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Abstract We introduce and investigate a class of complex semi-infinite banded
Toeplitz matrices satisfying the condition that the spectra of their principal submatri-
ces accumulate onto a real interval when the size of the submatrix grows to∞. We
prove that a banded Toeplitz matrix belongs to this class if and only if its symbol has
real values on a Jordan curve located in C\{0}. Surprisingly, it turns out that, if such a
Jordan curve is present, the spectra of all the principal submatrices have to be real. The
latter claim is also proved for matrices given by a more general symbol. The special
role of the Jordan curve is further demonstrated by a new formula for the limiting
density of the asymptotic eigenvalue distribution for banded Toeplitz matrices from
the studied class. Certain connections between the problem under investigation, Jacobi
operators, and the Hamburger moment problem are also discussed. The main results
are illustrated by several concrete examples; some of them allow an explicit analytic
treatment, while some are only treated numerically.
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1 Introduction

With a Laurent series

a(z) =
∞∑

k=−∞
akz

k (1)

with complex coefficients ak , one can associate a semi-infinite Toeplitz matrix T (a)

whose elements are given by

(T (a))i, j = ai− j , ∀i, j ∈ N0.

In the theory of Toeplitz matrices, a is referred to as the symbol of T (a) and the set
of symbols under considerationmay be further restricted depending onwhat properties
of T (a) are studied. For the spectral analysis of T (a), a special role is played by the
Wiener algebra which consists of symbols a defined on the unit circleTwhose Laurent
series (1) is absolutely convergent for z ∈ T. In this case, T (a) is a bounded operator
on the Banach space �p(N) for any 1 ≤ p ≤ ∞, and its spectral properties are well
known, see [5].

Rather than the actual spectrum of T (a), this paper focuses on an asymptotic spec-
trum of T (a), meaning the set of all limit points of eigenvalues of matrices Tn(a), as
n → ∞, where Tn(a) denotes the n × n principal submatrix of T (a). An intimately
related subject concerns the asymptotic eigenvalue distribution of Toeplitz matrices
for which the most complete results were obtained if the symbol of the matrix is a
Laurent polynomial [5]. More precisely, one considers symbols of the form

b(z) =
s∑

k=−r
ak z

k, where a−r as �= 0 and r, s ∈ N, (2)

for which the Toeplitz matrix T (b) is banded and is not lower or upper triangular.
This subject has an impressive history going back a century to the famous work of

Szegő on the asymptotic behavior of the determinant of Tn(b) for n→∞. The most
essential progresswas achieved by Schmidt and Spitzer [27] and later on byHirschman
[19]. They established the following results. The eigenvalue-counting measures

μn := 1

n

n∑

k=1
δλk,n , (3)

where λ1,n, λ2,n, . . . , λn,n are the eigenvalues of Tn(b) (repeated according to their
algebraic multiplicity) and δa is the Dirac measure supported at {a}, converge weakly
to a limiting measureμ, as n→∞. Recall thatμn converges weakly toμ, as n→∞,
if and only if
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lim
n→∞

∫

C

f (λ)dμn(λ) =
∫

C

f (λ)dμ(λ),

for every bounded and continuous function f on C. The limiting measure μ is sup-
ported on the limiting set

�(b) :=
{
λ ∈ C

∣∣ lim
n→∞ dist(λ, spec(Tn(b))) = 0

}
. (4)

The limit that appears above exists, see [27] or [5, Chp. 11]. Moreover, Schmidt
and Spitzer derived another very useful description of �(b) that reads

�(b) = {λ ∈ C | |zr (λ)| = |zr+1(λ)|},

where z1(λ), z2(λ), . . . , zr+s(λ) are (not necessarily distinct) roots of the polynomial
z �→ zr (b(z)− λ) arranged in the order of increase of their absolute values, i.e.,

0 < |z1(λ)| ≤ |z2(λ)| ≤ · · · ≤ |zr+s(λ)|. (5)

(If there is a chain of equalities above, then the labeling of roots within this chain is
arbitrary.)

The latter description allows one to deduce the fundamental analytical and topo-
logical properties of �(b). First, the set �(b) equals the union of a finite number of
pairwise disjoint open analytic arcs and a finite number of the so-called exceptional
points. A point λ ∈ �(b) is called exceptional if either λ is a branch point, i.e., if the
polynomial z �→ zr (b(z)−λ) has a multiple root, or if there is no open neighborhood
U of λ such that �(b)∩U is an analytic arc starting and terminating on the boundary
∂U . Second, �(b) is a compact and connected set, see [34]. For an extension of these
results to Toeplitz matrices with rational symbols, see the work of Day [10,11].

As a starting point, we focus on a characterization of Laurent polynomial symbols b
forwhich�(b) ⊂ R. In this case, we say that b belongs to the classR; seeDefinition 2.
Besides all the symbols b for which T (b) is self-adjoint, the class R also contains
symbols of certain non-self-adjoint matrices. Surprisingly, it turns out that, for b ∈ R,
the spectra of all submatrices Tn(b) are real; see Theorem 1 below.

Describing the class R can be viewed as a problem of characterization of the
subclass of banded Toeplitz matrices with asymptotically real spectrum. Let us point
out that, in this context, the consideration of the set of the limit spectral points, i.e.,
�(b), is a more relevant and interesting problem than the study of the spectrum of
T (b) as an operator acting on �p(N) for some 1 ≤ p ≤ ∞. Indeed, note that T (b)
is self-adjoint if and only if b(T) ⊂ R, where T is the unit circle. On the other hand,
b(T) coincides with the essential spectrum of T (b), see [5, Cor. 1.10]. Thus, if T (b)
is non-self-adjoint, then there is no chance for spec(T (b)) to be purely real.

From a broader perspective, results of the present paper contribute to the study of
the spectral properties of non-self-adjoint operators, a rapidly developing area which
has recently attracted attention ofmanymathematicians and physicists, see, e.g., [9,18,
33]. A particularly noteworthy problem consists in finding classes of non-self-adjoint
operators that have purely real spectrum. This is usually a mathematically challenging
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problem (see, for example, the proof of reality of the spectrum of the imaginary cubic
oscillator in [28]) which, in addition, may be of physical relevance. At the moment,
the non-self-adjoint operators whose spectrum is known to be real mainly comprise
either very specific operators [17,28,30,35] or operators that are in a certain sense
close to being self-adjoint [6,23,24]. In particular, there are almost no criteria for
famous non-self-adjoint families (such as Toeplitz, Jacobi, Hankel, Schrödinger, etc.)
guaranteeing the reality of their spectra. From this point of view and to the best of our
knowledge, the present article provides the first relevant results of such a flavor for
the class of banded Toeplitz matrices.

Our main result is the following characterization of the classR.

Theorem 1 Let b be a complex Laurent polynomial as in (2). The following statements
are equivalent:

(i) �(b) ⊂ R;
(ii) the set b−1(R) contains (an image of) a Jordan curve;
(iii) for all n ∈ N, spec(Tn(b)) ⊂ R.

It is a very peculiar feature of banded Toeplitzmatrices that the asymptotic reality of
the eigenvalues (claim (i)) forces all eigenvalues of all principal submatrices to be real
(claim (iii)). Hence, if, for instance, the 2× 2 matrix T2(b) has a nonreal eigenvalue,
there is no chance for the limiting set �(b) to be real. The implication (iii)⇒(i) is
clearly trivial. The implication (i)⇒(ii) is proved in Theorem 5, while (ii)⇒(iii) is
established in Theorem 8 for an even more general class of symbols. These results are
worked out within Sect. 2.

Section3 is divided into two subsections. Section3.1 is primarily devoted to a
derivation of a new expression for the density of the limitingmeasureμ for real Laurent
polynomial symbols b ∈ R using the polar parametrization of the Jordan curve from
b−1(R) provided that such parametrization exists. Recall that due to Hirschman [19],
a formula for the limiting density is known for any Laurent polynomial symbol (2)
with no additional restrictions. The new expression, in the first place, emphasizes
that the significance of the Jordan curve from b−1(R) does not concern only the
reality questions as Theorem 1 shows, but it also provides enough data for a complete
description of the limiting density. Secondly, the new formula does not depend directly
on the zeros of z �→ zr (b(z) − λ), which might be more useful in practice. A more
detailed comparison of the formulas for the limiting density is given in Remark 18.

The proof of the alternative description of the limiting measure μ uses the fact
that μ coincides with a solution of a particular Hamburger moment problem whose
moment sequence is determined by the symbol b ∈ R. The positive-definiteness of
the moment Hankel matrix then provides a necessary (algebraic) condition for b to
belong toR.Whether the positive-definiteness of theHankelmatrices is also sufficient
for �(b) ⊂ R remains an interesting open problem. It is only shown to be affirmative
under an additional assumption requiring C\�(b) to be a connected set, see the end
of Sect. 3.1.

In Sect. 3.2, as a slight digression from the main topic, we briefly study the inverse
spectral problem for self-adjoint Jacobi operators whose spectral measures coincide
with the limiting measures for real b ∈ R. By taking advantage of earlier results due
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to Hirschman and Rakhmanov, we prove that any such Jacobi operator is a compact
perturbation of a Jacobi operator with constant diagonal and off-diagonal sequences.
In the terminology of orthogonal polynomials, this means that any family of polyno-
mials orthogonal with respect to the limiting measure, for real b ∈ R, belongs to the
Blumenthal–Nevai class.

Section4 provides several concrete examples and numerical computations illus-
trating the results of Sects. 2 and 3. For general 3-diagonal and 4-diagonal Toeplitz
matrices T (b), explicit conditions in terms of b guaranteeing that b ∈ R are deduced.
Further, for the 3-diagonal and slightly specialized 4-diagonal Toeplitz matrices, the
densities of the limitingmeasures aswell as the associated Jacobimatrices are obtained
fully explicitly. Moreover, we show that the corresponding orthogonal polynomials
are related to certain well-known families of orthogonal polynomials, which involve
Chebyshev polynomials of the second kind and the associated Jacobi polynomials.
Their properties such as the three-term recurrence, the orthogonality relation, and an
explicit representation are given. In the example concerning the 4-diagonal Toeplitz
matrix, these results seem to be new. Yet for another interesting example generalizing
the previous two, we are able to obtain some partial results. These examples are pre-
sented in Sects. 4.1–4.3. Finally, the last part of the paper contains various numerical
illustrations and plots of the densities of the limiting measures and the distributions
of eigenvalues in the situations whose complexity does not allow us to treat them
explicitly.

2 Main Results

In this section, we prove Theorem 1.

Definition 2 Laurent polynomial b of the form (2) is said to belong to the class R,
denoted by b ∈ R, if and only if �(b) ⊂ R, where �(b) is given by (4).

Remark 3 Since �(b) is a compact connected set, the inclusion �(b) ⊂ R actually
implies that �(b) is a closed finite interval.

We startwith the proof of the implication (i)⇒(ii) fromTheorem1. For this purpose,
we take a closer look at the structure of the set b−1(R)where the symbol is real-valued.
Let us stress that b−1(R) ⊂ C\{0}. Recall also that a curve is a continuous mapping
from a closed interval to a topological space and a Jordan curve is a curve which is,
in addition, simple and closed. Occasionally, we will slightly abuse the term curve,
sometimes meaning the mapping and sometimes the image of such a mapping. Below,
a region always means an open and connected subset of C.

Clearly, z ∈ b−1(R) if and only if Imb(z) = 0, and the latter condition can be
turned into a polynomial equation P(x, y) = 0, where P ∈ R[x, y], x = Rez, and
y = Imz. Consequently, b−1(R) is a finite union of pairwise disjoint open analytic
arcs, i.e., images of analytic mappings from open intervals to C, and a finite number
of branching points that are the critical points of b. It might be convenient to add the
points 0 and∞ to b−1(R) and introduce the set

nb := b−1(R) ∪ {0,∞}
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endowed with the topology induced from the Riemann sphere S2. Then the set nb
coincides with a set called net of the rational function b by some authors, cf. [15].

As far as the local structure of nb at the points 0 and∞ is concerned, notice that,
since b(z) ∼ a−r/zr , as z → 0, nb looks locally at 0 like a star graph with 2r edges
and the angle between two consecutive edges is π/r . Similarly, since b(z) ∼ aszs , as
z → ∞, nb looks locally at∞ like a star graph with 2s edges with equal angles of
magnitude π/s.

Concerning the set nb outside the singular points 0 and∞, an important observa-
tion is that no arc of nb can terminate in C\{0}. This fact follows from Lemma 24
from the Appendix and the assumption that b is a nonconstant Laurent polynomial.
Consequently, any arc of nb located in C\{0} has to be connected with 0 and/or∞, or
the arc closes into a loop entirely located in C\{0}. In the latter case, the loop gives
rise to a Jordan curve that has to have the singular point 0 in its interior because, if
the interior is a subset of C\{0}, then b is an analytic function in the interior with real
values on its boundary. This would, however, imply that b is constant by Lemma 26,
a contradiction with our assumptions.

In total, the net nb is a collection of finitely many curves of 3 different types:
Jordan curves containing either 0 or ∞, curves connecting 0 and ∞, and possibly
Jordan curves entirely located in C\{0} having 0 in the interior. To complete the
picture, let us mention that, if b−1(R) ⊂ C\{0} contains the Jordan curve, then it is
unique. Indeed, assuming the opposite, i.e., the existence of two nonidentical Jordan
curves in b−1(R) with 0 in their interiors, one can find a bounded nonempty region on
which boundary bwould be real-valued. For this region, one can choose any connected
component of the symmetric difference of the interiors of the two Jordan curves in
question. By applying Lemma 26 again, one gets, however, that such b has to be
constant. In summary, the set b−1(R) either contains no Jordan curve or exactly one.
The two possibilities for the set b−1(R) that are to be distinguished are illustrated in
Fig. 1.

With the above information about the structure of the net nb, the verification of the
following lemma is immediate.

Lemma 4 The set b−1(R) contains a Jordan curve if and only if every path in S2

connecting 0 and∞ has a nonempty intersection with b−1(R).

Now, we are ready to show that the existence of a Jordan curve in b−1(R) is
necessary for �(b) ⊂ R, i.e., the implication (i)⇒(ii) from Theorem 1.

Theorem 5 If �(b) ⊂ R, then b−1(R) contains a Jordan curve.

Proof Set

N := {z ∈ C | |zr (b(z))| = |zr+1(b(z))|}.

Note that b maps a neighborhood of 0 and a neighborhood of∞ onto a neighborhood
of∞ and that for λ large in the modulus, the preimages z1(λ), . . . , zr (λ) are close to
0, while zr+1(λ), . . . , zr+s(λ) are close to∞. Hence there exist neighborhoods of 0
and∞ with empty intersections with N .
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Fig. 1 The plots of the net of b(z) = 1/z3 − 1/z2 + 7/z + 9z − 2z2 + 2z3 − z4 (left) and b(z) =
−2/z3− 4/z2 + 12/z+ 8z− 10z2 + 8z3− 4z4 (right). The red dot designates the origin. On the left-hand
side, b−1(R) contains a Jordan curve, while this is not the case for the example plotted on the right-hand
side (Color figure online)

Next, let us show that anypath in S2 connecting 0 and∞has a nonempty intersection
withN . Let γ : [0, 1] → S2 denote such a path. First, note that, for any k ∈ {1, . . . , r+
s}, the function λ �→ |zk(λ)| is continuous onC\{0} and that the value |γ (t)| appears at
least once in the (r+s)-tuple |z1(b(γ (t)))|, . . . , |zr+s(b(γ (t)))| for all t ∈ (0, 1). Fur-
ther, since γ (0) = 0, the value |γ (t)|, for t in a right neighborhood of 0, appears among
the first r values |z1(b(γ (t)))|, . . . , |zr (b(γ (t)))| and does not appear in the remaining
s values |zr+1(b(γ (t)))|, . . . , |zr+s(b(γ (t)))|. Similarly, since γ (1) = ∞, the value
|γ (t)|, for t in a left neighborhoodof 1, appears in |zr+1(b(γ (t)))|, . . . , |zr+s(b(γ (t)))|
and is not among |z1(b(γ (t)))|, . . . , |zr (b(γ (t)))|. Since γ is a continuous map, there
must exist t0 ∈ (0, 1) such that |γ (t0)| = |zr (b(γ (t0)))| = |zr+1(b(γ (t0)))|. Hence
γ ((0, 1)) ∩N �= ∅.

Finally, recalling (4), one has b(N ) ⊂ �(b) ⊂ R, hence N ⊂ b−1(R). Conse-
quently, we obtain that any path in S2 joining 0 and∞ has a nonempty intersection
with b−1(R) and Theorem 5 follows from Lemma 4. ��

The secondpart of this subsection is devoted to the proof of the implication (ii)⇒(iii)
of Theorem 1. Recall that every Jordan curve in C is homeomorphic to the unit circle
T := {z ∈ C | |z| = 1} and therefore it gives rise to a homeomorphic mapping
γ : T → C. In addition, the unit circle is naturally parametrized by the polar angle
t �→ eit , where t ∈ [−π, π ]. In the following, we always choose the parametrization
of a Jordan curve γ = γ (t), with t ∈ [−π, π ], which can be viewed as the composition
of the above two mappings.

Note that the mapping z → 1/z reflects the points in C\{0} with respect to T. For
a given Jordan curve γ with 0 in its interior, we define a new Jordan curve γ ∗ by
reflecting γ with respect to T, i.e., γ ∗ := 1/γ . In other words, if γ is parametrized as

γ (t) = ρ(t)eiφ(t),
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with a positive function ρ and real function φ, then

γ ∗(t) = 1

ρ(t)
eiφ(t).

We also introduce the notation

rγ := min
t∈[−π,π ] |γ (t)| and Rγ := max

t∈[−π,π ] |γ (t)|.

In the following lemma, 〈·, ·〉 stands for the standard inner product on C
n ; further,

with any vector u = (u0, u1, . . . , un−1) ∈ C
n , we associate the polynomial fu(z) :=

u0 + u1z + · · · + un−1zn−1.
Lemma 6 Let γ be a Jordan curve with 0 in its interior and a be a function given by
the Laurent series

a(z) =
∞∑

k=−∞
akz

k

which is absolutely convergent in the annulus rγ ≤ |z| ≤ Rγ . Then, for all u, v ∈ C
n

and n ∈ N, one has

〈u, Tn(a)v〉 = 〈 fu, a fv〉γ := 1

2π i

∫ π

−π

a(γ (t)) fv(γ (t)) fu(γ ∗(t))
γ̇ (t)

γ (t)
dt.

Proof The proof proceeds by a straightforward computation. We have

〈 fu, a fv〉γ = 1

2π i

∫ π

−π

a(γ (t)) fv(γ (t)) fu(γ ∗(t))
γ̇ (t)

γ (t)
dt

= 1

2π i

∞∑

k=−∞

n−1∑

l=0

n−1∑

m=0
akvlum

∫ π

−π

(γ (t))k+l−m−1 γ̇ (t)dt

=
n−1∑

l=0

n−1∑

m=0
am−lvlum = 〈u, Tn(a)v〉,

where we have used that

1

2π i

∫ π

−π

(γ (t)) j−1 γ̇ (t)dt = 1

2π i

∮

γ

z j−1dz = δ j,0

for any j ∈ Z. ��
Corollary 7 For any element a of the Wiener algebra, u, v ∈ C

n, and n ∈ N, one
has

〈u, Tn(a)v〉 = 〈 fu, a fv〉T := 1

2π

∫ π

−π

a
(
eit

)
fv

(
eit

)
fu

(
eit

)
dt.
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Proof Choose γ (t) = eit , t ∈ [−π, π ], in Lemma 6. ��
Theorem 8 Let γ be a Jordan curve with 0 in its interior and a be a function given
by the Laurent series

a(z) =
∞∑

k=−∞
akz

k

which is absolutely convergent in the annulus rγ ≤ |z| ≤ Rγ . Suppose further that
a(γ (t)) ∈ R for all t ∈ [−π, π ]. Then

spec(Tn(a)) ⊂ R, ∀n ∈ N.

Remark 9 In particular, if theLaurent series of the symbola fromTheorem8converges
absolutely for all z ∈ C\{0}, then spec(Tn(a)) ⊂ R for all n ∈ N, provided that
a−1(R) contains a Jordan curve (which has to contain 0 in its interior). This applies
for Laurent polynomial symbols (2) especially, which yields the implication (ii)⇒(iii)
of Theorem 1.

Another family of Toeplitz matrices, for which Theorem 8 is readily applicable,
are those with rational symbols studied by Day in [10,11]. Using the notation of
the definition from [11, Sec. 1], the rational symbol f has the absolutely convergent
Laurent series expansion in the annulus given by inequalities R1 < |z| < R2. If this
annulus contains a Jordan curve on which f has real values, all eigenvalues of Tn( f )
are real for an arbitrary n ∈ N.

Proof of Theorem 8 First note that we can assume that T ⊂ {z ∈ C | rγ ≤ |z| ≤ Rγ }
without loss of generality. Indeed, if this is not the case, we consider the symbol
aρ(z) := a(ρz), where ρ > 0 is such that rγ ≤ ρ ≤ Rγ . Then the Lau-
rent series expansion of aρ is absolutely convergent in the annulus rγ /ρ ≤ |z| ≤
Rγ /ρ which contains T and aρ has real values on the Jordan curve γ /ρ. More-
over, spec(Tn(a)) = spec(Tn(aρ)) for all n ∈ N, because the matrices Tn(a) and
Tn(aρ) are similar via the similarity relation Tn(aρ) = Dn(ρ)Tn(a)D−1n (ρ), where
Dn(ρ) = diag(1, ρ, ρ2, . . . , ρn−1).

Let μ ∈ spec(Tn(a)) and u ∈ C
n be the normalized eigenvector corresponding to

μ. Then, by using Corollary 7, one obtains

μ = 〈u, Tn(a)u〉 = 〈 fu, a fu〉T = 〈 fu, a fu〉T. (6)

On the other hand, by applying Lemma 6 twice, one gets

〈 fu, a fu〉T = 〈u, Tn(a)u〉 = 〈 fu, a fu〉γ = 〈 fu, a fu〉γ , (7)

where the last equality holds since a(γ (t)) ∈ R for all t ∈ [−π, π ], by the assumption.
Finally, by using (6) together with (7) and applying Lemma 6 again, one arrives at the
equality

μ = 〈 fu, a fu〉γ = 〈u, Tn(a)u〉 = μ.
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Hence μ ∈ R. ��
Remark 10 Note that the entries of the Toeplitz matrix considered in Theorem 8 are
allowed to be complex. Clearly, there exists Toeplitz matrices satisfying assumptions
of Theorem 8 with nonreal entries, for instance, any self-adjoint Toeplitz matrix with
nonreal entries whose symbol belongs to the Wiener algebra. On the other hand, if
a Toeplitz matrix is at the same time an upper or lower Hessenberg matrix, then its
entries have to be real. More precisely, if the symbol has the form

a(z) = 1

z
+

∞∑

n=0
anz

n

and the assumptions of Theorem 8 are fulfilled, then an ∈ R for all n ∈ N0. Indeed, it
is easy to verify that Dn := det Tn(a) satisfies the recurrence

Dn = (−1)n−1an−1 +
n−2∑

k=0
(−1)kak Dn−k−1, ∀n ∈ N.

Since, by Theorem 8, all eigenvalues of Tn(a) are real, Dn ∈ R for any n ∈ N.
Hence one can use that a0 = D1 ∈ R and the above recurrence to prove by induction
that an ∈ R for all n ∈ N0.

3 Formula for the Limiting Density and Other Results

For the analysis of this subsection, we restrict ourself with real banded Toeplitz matri-
ces T (b). More precisely, we consider symbols

b(z) =
s∑

k=−r
ak z

k, where ak ∈ R, a−r as �= 0 and r, s ∈ N. (8)

3.1 The Limiting Density and the Hamburger Moment Problem

Our first goal is to provide a more detailed description of the limiting measure μ

for the symbols (8) in terms of the Jordan curve γ contained in b−1(R). For the
sake of simplicity, we focus on the situation when the Jordan curve admits the polar
parametrization

γ (t) = ρ(t)eit , t ∈ [−π, π ], (9)

where ρ(t) > 0 for all t ∈ [−π, π ]. We should mention that so far, we have not
observed any example of b ∈ R where the Jordan curve in b−1(R) would intersect
a radial ray at more than one point, in which case the parametrization (9) would be
impossible for such a curve. In particular, all the examples presented in Sect. 4 where
γ is known explicitly satisfy (9).
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Incidentally, the problem of description of the limiting measure for b ∈ R is
closely related to the classical Hamburger moment problem. Standard references on
this subject are [2,7,29,31]. A solution of the Hamburger moment problem with a
moment sequence {hm}m∈N0 ⊂ R, h0 = 1, is a probability measure μ supported in R
with all moments finite and equal to hm , i.e.,

∫

R

xmdμ(x) = hm, ∀m ∈ N0. (10)

By the well-known Hamburger theorem, the Hamburger moment problem with a
moment sequence {hm}m∈N0 , h0 = 1, has a solution if and only if the Hankel matrix

Hn :=

⎛

⎜⎜⎜⎝

h0 h1 . . . hn−1
h1 h2 . . . hn
...

...
. . .

...

hn−1 hn . . . h2n−2

⎞

⎟⎟⎟⎠ (11)

is positive definite for all n ∈ N. The solution may be unique (the determinate case)
or they can be infinitely many (the indeterminate case). However, if there is a solution
whose support is compact, then it is unique, see, for example, [31, Prop. 1.5].

For a later purpose, let us also recall the formula

lim
n→∞

1

n
Tr (Tn(b))

m = 1

2π

∫ π

−π

bm
(
eit

)
dt, m ∈ N, (12)

which is usually attributed to G. Szegő. In fact, Szegő proved (12) for any symbol
b belonging to the Wiener class, imposing however, an additional assumption that is
equivalent to the self-adjointness of T (b). Later on, M. Kac showed that (12) remains
valid for any b from the Wiener class without the additional assumption, see [20].

Lemma 11 Let b ∈ R have the form (8). Then the Hamburger moment problem with
the moment sequence given by

h0 := 1 and hm := 1

2π

∫ π

−π

bm
(
eit

)
dt, m ∈ N, (13)

has a solution that is unique and coincides with the limiting measure μ.

Proof First, note that hm ∈ R for all m ∈ N0, since the coefficients of b are assumed
to be real. Moreover, since b ∈ R, suppμ ≡ �(b) ⊂ R and it is a compact set. Hence,
by the above discussion, it suffices to verify that μ satisfies (10). To this end, recall
that μ is the weak limit of the measures μn given by (3). Then, by using the limit
formula (12), one gets

∫

R

xmdμ(x) = lim
n→∞

∫

R

xmdμn(x) = lim
n→∞

1

n
Tr (Tn(b))

m = hm

for all m ∈ N0. ��
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Corollary 12 If b ∈ R is of the form (8), then the Hankel matrix (11) with entries
given by (13) is positive definite for all n ∈ N.

Note that if the coefficients of b ∈ R are real, then R\{0} ⊂ b−1(R) and b−1(R)

is symmetric with respect to the real line. The Jordan curve γ contained in b−1(R)

intersects the real line at exactly two points (negative and positive) which are the
critical points of b.

Theorem 13 Suppose that b ∈ R is as in (8) and the Jordan curve γ contained in
b−1(R) admits the polar parametrization (9). Further, let � ∈ N0 be the number of
critical points of b in γ ((0, π)) and 0 =: φ0 < φ1 < · · · < φ� < φ�+1 := π

be such that b′(γ (φ j )) = 0 for all j ∈ {0, 1, . . . , � + 1}. Then b ◦ γ restricted to
(φi−1, φi ) is strictly monotone for all i ∈ {1, 2, . . . , �+ 1}, and the limiting measure
μ = μ1+μ2+ · · · +μ�+1, where μi is an absolutely continuous measure supported
on [αi , βi ] := b(γ ([φi−1, φi ])) whose density is given by

dμi

dx
(x) = ± 1

π

d

dx
(b ◦ γ )−1(x) (14)

for all x ∈ (αi , βi ) and all i ∈ {1, 2, . . . , �+ 1}. In (14) the+ sign is used when b ◦ γ

increases on (αi , βi ), and the − sign is used otherwise.

Remark 14 Notice that suppμ = [min1≤i≤�+1 αi ,max1≤i≤�+1 βi ]. Further, observe
that, in particular, Theorem 13 provides a description of the limiting measure for all
self-adjoint real banded Toeplitz matrices since, in this case, the Jordan curve is just
the unit circle. An illustration of this situation is given in Example 5 in Sect. 4.5.

Proof of Theorem 13 First, note that, for any i ∈ {1, 2 . . . , �+ 1}, the first derivative
of the smooth function b ◦ γ : (φi−1, φi ) → R does not change sign on (φi−1, φi )

because

(b ◦ γ )′(t) = b′(γ (t))
(
ρ′(t)+ iρ(t)

)
eit = 0

if and only if t = φ j for some j ∈ {0, 1, . . . , �+1}. Hence b◦γ restricted to (φi−1, φi )

is either strictly increasing or strictly decreasing, and the same holds for the inverse
(b ◦ γ )−1 : (αi , βi )→ (φi−1, φi ). Consequently, by formula (14), a positive measure
μi supported on [αi , βi ] is well defined for all i ∈ {1, 2 . . . , � + 1}. Let us write
ν := μ1 + μ2 + · · · + μ�+1.

In the second part of the proof, we verify that the measure ν which is supported on
[min1≤i≤�+1 αi ,max1≤i≤�+1 βi ] has the same moments (13) as the limiting measure
μ. Then μ = ν by Lemma 11.

Let m ∈ N0 be fixed. By deforming the positively oriented unit circle into the
Jordan curve γ , one gets the equality

hm = 1

2π i

∮

T

bm(z)
dz

z
= 1

2π i

∮

γ

bm(z)
dz

z
.
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Next, by using the symmetry b(z) = b(z) for z ∈ C\{0}, parametrization (9), and
the fact that b ◦ γ is real-valued, one arrives at the expression

hm = 1

π

∫ π

0
bm (γ (t)) dt. (15)

By splitting the above integral according to the positions of the critical points of b
on the arc of γ in the upper half-plane, one further obtains

hm = 1

π

�+1∑

i=1

∫ φi

φi−1
bm (γ (t)) dt.

Finally, since b◦γ restricted to (φi−1, φi ) is monotone, we can change the variable
x = b(γ (t)) in each of the above integrals, getting

hm =
�+1∑

i=1

∫ βi

αi

xmdμi (x) =
∫

R

xmdν(x),

which concludes the proof. ��
Under the assumptions of Theorem 13, the Cauchy transform of the measure μ can

be expressed with the aid of the particular Jordan curve γ from b−1(R).

Corollary 15 Suppose that b ∈ R has the form (8) and the Jordan curve γ contained
in b−1(R) is parametrized as in (9). Then, for all z /∈ �(b),

∫

�(b)

dμ(x)

x − z
= 1

π

∫ π

0

dt

b(γ (t))− z
. (16)

Proof Since �(b) is a bounded interval, the Cauchy transform of μ can be expanded
for z sufficiently large in modulus as

∫

�(b)

dμ(x)

x − z
= −

∞∑

m=0

hm
zm+1

,

where hm are the moments ofμ as in (10). By plugging the expression (15) for hm into
the above formula and proceeding similarly as before, one arrives at the identity (16)
which is therefore verified for all z from a neighborhood of∞. Finally, by Theorem 13,
the interval �(b) equals b(γ [0, π ]), and hence both sides of (16) are analytic in z on
C\�(b). The identity principle for analytic functions extends the validity of (16) to
all z ∈ C\�(b). ��

Generically, there is no critical point of b located on the curve γ in the upper half-
plane, i.e., � = 0 in Theorem 13. Hence the only critical points located on the curve
γ are the two intersection points of γ and the real line. In this case, the statement of
Theorem 13 gets a simpler form. Although it is just a particular case of Theorem 13,
we formulate this simpler statement separately below.
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Theorem 16 Suppose that b ∈ R is as in (8) and the Jordan curve γ contained
in b−1(R) admits the polar parametrization (9). Moreover, let b′(γ (t)) �= 0 for all
t ∈ (0, π). Then b ◦ γ restricted to (0, π) is either strictly increasing or decreasing;
the limiting measure μ is supported on the interval [α, β] := b(γ ([0, π ])) and its
density satisfies

dμ

dx
(x) = ± 1

π

d

dx
(b ◦ γ )−1(x) (17)

for x ∈ (α, β), where the + sign is used when b ◦ γ increases on (0, π) and the −
sign is used otherwise.

Remark 17 Since b ◦ γ is a one-to-one mapping from [0, π ] onto [α, β] under the
assumptions of Theorem 16, we can use it for a reparametrization of the arc of γ in
the upper half-plane. Namely, we denote by γb := γ ◦ (b ◦ γ )−1 : [α, β] → {z ∈
C | Imz ≥ 0} the new parametrization of the arc of γ to distinguish the notation.
Recalling (9), one observes that

Argγb(x) = (b ◦ γ )−1(x), ∀x ∈ [α, β],

Then the limiting measure is determined by the change of the argument of the
Jordan curve contained in b−1(R) provided that the parametrization γb is used. More
concretely, if we denote the distribution function of μ by Fμ := μ ([α, ·)), then
formula (17) can be rewritten as

Fμ(x) =
{

1
π
Argγb(x) if γb is positively (counterclockwise) oriented,

1− 1
π
Argγb(x) if γb is negatively (clockwise) oriented.

Yet another equivalent formulation reads

Fμ (b(γ (t))) =
{

1
π
t if b(γ (0)) < b(γ (π)),

1− 1
π
t if b(γ (π)) < b(γ (0)),

(18)

for t ∈ [0, π ].
Remark 18 Let us point out certain aspects of the formulas appearing in
Theorems 13, 16, and Remark 17 as compared to the general formula for the limiting
density that is the main result of Hirschman’s paper [19]. Recall that Hirschman’s
formula holds for an arbitrary Laurent polynomial symbol of the form (2). To write
it down, it is convenient to introduce the following notation. Let � denote an analytic
arc from the representation of �(b) mentioned in the Introduction of this paper, and
set

G1(λ) := as

r∏

j=1

(−z j (λ)
)

and G2(λ) := as

r+s∏

j=r+1

(−z j (λ)
)
,
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where z1(λ), . . . , zr+s(λ) are the ordered zeros as in (5). The functions G1 and G2
are analytic in a neighborhood of � and coincide in modulus on �. If λ = λ(s) is the
arc length parametrization of �, then Hirschman’s formula reads

dμ

ds
(s) = 1

2π

∣∣∣∣
d

dλ

G2(λ)

G1(λ)

∣∣∣∣
λ=λ(s)

. (19)

Doing this for each arc � of�(b), one obtains the limiting density. A slightly different
expression can also be found in [5, Thm. 11.16].

Yet another expression for the limiting density, which is equivalent to Hirschman’s
formula and appears in [13, Eq. (1.12)], reads

dμ

dλ
(λ) = 1

2π i

r∑

j=1

(
z′j+(λ)

z j+(λ)
− z′j−(λ)

z j−(λ)

)
. (20)

Here dλ is the complex line element on � taken with respect to a chosen orientation
on � and z j±(λ) are one-side limits of z j (λ′), as λ′ approaches λ ∈ � from the
left/right side of � determined by the chosen orientation. In contrast to formula (19),
it is not clear from (20) whether μ is positive. The complex expression (20) is more
suitable for the analysis leading to themain result of [13] which shows that the limiting
measureμ is in fact one component of a vector ofmeasuresminimizing a certain energy
functional. Formulas for densities of the remaining measures similar to (20) are given
in [13, Thm. 2.3].

Both formulas (19) and (20) hold for any b of the form (2), while the validity
of formula (14) is restricted by the assumptions of Theorem 13 when, in particular,
suppμ ⊂ R. The theoretical significance of Theorem 13 is that it demonstrates that
the role of the special Jordan curve γ on which b has real values is essential not only
for the set �(b), where the eigenvalues of Tn(b) cluster, but γ also encodes with what
density the eigenvalues accumulate on �(b). In addition, the general formulas (19)
and (20) depend on the roots z1(λ), . . . , zr+s(λ)while the alternative expressions from
Theorems 13, 16, and Remark 17 require the knowledge of a parametrization of the
Jordan curve from b−1(R) instead. This might be an advantage in some situations; see
Sect. 4.

Let us once more go back to the Hamburger moment problem with the moment
sequence given by (13). We derive an integral formula for det Hn .

Theorem 19 Let b be as in (2) and Hn be the Hankel matrix (11) with the entries
given by (13). Then, for all n ∈ N, one has

det Hn = 1

(2π)nn!
∫ π

π

∫ π

−π

. . .

∫ π

−π

∏

1≤i< j≤n

(
b
(
eit j

)
− b

(
eiti

))2
dt1dt2 . . . dtn .

(21)
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Consequently, if b has the form (8) and b ∈ R, then

∫ π

π

∫ π

−π

. . .

∫ π

−π

∏

1≤i< j≤n

(
b
(
eit j

)
− b

(
eiti

))2
dt1dt2 . . . dtn > 0, ∀n ∈ N.

(22)

Proof Let n ∈ N be fixed. First, by using the definition of the determinant, we get

det Hn = 1

(2π)n

∫ π

π

∫ π

−π

. . .

∫ π

−π

det Bn dt1dt2 . . . dtn,

where Bn = DnVn , Dn is the diagonal matrix with the entries

(Dn) j, j = b j−1 (
eit j

)
, 1 ≤ j ≤ n,

and Vn is the Vandermonde matrix with the entries

(Vn)i, j = b j−1 (
eiti

)
, 1 ≤ i, j ≤ n.

By applying the well-known formula for the determinant of the Vandermonde
matrix, one arrives at the equation

det Hn = 1

(2π)n

∫ π

π

∫ π

−π

. . .

∫ π

−π

⎡

⎣
n∏

j=1
b j−1 (

eit j
)
⎤

⎦

×
⎡

⎣
∏

1≤i< j≤n

(
b
(
eit j

)
− b

(
eiti

))
⎤

⎦dt1dt2 . . . dtn . (23)

Second, we apply a symmetrization trick to the identity (23). Let σ be a permutation
of the set {1, 2, . . . , n}. Note that the second term in the square brackets in (23), i.e., the
Vandermonde determinant, is antisymmetric as a function of variables t1, t2, . . . , tn .
Thus, if we change variables in (23) so that t j = sσ( j), we obtain

det Hn = signσ

(2π)n

∫ π

π

. . .

∫ π

−π

⎡

⎣
n∏

j=1
b j−1 (

eisσ( j)
)
⎤

⎦

×
⎡

⎣
∏

1≤i< j≤n

(
b
(
eis j

)
− b

(
eisi

))
⎤

⎦ds1 . . . dsn .

Now, it suffices to divide both sides of the above equality by n!, sum up over all
permutations σ , and recognize one more Vandermonde determinant on the right-hand
side. This yields (21). The second statement of the theorem follows immediately from
Corollary 12 and the already proven formula (21). ��
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Remark 20 Note that

Bn(z1, . . . , zn) :=
∏

1≤i< j≤n

(
b
(
z j

)− b (zi )
)2 ∈ C

[
z1, z

−1
1 , . . . , zn, z

−1
n

]
,

i.e., Bn(z1, . . . , zn) is a Laurent polynomial in the indeterminates z1, . . . , zn . The
condition (22) tells us that the constant term of Bn(z1, . . . , zn) has to be positive for
all n ∈ N. Consequently, the inequalities (22) yield a necessary condition for the
symbol b of the form (2) to belong to the classR. In principle, these conditions can be
formulated as an infinite family of inequalities in terms of the coefficients of b (though
in a very complicated form).

We finish this subsection with a discussion about a possible converse of the impli-
cation from Corollary 12. It is not clear now, whether, for the symbol b of the form (8),
the positive definiteness of all the Hankel matrices Hn is a sufficient condition for b to
belong to R. If det Hn > 0 for all n ∈ N, then the Hamburger moment problem with
the moment sequence (13) has a solution, say ν, which is unique. Indeed, the unique-
ness follows from the fact that the moment sequence hm does not grow too rapidly as
m →∞, see [31, Prop. 1.5]. To see this, one has to realize that the spectral radius of
Tn(b) is majorized by the (spectral) norm of Tn(b). This norm can be estimated from
above as

‖Tn(b)‖ ≤
s∑

k=−r
|ak | =: R. (24)

Now, taking into account (12), one observes that the moment sequence hm grows at
most geometrically since

|hm | ≤ lim sup
n→∞

1

n

n∑

k=1
|λk,n|m ≤ Rm,

where λ1,n, . . . , λn,n stands for the eigenvalues of Tn(b) counted repeatedly according
to their algebraic multiplicity.

Similarly as in the proof of Lemma 11, one verifies that the m-th moment of the
limiting measure μ equals hm . Hence, assuming that det Hn > 0 for all n ∈ N, both
measures μ and ν have the same moments. This implies that the Cauchy transforms
Cμ and Cν of measures μ and ν, respectively, coincide on a neighborhood of∞ since

Cμ(z)=
∫

C

dμ(x)

x − z
=−

∞∑

m=0

1

zm+1

∫

C

xmdμ(x)=−
∞∑

m=0

hm
zm+1

=
∫

R

dν(x)

x − z
=Cν(z).

It can be shown that the equality Cμ(z) = Cν(z) hold for all z ∈ C, |z| > R, with R
as in (24). This, however, does not imply μ = ν.

The measures μ and ν would coincide if Cμ(z) = Cν(z) for almost every z ∈ C

(with respect to the Lebesgue measure in C). This can be obtained by imposing an
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Fig. 2 The set �(b) for b(z) = 1/z +∑10
k=1 kzk , which seems to separate the plane

additional assumption on�(b) requiring its complement to be connected. Indeed, since
the Cauchy transform of a measure is analytic outside the support of the measure, the
equality Cμ(z) = Cν(z) can be extended to all z /∈ �(b) ∪ suppν by analyticity
provided that C\�(b) is connected. Clearly, both sets �(b) and suppν have zero
Lebesgue measure and therefore μ = ν.

It follows from the above discussion that, if there exists b of the form (2) such that
det Hn > 0 for all n ∈ N, and b /∈ R, then the set C\�(b) has to be disconnected.
Let us stress that it is by no means clear for which symbols b the set C\�(b) is
connected. To our best knowledge, the only settled case corresponds to symbols b
that are trinomials when C\�(b) is known to be connected as pointed out in [27]. On
the other hand, the relatively simple examples of b where �(b) separates the plane C
are known, see [4, Prop. 5.2]. One might believe that, if Tn(b) is a lower (or upper)
Hessenberg matrix, i.e., r = 1 (or s = 1) in (8), then C\�(b) is connected. It seems
that it is not the case either. It is not our intention to prove it analytically; we provide
only a numerical evidence given by Fig. 2.

3.2 Associated Jacobi Operator and Orthogonal Polynomials

The aim of this subsection is to summarize several properties of the Jacobi operator
whose spectral measure is given by the limiting measure for b ∈ R in the form (8).
Here we denote by �2(N) the Hilbert space of square summable sequences indexed
by N, by 〈·, ·〉 the standard inner product on �2(N), and by {ek | k ∈ N} the canonical
basis of �2(N).

Suppose that b ∈ R is of the form (8). By Lemma 11, the limiting measure μ is the
unique solution to a determinate Hamburger moment problem. Consequently, there is
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a unique self-adjoint Jacobi operator J (b) acting on �2(N) whose spectral measure
EJ (b) is related to the limiting measure μ by the formula

μ = 〈e1, EJ (b)e1〉. (25)

Moreover, the spectrum of J (b) coincides with the support of μ that equals �(b).
These results follow from the well-known theory and can be found, for example, in
[2].

In the spectral theory of Jacobi operators, the crucial role is played by the Weyl m-
function defined as the first diagonal element of the resolvent operator; see [32, Chp.2].
In our case, we write mb(λ) := 〈e1, (J (b)−λ)−1e1〉 for λ /∈ �(b). By expressing the
resolvent operator of J (b) in terms of its spectral measure and using (25), one obtains

mb(λ) =
∫

�(b)

dμ(x)

x − λ
, λ /∈ �(b).

In other words, the Weyl m-function of J (b) is nothing but the Cauchy transform
of the limiting measure μ. Now, one can make use of the expression (16) getting the
noteworthy formula

mb(λ) = 1

π

∫ π

0

dt

b(γ (t))− λ

for all λ /∈ �(b), provided that γ is parametrized as in (9). The density of μ can be
recovered from mb with the aid of the Stieltjes–Perron inversion formula

dμ

dx
(x) = 1

π
lim

ε→0+ Immb(x + iε) (26)

for all x ∈ �(b) that are not exceptional points; see, for example, [32, Chp. 2 and
Append. B].

Further, we turn our attention to the inverse spectral problem which, in general,
asks for a reconstruction of an operator if certain spectral quantities are known. In
the case of Jacobi operator J (b), the given quantity is the measure μ determined by
b ∈ R and related to J (b) via (25). The reconstruction of J (b) can be made by means
of the diagonal sequence bn := 〈en, J (b)en〉, n ∈ N, and the off-diagonal sequence
an := 〈en+1, J (b)en〉, n ∈ N, that appears in the tridiagonal matrix representation of
J (b). This initiates a study of the mapping that sends b ∈ R of the form (8) to the
corresponding Jacobi parameters {an}∞n=1 and {bn}∞n=1.

In general, the Jacobi parameters are expressible in terms of the moment sequence
{hm}∞m=0 by the well-known formulas [32, Eq. (2.118)]

a1 =
√
det H2

det H1
=

√
h2 − h21, an =

√
det Hn−1 det Hn+1

det Hn
, n ≥ 2, (27)
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and

b1 = det H̃1

det H1
= h1, bn = det H̃n

det Hn
− det H̃n−1

det Hn−1
, n ≥ 2, (28)

where Hn is the Hankel matrix (11) and H̃n is obtained from Hn+1 by deleting its
nth row and its (n + 1)st column. However, it is unlikely that in a concrete situation,
one can use general formulas (27) and (28) to obtain the Jacobi parameters explicitly.
In Sect. 4, this is done only in two examples related to a tridiagonal and 4-diagonal
Toeplitz matrix. Therefore we provide the following statement that gives the leading
term of the asymptotic expansion of an and bn , as n→∞.

Theorem 21 Let b ∈ R of the form (8) and �(b) = [α, β]. Then J (b) is a compact
perturbation of the Jacobi matrix with the constant diagonal sequence (α+β)/2 and
the constant off-diagonal sequence (β − α)/4, i.e.,

lim
n→∞ an = β − α

4
and lim

n→∞ bn = α + β

2
.

Remark 22 Let us recall that Theorems13 and16 showhow to determine the endpoints
α and β of �(b) with the aid of the Jordan curve γ from b−1(R).

Proof of Theorem 21 The statement is a consequence of Rakhmanov’s theorem [12,
Thm. 4]; see also Thm. 1 in loc. cit. referring to a weaker older result due to P. Nevai
[25] that is still sufficient for our purposes. The latter theorem implies that if

(i) J is a bounded self-adjoint Jacobi operator such that specess(J ) = [a, b],
(ii) ρ(x) > 0 for almost every x ∈ [a, b], where ρ denotes the density of the Lebesgue

absolutely continuous component of themeasure 〈e1, EJ e1〉, EJ being the spectral
measure of J ,

then J is a compact perturbation of the Jacobi operatorwith constant diagonal sequence
(a + b)/2 and constant off-diagonal sequence (b − a)/4.

In case of J (b), we have spec(J (b)) = �(b) = [α, β]. In fact, since spec(J (b))
does not contain isolated points, the discrete part of the spectrum of the self-adjoint
operator J (b) is empty and hence specess(J (b)) = [α, β]. Taking into account (25), it
suffices to show that the density of the limitingmeasureμ is positive almost everywhere
on (α, β). The latter fact is true since the density is positive on every analytic arc of
�(b), i.e., everywhere except possibly at the exceptional points which are finitely
many, see [19, Cor. 4c]. ��
Remark 23 Some aspects discussed for the Jacobi operator J (b) above can be refor-
mulated for the corresponding family of orthogonal polynomials as follows. For any
b ∈ R of the form (8), there exists a family of orthogonal polynomials {pn}∞n=0,
determined by the three-term recurrence

pn+1(x) = (x − bn+1)pn(x)− a2n pn−1(x), n ∈ N0, (29)
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with the initial conditions p−1(x) = 0 and p0(x) = 1, where the coefficients {an}∞n=1
and {bn}∞n=1 are given by (27) and (28) (a0 is arbitrary). This family satisfies the
orthogonality relation

∫ β

α

pn(x)pm(x)ρ(x)dx = det Hn+1
det Hn

δm,n, m, n ∈ N0, (30)

where ρ stands for the density of the limiting measure μ supported on �(b) = [α, β].
For n = 0, one has to set det H0 := 1 in (30). In the terminology of orthogonal poly-
nomials, the statement of Theorem 21 says that the family of orthogonal polynomials
{pn}∞n=0 belongs to the Blumenthal–Nevai class M((β − α)/2, (α + β)/2), see [25].
Particular examples of these families of polynomials are examined in Sect. 4.

4 Examples and Numerical Computations

4.1 Example 1 (Tridiagonal Case)

First, we take a look at the simplest nontrivial situation when T (b) is a tridiagonal
Toeplitz matrix. Since the entry on the main diagonal only causes a shift of the spectral
parameter and the matrix T (b) itself can be scaled by a nonzero constant, we may
assume, without loss of generality, that T (b) belongs to the one-parameter family of
tridiagonal Toeplitz matrices with the symbol

b(z) = 1

z
+ az,

where a ∈ C\{0}.
First, we decide for what parameter a, the symbol b ∈ R. By Theorem 1,

specT2(b) ⊂ R is a necessary condition from which one easily deduces that a > 0,
if b ∈ R. Next, for a > 0, the symbol b is real-valued on the circle γ (t) = a−1/2eit ,
t ∈ [−π, π ]. Thus, by using Theorem 1 once more, we conclude that b ∈ R if and
only if a > 0.

The limiting density is derived in [19, Sec.5] and reads

dμ

dx
(x) := 1

π
√
4a − x2

, x ∈ (−2√a, 2
√
a), (31)

for a > 0.Alternatively, the formula (31) can be readily deduced by usingTheorem16.
Further, let us examine the structure of the Jacobimatrix J (b) and the corresponding

family of orthogonal polynomials. First, since the density (31) is an even function on
the interval symmetric with respect to 0, the diagonal sequence {bn}∞n=1 vanishes, as
it follows, for example, from [7, Thm. 4.2 (c)]. To compute the off-diagonal sequence
{an}∞n=1, we need to evaluate det Hn , where Hn is the Hankel matrix (11) with the
entries given by the moments
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hm = 1

2π

∫ π

−π

(
e−it + aeit

)m
dt =

{(2k
k

)
ak if m = 2k,

0 if m = 2k − 1.
(32)

The evaluation of det Hn is treated in Lemma 27 in the Appendix. By using
Lemma 27 together with (27), one immediately gets a1 = 2

√
a and an = √

a for
n > 1. Thus, the self-adjoint Jacobi operator associated with b has the matrix repre-
sentation

J (b) =

⎛

⎜⎜⎜⎜⎜⎝

0 2
√
a

2
√
a 0

√
a√

a 0
√
a√

a 0
√
a

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎠
,

where a > 0.
The corresponding family of orthogonal polynomials {pn}∞n=0 generated by the

recurrence (29) (and initial conditions given therein) satisfies the orthogonality relation

∫ 2
√
a

−2√a
pn(x)pm(x)

dx√
4a − x2

= π(2− δn,0)a
nδn,m, ∀m, n ∈ N0,

which one verifies by using (30) together with the formula (31) and Lemma 27.
Polynomials {pn}∞n=0 do not belong to any family listed in the hypergeometric Askey
scheme [21]. However, they can be written as the following linear combination of
Chebyshev polynomials of the second kind,

pn(x) = an/2
(
Un

(
x

2
√
a

)
− 3Un−2

(
x

2
√
a

))
,

for n ∈ N (here U−1(x) := 0). The above equation and the hypergeometric repre-
sentation of Chebyshev polynomials, see [21, Eq. (9.8.36)], can be used to obtain the
explicit formula

pn(x) =
� n2 �∑

k=0
(−1)k (n + 2k)(n − 1− k)!

k!(n − 2k)! akxn−2k, n ∈ N,

where �y� denotes the greatest integer less than or equal to a real number y.

4.2 Example 2 (4-Diagonal Case)

Let us examine the case of symbols (2) with r = 1 and s = 2. Without loss of
generality, we can set a−1 = 1 and a0 = 0, which yields the symbol b of the form

123



Constr Approx (2019) 49:191–226 213

b(z) = 1

z
+ αz + βz2, (33)

where α ∈ C and β ∈ C\{0}.
First, we discuss for which parameters α and β we have b ∈ R. By Remark 10,

if b ∈ R, α and β have to be real. Further, according to Theorem 1, if b ∈ R, then
specT3(b) ⊂ R. The characteristic polynomial of T3(b) reads

det(T3(b)− z) = β + 2αz − z3.

By inspection of the discriminant of the above cubic polynomial with real coefficients,
one concludes that its roots are real if and only if α3 ≥ 27β2.

Next, we show that, for β ∈ R\{0} and α3 ≥ 27β2, b−1(R) contains a Jordan
curve. Note that, if α3 ≥ 27β2, the equation

z2b′(z) = −1+ αz2 + 2βz3 = 0

has all roots nonzero real and they cannot degenerate to a triple root. Consequently,
all critical points of b are real. At the same time, these points are the intersection
points of the net nb. Taking into account that only one curve in nb (the real line) passes
through 0, because b(z) ∼ 1/z as z → 0, and two curves (the extended real line
and one more) pass through∞, because b(z) ∼ βz2 as z → ∞, one concludes that
there has to be another arc in b−1(R) passing through a real critical point of b. This
arc necessarily closes into a Jordan curve located in b−1(R). Altogether, Theorem 1
implies that b ∈ R if and only if β ∈ R\{0} and α3 ≥ 27β2.

Next, we will derive the limiting measure μ explicitly in a special case when the
symbol takes the form

b(z) = 1

z
(1+ az)3, (34)

where a ∈ R\{0}. This corresponds to α = 3a2, β = a3 in (33), but we additionally
add a real constant to b. Clearly, if we add a real constant to b, the net nb does not
change and �(b) is just shifted by the constant. Hence, we may use the previous
discussion to conclude that b, given by (34), belongs to the classR for all a ∈ R\{0}.

Note that the critical points of b are −1/a and 1/(2a); hence the measure μ is
supported on the closed interval with the endpoints b(−1/a) = 0 and b(1/(2a)) =
27a/4. By using the binomial formula, one verifies that the constant term of bm(z)
equals

hm =
(
3m

m

)
am, m ∈ N0.

The generating function for the moments hm can be expressed in terms of the Gauss
hypergeometric series as
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∞∑

m=0
hmz

m = 2F1

(
1

3
,
2

3
; 1
2
; 27
4
az

)
. (35)

For the sake of simplicity of the forthcoming formulas andwithout loss of generality,
we set a = 4/27. We can apply the identity

2F1

(
c, 1− c; 1

2
;−z

)
=

(√
1+ z +√z

)2c−1 + (√
1+ z −√z

)2c−1

2
√
1+ z

, (36)

valid for c ∈ (0, 1) and |z| < 1, see [26, Eq.7.3.3.4, p. 486], to the right-hand side
of (35) with c = 2/3 and deduce the formula for the Weyl m-function of the Jacobi
operator J (b) which reads

mb(z) = −1

z
2F1

(
1

3
,
2

3
; 1
2
; 1
z

)
= −

(
i√
z +

√
1− 1

z

)1/3
+

(
− i√

z +
√
1− 1

z

)1/3

2
√
z2 − z

for z ∈ C\[0, 1]. By evaluating the limit in (26), one obtains

dμ

dx
(x) =

√
3

4π

(
1+√1− x

)1/3 + (
1−√1− x

)1/3

x2/3
√
1− x

, x ∈ (0, 1). (37)

This density appeared earlier in connection with Faber polynomials [22]; see also
[8,13].

Next, we examine the operator J (b) and the corresponding family of orthogonal
polynomials in detail. First, we derive formulas for the diagonal sequence {bn}∞n=1 and
off-diagonal sequence {an}∞n=1 of J (b). In [14], the Hankel determinant

det Hn = 3n−1
(
n−1∏

i=0

(3i + 1)(6i)!(2i)!
(4i)!(4i + 1)!

)
an(n−1) (38)

has been evaluatedwith a = 1, see [14, Eq. (1)]. The slightlymore general identity (38)
with the additional parameter a can be justified by using the same argument as in the
first paragraph of the proof of Lemma 27. Moreover, the first equation from [14,
Eq. (25)] yields

det H̃n = 27n2 − 8n − 1

2(4n − 1)
det Hn, n ∈ N, (39)

(in the notation used in [14, Eq. (25)], H1 ≡ H1(n, 0) coincides with det H̃n+1 and
H0 ≡ H0(n, 0) coincides with det Hn+1).
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By substituting the identities (38) and (39) in the general formulas (27) and (28),
one obtains

a21 = 6a2 and a2k =
9(6k − 5)(6k − 1)(3k − 1)(3k + 1)

4(4k − 3)(4k − 1)2(4k + 1)
a2 for k > 1,

and

b1 = 3a and bk = 3(36k2 − 54k + 13)

2(4k − 5)(4k − 1)
a for k > 1.

The corresponding family of monic orthogonal polynomials generated by the recur-
rence (29) is orthogonal with respect to the density (37) for a = 4/27. Taking into
account (30) and the identity (38), one gets the orthogonality relation

∫ 1

0
pn(x)pm(x)ρ(x)dx=(3− 2δn,0)

(
4

27

)2n
(3n+1)(6n)!(2n)!

(4n)!(4n+1)! δn,m, ∀m, n∈N0.

The polynomial sequence {pn}∞n=0 does not coincide with any family listed in the
Askey scheme [21] either. Nevertheless, pn can be expressed as a linear combination
of the associated Jacobi polynomials introduced and studied by J. Wimp in [36]. Fol-
lowing notation from [36], the associated Jacobi polynomials P(α,β)

n (x; c) constitute
a three-parameter family of orthogonal polynomials generated by the same recurrence
as the Jacobi polynomials P(α,β)

n (x), but every occurrence of n in the coefficients of
the recurrence relation defining the Jacobi polynomials is replaced by n + c, see [36,
Eq. (12)]. Set

r (α,β)
n (x; c) := 2n(c + α + β + 1)n(c + 1)n

(2c + α + β + 1)2n
P(α,β)
n (2x − 1; c), n ∈ N0,

and r (α,β)
−1 (x; c) := 0, where (x)n = x(x + 1) . . . (x + n − 1) is the Pochhammer

symbol. Then, putting again a = 4/27, one has

2n pn(x) = r (α,β)
n (x; c)− 4

27
r (α,β)
n−1 (x; c + 1)− 256

729
r (α,β)
n−2 (x; c + 2), n ∈ N,

(40)

whereα = 1/2,β = −2/3, and c = −1/6. Verification of (40) is done in a completely
routine way by showing that both sides satisfy the same recurrence relation with the
same initial conditions.

Finally, since Wimp derived the explicit formula for associated Jacobi polynomials
in [36, Theorem 1], one can make use of this result together with (40) to compute the
explicit expression for pn(x). However, the computation is somewhat lengthy and the
resulting formula is rather cumbersome; we omit the details and state only the final
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result for the record. For n ∈ N0, one has

pn(x) = An

n∑

k=0
Bn(k)Cn(k)x

k,

where

An = (−1)n
( 1
6

)
n

(
5
6

)

n

5
(
n + 1

2

)
n n!

, Bn(k) =
(−n)k

(
n + 1

2

)
k( 1

6

)
k

(
5
6

)

k

,

and

Cn(k) =
n−k∑

i=0

(k − n)i
(
n + k + 1

2

)
i

(
− 5

6

)

i

(− 1
6

)
i

(− 1
2

)
i

(
k + 1

6

)
i

(
k + 5

6

)

i

(6i − 5)(18i + 1)

(2i − 1)(2i + 1)
.

4.3 Example 3

Both cases treated in the previous subsections, where the limitingmeasure was derived
fully explicitly, can be thought of as special cases of the more general symbol

b(z) = 1

zr
(1+ az)r+s (41)

(up to a shift by a constant term), where r, s,∈ N and a ∈ R\{0}. By using the binomial
formula, one computes

hm = 1

2π

∫ 2π

0
bm

(
eiθ

)
dθ =

(
(r + s)m

rm

)
arm, m ∈ N0.

First, we prove that b ∈ R for all r, s ∈ N and a ∈ R\{0} by showing that b−1(R)

contains a Jordan curve.Without loss of generality, wemay again put a = 1 (otherwise
one can take the 1/a multiple of the curve γ given below). Define

γ (t) := sinωt

sin(1− ω)t
eit , t ∈ (−π, π ], (42)

where ω := r/(r + s). The value γ (0) = r/s is determined by the corresponding
limit. Figure3 shows the Jordan γ for three special choices of r and s. Expressing the
sine function in terms of complex exponentials, one easily verifies that

b(γ (t)) = sinr+s t
sinr (ωt) sins((1− ω)t)

, t ∈ (−π, π ], (43)
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Fig. 3 Illustration for Example 3: The plots of the Jordan curves γ given by (42) for 3 particular choices
of parameters r and s (Color figure online)

where the value at t = 0 is the respective limit. Thus, b restricted to the image of γ is
real-valued and Theorem 1 implies b ∈ R.

The parametrization (42) has the polar form (9). Moreover, b has no critical point
on the arc of γ in the upper half-plane since

b′(γ (t)) = sγ (t)− r

(1+ γ (t))γ (t)
b(γ (t)) �= 0, ∀t ∈ (0, π),

as one readily verifies. Taking into account that

b(γ (0)) = (r + s)r+s

rr ss
and b(γ (π)) = 0,

we see that b ◦ γ is strictly decreasing on (0, π). Consequently, by Theorem 16, the
limiting mesure is supported on the interval

suppμ = [
0, r−r s−s(r + s)r+s

]
. (44)
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Fig. 4 Illustration for Example 3: The plots of the density of μ for r = 1, s = 5 (left), r = 4, s = 2
(center), and r = s = 2 (right)

and, according to (18), the distribution function of μ satisfies

Fμ (b(γ (t))) = 1− t

π
for 0 ≤ t ≤ π.

It seems that, for general parameters r and s, the density of μ cannot be expressed
explicitly because the function in (43) cannot be inverted; see Fig. 4 for numerical plots
of the density of μ. Let us point out that, besides the cases r = 1 and either s = 1 or
s = 2, one can also derive explicitly the density for the self-adjoint 5-diagonal case,
i.e., r = s = 2 (a = 1). The resulting formula reads

ρ(x) =
√
4+√x

2πx3/4
√
16− x

, x ∈ (0, 16),

since the Weyl m-function can be expressed as

mb(z) = −1

z

√
1+√1− 16/z

2(1− 16/z)
, z ∈ C\[0, 16].

The above formula follows from the generating function of {hm}∞m=0 which, for |z| <
1/16, reads

∞∑

m=0

(
4m

2m

)
zm=2F1

(
1

4
,
3

4
; 1
2
; 16z

)
=

√√
1− 16z+4i

√
z+

√√
1− 16z − 4i

√
z

2
√
1− 16z

,

=
√
1+√1− 16z

2(1− 16z)
,

where we make use of the identity (36) with c = 3/4.
Derivation of a closed formula for the sequences {an}∞n=1 and {bn}∞n=1 determining

the Jacobi operator J (b) for general values of r and s seems to be out of our reach.
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Even a closed expression for the determinant of the Hankel matrix Hn determined by
the sequences

hm =
(
4m

m

)
or hm =

(
4m

2m

)
,

corresponding to the special cases with a = 1, r = 1, and s = 3 or r = 2 and
s = 2, respectively, is unknown, to the best of our knowledge. In fact, numerical
experiments with the sequence of these determinants show a presence of huge prime
factors which might indicate that no closed formula, similar to (38), exists for the
Hankel determinants. Nevertheless, Theorem 21 and equation (44) yield the limit
formulas

2 lim
n→∞ an = lim

n→∞ bn = (r + s)r+s

2rr ss

for all r, s ∈ N.

4.4 More General Examples Based on Example 3

Most of the results of this paper are devoted to banded Toeplitz matrices but Theorem 8
is applicable to matrices with more general symbols. A combination of the previous
example with the symbol (41) and Theorem 8 provides us with more examples of pos-
sibly non-self-adjoint Toeplitz matrices given by a more general symbol. For instance,
one can proceed as follows.

If f is a function analytic onC\{0}which mapsR\{0} toR, and b is as in (41), then
the symbol a := f ◦ b satisfies the assumptions of Theorem 8 with the Jordan curve
given by (42). Consequently, specTn(a) ⊂ R for all n ∈ N. To be even more concrete,
the possible choices of f comprise, e.g., f ∈ {exp, sin, cos, sinh, cosh, . . . }, pro-
ducing many examples of non-self-adjoint and non-banded Toeplitz matrices whose
principal submatrices have purely real spectrum.

4.5 Various Numerical Experiments

To illustrate a computational applicability of Theorems 13 and 16, we add two more
complicated examples treated numerically usingWolframMathematica. In particular,
to emphasize the connection between the existence of a Jordan curve in b−1(R) and
the reality of the limiting set of eigenvalues of the corresponding Toeplitz matrices,
we provide some numerical plots on this account.

4.5.1 Example 4

We plot the numerically obtained density by applying Theorem 16 to the symbol

b(z) = 1

z3
− 1

z2
+ 7

z
+ 9z − 2z2 + 2z3 − z4,

whose net is shown in Fig. 1 (left).
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Fig. 5 Illustration for Example 4: The plot of the density of μ

Although we can only check the validity of the assumptions of Theorem 16 numeri-
cally, looking at Fig. 1 it is reasonable to believe the Jordan curve contained in b−1(R)

can be parametrized by polar coordinates (9). Further, a numerical computation indi-
cates that no critical point of b lies on the Jordan curve in the upper half-plane. The real
critical points of b closest to the origin are z1 ≈ 1.077904 and z2 ≈ − 0.844126 and
the corresponding critical values are b(z1) ≈ 14.9641 and b(z2) ≈ − 22.0915. So the
limitingmeasureμ should be supported approximately on the interval [− 22.09, 14.96]
which is in agreement with the numerical results obtained by an implementation of
the algorithm for the computation of�(b) suggested in [3]. The density ofμ is plotted
in Fig. 5.

4.5.2 Example 5

For an illustration of Theorem 13 which allows having nonreal critical points of b on
the arc of Jordan curve in b−1(R), we consider the symbol

b(z) = 1

z3
+ 1

z2
+ 1

z
+ z + z2 + z3.

The corresponding Toeplitz matrix T (b) is self-adjoint, and hence the Jordan curve
in b−1(R) is the unit circle. The function b has two critical points with positive imag-
inary part on the unit circle, namely

z1 := 1

6

(
−1+√7+ i

√
2(14+√7)

)
≈ 0.274292+ 0.961646i,

z2 := 1

6

(
−1−√7+ i

√
2(14−√7)

)
≈ −0.607625+ 0.794224i,
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Fig. 6 Illustration for Example 5: The plot of the net of b(z) = 1/z3 + 1/z2 + 1/z + z + z2 + z3

and the corresponding values are

b(z1) ≈ − 2.63113 and b(z2) ≈ 0.112612,

see Fig. 6. Theorem 13 tells us that each arc of the unit circle between two critical
points gives rise to a measure. Labeling the measures in agreement with Theorem 13
(starting at 1 and traversing the arcs of the unit circle in the counterclockwise direction),
we get measures μ1, μ2, and μ3, which, since b(1) = 6 and b(−1) = −2, are
supported approximately on the intervals [−2.63, 6], [−2.63, 0.11], and [−2, 0.11],
respectively. The limiting measure then equals μ = μ1+μ2+μ3. The illustration of
the corresponding densities are given in Figs. 7 and 8.

The graph of the density of μ suggests that the eigenvalues of Tn(b) cluster with
higher density to the left of the point 0.11 which has also been observed numerically,
see Fig. 9.

4.5.3 Breaking the Reality of �(b)

Our final plots are devoted to an illustration of the connection between the presence
of a Jordan curve in b−1(R) and the reality of �(b). We go back to the Example 4
once again and introduce an additional parameter α ∈ R at z2, getting the symbol

b(z) = 1

z3
− 1

z2
+ 7

z
+ 9z + αz2 + 2z3 − z4.
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Fig. 7 Illustration for Example 5: The plots of densities of μ1, μ2, and μ3 (Color figure online)
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Fig. 8 Illustration for Example 5: The plot of the density of μ

In Fig. 10, it is shown that, as the parameter α increases from −2 to 2, the Jordan
curve in b−1(R) gets “destroyed” by an incoming curve from the net of b. At the same
time, �(b) changes from a real interval to a set with nonreal values. The set �(b) is
plotted by using the algorithm from [3].
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Fig. 9 Illustration for Example 5: The distribution of eigenvalues of Tn(b) for n ∈ {100, 150, 200} in
the interval [−2.63, 6]. The numbers above the segments indicate the number of eigenvalues within the
respective segment
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Fig. 10 The plots of the net of b(z) = 1/z3−1/z2+7/z+9z+αz2+2z3− z4 (above) and corresponding
plots of �(b) (below) for α ∈ {−2, 0, 0.77, 1, 2}
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Appendix

The following two simple observations are used for an explanation of the structure of
the set b−1(R) in the beginning of Sect. 2. They follow readily from the maximum
modulus principle and open mapping theorem, but we provide them with proofs for
the reader’s convenience.

Lemma 24 Let f be an analytic function in a neighborhood of a disk D ⊂ C. Put
� := {z ∈ D | Im f (z) = 0} and suppose that � �= ∅ and D\� is connected. Then f
is constant on D.

Remark 25 As an example referring to the concrete situation studied in Sect. 2, the
set � can be an arc of a curve that does not start and terminate on the boundary of D.
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Proof Since f is analytic, h := Im f is harmonic. Further, function h does not change
sign on the connected set D\� by the continuity of h. Let us suppose, without loss
of generality, that h < 0 on D\�. Since h attains its maximum in D at a point from
�, the maximum modulus principle for harmonic functions implies that h is constant
on D. In this case, h = 0 on D, and hence f maps the disk D into R. By the open
mapping theorem for analytic functions, such f has to be constant. ��
Lemma 26 Let f be an analytic function on a neighborhood in a bounded nonempty
region � ⊂ C such that Im f (z) = 0 for all z ∈ ∂�. Then f is constant on �.

Proof Define g± := e±i f . By the assumptions, |g±(z)| = 1 for all z ∈ ∂�. By the
maximum modulus principle for analytic functions, |g±(z)| ≤ 1 for all z ∈ �. Since
|g±(z)| = e∓Im f (z), the latter inequality implies that ∓Im f (z) ≤ 0 for all z ∈ �.
Consequently, Im f = 0 on �, and hence f maps � into R. By the open mapping
theorem for analytic functions, such f is a constant function. ��

The following determinant formula presented in Lemma 27 was used in Sect. 4.1. It
can be deduced from the well-known identity for the Hankel transform of the sequence
of central binomial coefficients. Although the derivation is elementary, it is not com-
pletely straightforward, and therefore we provide it along with its proof.

Lemma 27 Let n ∈ N and Hn be the Hankel matrix of the form (11) with elements
given by (32); then one has

det Hn = 2n−1an(n−1)/2.

Proof First note that, if Hn and Gn are two Hankel matrices with (Hn)i, j = hi+ j−2
and (Gn)i, j = gi+ j−2 such that hm = αmgm , for some α ∈ C, then Hn =
Dn(α)GnDn(α), where Dn(α) = diag(1, α, . . . , αn−1). Therefore it suffices to verify
the statement for a = 1.

Let k, n ∈ N and G(k)
n be the Hankel matrix whose entries are given by

(
G(k)

n

)

i, j
=

(
2(i + j + k − 2)

i + j + k − 2

)
for i, j ∈ {1, 2, . . . , n}.

The formula for detG(k)
n is well known and, in particular, one has

det G(1)
n = 2 detG(0)

n = 2n, ∀n ∈ N, (45)

see, for example, [1,16].
Next we make use of the direct sum decomposition C

n = C
n
odd ⊕ C

n
even, where

C
n
odd := span{e2 j−1 | 1 ≤ 2 j − 1 ≤ n} and C

n
even := span{e2 j | 1 ≤ 2 j ≤ n}.

Since h2m−1 = 0 for all m ∈ N, both subspaces Cn
odd and C

n
even are Hn-invariant, i.e.,

HnC
n
odd ⊂ C

n
odd and HnC

n
even ⊂ C

n
even. The matrix Hn decomposes accordingly as

Hn = Hodd
n ⊕ H even

n ,
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where

Hodd
n = G(0)

�(n+1)/2� and H even
n = G(1)

�n/2�.

Thus, by using formulas in (45), one obtains

det Hn = det
(
G(0)
�(n+1)/2�

)
det

(
G(1)
�n/2�

)
= 2n−1.

��
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