName = <className>

The Agent class name.

<className> - Class name.

–	 core.client.agentIdAttrName = <attrName>
Name of the attribute of the Agent class that indicates the Agent’s (possibly unique) identification.
<attrName> - Attribute name.

–	 core.client.ae.agentRunList = <agentIdList>

List of agent ids that indicate the order in which to run the set of agents.

<agentIdList> - List of agent ids.

–	 core.client.activityAttrName = <attrName>

Name of the integer attribute of the Agent class that indicates an Agent’s activity level.

<attrName> - Attribute name.

–	 core.client.activeAttrName = <attrName>
Name of the boolean attribute of the Agent class that indicates whether an Agent is active or not.
<attrName> - Attribute name.

• core.logFile = <fileName>
The log file to log debug output. If defined then all AgentSession output is recorded to the given file.
<fileName> - Name of file.

138

B.8 Translation Service Properties

B.8 Translation Service Properties

Properties used by the Interoperability Bridge Framework.

Properties denoted with an asterisk (*) are required.

• Properties used by Interoperability Bridge.

–	 InteroperabilityBridge.serviceClassName = <class>: core.translation.InteroperabilityBridgeImpl
The Interoperability Bridge implementation class to use. Default is the InteroperabilityBridgeImpl
class. Another option is the RemoteInteroperabilityBridge, which uses the Web services component.
<class> - Fully qualified class name.

–	 InteroperabilityWebService.URL = <URL>: http://localhost:8080/axis/InteroperabilityWebService
The web service URL to use, if using the RemoteInteroperabiliytBridge.
<URL> - Universal Resource Locator.

• Properties used by Connection Service.

–	 <domain>.importClassName = <class>: core.client.xml.XMLToPOWImport
The XML import class to use for each domain. Default is core.client.xml.XMLToPOWImport.
<domain> - Fully qualified domain name.
<class> - Fully qualified class name.

–	 <domain>.exportClassName = <class>: core.client.xml.POWToXMLExport
The XML export class to use for each domain. Default is core.client.xml.POWToXMLExport.
<domain> - Fully qualified domain name.
<class> - Fully qualified class name.

–	 <domain>.connectionDelegateClassName = <class>

Connection delegate class name if using the existing Connector implementation.

<domain> - Fully qualified domain name.

<class> - Fully qualified class name.

• Properties used by Translation Service.

–	 *<domain>.schemaFile = <schemaFile>

For each domain model namespace, the schema file to use.

<domain> - Fully qualified domain name.

<schemaFile> - Name of schema file.

–	 *<domain>.interestedNamespaces = [<domain>,...]
Comma-delimited list of one or more external domains that this domain is interested in (i.e., requires
a translation service for).
<domain> - Fully qualified domain name.
<domain> - Fully qualified domain name.

139

Properties

–	 <domain>To<domain>.xslTransformationFile = <fileName>
The XSL transformation file to translate from one domain to another. Either this transformation or a
JESS-based transformation file must be provided for translation.
<domain> - Fully qualified domain name.
<domain> - Fully qualified domain name.
<fileName> - Name of file.

–	 <domain>To<domain>.inferenceBasedTransformationFile = <fileName>
The JESS transformation load file to translate from one domain to another. Either this transformation
or an XSL-based transformation file must be provided for translation.
<domain> - Fully qualified domain name.
<domain> - Fully qualified domain name.
<fileName> - Name of file.

–	 <domain>.includeAttributesFile = <fileName>
Attributes file used to define partial deftemplates containing only a subset of classes and attributes for
systems using JESS-based translation.
<domain> - Fully qualified domain name.
<fileName> - Name of file.

–	 <class>.class.alwaysExport = [<attribute>,...]
The additional attributes to always export when exporting object modfication events. A class property
containing a comma-delimited list of class attributes for each class.
<class> - Fully qualified class name.
<attribute> - Class attribute names.

• Properties used by inference-based translation.

–	 <domain>.inferenceBasedImportClassName = <class>

Inference-based import class name. Required if using JESS-based translation.

<domain> - Fully qualified domain name.

<class> - Fully qualified class name.

–	 <domain>.inferenceBasedExportClassName = <class>

Inference-based export class name. Required if using JESS-based translation.

<domain> - Fully qualified domain name.

<class> - Fully qualified class name.

140

Appendix C - Examples

C.1 Example Models

C.1.1 Simple Example model

OrganizationEntity

latitude: double

Position

longitude: double

Person

age: int = 0
lastname: string

gender: eGender = unknown unknown, male, female }
eGender: enum {

Note

referenceName: string

Entity

location: Position

simple

Organization

<<struct>>

members

0...*

1

organizationaddress: string[0...*]

<?xml version="1.0"?>

<XMI xmlns:UML="org.omg.xmi.namespace.UML" xmi.version="1.1">

<XMI.header>

<XMI.metamodel xmi.version="1.4" xmi.name="UML"/>

</XMI.header>

<XMI.content>

<UML:Model xmi.id="ExampleModel" name="exampleModel">

<UML:Namespace.ownedElement>

<UML:Package xmi.id="SimplePackage" name="simple"

stereotype="Namespace">

<UML:Namespace.ownedElement>

<UML:Class xmi.id="EntityClass" name="Entity" isAbstract="true">

<UML:Classifier.feature>

<UML:Attribute name="referenceName" visibility="public"

changeability="changeable" type="StringType"/>

<UML:Attribute name="location" visibility="public"

changeability="changeable" type="PositionType"/>

</UML:Classifier.feature>

</UML:Class>

<UML:Class xmi.id="PersonClass" name="Person"

isAbstract="false" generalization="PersonEntity">

<UML:Classifier.feature>

<UML:Attribute name="lastname" visibility="public"

changeability="changeable" type="StringType"/>

<UML:Attribute name="age" visibility="public"

changeability="changeable" type="IntType">

<UML:Attribute.initialValue>

141

Examples

<UML:Expression body="0"/>

</UML:Attribute.initialValue>

</UML:Attribute>

<UML:Attribute name="gender" visibility="public"

changeability="frozen" type="GenderType">

<UML:Attribute.initialValue>

<UML:Expression body="unknown"/>

</UML:Attribute.initialValue>

</UML:Attribute>

</UML:Classifier.feature>

<UML:Namespace.ownedElement>

<UML:Enumeration xmi.id="GenderType" name="eGender">

<UML:Enumeration.literal>

<UML:EnumerationLiteral name="unknown"/>

<UML:EnumerationLiteral name="male"/>

<UML:EnumerationLiteral name="female"/>

</UML:Enumeration.literal>

</UML:Enumeration>

</UML:Namespace.ownedElement>

</UML:Class>

<UML:Class xmi.id="OrganizationClass" name="Organization"

isAbstract="false" generalization="OrganizationEntity">

<UML:Classifier.feature>

<UML:Attribute name="address" visibility="public"

changeability="changeable" type="StringType">

<UML:StructuralFeature.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:StructuralFeature.multiplicity>

</UML:Attribute>

</UML:Classifier.feature>

</UML:Class>

<UML:DataType xmi.id="PositionType" name="Position"

stereotype="Struct">

<UML:Classifier.feature>

<UML:Attribute name="latitude" visibility="public"

changeability="changeable" type="DoubleType"/>

<UML:Attribute name="longitude" visibility="public"

changeability="changeable" type="DoubleType"/>

</UML:Classifier.feature>

</UML:DataType>

</UML:Namespace.ownedElement>

</UML:Package>

<UML:Association xmi.id="OrganizationEntityAssoc"

name="OrganizationEntity">

<UML:Association.connection>

<UML:AssociationEnd name="organization" isNavigable="false"

aggregation="none"

participant="OrganizationClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

142

C.1 Example Models

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="1" upper="1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

<UML:AssociationEnd name="members" isNavigable="true"

aggregation="none"

participant="EntityClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

<UML:Generalization xmi.id="PersonEntity" parent="EntityClass"

child="PersonClass"/>

<UML:Generalization xmi.id="OrganizationEntity" parent="EntityClass"

child="OrganizationClass"/>

<UML:DataType xmi.id="StringType" name="string"/>

<UML:DataType xmi.id="IntType" name="int"/>

<UML:DataType xmi.id="DoubleType" name="double"/>

<UML:Stereotype xmi.id="Namespace" name="namespace"/>

<UML:Stereotype xmi.id="Struct" name="struct"/>

</UML:Namespace.ownedElement>

</UML:Model>

</XMI.content>

</XMI>

C.1.2 Decision Support model

Observation

report: string
acknowledged: boolean

Action

priority: int
timeOfAction: long
duration: long

Entity

Agent

activity: int
id: string

referenceName: string

Support

decisionSupport

simple

Session

subActions
0...*

0...*

actions
<<reference>>

targets
0...*

0...*
triggers

objects
0...*

<<reference>>

<?xml version="1.0"?>

<XMI xmlns:UML="org.omg.xmi.namespace.UML" xmi.version="1.1">

<XMI.header>

143

Examples

<XMI.metamodel xmi.version="1.4" xmi.name="UML"/>

</XMI.header>

<XMI.content>

<UML:Model xmi.id="DecisionModel" name="decisionModel">

<UML:Namespace.ownedElement>

<UML:Package xmi.id="SimplePackage" name="simple"

stereotype="Reference">

<UML:Namespace.ownedElement>

<UML:Class xmi.id="EntityClass" name="Entity"

stereotype="Reference"/>

</UML:Namespace.ownedElement>

</UML:Package>

<UML:Package xmi.id="DecisionSupportPackage" name="decisionSupport"

stereotype="Namespace">

<UML:Namespace.ownedElement>

<UML:Class xmi.id="SupportClass" name="Support" isAbstract="true">

<UML:Classifier.feature>

<UML:Attribute name="referenceName" visibility="public"

changeability="changeable" type="StringType"/>

</UML:Classifier.feature>

</UML:Class>

<UML:Class xmi.id="SessionClass" name="Session"

isAbstract="false" generalization="SessionSupport"/>

<UML:Class xmi.id="AgentClass" name="Agent"

isAbstract="false" generalization="AgentSupport">

<UML:Classifier.feature>

<UML:Attribute name="id" visibility="public"

changeability="changeable" type="StringType"/>

<UML:Attribute name="activity" visibility="public"

changeability="changeable" type="IntType">

<UML:Attribute.initialValue>

<UML:Expression body="0"/>

</UML:Attribute.initialValue>

</UML:Attribute>

</UML:Classifier.feature>

</UML:Class>

<UML:Class xmi.id="ActionClass" name="Action"

isAbstract="false" generalization="ActionSupport">

<UML:Classifier.feature>

<UML:Attribute name="priority" visibility="public"

changeability="changeable" type="IntType">

<UML:Attribute.initialValue>

<UML:Expression body="0"/>

</UML:Attribute.initialValue>

</UML:Attribute>

<UML:Attribute name="timeOfAction" visibility="public"

changeability="changeable" type="LongType"/>

<UML:Attribute name="duration" visibility="public"

changeability="changeable" type="LongType"/>

</UML:Classifier.feature>

</UML:Class>

<UML:Class xmi.id="ObservationClass" name="Observation"

isAbstract="false" generalization="ObservationAction">

<UML:Classifier.feature>

144

C.1 Example Models

<UML:Attribute name="report" visibility="public"

changeability="changeable" type="StringType"/>

<UML:Attribute name="acknowledged" visibility="public"

changeability="changeable" type="BooleanType"/>

</UML:Classifier.feature>

</UML:Class>

</UML:Namespace.ownedElement>

</UML:Package>

<UML:Association xmi.id="SessionSupportAssoc" name="SessionSupport">

<UML:Association.connection>

<UML:AssociationEnd name="session" isNavigable="false"

aggregation="none"

participant="SessionClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="1" upper="1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

<UML:AssociationEnd name="objects" isNavigable="true"

aggregation="none"

participant="SupportClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

<UML:Association xmi.id="AgentActionAssoc" name="AgentAction">

<UML:Association.connection>

<UML:AssociationEnd name="agent" isNavigable="false"

aggregation="none"

participant="AgentClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="1" upper="1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

<UML:AssociationEnd name="actions" isNavigable="true"

aggregation="none"

participant="ActionClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

145

Examples

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

<UML:Association xmi.id="ActionActionAssoc" name="ActionAction">

<UML:Association.connection>

<UML:AssociationEnd name="action" isNavigable="false"

aggregation="none"

participant="ActionClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="1" upper="1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

<UML:AssociationEnd name="subActions" isNavigable="true"

aggregation="none"

participant="ActionClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

<UML:Association xmi.id="ActionTargetAssoc" name="ActionTarget">

<UML:Association.connection>

<UML:AssociationEnd name="targetAction" isNavigable="false"

aggregation="none"

participant="ActionClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="1" upper="1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

<UML:AssociationEnd name="targets" isNavigable="true"

aggregation="none"

participant="EntityClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

146

C.1 Example Models

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

<UML:Association xmi.id="ActionTriggerAssoc" name="ActionTrigger">

<UML:Association.connection>

<UML:AssociationEnd name="triggerAction" isNavigable="false"

aggregation="none"

participant="ActionClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="1" upper="1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

<UML:AssociationEnd name="triggers" isNavigable="true"

aggregation="none"

participant="EntityClass">

<UML:AssociationEnd.multiplicity>

<UML:Multiplicity>

<UML:Multiplicity.range>

<UML:MultiplicityRange lower="0" upper="-1"/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:AssociationEnd.multiplicity>

</UML:AssociationEnd>

</UML:Association.connection>

</UML:Association>

<UML:Generalization xmi.id="SessionSupport" parent="SupportClass"

child="SessionClass"/>

<UML:Generalization xmi.id="AgentSupport" parent="SupportClass"

child="AgentClass"/>

<UML:Generalization xmi.id="ActionSupport" parent="SupportClass"

child="ActionClass"/>

<UML:Generalization xmi.id="ObservationAction" parent="ActionClass"

child="ObservationClass"/>

<UML:DataType xmi.id="StringType" name="string"/>

<UML:DataType xmi.id="BooleanType" name="boolean"/>

<UML:DataType xmi.id="IntType" name="int"/>

<UML:DataType xmi.id="LongType" name="long"/>

<UML:Stereotype xmi.id="Namespace" name="namespace"/>

<UML:Stereotype xmi.id="Reference" name="reference"/>

</UML:Namespace.ownedElement>

</UML:Model>

</XMI.content>

</XMI>

147

Examples

C.2 Example Build Suites

C.2.1 System build suite

This suite performs the following:

• Generate, compile, and archive (in a JAR) all code required by client interface for example model (if
required).

• Generate, compile, and archive (in a JAR) all code required to implement domain services and object
servants for example model (if required).

• Generate OML class properties for example model (if required).

<?xml version="1.0"?>

<?xml-stylesheet href="../../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../../doc/xsd/SuiteSchema.xsd’

basepath="../../..">

<path id="scr.path" ref="*">scr</path>

<path id="xmi.path" ref="*">example/xmi</path>

<path id="uml.path" ref="scr.path">uml</path>

<command id="perl"><exec>perl</exec></command>

<classpath id="domain.classpath"/>

<property id="model">

<path ref="xmi.path"><property ref="model.name"/>.xmi</path>

</property>

<property id="seq.type">object</property>

<property id="domain.name"><property ref="model.name"/></property>

<select property="seq.type">

<when match="s.*">

<property id="assoc.type">Managed</property>

</when>

<otherwise>

<property id="assoc.type"/>

</otherwise>

</select>

<suite id="build">

<path id="lib.path" ref=".">lib</path>

<path id="kb.path" ref=".">kb</path>

<suite id="${model.name}" name="Build System for ${model.name}">

<description>

Build system for <property ref="model.name"/> with associations

managed by

<select property="seq.type">

<when match="object">object</when>

<otherwise>simple</otherwise>

148

C.2 Example Build Suites

</select> sequences.

</description>

<path id="gen.path" ref=".">gen</path>

<case id="check" name="Check Model">

<description>

Generate model report for <property ref="model.name"/>.

</description>

<command ref="perl">

<exec path="uml.path">makereport.pl</exec>

<option id="out"><path ref="gen.path"/></option>

<arg><property ref="model"/></arg>

</command>

<artifact path="gen.path"><property ref="model.name"/>.xml</artifact>

</case>

<case id="client" name="Generate Client Library">

<description>

Build client interface library for <property ref="model.name"/>.

</description>

<command ref="perl">

<exec path="uml.path">makeclient.pl</exec>

<option id="out"><path ref="lib.path"/></option>

<option id="gen"><path ref="gen.path"/></option>

<option id="seq"><property ref="seq.type"/></option>

<arg><property ref="model"/></arg>

</command>

<artifact path="lib.path">

<property ref="model.name"/>_c.jar

</artifact>

</case>

<case id="server" name="Generate Server Library">

<description>

Build service support library for <property ref="model.name"/>.

</description>

<command ref="perl">

<exec path="uml.path">makeserver.pl</exec>

<option id="out"><path ref="lib.path"/></option>

<option id="gen"><path ref="gen.path"/></option>

<option id="seq"><property ref="seq.type"/></option>

<arg>CLASSPATH=<classpath ref="domain.classpath"/></arg>

<arg><property ref="model"/></arg>

</command>

<artifact path="lib.path">

<property ref="model.name"/>.jar

</artifact>

</case>

<case id="defclasses" name="Generate COOL Defclasses">

<description>

Build COOL defclasses for <property ref="model.name"/>.

</description>

<command ref="perl">

<exec path="uml.path">makecool.pl</exec>

<option id="out"><path ref="kb.path"/></option>

149

Examples

<arg><property ref="model"/></arg>

</command>

<artifact path="kb.path"><property ref="model.name"/>.kbc</artifact>

</case>

<case id="classproperties" name="Generate Class Properties">

<description>

Build class properties for <property ref="model.name"/>.

</description>

<command ref="perl">

<exec path="uml.path">makeproperties.pl</exec>

<option id="out"><path ref="lib.path"/></option>

<arg><property ref="model"/></arg>

</command>

<artifact path="lib.path">

<property ref="model.name"/>.properties

</artifact>

</case>

<case id="omlproperties">

<command ref="perl">

<exec path="scr.path">makefile.pl</exec>

<arg>project_om.properties.tpl</arg>

<arg>

<path ref="lib.path">

<property ref="model.name"/>_om.properties

</path>

</arg>

<arg>domain=<property ref="domain.name"/></arg>

<arg>assocStatus=<property ref="assoc.type"/></arg>

</command>

<artifact path="lib.path">

<property ref="model.name"/>_om.properties

</artifact>

</case>

</suite>

</suite>

</suite>

C.2.2 Simple Example build suite

This suite performs the following:

• Build system for example model (see section C.2.1).

<?xml version="1.0"?>

<?xml-stylesheet href="../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../doc/xsd/SuiteSchema.xsd’

basepath="../.." id="example">

<property id="model.name">exampleModel</property>

<include>include/systemBuild.xml</include>

</suite>

150

C.3 Example Execution Suites

C.2.3 Decision Support build suite

This suite performs the following:

• Build system for decision-support model (see section C.2.1).

<?xml version="1.0"?>

<?xml-stylesheet href="../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../doc/xsd/SuiteSchema.xsd’

basepath="../.." id="example">

<property id="model.name">decisionModel</property>

<property id="domain.name">decisionModel,exampleModel</property>

<include>include/systemBuild.xml</include>

</suite>

C.3 Example Execution Suites

C.3.1 Name service suite

This suite performs the following:

• Generate properties for JacORB (if required).

• Startup name service (if required).

<?xml version="1.0"?>

<?xml-stylesheet href="../../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../../doc/xsd/SuiteSchema.xsd’>

<property id="ns.path"><path ref=".">NS_Ref</path></property>

<property id="ns.url"><url protocol="file" ref=".">NS_Ref</url></property>

<path id="tpl.path" ref="*">scr/tpl</path>

<path id="lib.path" ref=".">lib</path>

<classpath id="boot.classpath">

<path ref="*">lib/jacorb_v2_1.jar</path>

<path ref="*">lib/logkit-1.2.jar</path>

<path ref="*">lib/avalon-framework-4.1.5.jar</path>

<path ref="*">lib/concurrent-1.3.2.jar</path>

<path ref="*">lib/antlr-2.7.2.jar</path>

</classpath>

<case id="jacorbproperties">

<command>

<class>com.cdmtech.core.tool.build.MakeFile</class>

<arg><path ref="tpl.path">jacorb.properties.tpl</path></arg>

151

Examples

<arg><path ref="lib.path">jacorb.properties</path></arg>

<arg>nsref=<property ref="ns.url"/></arg>

</command>

<artifact path="lib.path">jacorb.properties</artifact>

</case>

<case id="nameserver" name="Name Service">

<description>

Launch name service. Executes as a background process after case

condition met - allowing subsequent cases to execute and interact

with the service.

</description>

<command>

<classpath><path ref="lib.path"/></classpath>

<class>org.jacorb.naming.NameServer</class>

<option>-Xbootclasspath/p:<classpath ref="boot.classpath"/></option>

<arg><property ref="ns.path"/></arg>

</command>

<artifact path=".">nameserver.run</artifact>

<condition>JacORB V 2.1</condition>

</case>

</suite>

C.3.2 System service startup suite

This suite performs the following:

• Startup name service (if required, see section C.3.1).

• Startup base and domain services (if required).

<?xml version="1.0"?>

<?xml-stylesheet href="../../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../../doc/xsd/SuiteSchema.xsd’

basepath="../../..">

<path id="xmi.path" ref="*">example/xmi</path>

<path id="build.path" ref=".">build</path>

<path id="lib.build.path" ref="build.path">lib</path>

<classpath id="add.classpath"/>

<property id="persist.type">serial</property>

<suite id="exec" name="Base Services for ${model.name}">

<description>

Demonstrate basic service startup for

<property ref="model.name"/> system.

</description>

<include>nameServer.xml</include>

152

C.3 Example Execution Suites

<case id="${model.name}Server" name="Start ${model.name} Server">

<description>

Launch basic services. These services include the domain factory

services, the persistence service, and the notification/subscription

services. Executes as a background process after case condition met,

allowing subsequent cases to execute and interact with the services.

</description>

<command>

<classpath ref="add.classpath">

<path ref="*">lib</path>

<path ref="*">lib/core_server.jar</path>

<path ref=".">lib</path>

<path ref="xmi.path"/>

<path ref="lib.build.path"/>

<path ref="lib.build.path"><property ref="model.name"/>_c.jar</path>

<path ref="lib.build.path"><property ref="model.name"/>.jar</path>

</classpath>

<class>StartServer_<property ref="model.name"/></class>

<property id="org.omg.CORBA.ORBClass">

org.jacorb.orb.ORB

</property>

<property id="org.omg.CORBA.ORBSingletonClass">

org.jacorb.orb.ORBSingleton

</property>

<property id="core.properties">

<property ref="model.name"/>_server.properties

</property>

<select property="persist.type">

<when match="jdbc">

<property id="core.persist.class">

com.cdmtech.core.util.persist.jdbc.JDBCPersistence

</property>

<property id="core.persist.jdbc.driver">

com.mysql.jdbc.Driver

</property>

<property id="core.persist.jdbc.classpath">

mysql-connector-java.jar

</property>

<property id="core.persist.jdbc.url">

jdbc:mysql://localhost/<property ref="model.name"/>

</property>

</when>

<otherwise>

<property id="core.persist.serial.location">

<path ref=".">data/<property ref="model.name"/></path>

</property>

</otherwise>

</select>

</command>

<artifact path="."><property ref="model.name"/>Server.run</artifact>

<condition>factories are started and ready</condition>

<condition type="failure" pattern="EXCEPTION">

exception occurred during service initialization

</condition>

153

Examples

</case>

</suite>

</suite>

C.3.3 Simple Example service suite

This suite performs the following:

• Build system for example model (if required, see section C.2.2).

• Startup base and domain services for example model (if required, see section C.3.2).

<?xml version="1.0"?>

<?xml-stylesheet href="../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../doc/xsd/SuiteSchema.xsd’

basepath="../..">

<include>exampleModelBuild.xxs</include>

<suite id="example">

<property id="model.name">exampleModel</property>

<include>include/systemStart.xml</include>

</suite>

</suite>

C.3.4 Decision Support service suite

This suite performs the following:

• Build system for decision-support model (if required, see section C.2.3).

• Start example model system services (if required, see section C.3.3).

• Startup base and domain services for decision-support model (if required, see section C.3.2).

<?xml version="1.0"?>

<?xml-stylesheet href="../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../doc/xsd/SuiteSchema.xsd’

basepath="../..">

<include>decisionModelBuild.xxs</include>

<include>exampleModelStart.xss</include>

<suite id="example">

<path id="build.path" ref=".">build</path>

<path id="lib.build.path" ref="build.path">lib</path>

154

C.3 Example Execution Suites

<classpath id="add.classpath">

<path refpath="lib.build.path">exampleModel_c.jar</path>

</classpath>

<property id="model.name">decisionModel</property>

<include>include/systemStart.xml</include>

</suite>

</suite>

C.3.5 CLIPS Agent Engine suite

This suite performs the following:

• Startup services for decision-support model (if required, see section C.3.4).

• Startup CLIPS based agent engine with example agent loaded (see section C.5).

<?xml version="1.0"?>

<?xml-stylesheet href="../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../doc/xsd/SuiteSchema.xsd’

name="CLIPS Agent Engine" basepath="../..">

<description>

Demonstrate basic system startup and CLIPS Agent Engine example session.

</description>

<include>decisionModelStart.xss</include>

<suite id="example">

<path id="lib.build.path" refpath=".">build/lib</path>

<path id="clips.agent.path" refpath=".">agentEngine/clips</path>

<suite id="exec">

<case id="clipsagentsession" name="Agent Session">

<command>

<class>com.cdmtech.core.client.ae.AgentSession</class>

<classpath>

<path>lib</path>

<path refpath="*">lib</path>

<path refpath="*">lib/core_ae.jar</path>

<path refpath=".">lib</path>

<path refpath="clips.agent.path"/>

<path refpath="lib.build.path"/>

<path refpath="lib.build.path">exampleModel_c.jar</path>

<path refpath="lib.build.path">decisionModel_c.jar</path>

</classpath>

<property id="org.omg.CORBA.ORBClass">

org.jacorb.orb.ORB

</property>

<property id="org.omg.CORBA.ORBSingletonClass">

org.jacorb.orb.ORBSingleton

155

Examples

</property>

<property id="core.properties">

example_clipsae.properties

</property>

<property id="core.logLevel">

Information

</property>

</command>

<condition>waiting for object events</condition>

<condition type="failure" pattern="ERROR">

error occurred during agent initialization

</condition>

</case>

</suite>

</suite>

</suite>

C.3.6 Test Execution suite

This suite performs the following:

• Startup services for example model (if required, see section C.3.3).

• Execute client script (JavaScript) to create sample objects (see section C.4).

<?xml version="1.0"?>

<?xml-stylesheet href="../../doc/xsd/SuiteSchema.css" type="text/css"?>

<suite

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’../../doc/xsd/SuiteSchema.xsd’

name="Example System Execution" basepath="../.." exit="10">

<description>

Demonstrate basic system startup and simple client execution example.

</description>

<include>exampleModelStart.xss</include>

<suite id="example">

<path id="lib.build.path" ref=".">build/lib</path>

<suite id="exec" name="Simple Client">

<case id="simpleexample" name="Example OML Client Script">

<description>

Execute simple example using OML client interface.

</description>

<command>

<class>org.mozilla.javascript.tools.shell.Main</class>

<classpath>

<path>lib</path>

<path ref="*">lib</path>

<path ref="*">lib/core_support.jar</path>

<path ref="*">lib/core_om.jar</path>

156

C.4 Example Test Script

<path ref="*">lib/core_client.jar</path>

<path ref="*">lib/js.jar</path>

<path ref=".">lib</path>

<path ref="lib.build.path"/>

<path ref="lib.build.path">exampleModel_c.jar</path>

</classpath>

<property id="org.omg.CORBA.ORBClass">

org.jacorb.orb.ORB

</property>

<property id="org.omg.CORBA.ORBSingletonClass">

org.jacorb.orb.ORBSingleton

</property>

<property id="core.logLevel">

Information

</property>

<property id="core.properties">

exampleModel_om.properties

</property>

<arg><path>include/simpleExample.js</path></arg>

</command>

</case>

</suite>

</suite>

</suite>

C.4 Example Test Script

This script (written in JavaScript/ECMAScript as implemented by the Mozilla JavaScript interpreter - Rhino)
performs the following actions:

• Create simple.Organization object and set its referenceName attribute.

• Create two simple.Person objects and set their referenceName attributes.

• Add the simple.Person objects as members to the simple.Organization object.

• Print the attribute and association role values for the simple.Organization object.

/**

*

*/

importPackage(Packages.java.lang);

importPackage(Packages.com.cdmtech.core.client.om);

try {

organizationTemplate = Template.getTemplate("simple.Organization");

ourorganization = organizationTemplate.createObject();

ourorganization.set("referenceName", "our organization");

ourorganization.add("address", "2975 McMillan Ave., Suite 272");

ourorganization.add("address", "San Luis Obispo, CA 93401");

ourorganization.post();

157

Examples

personTemplate = Template.getTemplate("simple.Person");

me = personTemplate.createObject();

me.set("referenceName", "me");

me.set("gender", "male");

me.set("age", "44");

me.set("location", "35\t-120");

me.post();

you = personTemplate.createObject();

you.set("referenceName", "you");

you.set("gender", "female");

you.set("age", "38");

you.set("location.latitude", "35");

you.set("location.longitude", "-120");

you.post();

ourorganization.add("members", me);

ourorganization.add("members", you);

positionTemplate = Template.getTemplate("simple.Position");

ourlocation = positionTemplate.createObject();

ourlocation.set("latitude", "35");

ourlocation.set("longitude", "-120");

ourorganization.set("location", ourlocation);

ourorganization.post();

ourorganization.print();

}

catch (e) {

e.printStackTrace();

System.exit(1);

}

C.5 Example Agents

These examples, written in JESS and CLIPS, illustrate a simple agent that responds to the creation of Organiza
tion objects by creating an Observation reporting on the organization size (based on number of members). The
following rules are defined:

createMyAgent Creates agent object with id “AGENT1” if one does not exist.

initializeOrganizationFacade Create organization facade object associated to organization object if one does
not exist. Set memberSize to number of organization members.

updateOrganizationFacade Update organization facade object if associated organization object changed.

removeOrganizationFacade Remove organization facade object if associated organization object deleted.

158

C.5 Example Agents

createGroupClassReport Asserts group size classification report fact for organization based on member size
and group size range.

removeGroupClassReport Retracts group size classification report.

createGroupClassObservation Create group size observation object for created organization.

updateGroupClassObservation Update group size observation object for modified organization.

deleteGroupClassObservation Delete group size observation object for deleted organization.

C.5.1 JESS-based Agent

(deffacts AGENT1::BaseKnowledge

(GROUP-CLASS-RANGE SMALL 0 9)

(GROUP-CLASS-RANGE MEDIUM 10 99)

(GROUP-CLASS-RANGE LARGE 100 -1)

)

(deftemplate AGENT1::OrganizationFacade

(slot organization)

(slot memberSize (type INTEGER))

)

(defrule AGENT1::createMyAgent

(declare (salience 10000))

(not (decisionSupport.Agent (id "AGENT1")))

=>

(bind ?agent (make-instance decisionSupport.Agent

(referenceName "Agent #1")

(id "AGENT1")

))

)

(defrule AGENT1::initializeOrganizationFacade

?org <- (simple.Organization (name ?orgName))

(not (OrganizationFacade (organization ?orgName)))

=>

(assert (OrganizationFacade

(organization ?orgName)

(memberSize (length$ (send ?org get-members)))

))

)

(defrule AGENT1::updateOrganizationFacade

?org <- (simple.Organization (name ?orgName)

(members $?memList))

?orgFacade <- (OrganizationFacade

(organization ?orgName)

(memberSize ?memSize)

)

(test (<> ?memSize (length$ $?memList)))

=>

(retract ?orgFacade)

(assert (OrganizationFacade

159

Examples

(organization ?orgName)

(memberSize (length$ $?memList))

))

)

(defrule AGENT1::removeOrganizationFacade

(declare (salience 5000))

?orgFacade <- (OrganizationFacade (organization ?orgName))

(not (simple.Organization (name ?orgName)))

=>

(retract ?orgFacade)

)

(defrule AGENT1::createGroupClassReport

(GROUP-CLASS-RANGE ?gc ?min ?max)

(OrganizationFacade (organization ?orgName) (memberSize ?memSize))

(test (and (>= ?memSize ?min) (or (< ?max 0) (<= ?memSize ?max))))

(not (GROUP-CLASS ? ?orgName))

=>

(assert (GROUP-CLASS ?gc ?orgName))

)

(defrule AGENT1::removeGroupClassReport

(declare (salience 1000))

(GROUP-CLASS-RANGE ?gc ?min ?max)

?gcf <- (GROUP-CLASS ?gc ?orgName)

(OrganizationFacade (organization ?orgName) (memberSize ?memSize))

(test (or (< ?memSize ?min) (and (> ?max 0) (> ?memSize ?max))))

=>

(retract ?gcf)

)

(defrule AGENT1::createGroupClassObservation

?agent <- (decisionSupport.Agent (id "AGENT1"))

(GROUP-CLASS ?gc ?orgName)

(OrganizationFacade (organization ?orgName))

?org <- (simple.Organization (name ?orgName))

(not (decisionSupport.Observation

(targets $? ?orgName $?)

))

=>

(bind ?alert (make-instance decisionSupport.Observation

(referenceName

(str-cat "Observation on organization " (send ?org get-referenceName)))

))

(send ?alert add-assoc targets ?org)

(send ?alert add-assoc agent ?agent)

)

(defrule AGENT1::updateGroupClassObservation

(decisionSupport.Agent (name ?agentName) (id "AGENT1"))

(GROUP-CLASS ?gc ?orgName)

(OrganizationFacade (organization ?orgName) (memberSize ?memSize))

?org <- (simple.Organization (name ?orgName))

160

C.5 Example Agents

?alert <- (decisionSupport.Observation

(agent ?agentName)

(targets $? ?orgName $?)

(report ?report)

)

(test (not (str-index (str-cat "with " ?memSize " members") ?report)))

=>

(bind ?alertMsg (str-cat "Organization ’" (send ?org get-referenceName)

"’ is classified as " ?gc " with " ?memSize " members"))

(send ?alert update-slot report ?alertMsg)

)

(defrule AGENT1::deleteGroupClassObservation

(decisionSupport.Agent (name ?agentName) (id "AGENT1"))

?gcf <- (GROUP-CLASS ?gc ?orgName)

?alert <- (decisionSupport.Observation

(agent ?agentName)

(targets $? ?orgName $?)

)

(not (OrganizationFacade (organization ?orgName)))

=>

(retract ?gcf)

(send ?alert delete)

)

C.5.2 CLIPS-based Agent

(deffacts AGENT1::BaseKnowledge

(GROUP-CLASS-RANGE SMALL 0 9)

(GROUP-CLASS-RANGE MEDIUM 10 99)

(GROUP-CLASS-RANGE LARGE 100 -1)

)

(deftemplate AGENT1::OrganizationFacade

(slot organization)

(slot memberSize (type INTEGER))

)

(defrule AGENT1::createMyAgent

(declare (salience 10000))

(not (object (is-a decisionSupport.Agent) (id "AGENT1")))

=>

(bind ?agent (make-instance of decisionSupport.Agent

(referenceName "Agent #1")

(id "AGENT1")

))

)

(defrule AGENT1::initializeOrganizationFacade

?org <- (object (is-a simple.Organization) (name ?orgName))

(not (OrganizationFacade (organization ?orgName)))

=>

161

Examples

(assert (OrganizationFacade

(organization ?orgName)

(memberSize (length$ (send ?org get-members)))

))

)

(defrule AGENT1::updateOrganizationFacade

?org <- (object (is-a simple.Organization) (name ?orgName)

(members $?memList))

?orgFacade <- (OrganizationFacade

(organization ?orgName)

(memberSize ?memSize)

)

(test (<> ?memSize (length$ $?memList)))

=>

(retract ?orgFacade)

(assert (OrganizationFacade

(organization ?orgName)

(memberSize (length$ $?memList))

))

)

(defrule AGENT1::removeOrganizationFacade

(declare (salience 5000))

?orgFacade <- (OrganizationFacade (organization ?orgName))

(not (object (is-a simple.Organization) (name ?orgName)))

=>

(retract ?orgFacade)

)

(defrule AGENT1::createGroupClassReport

(GROUP-CLASS-RANGE ?gc ?min ?max)

(OrganizationFacade (organization ?orgName) (memberSize ?memSize))

(test (and (>= ?memSize ?min) (or (< ?max 0) (<= ?memSize ?max))))

(not (GROUP-CLASS ? ?orgName))

=>

(assert (GROUP-CLASS ?gc ?orgName))

)

(defrule AGENT1::removeGroupClassReport

(declare (salience 1000))

(GROUP-CLASS-RANGE ?gc ?min ?max)

?gcf <- (GROUP-CLASS ?gc ?orgName)

(OrganizationFacade (organization ?orgName) (memberSize ?memSize))

(test (or (< ?memSize ?min) (and (> ?max 0) (> ?memSize ?max))))

=>

(retract ?gcf)

)

(defrule AGENT1::createGroupClassObservation

(object (is-a decisionSupport.Agent) (name ?agentName) (id "AGENT1"))

(GROUP-CLASS ?gc ?orgName)

(OrganizationFacade (organization ?orgName))

?org <- (object (is-a simple.Organization) (name ?orgName))

162

C.5 Example Agents

(not (object (is-a decisionSupport.Observation)

(targets $? ?orgName $?)

))

=>

(bind ?alertName (make-instance of decisionSupport.Observation

(referenceName

(str-cat "Observation on organization " (send ?org get-referenceName)))

))

(bind ?alert (InstanceAddress ?alertName))

(send ?alert add-assoc targets ?orgName)

(send ?alert add-assoc agent ?agentName)

)

(defrule AGENT1::updateGroupClassObservation

(object (is-a decisionSupport.Agent) (name ?agentName) (id "AGENT1"))

(GROUP-CLASS ?gc ?orgName)

(OrganizationFacade (organization ?orgName) (memberSize ?memSize))

?org <- (object (is-a simple.Organization) (name ?orgName))

?alert <- (object (is-a decisionSupport.Observation)

(agent ?agentName)

(targets $? ?orgName $?)

(report ?report)

)

(test (not (str-index (str-cat "with " ?memSize " members") ?report)))

=>

(bind ?alertMsg (str-cat "Organization ’" (send ?org get-referenceName)

"’ is classified as " ?gc " with " ?memSize " members"))

(send ?alert update-slot report ?alertMsg)

)

(defrule AGENT1::deleteGroupClassObservation

(object (is-a decisionSupport.Agent) (name ?agentName) (id "AGENT1"))

?gcf <- (GROUP-CLASS ?gc ?orgName)

?alert <- (object (is-a decisionSupport.Observation)

(agent ?agentName)

(targets $? ?orgName $?)

)

(not (OrganizationFacade (organization ?orgName)))

=>

(retract ?gcf)

(send ?alert delete)

)

163

164

Appendix D - Execution Framework

D.1 Introduction

The execution framework, provided as part of the toolkit, serves as a system process description language used
to both control system execution as well as to provide structured documentation. The framework is built around
a logical model (shown in figure D.1) and implemented using an XML schema with supporting processing tools
(classes that implement the framework model and logic required to manage system process execution as defined
by XML documents based on the framework schema).

An execution case defines a discrete process as an arbitrary command (understood by the underlying operating
system) or as a Java main class. Execution cases may define conditions which upon successfully meeting the
case will complete allowing subsequent execution cases to process. Once all success conditions are met, with no
failure conditions, the case execution process will continue to execute asynchronously. An execution suite extends
the logical definition of an execution case to include definition of logical case groups. Execution suites in and
of themselves do not define processes but instead act as containers for collections of cases which when executed
simply results in the execution of each contained case (which may also be nested suites) in sequence. The full
details describing the elements defined within the execution framework schema may be found in section D.4.

D.2 Execution Suite Processor

Given a well defined suite XML document the provided suite processor may be used to execute the suite. Once
the suite has completed, the results become an integral part of the suite document (through use of an XSL trans
form) aiding the documentation effort. The suite processor may be invoked using the core_support.jar directly.
Command line usage takes the following form:

java -jar [install location]/lib/core_support.jar -g -q -d -a�→

-o [output location] <XML suite document>

-g | –gui Use this option to present a graphical display of suite execution status.

-q | –quiet Use this option to turn off all output to the console.

-d | –deprecated Use this option to turn on output to the console (assuming the -q option is not specified) showing
document use of deprecated features along with suggested replacements.

-a | –all Fire all status events.

-o | –out [output location] Use this option to specify an alternative suite result output location. If not specified
then suite results will be output to suite base path (path defined by suite basepath attribute in suite document
as a relative path from the suite document location).

Note: To remain location independent it is recommended that relative paths always be used (in fact the suite
schema promotes it). The execution of suites that are location independent must be started from a well known
location (i.e., the location the suite paths are relative to). The suites provided as examples all define paths that
are relative to the install location. For example, to execute the example model build suite contained in the [install
location]/example/suite directory perform the following:

• ⇒java -jar [install location]/lib/core_support.jar -qg [install location]/example/suite/exampleModelBuild.xxs

165

Execution Framework

Execution Suite

Failure Condition

Success Condition

Condition

Absolute PathRelative Path

Java Class

Execution Case

Resource LocatorClass Path

Path Element

Command

Executable

patternid
name

cases
command

conditions

protocol

paths
paths

id ref

input

ref

args
id

Figure D.1: The Execution Framework Logical Model

Alternatively, suite documents may be located independent of the software installation location. Any files that are
not locatable as system resources (e.g., paths referenced to “*”) must be located relative to the suite documents that
require them. All resources defined within classpath and command elements are locatable as system resources.
For example, to execute the example suites from another location perform the following:

• ⇒copy [install location]/example to [other location]

• ⇒copy [install location]/kb to [other location]

• ⇒java -jar [install location]/lib/core_support.jar -qg [other location]/example/suite/exampleModelBuild.xxs

Note: The kb directory was also copied to the new location. The files contained in this directory are required by
the agents defined in the examples and are not locatable as system resources.

If an alternative suite result output location is specified, using the -o option, then the generated suite result and
captured execution process output will be placed at this alternate location independant of the suite document
location. This option may be used to isolate suite results and allows for multiple suite executions retaining the
results for each execution separately. This can be useful, for example, in the execution of test suites where results
from prior runs are required for regression analysis.

Additionally, specific file types are understood by the suite processor. These file types, along with any special
treatment, include the following:

xxs XML Execution Suite - defines a general execution suite.

xss XML Service Suite - defines an execution suite for service startup.

xcs XML Client Suite - defines an execution suite for client application startup. No status display will be pre
sented even if -g option is specified.

166

D.3 Execution Suite Presentation

If the display environment supports associating open actions to file types then these file types could be associated
to the suite processor application allowing for convenient suite execution.

D.3 Execution Suite Presentation

Since execution suites, written to conform to the supplied schema, are stored as XML it is a fairly simple matter
to apply a transform (e.g., in XSLT) to provide a presentable form of the document. Along with the execution
suite processor, an XSL transform is provided that allows presentation of the suite document in HTML suitable
for display in any Web browser. In fact, any browser that understands XSL stylesheets may be used to display the
document directly (i.e., the browser applys the transform defined by the specified XSL stylesheet). For example, if
the XML process instruction, <?xml-stylesheet href="../../doc/xsd/SuiteToHTML.xsl" type="text/xsl"?> is in
cluded in the document preamble then, assuming the XSL transform SuiteToHTML.xsl is located at the specified
(relative) path, the document should be directly presentable through an XML aware browser.

Additionally, processing of suites (through the suite processor) that directly contain execution cases will have
result output generated in the form of an XML document. This document follows a schema very similar to the
execution suite document schema with some differences allowing for additional output data (e.g., timing results,
target component versions, etc.) These suite result output documents may also be presented through use of an
XSL transform. In fact, if the status display, for the suite processor, is turned on (i.e., the -g option is specified)
then upon completion of a suite (successful or otherwise) the result output may be displayed by selecting the suite
area in the status display. The result output is presented using an XSL transform (SuiteOutput.xsl) for display
in HTML. Also, note that selection of a case indicator icon will present the captured case output (the verbatum
standard output for successful case execution or error output for unsuccessful case execution).

Since the execution suite documents are XML, the documents may be created and modified through use of an
XML editor. XML editors that also understand XML Schema can also aid in the development of a document by
constraining the document structure based on the schema. As an example, figure D.2 shows a display of an XML
execution suite as presented in the Morphon XML Editor1. This editor also makes use of Cascading Style Sheet
(CSS) definitions to form the document display. The CSS file used is included with the toolkit.

D.4 Execution Suite Schema

D.4.1 suite

Description

• A suite defines a sequence of inter-dependant cases and suites.

• Execution of a suite will result in an ordered (document order) execution of each contained case and suite
(recursive). Execution will fail if any case condition is not met. If a suite is set to exit then, upon completion
(successful or otherwise), each contained case and suite will be exitted in reverse document order. Path and
classpath elements may be defined and will be applicable within the scope of the suite or any contained
cases or suites. External suite documents may also be included with all in-scope path and classpath elements
accessible. A directory will be created for a suite contained in the directory of any containing suite (or at
the current working directory in the case of the root suite).

• A suite document must contain a root <suite> element.	 <suite> elements must include an ’id’ attribute
if the suite is concrete. A <suite> element may optionally (highly suggested) include a more descriptive
’name’ attribute. A <suite> defined without an ’id’ attribute will be treated as a virtual element, inheriting
all characteristics from its’ parent but providing no additional structure. The primary use for a virtual suite
would be in the definition of reuseable suites that may be included (see <include> element description
below) in a core suite document.

1The Morphon XML Editor, while no longer supported, is available for free download from http://www.morphon.com.

167

http://www.morphon.com

Execution Framework

Figure D.2: Execution Suite Document Displayed in XML Editor.

• <suite> elements may be nested within other <suite> elements. This allows for the grouping of suites com
prising cases that constitute a logical unit. Additionally, it provides a segregation of case results organized
by suite hierarchy (e.g., all output captured from case processes will be placed into directories arranged
according to the suite structure). In addition to the attributes described above for the <suite> element the
following example includes the ’exit’ attribute. Use of this attribute implies that upon successful comple
tion of this suite’s cases that any running processes should be terminated. The numeric value specifies a
delay (in seconds) prior to a forced exit. Inclusion of this attribute allows for definition of suites requiring
subsequent processing after condition satisfaction (presumably by a succeeding suite).

• Example: <suite id="examplesuite" name="Example Suite" exit="10" basepath=".."> ... </suite>

Attributes

•	 id[string] - Suite identifier.

•	 name[string] - Descriptive name.

•	 type - Execution type.

–	 conditional - [default] Case will execute on condition of previous case success and failure will prevent
further execution.

–	 critical - Case will execute unconditionally and failure will prevent further execution.

–	 noncritical - Case will execute on condition of previous case success and failure will not prevent
further execution.

–	 fault - Case will execute on condition of previous case success and nonfailure of case will prevent
further execution.

168

D.4 Execution Suite Schema

–	 user - Case will execute on user initiation and on condition of previous case success. Subsequent
cases will execute independant of this case execution.

•	 exit[integer] - After successful completion exit after specified delay.

•	 basepath[string] - Base path establishing root reference for suite (should be defined as a relative path from
document).

•	 version[string] - The required processor version for this suite.

•	 output[string] - Name of suite result output (no path or file type). If not defined, then implies no result
output for suite.

* indicates required attribute.

Elements

• (description D.4.17 source D.4.5 artifact D.4.6 path D.4.3 url D.4.4 classpath D.4.11 property D.4.15 target
D.4.16 requirement D.4.20 command D.4.7 include D.4.10 case D.4.2 suite D.4.1 select D.4.21) [0...*]

D.4.2 case

Description

• A case defines a process startup and condition for successful execution. Processes may be defined as an
arbitrary command or as a Java based application. Case processes may have multiple arguments that may
reference (and extend) path or classpath elements defined within scope. General case processes must define
a command element containing the process startup (that may be any external command) and may reference
a path element (in preference to specification of a path as part of command line). Java case processes must
define a class element containing the fully qualified name of the application main class. Java cases may
also specify (or reference/extend) a classpath for use by the Java runtime. Additionally, properties may be
specified that will be included as system properties to the Java runtime.

• Successful completion of a case is defined as either a successful exit status (0 exit code) or as a condition
defined as a pattern (Java 1.4 regular expression) match on the process standard output stream. The exit
status condition is the default (no explicit condition element defined) and implies that the process will
execute syncronously (i.e., subsequent cases will not execute until the current case executes to successful
completion). The pattern match condition is specified through the condition element and implies that the
process will execute syncronously until the pattern is matched at which time the process will fork and
continue to operate asyncronously allowing subsequent cases to execute. If the pattern is not matched and
the process never exits then the overall case will appear to "hang" and no other cases will execute. If
the process exits and the condition pattern is not matched then the case will fail. All standard output for
a process is captured in a file named after the case id with ".out" appended. The standard error is also
captured in a file named after the case id with ".err" appended. Both files are placed into the containing
suite directory.

• Example: <case id="jacorbproperties" name="Generate JacORB Properties"> ... </case>

Attributes

•	 * id[string] - Case identifier.

•	 name[string] - Descriptive name.

•	 type - Execution type.

169

Execution Framework

–	 conditional - [default] Case will execute on condition of previous case success and failure will prevent
further execution.

–	 critical - Case will execute unconditionally and failure will prevent further execution.

–	 noncritical - Case will execute on condition of previous case success and failure will not prevent
further execution.

–	 fault - Case will execute on condition of previous case success and nonfailure of case will prevent
further execution.

–	 user - Case will execute on user initiation and on condition of previous case success. Subsequent
cases will execute independant of this case execution.

* indicates required attribute.

Elements

• (description D.4.17 source D.4.5 artifact D.4.6 requirement D.4.20 command D.4.7 condition D.4.14 select
D.4.21) [0...*]

D.4.3 path

Description

• The path element is used to define path-like structures. Path elements may reference another path element
to represent the path root basis (note that only the directory part of referenced paths will be used). Any
additional content provided will extend the root basis. Paths defined directly within the scope of a case
or suite must specify an id. Paths used within ancillary elements (e.g., arg, etc) can only reference path
elements defined within any enclosing case or suite. In either case path elements may extend referenced
path elements. Built-in paths (’.’, ’..’, ’/’, ’*’) may be referenced. The ’.’ path represents the path to the
current suite scope. The ’..’ path represents the path to the enclosing (parent) suite scope (or current working
directory in the case of the root suite). The ’/’ path represents the path to the current working directory. The
’*’ path indicates that the defined path will be searched for as a system resource (i.e., the relative path must
be located somewhere in the resource search path). If no reference path is specified, then the path will be
defined relative to the document location.

• Example: <path id="projectlib" ref=".">lib</path>

Attributes

•	 id[string] - Identifier used for subsequent reference (should be unique within scope of usage).

•	 type - Path resolution type.

–	 relative - [default] Specified path relative to base.

–	 absolute - Specified path converted to absolute (path specified as relative to base).

•	 ref[string] - Reference path identifier.

* indicates required attribute.

Elements

• (path D.4.3 property D.4.15) [0...*]

170

D.4 Execution Suite Schema

D.4.4 url

Description

• The url element extends path through inclusion of ’protocol’ and ’host’ attributes providing a path-like
structure in a form tagged for use as a Uniform Resource Locator (URL).

• Example: <arg>nsref=<url protocol="file" ref=".">NS_Ref</url></arg>

Attributes

•	 id[string] - Identifier used for subsequent reference (should be unique within scope of usage).

•	 type - Path resolution type.

–	 relative - [default] Specified path relative to base.

–	 absolute - Specified path converted to absolute (path specified as relative to base).

•	 ref[string] - Reference path identifier.

•	 protocol[string] - URL protocol (may be ’file’, ’http’, ’ftp’, ’mailto’).

•	 host[string] - Machine host name where resource is physically located. May be required dependant on
selected protocol.

* indicates required attribute.

Elements

• (path D.4.3 property D.4.15) [0...*]

D.4.5 source

Description

• Path to case source artifact.

• Required case source artifacts may be specified through the <source> element. A case will not be processed
if all of its output artifacts exist and are younger than any source artifacts. A previously defined path may
be referenced through the ’path’ attribute (see <path> element).

• Example: <source path="xmipath">basicModel.xmi</source>

Attributes

•	 path[string] - Reference path identifier.

* indicates required attribute.

Elements

• property D.4.15 [0...*]

171

Execution Framework

D.4.6 artifact

Description

• Path to case output artifact.

• Required case output artifacts may be specified through the <artifact> element. The case will fail if any
specified output artifact is not created as a result of case execution. Additionally, a case will not be processed
if all of its artifacts exist and are younger than any source artifacts. A previously defined path may be
referenced through the ’path’ attribute (see <path> element).

• Example: <artifact path="projectlib">jacorb.properties</artifact>

Attributes

• path[string] - Reference path identifier.

* indicates required attribute.

Elements

• property D.4.15 [0...*]

D.4.7 command

Description

• Used for definition of an execution command.

• General commands as well as Java execution classes may be specified through the <command> element.
A previously defined command may be referenced through the ’ref’ attribute. Referenced commands will
be treated as command interpreters (i.e., commands that process other commands). An example of such a
command is ’perl,’ where the Perl executable is a command that is used to interpret (process) scripts written
in the Perl language. Additionally, a command may be referenced using the ’input’ attribute to define a
command input chain. The output of this referenced command will be used as input, providing a command
input/output pipe. Commands chained together using this input/output pipe will be executed as a sequence
of commands linking their respective input and output streams. Referenced commands must be defined
prior to referencing and must be within scope (i.e., defined within the immediate case or any enclosing
suite).

• Example: <command id="update" ref="perl">...

Attributes

• id[string] - Command identifier used for subsequent reference (should be unique within scope of usage).

• ref[string] - Reference command identifier.

• input[string] - Identifier of command providing input.

* indicates required attribute.

172

D.4 Execution Suite Schema

Elements

• description D.4.17 [0...*]

• classpath D.4.11 [0...1]

• (exec D.4.8 class D.4.9) [0...1]

• (property D.4.15 option D.4.13 arg D.4.12 select D.4.21) [0...*]

D.4.8 exec

Description

• Used for definition of a path to an external command to be executed. Note that a command specified using
the <exec> element is passed as a single command string even if the string contains spaces. In effect this is
equivilent to passing the complete command string surrounded by quotes. Do not pass arguments or options
in an <exec> element as unexpected command string interpretation will result.

• General commands may be specified through the <exec> element. A previously defined path may be refer
enced through the ’path’ attribute (see <path> element).

• Example: <exec path="scr.path">update.pl</path>

Attributes

•	 path[string] - Reference path identifier.

* indicates required attribute.

Elements

• property D.4.15 [0...*]

D.4.9 class

Description

• Name of Java class implementing main entry for case process.	 Do not pass arguments or options in a
<class> element as unexpected class string interpretation will result.

• If no classpath is specified within the command scope of the class then the class will execute within the
processor virtual machine (i.e., will not be executed as a separate process) and will be loaded using a class
loader inheriting the parent loader resources.

• Example: <class>org.jacorb.naming.NameServer</class>

Elements

• property D.4.15 [0...*]

173

Execution Framework

D.4.10 include

Description

• The <include> element is used to specify an external suite document for inclusion. The contents of the file
are treated as if the defined elements were specified directly within the context of the <include> element.
The included document must specify a root <suite> element that may be virtual (i.e., no ’id’ attribute
defined) in which case the contents of the <suite> will treated as the contents of the current suite. A
previously defined path may be referenced through the ’path’ attribute (see <path> element). If no reference
path is specified then the path will be relative to the document location.

• Example: <include>common/omlTestSuite.xml</include>

Attributes

• path[string] - Reference path identifier.

* indicates required attribute.

Elements

• property D.4.15 [0...*]

D.4.11 classpath

Description

• Used to define a group of paths used for class search (only useful for Java based case processes). <class
path> elements may include an ’id’ attribute when used within the scope of a suite. A <classpath> element
may reference another <classpath> element using the ’ref’ attribute with additional <path> elements ex
tending the referenced <classpath> element.

• Example: <classpath><path ref="projectlib"/><path ref="libpath">jacorb_v1_4_1.jar</path></classpath>

Attributes

• id[string] - Identifier used for subsequent reference (should be unique within scope of usage).

• ref[string] - Reference classpath identifier.

* indicates required attribute.

Elements

• (path D.4.3 classpath D.4.11) [0...*]

174

D.4 Execution Suite Schema

D.4.12 arg

Description

• Used for definition of a single argument string to be passed to case process. Note that arguments specified
using <arg> elements are passed as single arguments even if the argument value contains spaces. In effect,
this is equivilent to passing the complete argument string surrounded by quotes. Do not pass multiple
arguments in a single <arg> element as unexpected argument interpretation will result.

• <path> elements may be used within an <arg> element to provide an argument value requiring a path. Note
that this feature may be used to constrain use of ancillary files (whether they are used for input or output)
to paths that are referenced to the containing suite context thereby enabling isolation of case execution
(hopefully providing less chance of a collision with input/output used in other cases).

• Example: <arg>-o</arg> <arg><path ref="..">diffs1.out</path></arg>

Elements

• (path D.4.3 url D.4.4 classpath D.4.11 property D.4.15) [0...*]

D.4.13 option

Description

• Used for definition of a single option string to be passed to case process. Note that options specified using
<option> elements are passed as single option values even if the value contains spaces. In effect, this is
equivilent to passing the complete option string surrounded by quotes. Do not pass multiple options in a
single <option> element as unexpected option interpretation will result.

• <option> elements are similar to <arg> elements with the exception of the definition of an option key.	 If
specified, the option key (’id’) will be used to identify the specific option to the command. The option will
be added to the command line with its key prepended with a ’-’ and its value (if given) added immediately
following a space. If the option key is not given then the <option> element is equivilent to the <arg> element
with the exception that all options will appear before arguments on the command line.

• Example: <option id="d"><path ref=".">client</path></option>

Attributes

•	 id[string] - Identifier used for subsequent reference (should be unique within scope of usage).

* indicates required attribute.

Elements

• (path D.4.3 url D.4.4 classpath D.4.11 property D.4.15) [0...*]

175

Execution Framework

D.4.14 condition

Description

• Condition string defining successful case completion. Use of a <condition> element implies that the case
process is to be executed as a background process and that completion of the case is considered successful
once the condition pattern (Java 1.4 regular expression) is matched in the process standard output (by default
the pattern defines any substring match). If the condition starts with ’!’ then the pattern must not be matched
for the condition to be satisfied. Once the condition is satisfied subsequent cases will be allowed to execute
with the current case process forked to the background (i.e., the process continues to execute to completion,
or otherwise, independant of the parent process).

• Example: <condition pattern="RootPOA - ready">access to base services ready</condition>

Attributes

•	 type - Condition type indicating expected success (default: success).

–	 success - [default] Case is expected to satisfy condition for success.

–	 failure - Satisfaction of any condition implies case failure.

•	 pattern[string] - Condition satisfaction based on pattern match. Pattern may be specified using Java 1.4
regular expression syntax. If pattern starts with ’!’ then condition will fail if pattern matched. If pattern
specified as simple string then the pattern will match if string occurs as a substring.

* indicates required attribute.

D.4.15 property

Description

• Used for definition of a single property name/value pair for subsequent reference. If used within a case
command that defines a Java process, the property will be passed as a system property. If a property is
defined multiple times within nested suites the value defined in the outermost suite will take precedent
(system properties passed to the top-level execution process have highest precedent).

• Example: <property id="core.properties">test_server.properties</property>

Attributes

•	 id[string] - Identifier used for subsequent reference (should be unique within scope of usage).

•	 ref[string] - Reference property identifier.

* indicates required attribute.

Elements

• (path D.4.3 url D.4.4 classpath D.4.11 property D.4.15 description D.4.17) [0...*]

176

D.4 Execution Suite Schema

D.4.16 target

Description

• Used for definition of suite targeted component (i.e., a component that plays a significant role in the execu
tion suite). Inclusion will result in component information being output to the result output.

• Example: <target id="core_client"/>

Attributes

• id[string] - Identifier used for subsequent reference (should be unique within scope of usage).

* indicates required attribute.

D.4.17 description

Description

• Description elements may be included within any primary elements to provide inline documentation. This
documentation may also be used in a visual presentation of the case definitions (through the use of an XSL
transform to HTML for example). The use of description elements is highly encouraged.

• Example: <description>Test suite configured to use the notification service for subscription and event de
livery.</description>

Elements

• (link D.4.18 image D.4.19 property D.4.15) [0...*]

D.4.18 link

Description

• Link elements may be used within descriptions to provide linked references to external documentation. The
link resource reference must be provided. Link elements may reference a previously defined path (or url)
element to define a relative path to the link resource. The content of the link element is used for link display.

• Example: <description>Test suite extending previous suite to provide post processing of event logs leading
to a <link src="eventtimeplot.png" path=".">graphical plot of event timing results</link>.</description>

Attributes

• src[string] - Resource reference.

• path[string] - Reference path identifier.

* indicates required attribute.

177

Execution Framework

D.4.19 image

Description

• Image elements may be used within descriptions to provide for inclusion of an embedded image.	 The
image resource reference must be provided. Image elements may reference a previously defined path (or
url) element to define a relative path to the image resource. The content of the image element is used as a
caption.

• Example: <description> Object timing results are collected and processed into a plot showing object cre
ation/deletion cummulative times: <image path="." src="objecttimeplot.png"> Object Creation/Deletion
Timing Results </image> </description>

Attributes

•	 src[string] - Resource reference.

•	 path[string] - Reference path identifier.

* indicates required attribute.

D.4.20 requirement

Description

• Requirements may be referenced through use of this element. References indicate requirements that are
addressed by the case/suite. Requirement references are formed using a path-like structure indicative of the
requirement hierarchy.

• Example: <requirement ref="corecore/system/service/startup"/>

Attributes

•	 src[string] - Resource reference.

•	 path[string] - Reference path identifier.

* indicates required attribute.

D.4.21 select

Description

• Select block construct defining a property used in selection test criteria.	 Contains sequence of <when>
elements each defining a block selected conditionally based on test satisfaction. May also contain an <oth
erwise> element defining a block selected only if all <when> clause conditions are unsatisified.

• Example: <select property="persist.type">

Attributes

•	 property[string] - Reference to defined property used in selection.

* indicates required attribute.

178

D.5 Example Suite

Elements

• when D.4.22 [1...*]

• otherwise D.4.23 [0...1]

D.4.22 when

Description

• Selection block defining a pattern match (regular expression) test criteria. Block selected if pattern match
successful.

• Example: <when match="j.*">

Attributes

• match[string] - Regular expression defining match pattern.

* indicates required attribute.

Elements

• (case D.4.2 suite D.4.1 path D.4.3 url D.4.4 classpath D.4.11 property D.4.15 include D.4.10 exec D.4.8 arg
D.4.12 option D.4.13) [0...*]

D.4.23 otherwise

Description

• Default selection block.

Elements

• (case D.4.2 suite D.4.1 path D.4.3 url D.4.4 classpath D.4.11 property D.4.15 include D.4.10 exec D.4.8 arg
D.4.12 option D.4.13) [0...*]

D.5 Example Suite

This example suite document illustrates basic element semantics as expected/implemented in the suite execution
framework. As an aid in the description of the element usage, consider this example document to be located in
the following path: [$HOME/core/test/examples/exampleSuite.xml] with the suite execution framework (and all
dependencies) installed at [$HOME/core].

An XML suite document must contain a root <suite> element. <suite> elements must include an ’id’ attribute
if the suite is concrete. A <suite> element may optionally (highly suggested) include a more descriptive ’name’
attribute. A <suite> defined without an ’id’ attribute will be treated as a virtual suite, inheriting all characteristics
from its’ parent but providing no additional structure. The primary use for a virtual suite would be in the definition
of reuseable suites that may be included (see <include> element description below) in a core suite document.
Root suites should also specify a ’basepath’ defining the result root location relative to the suite document. This

179

Execution Framework

’basepath’ value is used for subsequent document presentation with references to result documents (hence the
need to specify a location relative to the document). The following <suite> element defines a ’basepath’ that will
result in the root location of [$HOME/core] (i.e., two directory levels up from the document location).

<suite id="root" name="Root Suite" basepath="../..">

<path> elements may be defined within the scope of a <suite>. In this context a <path> element must define an
’id’ attribute whose value must be unique within scope. <path> elements may also use other <path> elements as a
reference (through use of the ’ref’ attribute) with the content of the new <path> element extending the referenced
<path> element. The built-in paths ’/’, ’.’, ’..’, and ’*’ may be referenced and represent the result root directory,
the current suite result context, the parent suite result context (or the result root directory for the outer suite), and
a system resource respectively.

The following <path> elements define paths to a ’lib’ directory referenced to the parent context (in this case the
result root directory since it is defined within the scope of the outer suite) and a ’scr/uml’ directory locatable as
a system resource (the directory exists and is located relative to any path contained in the list of resource search
paths). In this example, "lib.path" would point to [$HOME/core/lib] and "scr.path" might point to [$HOME/core/
scr/uml] (if $HOME/core were included in the list of resource search paths).

<path id="lib.path" ref=".."> lib</path>

<path id="scr.path" ref="*"> scr/uml</path>

<suite> elements may be nested within other <suite> elements. This allows for the grouping of suites comprising
cases that constitute a logical unit. Additionally, it provides a segregation of case results organized by suite
hierarchy (e.g., all output captured from case processes will be placed into directories arranged according to
the suite structure). In addition to the attributes described above for the <suite> element the following example
includes the ’exit’ attribute. Use of this attribute implies that upon successful completion of this suite’s cases that
any running processes should be terminated. The numeric value specifies a delay (in seconds) prior to a forced
exit.

<suite id="examplesuite" name="Example Suite" exit="10">

<property> elements may be used to define property/value pairs for subsequent reference.

<property id="ns.path">

<path ref="."> NS_Ref</path>

</property>

The following <property> element includes use of a <url> element to provide a URL based path. The following
will result in the property value set to [file://$HOME/core/root/examplesuite/NS_Ref].

<property id="ns.url">

<url protocol="file" ref="."> NS_Ref</url>

</property>

The following <path> element shows use of the built-in ’.’ path as a reference. This results in a path to a ’lib’
directory referenced to the current context (i.e., [$HOME/core/root/examplesuite/lib] reflecting the current suite
scope).

<path id="lib.suite.path" ref="."> lib</path>

<description> elements may be included within any primary elements (<case>, <suite>, <path>, <classpath>)
to provide inline documentation. This documentation may also be used in a visual presentation of the suite
definitions (through the use of an XSL transform to HTML, for example). The use of <description> elements is
highly encouraged.

<description> Example suite illustrating usage of basic suite definition elements defined by the Suite XML
Schema.</description>

180

D.5 Example Suite

<command> elements are used to define command execution. <command> elements defined using an ’id’ attribute
may be referenced by subsequent <command> elements. In the context of an execution suite, commands may only
be defined for later reference. Commands defined within suites that do not define an id will be ignored.

<command id="perl">

<exec> elements are used to specify an external executable. The ’path’ attribute may be used to reference a
previously defined path. If no path is specified then the executable will be assumed to be locatable based on the
underlying system execution search path.

<exec> perl</exec>

</command>

<case> elements are used to define case process execution. <case> elements must define an ’id’ attribute and
optionally (highly suggested) a more descriptive ’name’ attribute.

<case id="jacorbproperties" name="Generate JacORB Properties">

Required case artifacts may be specified through the <artifact> element. The case will fail if any specified artifact
is not created as a result of case execution. Additionally, a case will not be processed if all of its artifacts exist prior
to execution. A previously defined path may be referenced through the ’path’ attribute. The following example
defines an expected artifact of [$HOME/core/root/examplesuite/lib/jacorb.properties].

<artifact path="lib.suite.path"> jacorb.properties</artifact>

General commands may be specified through the <command> element. A previously defined command may be
referenced through the ’ref’ attribute. The following <command> element defines a Perl script execution which
is executed by the previously defined ’perl’ command.

<command ref="perl">

The following <exec> element specifies the script to be executed. The script will be located using the path
[$HOME/core/scr/makefile.pl] (assuming that the path $HOME/core is in the list of resource search paths).

<exec path="*"> scr/makefile.pl</exec>

Arguments may be supplied through the use of <arg> elements.

<arg> jacorb.properties.tpl</arg>

<path> elements may be used within an <arg> element to provide an argument value requiring a path. Note
that this feature may be used to constrain use of ancillary files (whether they are used for input or output) to
paths that are referenced to the containing suite context thereby enabling isolation of case execution (hopefully
providing less chance of a collision with input/output used in other cases). The following will result in an argument
constructed with the path [$HOME/core/root/examplesuite/lib/jacorb.properties].

<arg>

<path ref="lib.suite.path"> jacorb.properties</path>

</arg>

The following <arg> element shows reference to a <property> element resulting in an argument string of [nsref=file:/
/$HOME/core/root/examplesuite/NS_Ref].

<arg> nsref= <property ref="ns.url"> </property>

</arg>

</command>

</case>

<classpath> elements are used to define a grouping of <path> elements that will be used to define a class search
path sequence. <classpath> elements may include an ’id’ attribute when used within the scope of a suite. A

181

Execution Framework

<classpath> element may reference another <classpath> element using the ’ref’ attribute with additional <path>
elements extending the referenced <classpath> element.

<classpath id="boot.classpath">

<path ref="*"> lib/jacorb_v2_1.jar</path>

<path ref="*"> lib/logkit-1.2.jar</path>

<path ref="*"> lib/avalon-framework-4.1.5.jar</path>

<path ref="*"> lib/concurrent-1.3.2.jar</path>

<path ref="*"> lib/antlr-2.7.2.jar</path>

</classpath>

The following <case> element illustrates use of elements defined specifically to support Java based processes.

<case id="nameserver" name="Start Name Service">

<command>

The <class> element is used to define the Java class containing the process main entry.

<class> org.jacorb.naming.NameServer</class>

<classpath>

<path ref="lib.suite.path"> </path>

</classpath>

<option> elements are similar to <arg> elements but may be used to specifically define command options. If
an ’id’ attribute is defined for the <option> element then the value will be output as an argument using standard
option specification (i.e., the option id prepended with a ’-’ is passed as a single argument). The option id may be
left undefined for those cases where this standard is not applicable (such as in the following example). Note that
options defined for Java based processes will be passed to the Java virtual machine, not to the Java main class.

<option> -Xbootclasspath/p: <classpath ref="boot.classpath"> </classpath>

</option>

The following argument references a previously defined property resulting in the path [$HOME/core/root/examplesuite/
NS_Ref].

<arg>

<property ref="ns.path"> </property>

</arg>

</command>

A <condition> element may be defined for a case. Use of a <condition> element implies that the case process
is to be executed as a background process and that completion of the case is considered successful once the
condition pattern is matched in the process standard output. Once the condition is satisfied subsequent cases will
be allowed to execute with the current case process forked to the background (i.e., the process continues to execute
to completion, or otherwise, independant of the parent process).

<condition> NameServer-POA - ready</condition>

</case>

The <include> element is used to specify an external Case XML document for inclusion. The contents of the file
are treated as if the defined elements were specified directly within the context of the <include> element. The
included document must specify a root <suite> element which may be virtual (i.e., no ’id’ attribute defined) in
which case the contents of the <suite> will be treated as contents of the current suite. Note that since no ’path’ is

182

D.5 Example Suite

specified, the included document is expected to be located relative to the current suite document (i.e., in this case

in the same directory).

<include> omlTestSuite.xml</include>

</suite>

</suite>

183

184

Appendix E - Instance Viewer

Class
Pane Instance

Pane

Object
Pane

Toolbar

Figure E.1: Instance Viewer Main Window.

E.1 Main Window

The Instance Viewer can be used to create, delete, and modify instances for a class defined in the object model. It
can also be used to formulate and perform queries for instances existing in the object server.

E.1.1 Class Pane

Displays the class hierarchy starting at the class for which the Instance Viewer is being displayed. To traverse up
the tree use the toolbar button expand []. To traverse down a tree use the narrow toolbar button []. To display
the instance attributes for a given class in the Instance Pane (see below), select the class name in the tree.

E.1.2 Object Pane

Displays a list of local objects for the class selected in the Class Pane. To display the instance information for an
object double-click the object in the list. Objects in the Object Pane can be permanently deleted by selecting one
or more objects and pressing the [delete] key.

E.1.3 Instance Pane

Displays the instance information for an object selected in the Object Pane or the attributes for a class name se
lected in the Class Pane. The attributes displayed are separated into two broad categories: attributes and relations.
The relations tabbed pane contains all associations and aggregations. All other attributes fall in the “attributes”
category. The following layout is used for the attributes listed :

185

Instance Viewer

• All visible attributes are displayed in a two column table.

• The first column represents the attribute name and the second column represents the attribute value.

• Initially, the default value for that attribute is displayed.

• All enumeration attributes are rendered as combo boxes, with a list of possible values. A new value can be
set by choosing a value from the combo box.

• All boolean attributes are rendered as a check box that can be selected or de-selected as necessary.

• All other fields are represented by a text field, where new values can be typed in to set the value and must
be succeeded by the carriage return.

• All struct attributes are displayed with a highlighted (blue) color. Struct fields can be displayed by selecting
the struct attribute and double-clicking once. To roll-up the fields, double-click again.

• Array values are displayed in a combo box.

• Once an object has been instantiated, all read-only attributes are disabled and cannot be edited.

• By default hidden attributes are not displayed. The following property must be set to true to display all
attributes in a class:

com.cdmtech.core.client.gui.template.showHidden=true

• All associations and aggregations are displayed separately as nodes in a tree under the ’relations’ tabbed
pane.

• The display of attributes can be customized by selecting the attributes in the Customize Window.

E.1.4 Instance Viewer Toolbar Functions

This toolbar contains a scroll-down list of objects that have been viewed in the current Instance Viewer. It also
includes a text field to input a display name when creating a new object and a set of buttons whose actions are
defined below:

back Move back to previous object.

expand Traverses up the class tree, expanding to include the parent class of the root class if it exists.

narrow Traverses down the class tree.

forward Move forward to next object.

post Posts any changes for the current instance.

query Querys for objects.

delete Deletes the current instance permanently from the object server.

reset Resets any attributes that have been modified since last posting.

186

E.1 Main Window

customize Displays a customization dialog in which attributes can be selected or deselected.

new Opens a new Instance Viewer

clear Clears the current object and display an empty template for the selected class.

help Displays context sensitive help.

To reopen an instance previously viewed, select it from the scroll-down list. When creating a new object, the
display name must first be entered in the text field. This creates a template for the object being created and sets
the attribute defined in the following class property to the value entered in the Name field:

<className>.class.disAttrName=<attrName>

where <className> is a valid class name in the object model and <attrName> is a valid attribute name in the
class. For example, a class called BaseObject that contains an attribute called “objectName,” the property can be
set as follows:

BaseObject.class.disAttrName=objectName

E.1.5 Steps to use the Instance Viewer

Follow the steps below to create, delete, and modify objects:

Create a new object

• Select the class name in the Class Pane to create an instance of that class

• Type in a display name in the Name field and hit the [enter] key.

• Set attribute values as necessary. All read-only attributes must be set prior to posting the object for the first
time. See section below on modifying existing objects on how to set values for different attribute types.

• Click on the post button [] to submit the object.

Delete an existing object

• Select the class name in the Class Pane.

• The existing objects for the selected class are displayed in the Object Pane. Selecting the root class name
displays all locally existing objects.

• Select the object to be deleted in the Object Pane and press the [delete] key.

• If the object is currently being viewed in the Instance Viewer, the delete button [] in the toolbar can be
clicked on to delete the object.

187

Instance Viewer

Modify an existing object

• Select the class name in the Class Pane.	 The existing objects for the selected class are displayed in the
Object Pane.

• In the Object Pane double-click the object you wish to edit. This will activate the object, displaying its
attribute values in the Instance Pane and its name in the window title bar. A specific instance must be active
in the Instance Pane in order to edit and post any changes.

• Modify attribute values as outlined below and click on the post button [] in the toolbar to submit the
changes.

–	 To set boolean values, toggle the checkbox.

–	 To set enumeration type attribute values, the value can be selected in the drop-down list of the Com
boBox.

–	 To set numeric or string values, the attribute name can be selected and the value typed in the text field.
For numeric values the unit can also be specified in addition to the magnitude.

–	 To add an element to an array attribute, type in a new value in the editable field for the given array
attribute. To remove an existing element, select the element in the drop-down combo box and press
the [delete] key.

–	 To modify struct fields, select the attribute name and double-click to display the fields. Values can be
modified normally as described above. Double-clicking the attribute name again, rolls up the struct
fields.

–	 To add a struct to a struct array, select the struct attribute name and press the [insert] key. This adds a
struct to the array list. Struct fields can be modified, as described above, by first selecting the struct to
be modified in the drop-down list and then double-clicking to display the fields.

–	 To add an association or aggregation:

Select the Relations tab to display the association role names.
 *

Select the role name to associate an object.
 *
Press the [insert] key to display the Instance Viewer for the associated class. *
To create a new instance to associate, follow the steps enumerated above to create a new instance. *
Once the instance is posted, the association is automatically handled by the Instance Viewer.

To select an existing object to associate, select the association role name and then select the object
 *
in another Instance Viewer (if open) or press the [insert] key to open the Instance Viewer for the
associated class.

–	 To remove a struct value from a struct array list:

Select the struct value to remove from the drop-down list.
 *

Press the [delete] key to remove the selected value.
 *

–	 To remove an association or aggregation:

Select the Relations tab to display the association role names.
 *

Select the role name to display the associated objects.
 *

Select the object to disassociate and press the [delete] key.
 *

• Remember to click the post button [] in the toolbar to submit the changes.

Viewing Instances

• Select the class name in the Class Pane.

188

E.2 Query Viewer

]

• If the object you would like to view exists locally, it will be displayed in the Object Pane.	 If the object
does not exist locally, press the query button []. To load the object locally, select the object key from the
result list displayed in the Query Viewer. The selected object will appear in the Object Pane of the Instance
Viewer.

• Select the object in the Object Pane and double-click to view it in the InstancePane.

Class Queries

• Select the class name in the Class Pane.

• Click the query button [

• The results of the query are displayed in a separate window.

• One or more objects can be selected to load them locally.

Complex Queries

• Select the class name in the Class Pane.

• To constrain the query by attribute value, select the attribute (must not be an array or struct typed attribute)
and change its value. The entered value will be used to constrain the query to only those objects whose
attribute value matches. Any number of attributes values may be set to further constrain the query.

• Click the ’query’ button [] to display the results of the query.

Saving and Restoring objects

• Select the class name in the Class Pane.

• Select the object to save in the Object Pane and double-click to view it.

• From the Instance menu select save to save the object to a file.

• Select restore from the menu to restore an object.

E.2 Query Viewer

The results of a query are displayed in the Query Viewer (see figure E.2). A list of object keys are displayed. To
view the selected instances in an Instances Viewer, click the view button [].

E.2.1 Query Pane

The Query Pane displays a list of object keys for objects that satisfy the query performed. A display attribute
name can be displayed instead by specifying the following class property:

<className>.class.queryAttrName=<attrName>

where,

<className> is a valid class name in the object model

<attrName> is a valid attribute name in the above class

One or more objects can be selected to load them locally or viewed in the Instances Viewer.

189

Instance Viewer

Figure E.2: Sample Query Viewer Window.

Figure E.3: Sample InstancesViewer Window.

E.2.2 Query Viewer Toolbar

The functions of the various buttons contained in the Query Viewer are as follows:

view View selected objects in Instances Viewer.

delete Delete selected object.

refresh Performs the query again and refreshes the list displayed.

help Context sensitive online help.

E.3 Instances Viewer

Multiple instances can be displayed in the Instances Viewer. This is mainly used to display a list of query objects.
Attributes for the root class, for which the query was performed, are displayed. Further customization can be
performed to narrow down the attributes being displayed. When making an association, an object can be selected
in the Instances Viewer by double-clicking the object in the table. An Instance Viewer can also be displayed by
double-clicking the object in the table. Figure E.3 displays a sample Instances Viewer.

E.3.1 Instances Pane

The Instances Pane displays a table for a class of objects. Attributes are displayed starting at column two. By
default all the attributes for the root class are displayed. For each object, the corresponding values of each attribute

190

E.3 Instances Viewer

are displayed. The attributes displayed can be customized. Click the mouse on the column header, to select that
specific column to be sorted in ascending order.

E.3.2 Instances Viewer Toolbar

The Instances Viewer Toolbar contains the following buttons whose actions are defined below:

customize Displays a customization dialog in which attributes can be selected or deselected.

help Displays context sensitive help

191

192

Appendix F - Object Shell

F.1 Overview

The Object Shell is a generic command-line based user interface built using the Metamata parser generator1. The
syntax is defined by grammer specified in an annotated Java source file. Additionally, Java code is imbedded to
directly invoke methods through the Object Management Layer (OML) in response to the parsing of command-
line production segments (groups of tokens matching a prescribed pattern). Additionally, the Object Shell supports
command completion.

F.2 Usage

The command line syntax provided in the Object Shell is fairly minimal in content, focusing instead on object
interaction. There are no built-in commands provided, instead it relies on object characteristics/behavior to pro
vide additional functionality. The syntax consists of a symbolic language providing basic operations to create
objects, set object values/associations, get objects and values/associations, post objects and values/associations,
and delete objects. The Object Shell command line also supports command completion for class names, attribute
names, variable names, and enumerated attribute values. Partial names may be typed followed by the [Tab] key to
invoke command completion. If multiple matches are found then the choices will be displayed and the command
fragment may be updated with a partial completion that contains any common matched substring.

The following summerizes some of the possible operations that may be performed with the next section giving
specific examples.

• create object (local create - post object to instantiate)

objectName=[ClassName]

• create object with initial values (local create - post object to instantiate)

newObject=[ClassName].(attrName=value ...)

• set object value (local modify - post object to set)

newObject.attrName=value

• add element to object array value (local modify - post object to set)

newObject.attrName+=value

• remove element from object array value (local modify - post object to set)

newObject.attrName-=value

1Metamata Parse, Metamata, Inc, http://www.metamata.com

193

Object Shell

• set object association (local modify - post object to set)

newObject.assocRole=object

• get object

object=newObject

• get object value

value=object.attrName

• get object association

value=object.assocRole

• find objects

objects=<ClassName>

• find objects with constraint

objects=<ClassName>.(attrName=value ...)

• post object (may be combined with create/set operations)

->newObject

• delete object

<-object

• show value

value

• show attribute/association value

object.attrName

• show class attributes

[ClassName]

• show number of values

#value

194

F.2 Usage

Fuel
fuelType: eFuelType={GAS, DIESEL}

Asset SupplyEntity

Environment Track
speed: float (km/hr)
affiliation: eAffiliation={FRIEND,HOSTILE}

referenceName: string

Object

Physical

location: Position
validated: boolean

latitude: double

Position

longitude: double

Platform

platformType: ePlatformType={CAR,TANK,SHIP,AIRCRAFT}

View

places occupants

<<struct>>

platformFuel

assets owner consumer supplies

objects

platform

view

0...* 0...*

0...* 0...*0...1

0...1

0...1

0...*0...1

0...1

Figure F.1: Example Object Model.

F.2.1 Examples

For the following examples use the model shown in figure F.1.

// create a new Platform instance of type TANK and assign it to myTank

myTank=[Platform].platformType=:TANK

// set location of myTank to a new Position with latitude

// and longitude set to (35, -122)

myTank.location=[Position].(latitude=35 longitude=-122)

// set referenceName of myTank to "My Tank"

myTank.referenceName=:My Tank

// instantiate myTank (i.e., invoke its constructor)

->myTank

// create a new Fuel instance of type DIESEL and assign it to myFuel

myFuel=[Fuel].fuelType=:DIESEL

// set platformFuel of myTank to myFuel and update instance

// (i.e., invoke its set method)

->myTank.platformFuel=myFuel

// get Platform_role of myFuel and display (note that this

// was set when the platformFuel association role was set

// for myTank previously)

myFuel.Platform_role

195

Object Shell

// delete myTank instance (deletes myFuel as well since it

// is an aggregate part of myTank)

<-myTank

// recreate a new Tank instance as above, but using a single

// command line

->myTank=[Platform].(platformType=:TANK \

location=[Position].(latitude=35 longitude=-122) \

referenceName=:My Tank \

platformFuel=[Fuel].(fuelType="DIESEL" referenceName="My Fuel"))

// query for all Platform instances and assign result

allPlatforms=<Platform>

// print number of Platform instances found

#allPlatforms

// print location attribute value for first Platform

allPlatforms(0).location

// query for Platform instances of type TANK

allTanks=<Platform>.platformType=:TANK

// query for specific TANK Platform instance with

// referenceName set to myTank

aTank=<Platform>.(platformType="TANK" referenceName="My Tank")

// change location for last found tank

->aTank.location=[Position].(latitude=0 longitude=0)

F.3 Syntax

F.3.1 Tokens

< ID: [’a’-’z’,’A’-’Z’] ([’a’-’z’,’A’-’Z’,’0’-’9’,’_’])* >

| < NID: [’[’] (<ID> [’.’])* <ID> [’]’]>

| < SID: [’<’] (<ID> [’.’])* <ID> [’>’]>

| < POST: [’-’] [’>’] >

| < DELT: [’<’] [’-’] >

| < HELP: [’?’] >

| < ADDI: [’@’] >

| < REMI: [’~’] >

| < SET: [’=’] >

| < ADD: [’+’] [’=’] >

| < REM: [’-’] [’=’] >

| < DECIMAL_LITERAL: [’0’-’9’] ([’0’-’9’])* >

| < #HEX_LITERAL: "0" [’x’,’X’] ([’0’-’9’,’a’-’f’,’A’-’F’])+ >

| < #OCTAL_LITERAL: "0" ([’0’-’7’])+ >

| < NUMBER_LITERAL: (<INTEGER_LITERAL> | <FLOATING_POINT_LITERAL>) >

| < INTEGER_LITERAL: ([’-’])? (

<DECIMAL_LITERAL> ([’l’,’L’])?

| <HEX_LITERAL> ([’l’,’L’])?

196

F.3 Syntax

| <OCTAL_LITERAL> ([’l’,’L’])?)

>

| < FLOATING_POINT_LITERAL: ([’-’])? (

([’0’-’9’])+ "." ([’0’-’9’])* (<EXPONENT>)? ([’f’,’F’,’d’,’D’])?

| "." ([’0’-’9’])+ (<EXPONENT>)? ([’f’,’F’,’d’,’D’])?)

>

| < #EXPONENT: [’e’,’E’] ([’+’,’-’])? ([’0’-’9’])+ >

| < TOKEN_LITERAL:

":"

((~[’\"’,’\n’,’\r’])

)*

>

| < STRING_LITERAL:

"\""

((~[’\"’,’\n’,’\r’])

)*

"\""

>

F.3.2 Productions

input

setExpr() ["\n" | "\r"]

|

getExpr() ["\n" | "\r"]

|

postExpr() ["\n" | "\r"]

|

deleteExpr() ["\n" | "\r"]

|

helpExpr() ["\n" | "\r"]

|

addiExpr() ["\n" | "\r"]

|

remiExpr() ["\n" | "\r"]

setExpr

object() "." <ID> op() "(" valueGroup() ")"

|

object() "." <ID> op() value()

|

<ID> <SET> value()

getExpr

"#" value()

|

value()

197

Object Shell

postExpr

deleteExpr

helpExpr

addiExpr

remiExpr

op

<POST> setExpr()

|

<POST> object() "." <ID>

|

<POST> object()

<DELT> object()

<HELP> <NID> "." <ID>

|

<HELP> <NID>

|

<HELP> object() "." <ID>

|

<HELP> object()

|

<HELP>

<ADDI> <SID> "." <ID>

|

<ADDI> <SID>

|

<ADDI> object() "." <ID>

|

<ADDI> object()

<REMI> <SID> "." <ID>

|

<REMI> <SID>

|

<REMI> object() "." <ID>

|

<REMI> object()

<SET>

|

<ADD>

|

<REM>

198

F.3 Syntax

object

<ID> "(" <INTEGER_LITERAL> ")"
|
<ID>

setGroup

(set())+

set

<ID> op() "(" valueGroup() ")"
|
<ID> op() value()

valueGroup

(value())+

value

<NID> ".(" setGroup() ")"
|
<NID> "." set()
|
<NID>
|
<SID> ".(" setGroup() ")"
|
<SID> "." set()
|
<SID>
|
object() "." <ID>
|
object()
|
<NUMBER_LITERAL>
|
<TOKEN_LITERAL>
|
<STRING_LITERAL>

199

200

Appendix G - Glossary of Terms and
Acronyms

agent A software module capable of limited reasoning about information defined within the context of a knowl
edge domain.

agent session A collection of agents logically grouped by domain, typically acting on information presented in a
particular view. See: view.

aggregate A class that represents the whole in an aggregation (whole-part) relationship. See: aggregation.

aggregation A special form of association that specifies a whole-part relationship between the aggregate (whole)
and a component part.

API Application Programmer’s Interface. A set of interfaces comprising a library, system, or application.

architecture The organizational structure and associated behavior of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces include classes, components, and subsystems.

artifact A physical piece of information that is used or produced by a software development process. Examples
of Artifacts include models, source files, scripts, and binary executable files. An artifact may constitute the
implementation of a deployable component. Synonym: product. Contrast: component.

association The semantic relationship between classifiers that specifies connections among their instances.

association end The endpoint of an association, which connects the association to a classifier.

attribute A feature within a classifier that describes a range of values that instances of the classifier may hold.

cardinality The number of elements in a set. Contrast: multiplicity.

child	 In a generalization relationship, the specialization of another element, the parent. See: subclass. Contrast:
parent.

class	 A description of a set of objects that share the same attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to specify collections of operations it provides to its environ
ment. See: interface.

classifier A mechanism that describes behavioral and structural features. Classifiers include interfaces, classes,
datatypes, and components.

CLIPS C Language Integrated Production System. A rule-based expert system shell originally developed by
NASA.

component A modular, deployable, and replaceable part of a system that encapsulates implementation and ex
poses a set of interfaces. A component is typically specified by one or more classifiers (e.g., implementation
classes) that reside on it, and may be implemented by one or more artifacts (e.g., binary, executable, or script
files). Contrast: artifact.

CORBA Common Object Request Broker Architecture[12]. A standard specification for distributed objects and
services.

datatype A descriptor of a set of values that lack identity and whose operations do not have side effects.
Datatypes include primitive pre-defined types and user-definable types. Predefined types include numbers,
string and time. User-definable types include enumerations.

201

Glossary of Terms and Acronyms

design The part of the software development process whose primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions are made to meet the required functional and
quality requirements of a system.

development process A set of partially ordered steps performed for a given purpose during software develop
ment, such as constructing models or implementing models.

domain An area of knowledge or activity characterized by a set of concepts and terminology understood by
practitioners in that area.

element An atomic constituent of a model.

enumeration A list of named values used as the range of a particular attribute type. For example, RGBColor =
{red, green, blue}. Boolean is a predefined enumeration with values from the set {false, true}.

feature A property, like operation or attribute, which is encapsulated within a classifier, such as an interface, a
class, or a datatype.

framework A reusable architecture for all or part of a system. Frameworks typically include classes, patterns or
templates. When frameworks are specialized for an application domain, they are sometimes referred to as
application frameworks. See: pattern.

generalization A taxonomic relationship between a more general element and a more specific element. The
more specific element is fully consistent with the more general element and contains additional information.
An instance of the more specific element may be used where the more general element is allowed. See:
inheritance.

IDL Interface Definition Language[12].

IOR Initial Object Reference used by the ORB to resolve to an initial service (e.g., the name service).

inheritance The mechanism by which more specific elements incorporate structure and behavior of more general
elements related by behavior. See generalization.

instance An entity that has unique identity, a set of operations that can be applied to it, and state that stores the
effects of the operations. See: object.

interface A named set of operations that characterize the behavior of an element.

JESS Java Expert System Shell. A rule-based expert system shell developed by the Sandia National Laboratories.

meta-data Information describing model structure.

meta-model A model that defines the language for expressing a model.

model An abstraction of a physical system with a certain purpose. See: physical system.

model element An element that is an abstraction drawn from the system being modeled.

multiplicity A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifica
tions may be given for roles within associations, parts within composites, repetitions, and other purposes.
Essentially a multiplicity is a (possibly infinite) subset of the non-negative integers. Contrast: cardinality.

namespace A part of the model in which the names may be defined and used. Within a namespace, each name
has a unique meaning. See: name.

object An entity with a well-defined boundary and identity that encapsulates state and behavior. State is repre
sented by attributes and relationships, behavior is represented by operations, methods, and state machines.
An object is an instance of a class. See: class, instance.

ORB Object Request Broker - see CORBA[12].

202

package A general purpose mechanism for organizing elements into groups. Packages may be nested within
other packages.

parent In a generalization relationship, the generalization of another element, the child. See: subclass. Contrast:
child.

primitive type A pre-defined basic datatype without any substructure, such as an integer or a string.

process

1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which
includes heavyweight and lightweight processes. If necessary, an implementation distinction can be
made using stereotypes.

2. A software development process defining the steps and guidelines by which to develop a system.

3. To execute an algorithm or otherwise handle something dynamically.

property A named value denoting a characteristic.

physical system

1. The subject of a model.

2. A collection of connected physical units, which can include software, hardware and people, that are
organized to accomplish a specific purpose. A physical system can be described by one or more
models, possibly from different viewpoints. Contrast: system.

reference

1. A denotation of a model element.

2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.

relationship A semantic connection among model elements. Examples of relationships include associations and
generalizations.

role The named specific behavior of an entity participating in a particular context. A role may be static (e.g., an
association end) or dynamic (e.g., a collaboration role).

service A specialized reusable component that serves a common purpose. See component.

stereotype A type of modeling element that extends the semantics of the meta-model. Stereotypes may extend
the semantics, but not the structure of pre-existing types and classes.

subclass In a generalization relationship, the specialization of another class; the superclass. See: generalization.
Contrast: superclass.

subpackage A package that is contained in another package.

superclass In a generalization relationship, the generalization of another class; the subclass. See: generalization.
Contrast: subclass.

system A top-level subsystem in a model. Contrast: physical system.

tagged value The explicit definition of a property as a name-value pair. In a tagged value, the name is referred to
as the tag.

TIRAC Toolkit for Information Representation and Agent Collaboration. A framework and toolkit used for
building collaborative decision support systems.

top level A stereotype of package denoting the top-most package in a containment hierarchy. The topLevel
stereotype defines the outer limit for looking up names, as namespaces see outwards.

203

Glossary of Terms and Acronyms

UML Unified Modeling Language. A language for specifying, visualizing, constructing, and documenting the
artifacts of software systems, as well as for business modeling and other non-software systems.

view	 A projection of a model, which is seen from a given perspective or vantage point and omits entities that are
not relevant to this perspective.

visibility An enumeration whose value (public, protected, or private) denotes how the model element to which it
refers may be seen outside its enclosing namespace.

XMI	 XML Metadata Interchange. A standard format for storing model information in terms of meta-model
specifications.

XML Extensible Markup Language. A standard markup language for storing human and machine readable
information in a structured form.

XSL	 XML Stylesheet Language. A standard language typically used to transform an XML document, stored
using a specific schema, into another format. Allows separation of document content from presentation
format.

204

Bibliography

[1] Ernest Friedman-Hill. Jess In Action. Manning Publications, 2003.

[2] Sandia National Laboratories. Jess the Rule Engine for the Java Platform. herzberg.ca.sandia.gov.

[3] Apache Jakarta Project. Tomcat. jakarta.apache.org/tomcat.

[4] Apache Web Services Project. Axis. ws.apache.org/axis.

[5] Altova. MapForce. www.altova.com/products_mapforce.html.

[6] Embarcadero Technologies. Describe. www.embarcadero.com/products/describe.

[7] Gentleware AG. Poseidon for UML. www.gentleware.com/products.

[8] IBM. Rational Software. www.ibm.com/software/rational.

[9] LaTeX Project. LaTeX, A Document Preparation System. www.latex-project.org.

[10]	 Novosoft. Novosoft UML Library. www.novosoft-us.com.

[11]	 Object Management Group, Inc. XML Metadata Interchange (XMI). www.omg.org, November 2000.

[12]	 Object Management Group, Inc. The Common Object Request Broker: Architecture and Specification.
www.omg.org, February 2001.

[13]	 Object Management Group, Inc. IDL to Java Language Mapping Specification. www.omg.org, May 2001.

[14]	 Object Management Group, Inc. OMG Unified Modeling Language Specification. www.omg.org, Septem
ber 2001.

[15] Leslie Lamport. LaTeX, A Document Preparation System. Addison-Wesley, second edition, 1994.

[16] Jens Pohl, Kym Jason Pohl, Russell Leighton, Michael Zang, Steven Gollery, and Mark Porczak.	 The
TIRAC Development Toolkit: Purpose and Overview. Technical Report CDM-17-04, CDM Technologies,
Inc., August 2004.

[17] Kym Jason Pohl and Lakshmi Vempati.	 A Translational Web Services Bridge Solution for Meaningful
Interoperability Between Potentially Disparate Systems. Paper to be presented at the 2005 IEEE Aerospace
Conference, March 5-12, 2005, Big Sky, MT., March 2005.

205

http://herzberg.ca.sandia.gov/jess
http://jakarta.apache.org
http://jakarta.apache.org/tomcat
http://ws.apache.org
http://ws.apache.org/axis
http://www.altova.com
http://www.altova.com/products_mapforce.html
http://www.embarcadero.com
http://www.embarcadero.com/products/describe
http://www.gentleware.com
http://www.gentleware.com/products
http://www.ibm.com
http://www.ibm.com/software/rational
http://www.latex-project.org/
http://www.novosoft-us.com
http://nsuml.sourceforge.net
http://www.omg.org
http://www.omg.org/docs/formal/00-11-02.pdf
http://www.omg.org
http://www.omg.org/docs/formal/01-02-01.pdf
http://www.omg.org
http://www.omg.org/docs/formal/01-05-03.pdf
http://www.omg.org
http://www.omg.org/docs/formal/01-09-67.pdf

Keyword Index

agent, 201

CLIPS

development, 88–92

engine, 34, 83–87

knowledge base, 88

module, 88

rule actions, 89

rule patterns, 88

session, 83, 92–93

design, 34

example, 34

JESS

development, 73–79

engine, 71–73

session, 71, 79–81

representation, 33

session, 201

status panel, 34

aggregate, 201

aggregation, 42, 44, 201

API, 201

architecture, 12, 201

multi-layer, 11

multi-tiered, 11

archive, 63

artifact, 15, 201

model, 39

association, 21, 44, 201

cross-domain, 42, 44

interaction, 54

management, 49, 51, 54

uni-directional, 31, 42, 44

association end, 21, 42, 44, 201

association management, 14

attribute, 20, 42, 43, 201

management, 56

plugin classes, 51

type conversion, 51

value constraint, 51

Attribute class, 51

base services, 13–14

factory, 14

model, 14

name, 13

persistence, 13, 63

subscription, 14, 59

cardinality, 201

class, 39, 42, 43, 201

abstract, 19, 43

concrete, 19, 42, 43

properties, 23, 46

reference, 43

classifier, 201

ClassProperties class, 52

client interface library, 22, 45

CLIPS, 15, 201

defclass, 24, 47, 87

code generation, 15, 41, 45

component, 201

composition, 44

connection API, 95

connection delegate, 95, 101

connector, 95, 101

CORBA, 201

IDL, 15, 40, 41, 45, 46, 202

ORB, 25, 202

datatype, 19, 39, 42, 201

development process, 202

domain, 18, 202

domain services, 26

element, 19, 202

enumeration, 19, 42, 202

execution framework, 22

Extensible Markup Language, 39

feature, 19, 202

framework, 11, 202

generalization, 19, 21, 202

information management, 11

information representation, 13, 39, 49, 95

information transformation, 95

inheritance, 202

Initial Object Reference, 25, 36

instance, 202

instance viewer application, 30

206

Keyword Index

interest
class based, 50, 55
instance based, 50, 55
management, 49, 52

interface, 202
translation, 97

interoperability, 12, 95
introspection, 49

class, 50
type, 51

IOR, see Initial Object Reference, 202

JacORB, 25, 36
JavaScript, 28
JESS, 202

agent development, 73
agent engine, 71
defclass, 73, 74
deffunction, 75
definstance, 74, 75
deftemplate, 72
transform, 99
user functions, 75

kbc file, 47, 87

makeall script, 47
makeclient script, 22, 45
makecool script, 24, 47
makefile script, 25, 47
makeproperties script, 23, 46
makereport script, 35, 45
makeserver script, 23, 46
mapping

instance, 100
XSL, 95

meta-data, 14, 49, 202
meta-information, 52
meta-model, 17, 202

XMI-UML, 17, 39
model, 18, 39, 202

development, 34
guidelines, 35
object, 17, 39
problem report, 45
processing tools, 22–24, 45–47
requirements, 41

model element, 202
multiple domains, 12, 31–33, 49, 56
multiplicity, 20, 21, 202

name service, 25, 36
namespace, 18, 42, 202

object, 202

construction, 50
delete, 63
destruction, 50, 52
management, 49
query, 52, 54, 63
resolve, 52
restore, 63
save, 63
update, 63

object graph application, 28
object servant, 13
object shell application, 29
ObjectFactory class, 51
ObjectServerAPI class, 52
operation, 43, 44

package, 18, 39, 42, 43, 203
parent, 203
persistence

JDBC, 63
object serialization, 63

physical system, 203
post operation, 50
POW class, 36, 50
primitive type, 19, 43, 203
process, 203
programming guidelines, 36
property, 203

query, 54
interoperability bridge, 98

reference, 203
relationship, 203
report generation, 15, 41, 45
role, 21, 42, 44, 203

sequence type, 36, 44, 46
servant class library, 23, 46
service, 203

domain, 26
multiple domains, 32
name, 25
translation, 95, 99
web, 98

stereotype, 18, 19, 203
subclass, 203
subpackage, 203
subscription, see interest

class based, 59
interoperability bridge, 98
notification, 59

event, 59
event order, 61

object based, 59

207

Keyword Index

publish/subscribe, 59
superclass, 203
system, 203

configuration, 36

deployment, 36

design, 34

development, 34

tagged value, 203
Template class, 36, 50
TIRAC, 203
top level, 203
transform

inference, 95, 99
XSL, 95, 99

transform script, 45
translation service, 95, 99

UML, see Unified Modeling Language, 204
Unified Modeling Language, 39, 41
unit of measure, 44, 49

visibility, 20, 43, 204

web service, 98

XMI, see XML Metadata Interchange, 204
header, 17

XML, see Extensible Markup Language, 165, 204
export, 97, 99, 101
import, 97, 99, 101

XML Metadata Interchange, 15, 39
XML schema, 165
XML Stylesheet Language, 17
XSL, see XML Stylesheet Language, 204

mapping, 95

transform, 45, 95, 99, 167

208

	Overview
	Introduction
	Requirements
	Design and Implementation
	Object-based Information Representation
	Information Services
	Object Management Library
	Agent-based Information Analysis
	Model Processing Tools

	Development Environment

	Toolkit Usage
	Introduction
	Creating An Object Model Document
	XMI header and meta-model specification
	Model element
	Package element
	Class element
	DataType and Enumeration elements
	Attribute element
	Association element
	AssociationEnd element
	Generalization element

	Processing The Object Model
	Object model processing suite

	System Execution
	Example service execution suite
	Example client script
	Generic client applications

	Multiple Information Domains
	Reference elements and uni-directional associations
	Service startup
	Client configuration and startup

	Decision Support Example
	Agent Status Panel
	Agent Session

	System Development
	Model Design and Processing Guidelines
	Application Programming Guidelines
	System Deployment and Configuration Guidelines

	Model Processing Tools
	Introduction
	Architecture Overview
	UML Processor
	IDL Producer
	Java Producer

	Using the Model Processing Tools
	Modeling Tools
	Modeling Requirements
	Processing Tools

	Object Management Layer
	Introduction
	Architecture Overview
	Template
	POW
	Attribute
	Object Factory
	Object Server API
	Class Properties

	Configuration
	Using the Object Management Layer
	Object Interaction
	Object Query
	Object Interests
	Object Server Interfaces
	Attribute Value Management
	XML Import and Export
	Example Code

	Subscription Service
	Introduction
	Implementation
	Event and Constraint Models
	Specifying Attribute Constraints
	Old and New Values
	Event Ordering

	Configuration
	Server Properties
	Client Properties

	Persistence Layer
	Introduction
	Architecture Overview
	SerialPersistence
	JDBCPersistence

	Configuration
	Database Administration

	Using the Persistence Layer
	Using SerialPersistence
	Using JDBCPersistence

	Archiving Capability
	The Archive Abstraction
	Configuration
	Archive File Structure
	Archive Creation
	Archive Restoration
	Archiver Application
	ArchiverGUI Application
	Configuration Utility

	JESS Agent Engine
	Introduction
	Architecture Overview
	Configuration
	Generate Batch and Property Files
	Agent Session Modes
	Subscriptions

	Writing JESS Agents
	Information Representation
	Information Management
	JESS User functions

	Running an Agent Session
	Debug Utility
	Examples
	Attribute Types

	CLIPS Agent Engine
	Introduction
	Architecture Overview
	Installation
	Configuration
	Properties
	Subscriptions
	CLIPS Batch Files
	Startup Files
	Object Model Requirements

	Writing CLIPS Agents
	Defining a Module
	Defining a Knowledge Base
	Other Conventions

	Running an Agent Session
	Stand-alone Mode Agent Sessions
	Collaborative Mode Agent Sessions

	Interoperability Bridge Framework
	Introduction
	Architecture Overview
	Implementation
	Description of key interfaces
	Interoperability Bridge
	Translation Service
	Connection

	Using the Interoperability Bridge Framework
	Connecting two TIRAC-based systems
	Connecting an external system to the bridge
	Using the Interoperability Web Service
	Translation UI

	Examples
	Mapping
	Example suites

	Release Notes
	Core
	Requirements

	Support Suite
	Requirements
	Usage Instructions
	Frequently Asked Questions

	Utility Class Library
	Client Support Library
	Requirements

	Server Support Library
	Requirements

	Persistence Layer
	Requirements

	Object Management Library
	Requirements

	Meta-Model Support Library
	Requirements

	UML Processing Tools
	Requirements
	Usage Instructions
	Frequently Asked Questions

	Agent Management Library
	Requirements

	JESS Agent Engine
	Requirements
	Frequently Asked Questions

	CLIPS Agent Engine
	Requirements

	Translation Service
	Requirements
	Usage Instructions

	Client Facade Support Library
	Requirements

	Generic UI Component Library
	Requirements

	Instance Viewer Application
	Requirements
	Frequently Asked Questions

	Object Shell Application
	Requirements

	Object Graph Application
	Requirements

	Properties
	Utility Properties
	Client Properties
	Server Properties
	Persistence Layer Properties
	Object Management Layer Properties
	JESS Agent Session Properties
	CLIPS Agent Session Properties
	Translation Service Properties

	Examples
	Example Models
	Simple Example model
	Decision Support model

	Example Build Suites
	System build suite
	Simple Example build suite
	Decision Support build suite

	Example Execution Suites
	Name service suite
	System service startup suite
	Simple Example service suite
	Decision Support service suite
	CLIPS Agent Engine suite
	Test Execution suite

	Example Test Script
	Example Agents
	JESS-based Agent
	CLIPS-based Agent

	Execution Framework
	Introduction
	Execution Suite Processor
	Execution Suite Presentation
	Execution Suite Schema
	suite
	case
	path
	url
	source
	artifact
	command
	exec
	class
	include
	classpath
	arg
	option
	condition
	property
	target
	description
	link
	image
	requirement
	select
	when
	otherwise

	Example Suite

	Instance Viewer
	Main Window
	Class Pane
	Object Pane
	Instance Pane
	Instance Viewer Toolbar Functions
	Steps to use the Instance Viewer

	Query Viewer
	Query Pane
	Query Viewer Toolbar

	Instances Viewer
	Instances Pane
	Instances Viewer Toolbar

	Object Shell
	Overview
	Usage
	Examples

	Syntax
	Tokens
	Productions

	Glossary of Terms and Acronyms
	Bibliography
	Keyword Index

