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1 Motivations

In gauge theory and gravity, several technical and conceptual issues arise when trying to

make sense out of local subregions of spatial slices. In the quantum theory for example,

the Hilbert space of physical states for the union of two neighboring subregions does not

factorize spatially due to the presence of constraints and to the non-locality of gauge-

invariant observables [1, 2]. This prevents entanglement entropy between the subregions

from being defined as the von Neumann entropy of a reduced density matrix, since the very

definition of this latter relies on the existence of a factorized Hilbert space. At the classical

level on the other hand, gauge transformations fail to be null directions of the symplectic

structure unless some conditions are imposed on the gauge parameters or the dynamical

fields at the boundary of the local subregion, and, similarly, boundary conditions are also

required in order to construct quasi-local gauge-invariant observables. However, if the local

subregion and its boundary (or entangling surface) are arbitrary, one cannot impose such

conditions since they would amount to freezing the dynamics of the theory.

Interestingly, these quantum and classical puzzles can be resolved in one go by in-

troducing boundary degrees of freedom in the form of edge mode fields [3]. This leads

in the quantum theory to the picture of an extended Hilbert space, which has success-

fully been used in computations of entanglement entropy in (continuum and lattice) gauge

theory [1, 2, 4–14]. In a classical context, the analogue of this construction is that of

an extended phase space. On this extended phase space, the symplectic structure has a

boundary contribution containing new physical edge mode fields whose role is to restore

the gauge invariance which is broken by the presence of the boundary, very much in the
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spirit of Stueckelberg fields [15]. There is a minimalistic and systematic way of introducing

this extended symplectic structure in any gauge field theory [3, 16, 17]. The advantage

of this construction is that it puts forward a clear distinction between gauge transfor-

mations and symmetries. Gauge transformations are non-physical and have a vanishing

on-shell Hamiltonian charge even when the gauge parameters have non-trivial support on

the boundary. As mentioned earlier, it is important to allow for arbitrary gauge parameters

and field configurations on the boundary because this latter is at an arbitrary location and

may simply represent a fictitious entangling surface. Symmetries, on the other hand, are

physical transformations which map between different physical states. Generators of sym-

metries are given by a non-vanishing Hamiltonian boundary charge and satisfy a boundary

symmetry algebra. This latter encodes in a precise sense the symmetries which govern the

gluing of subregions, either as classical phase spaces or as quantum Hilbert spaces [3].

The existence of boundary symmetries and degrees of freedom in gauge field theory is

of course not a new topic [18–25]. One natural question is therefore to understand how the

boundary symmetry algebras and their generators on the extended phase space are related

to the boundary symmetries and observables which have previously been constructed in

e.g. general relativity [22, 26–30]. This was answered in [16], where it was shown that the

generators of the boundary symmetries on the extended phase space are simply a “dressed”

version (in a sense which will be explicit below) of the usual Hamiltonian boundary charges1

(which we review in appendix A) associated with gauge transformations. While the usual

Hamiltonian boundary charges can be promoted to observables if the constraints are de-

fined with smearing fields (i.e. gauge parameters) which are vanishing on the boundary,

the extended phase space construction provides a way of relaxing this requirement, and

of constructing boundary observables without imposing any boundary conditions on the

gauge parameters or the dynamical fields. In other words, the boundary symmetries and

observables on the extended phase space correspond to the “maximal” amount of physical

symmetries which can be obtained if all the fields and gauge parameters are unconstrained

on the boundary.

The extended phase space and boundary symmetries were constructed in [3] in the

case of non-Abelian Yang-Mills theory and gravity in metric variables. It was shown

that the boundary symmetries of gravity in a local subregion are given by the algebra of

Diff(S) ⋉ SL(2,R), together with possible central extensions studied in [17], where S is

the co-dimension 2 boundary (and is the only dimension-dependent object). The goal of

the present work is to show that the same algebra is obtained in three-dimensional gravity

with first order connection and triad variables. This can come as a surprise, since first

order gravity possesses internal Lorentz freedom in addition to diffeomorphism, and one

could therefore have expected that “more” gauge transformations can become physical

on the boundary. As we will see, this is not the case because the Noether charge for

diffeomorphisms in first order variables differs importantly from the Noether charge in

metric variables in that it does not depend on derivatives of (and is linear in) the vector

1The Hamiltonian boundary charges are not simply given by the Noether charges, but may contain an

additional piece (see e.g. equation (2.32) in [16]).
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field. For this reason, diffeomorphisms which have a vanishing generating vector field (but

with non-vanishing derivative) have a vanishing Noether charge in first order variables

but not in metric variables. However, such diffeomorphisms which do not move points

do actually define local Lorentz transformations (essentially by virtue of the equivalence

principle), which is precisely the information encoded in the charges for Lorentz gauge

transformations in the first order formulation, thereby explaining why there is the same

physical information encoded in the Noether charges of first order and metric gravity.2

Consequences of this fact were also studied before in the context of black hole entropy

as Noether charge [31]. Here we wish to explain how the first order diffeomorphism and

Lorentz Noether charges are used to construct the extended symplectic structure and to

define the boundary observables and their algebra. This will serve as a simple and hopefully

pedagogical example illustrating this generic construction.

In the first part of this work, we will introduce the extended phase space structure. For

this, we will explain how to include edge mode fields associated with diffeomorphism and

Lorentz transformations based on the requirement of gauge invariance of the symplectic

potential. Then, we will simply study how gauge transformations act on this extended

phase space, and show that their generators are vanishing on-shell and therefore do not

posses a Hamiltonian charge. Finally, we will turn to boundary symmetries. After defining

how these symmetries act on the variables of the extended phase space, we will compute

their Hamiltonian generators, study their integrability, and show that the algebra of bound-

ary symmetries is that of Diff(S) ⋉ SL(2,R) together with possible central extensions, in

agreement with the results of [3, 17] derived in the metric formulation.

2 First order gravity

We are interested in first order three-dimensional gravity with a cosmological constant of

arbitrary sign. The Lagrangian for this theory is given by

L = e ∧
(

F +
1

6ℓ2
[e ∧ e]

)

, (2.1)

where F is the field strength of the connection ω, and a trace in the appropriate Lie algebra

is understood.3 The equations of motion are the torsion-free condition and the curvature

constraint, i.e.

De = 0, Fℓ := F +
1

2ℓ2
[e ∧ e] = 0, (2.2)

from which one can see that the Lagrangian is not vanishing on-shell (unless ℓ2 = ∞).

This property is of course true in any dimension for gravity with a cosmological constant

2This fact can also be understood in light of the calculation presented in appendix B.
3In the Lorentzian case, this Lie algebra is that of the three-dimensional Lorentz group SO(2,1) (or its

double cover SU(1,1)), while in the Euclidean case it is the algebra of SO(3) (or its double cover SU(2)).

The fields entering the Lagrangian are Lie algebra-valued one-forms, e.g. e = eiµJidx
µ, with Ji a basis of

the algebra, and the trace can simply be chosen up to normalization to be Tr(Ji, Jj) = δij .

– 3 –



J
H
E
P
0
2
(
2
0
1
8
)
0
2
9

(whether formulated in first order or metric variables), and also for non-Abelian Chern-

Simons theory. We will see later on that this fact will result in an additional contribution

in the extended symplectic structure, which however will only play a role when discussing

the central extension arising from diffeomorphisms that move the boundary S.

Three-dimensional gravity, as defined by (2.1), is invariant under three types of

transformations. At the infinitesimal level, they are given by the internal Lorentz

transformations

δαe = [e, α], δαω = Dα, (2.3)

the so-called topological translations

δφe = Dφ, δφω =
1

ℓ2
[e, φ], (2.4)

and the diffeomorphisms

Lξe = d(ξy e) + ξy (de), Lξω = d(ξyω) + ξy (dω). (2.5)

These transformations are not independent, as diffeomorphisms can be realized on-shell

as a combination of field dependent Lorentz transformations and translations [16, 18]. In

order to describe the edge modes and the extended phase space, one therefore has to first

choose a set of independent gauge transformations. In [16] we have chosen the Lorentz

transformations and the translations. The goal of the present paper is to extend this

construction to the case of Lorentz transformations and diffeomorphisms.

2.1 Extended phase space

Let us start by focusing on diffeomorphisms. As explained in [3, 17], in order to describe

the edge modes associated with diffeomorphism transformations, the field which one has

to introduce is a map X from an open subset of R3 to the three-dimensional spacetime

manifold M . This can essentially be thought of as a choice of coordinates. In particular, it

will be important to think of local spatial subregions Σ as being defined as the image under

X of some σ ⊂ R
3. We will therefore denote the region by Σ = X(σ), its boundary by S =

X(s), and assume for the sake of simplicity that Σ can be covered by a single choice of X.

Following [17], the most straightforward way of introducing this new field in a given

theory is to simply substitute its Lagrangian L for the pullback X∗L. If we denote the

collection of initial fields of the theory by Φ, by virtue of diffeomorphism invariance we then

have that X∗L[Φ] = L[X∗Φ]. Let us now see which pre-symplectic potential is obtained

by computing the functional variation of this Lagrangian while treating X as an additional

dynamical variable. Denoting the equations of motion by E, we have

δ(L[X∗Φ]) = E[X∗Φ] ∧ δ(X∗Φ) + dθ[X∗Φ, δ(X∗Φ)], (2.6)

– 4 –
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and the total exterior derivative term, identified as the potential, can be rewritten as4

θ[X∗Φ, δ(X∗Φ)] = X∗(θ[Φ, δΦ] + θ[Φ,LXΦ]) = X∗(θ + LX yy θ). (2.7)

This equality follows from the commutation property [3, 17]

δ(X∗Φ) = X∗(δΦ+ LXΦ), (2.8)

where the object X := δX ◦ X−1, which is a vector field on M and also a 1-form in

field space, appears only since we consider that δX 6= 0, or in other words that X is

part of the space of fields of the theory. The potential (2.7) has the desirable property of

being invariant under arbitrary finite and possibly field-dependent diffeomorphisms (and

therefore also under their infinitesimal version), which is not the case of the “bare” potential

θ = θ[Φ, δΦ] [17]. Let us now proceed with an important rewriting.

Recall that a spacetime diffeomorphism parametrized by a vector field ξ acts on the

Lagrangian as LξL = d(ξyL), and can be assigned a Noether current given by5

J = Lξyy θ − ξyL ≃ dQ[ξ], (2.9)

where the on-shell quantity Q[ξ] is the Noether charge associated with a diffeomorphism

vector field ξ [32]. For the Lagrangian (2.1), whose potential is θ = δω ∧ e, this Noether

charge is explicitly given by

J = Lξω ∧ e− ξyL

= D(ξyω) ∧ e+ ξyF ∧ e− ξyL

= D(ξyω) ∧ e− ξy eFℓ

= d(ξyωe)− ξyωDe− ξy eFℓ

≃ d(ξyωe). (2.10)

In this succession of equalities, we have used the fact that the Lie derivative of a connection

can be written in terms of the associated covariant derivative and curvature as

Lξω = d(ξyω) + ξy (dω) = D(ξyω) + ξyF, (2.11)

then made use of the identity

ξyL = ξy eFℓ + ξyF ∧ e, (2.12)

4We denote by y the contraction in spacetime of a vector field and a differential form, which in compo-

nents corresponds to e.g. ξy e = ξµeµ or
(

ξy (de)
)

ν
= ξµ(∂µeν−∂νeµ). By extension, we also denote by yy the

contraction in field space of a tangent vector and a field space differential form. With this useful notation,

gauge transformations δα or diffeomorphisms Lξ can be seen as tangent vectors on field space, and therefore

contracted with variational expressions such as e.g. the field space two-form δω∧ δe = δ1ω∧ δ2e− δ2ω∧ δ1e,

to obtain a field space one form δαyy (δω ∧ δe) = δαω ∧ δ1e− δ1ω ∧ δαe, where δαω and δαe are then under-

stood as infinitesimal gauge transformations. In [3, 17], the contractions y and yy are denoted respectively

by i and I.
5In the rest of the text ≃ will refer to an equality which holds on-shell, i.e. using the equations of motion.
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and finally integrated by parts before using the equations of motion to obtain a total exterior

derivative. As mentioned above, the resulting quantity Q[ξ] = ξyωe is the Noether charge

associated to a diffeomorphism in three-dimensional first order gravity. With this, we can

now integrate (2.7) over σ and rewrite the resulting quantity as
∫

σ

X∗(θ + LX yy θ) =

∫

X(σ)
θ + LX yy θ ≃

∫

Σ
θ + XyL+

∫

S

Q[X ], (2.13)

where we should keep in mind from now on that Σ = X(σ) and s = X(s). Note that this

new potential has a boundary contribution which is given by the Noether charge associated

with the variational vector field X , and also a bulk contribution from X in the case of a

theory whose Lagrangian is not vanishing on-shell.

We now have to account for the Lorentz transformations as well. This can be done by

introducing a group-valued function u transforming under finite Lorentz transformations

with parameter h as h∗u = h−1u. The potential which incorporates this new field is then

given by [16]

Θ =

∫

Σ
θ + XyL+

∫

S

Xyωe+ (δuu−1 + Xy duu−1)e

=

∫

Σ
θ + XyL+

∫

S

Q[X ] +Q[δuu−1 + Xy duu−1], (2.14)

where in the second line we have introduced the Noether charge6 Q[α] = αe associated with

Lorentz transformations with Lie algebra parameter α. The group element u is the field

introduced in order to describe the edge modes associated with Lorentz transformations,

and one can see that it gives two contributions. The first one can be understood as making

the potential invariant under Lorentz transformations, while the second one is a coupling

to the diffeomorphism edge mode field X which is necessary in order to make the potential

invariant under both types of transformations.

Note that while in [16] the form of the potential incorporating the edge mode field u

was derived based on the requirement of gauge-invariance under finite transformations h∗,

one can also obtain this result following what has been done above for diffeomorphisms:

one can simply replace the Lagrangian L[Φ] by L[u∗Φ], and then inspect the resulting

potential θ[u∗Φ, δ(u∗Φ)] to read off the contribution of u. This shows that the method

of [17] is actually a generic way of obtaining the edge mode contribution for any type of

gauge transformations.

We can now write the statement of gauge invariance for the extended potential (2.14).

Denoting the action of a finite gauge transformation by Θǫ := Θ[ǫ∗Φ, δ(ǫ∗Φ)], we have

ΘY ≃ Θ ≃ Θh, (2.15)

where Y is a finite (and possibly field-dependent) diffeomorphism acting by pull-back and h

a group element parametrizing a finite (and possibly field-dependent) Lorentz transforma-

tion. This invariance under finite gauge transformations implies of course the invariance

6Note that for simplicity of notation we denote by Q[ · ] the Noether charges for both diffeomorphisms

and Lorentz transformations. What distinguishes them is their argument, which for the former is a vector

field and for the latter a Lie algebra element.

– 6 –



J
H
E
P
0
2
(
2
0
1
8
)
0
2
9

under their infinitesimal version. At the infinitesimal level, invariance can be shown by

using the explicit action of the gauge transformations on the various fields, which we will

need later on. In addition to (2.3) and (2.5), this is given by the transformation rules

δαu = −αu, δαX = 0, Lξu = ξy du, LξyyX = LξX ◦X−1 = −ξ. (2.16)

With this we can then show that

LξyyΘ ≃ 0 ≃ δαyyΘ. (2.17)

In other words, we have constructed an extended potential Θ which contains two additional

fields, X and u, whose role is to restore on-shell gauge invariance in the sense of (2.15)

and (2.17).

What we are really aiming for is the pre-symplectic 2-form, which is obtained by

computing the field space variation of the potential. For this, we have to remember that

Σ and S are defined through X, which can also be acted on by the variations. When

commuting the variation and the integration over a region, we therefore have to use the

commutation property (2.8) to write

δ

∫

Σ
f = δ

∫

σ

X∗f =

∫

σ

δ(X∗f) =

∫

σ

X∗(δf + LX f) =

∫

Σ
δf + LX f. (2.18)

Let us consider separately the bulk and boundary contributions to the potential (2.14).

Varying the bulk part leads to

δΘΣ =

∫

Σ
δθ + δ(XyL) + LX θ + LX (XyL)

=

∫

Σ
δθ + δXyL− Xy δL+ LX θ + LX (XyL)

=

∫

Σ
δθ + δXyL− Xy δL+ Xy (dθ) + LX (XyL) +

∫

S

Xy θ

≃
∫

Σ
δθ + δXyL+ LX (XyL) +

∫

S

Xy θ, (2.19)

where we have first used the Leibniz rule for the variation, then the Cartan formula for the

Lie derivative, and finally the fact that

δL− dθ = EOMs ∧ δΦ ≃ 0. (2.20)

Let us now show that the bulk contributions in addition to δθ actually combine in a

total exterior derivative (note that they simply disappear in the case of theories whose

Lagrangian is vanishing on-shell). The proof uses the expression for the variation of X ,

which is [3, 17]

δX = −1

2
[X ,X ], (2.21)
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as well as the identity [ξ, ζ]y = [Lξ, ζy ] for the Lie derivative and vector fields, which

here has to be used carefully since the X ’s are anti-commuting variational vector fields.

Combining these formulas, one can show that

δXyL+ LX (XyL) =
1

2
d(XyXyL). (2.22)

We therefore get the result that

δΘΣ =

∫

Σ
δθ +

∫

S

Xy θ +
1

2
XyXyL. (2.23)

Combining this with the variation δΘS , we finally get that the symplectic 2-form is given by

Ω=ΩΣ+ΩS =

∫

Σ
δθ+

∫

S

Xyθ+
1

2
XyXyL+(δ+Xyd)(Q[X ]+Q[δuu−1+Xyduu−1]).

(2.24)

We have chosen to write this compact and general expression since it enables us to recover

the extended symplectic structure of metric gravity as well. For this, one must simply set

u to the identity, and use the expression Q[ξ] = ∗ d(gξ) = εµν∇µξν for the diffeomorphism

Noether charge in metric variables [3, 17]. For the calculations which will follow, one can

however be more explicit. Using

δ(δuu−1) =
1

2
[δuu−1, δuu−1], δ(duu−1) = ud(u−1δu)u−1, (2.25)

one can show that

(δ + Xy d)(Q[X ] +Q[δuu−1 + Xy duu−1])

= −1

2

(

[X ,X ]y (ω + duu−1)− [δuu−1, δuu−1] + 2Xyud(u−1δu)u−1
)

e

−Xy δωe− (Xyω + δuu−1 + Xy duu−1)δe

+ Xy

(

d(Xyωe+ δuu−1e+ Xy duu−1e)
)

. (2.26)

The extended symplectic structure given by (2.24) and (2.26) is the main result of this sub-

section. It defines the extended phase space containing the new fields X and u which have

the role of restoring gauge invariance. One can see as expected that the bulk symplectic

structure is unchanged, and that the new fields contribute only at the boundary.7 We are

now going to use this result to study the gauge transformations and then the boundary

symmetries.

2.2 Gauge transformations

We will now show that the generators of the gauge transformations (2.3) and (2.5) are

integrable and vanishing on-shell without the need to impose boundary conditions at S

(on either the fields or the gauge parameters). In other words, gauge transformations are

7Although X appears implicitly in the definition of Σ and S, what really matters is the actual variation

of X, which is contained in X and indeed only supported at the boundary.
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degenerate directions of the extended symplectic structure even if they have support on

the boundary.

Recall that the action of infinitesimal Lorentz transformations on the various fields of

the extended phase space is given in (2.3) and (2.16). With this, we can then compute the

contraction of an infinitesimal variation with the symplectic form, to find

−δαyyΩ≃−
∫

Σ
δe∧Dα+δω∧[e,α]−

∫

S

αδe=−
∫

Σ
αδ(De)≃−

∫

Σ
δ(αDe)+LX (De)= δG[α] ,

(2.27)

where we have introduced the Gauss constraint

G[α] := −
∫

Σ
αDe ≃ 0. (2.28)

In the first on-shell equality we have discarded a term proportional to the equations of mo-

tion in the boundary integral. For the second on-shell equality, we have used the equations

of motion to reintroduce a bulk term allowing us to then use formula (2.18) in order to

exchange the variation with the integral.8 Notice that we have also assumed for simplic-

ity that α is field-independent. We therefore get the announced result, namely that the

generator of δα is integrable and vanishing on-shell regardless of what happens at S.

The same conclusion can be reached for diffeomorphisms. At the infinitesimal level,

their action on the fields of the extended phase space is given by (2.5) and (2.16). With

this, a lengthy manipulation similar to the one above leads to

−LξyyΩ ≃
∫

Σ
Lξω ∧ δe+ Lξe ∧ δω −

∫

S

ξy eδω + ξyωδe ≃ δD[ξ] , (2.29)

where we have introduced the diffeomorphism and vector constraints

D[ξ] := V [ξ] + G[ξyω] ≃ 0, V [ξ] := −
∫

Σ
ξy eF = −

∫

Σ
ξy eFℓ ≃ 0. (2.30)

Here we have chosen to write the diffeomorphism constraint as the sum of the Gauss

constraint and the vector constraint in order to match what appears naturally in the

canonical analysis of the theory, as we review in appendix A (where we will also write

alternative expressions for D). Notice that the vector constraint does not depend on the

cosmological constant ℓ because the corresponding cubic contribution from e is vanishing

on the two-dimensional manifold Σ.

Now that we have studied Lorentz transformations and diffeomorphisms, we have ex-

hausted the set of independent gauge transformations acting on our theory. However, it

is still instructive at this point to discuss slightly different transformations, which are the

so-called covariant diffeomorphisms (see [31] and references therein). The interest in study-

ing such transformations stems from the fact that the action (2.5) of diffeomorphisms on

the fields e and ω, which is defined as the usual Lie derivative, does not commute with

8Recall that in all such calculations of gauge generators we are allowed to use the equations of motion

but not their linearized version.
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Lorentz transformations, i.e. [Lξ, δα] 6= 0. This can be cured by defining another notion of

Lie derivative, the covariant Lie (or Lorentz-Lie) derivative Lg
ξ , as follows:

Lg
ξe = D(ξy e) + ξy (De), Lg

ξω = ξyF. (2.31)

Now, recalling that the action of the standard Lie derivative (2.5) can be rewritten as

Lξe = [e, ξyω] + D(ξy e) + ξy (De), Lξω = D(ξyω) + ξyF, (2.32)

we can recognize that the Lie derivative and its covariant version differ by a field-dependent

Lorentz transformation. In other words, we have that9

Lg
ξ = Lξ − δξyω, (2.33)

which also implies that Lg
ξu = ξyDu and Lg

ξyyX = LξyyX . In order to contract the

covariant Lie derivative with the extended symplectic form, it turns out to be easier to first

contract its bulk part, and then to subtract the boundary integral in (2.27) for α = ξyω

from the boundary integral in (2.29). Doing so, we obtain that

−Lg
ξyyΩ ≃

∫

Σ
Lg
ξω ∧ δe+ Lg

ξe ∧ δω −
∫

S

ξy eδω. (2.34)

Now, we can rewrite the bulk piece as

∫

Σ
Lg
ξω ∧ δe+ Lg

ξe ∧ δω =

∫

Σ
ξyF ∧ δe+

(

D(ξy e) + ξy (De)
)

∧ δω

=

∫

Σ
ξyF ∧ δe+ ξy (De) ∧ δω − ξy eδF +

∫

S

ξy eδω

= −
∫

Σ
ξy δeF + ξy δωDe+ ξy eδF +

∫

S

ξy eδω

= −
∫

Σ
δ(ξy eF ) + ξy δωDe+

∫

S

ξy eδω

≃ −
∫

Σ
δ(ξy eF ) + LX (ξy eF ) + ξy δωDe+

∫

S

ξy eδω

= δV [ξ] + G[ξy δω] +
∫

S

ξy eδω, (2.35)

to finally obtain that

−Lg
ξyyΩ ≃ δV [ξ] + G[ξy δω] ≃ δV [ξ]. (2.36)

We therefore get the result that the generator of the covariant diffeomorphisms is integrable

on-shell, and simply given by the vector constraint V .
9Notice that in terms of Poisson brackets the action of δξyω on e should be understood as

{

G[α], e
}

|α=ξyω.

This does however only differ from
{

G[ξyω], e
}

by a term which vanishes on-shell.

– 10 –



J
H
E
P
0
2
(
2
0
1
8
)
0
2
9

2.3 Boundary symmetries

We have seen so far how the new fields X and u restore gauge invariance. In particular, the

generators of gauge transformations on the extended phase space are given by a bulk piece

only, and as such are vanishing on-shell. As explained in [3, 16, 17], the new fields of the ex-

tended phase space happen to also support a new type of transformations on the boundary,

namely the boundary symmetries. These symmetries are defined by their vanishing action

on the original fields of the theory, and have an action on the new fields which is in a sense

(which we will explain below) dual to that of gauge transformations. The Hamiltonian

generators of these boundary symmetries form the boundary symmetry algebra.

Let us start by studying the boundary symmetries associated with Lorentz transfor-

mations. They are defined by their action on the fields of the extended phase space as

∆αe = 0, ∆αω = 0, ∆αu = uα, ∆αX = 0, (2.37)

were the Lie algebra element α acts on u from the right. This is to be contrasted with

the gauge transformations δα, which act on u from the left. This is the sense in which

the boundary symmetries are dual to the gauge transformations, and the fact that the left

and right actions commute will be key to proving that their generator is an observable.

Explicitly, this generator is defined by the contraction

−∆αyyΩ=

∫

S

α(δẽ+LX ẽ)=

∫

S

X∗α(δẽ+LX ẽ)=

∫

s

αX∗(δẽ+LX ẽ)=

∫

s

αδ(X∗ẽ)= δ

∫

S

αẽ ,

(2.38)

where we have introduced the “dressed” field ẽ := u∗e = u−1eu, and written α as the

push-forward under X of an element α defined on R
3. One can see that this expression is

integrable, and therefore

Q[α] :=

∫

S

αẽ (2.39)

is really the generator of the boundary symmetry ∆α. Furthermore, as was already pointed

out in [16] (where the diffeomorphisms were however replaced by the translations), one can

see that this generator is very similar to the Hamiltonian boundary charge associated with

Lorentz gauge transformations on the “usual” phase space. It is the same expression simply

with e replaced by ẽ = u∗e. Now, the symplectic structure also enables us to show that

this generator is an observable. This can be done by further contracting (2.38) with the

gauge transformations, which gives the following vanishing Poisson brackets:

{

G[α],Q[β]
}

= −δαyy∆βyyΩ = 0,
{

D[ξ],Q[β]
}

= −Lξyy∆βyyΩ = 0. (2.40)

Finally, we can compute the algebra of the boundary symmetry generators with themselves.

This is given by

{

Q[α],Q[β]
}

= −∆αyy∆βyyΩ = Q
[

[α, β]
]

, (2.41)

which is nothing but the Lorentz algebra.
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We now turn to the study of the boundary symmetries associated with diffeomor-

phisms. While the gauge transformations which we have previously studied correspond to

diffeomorphisms of the manifold M , the boundary symmetries correspond to diffeomor-

phisms W on R
3. As such, these diffeomorphisms do no act on the original field content

of the theory, but transform the edge mode field X as X 7→ X ◦ W . These boundary

symmetries can therefore be thought of as changes of coordinates. Their action is given by

∆we = 0, ∆wω = 0, ∆wu = 0, ∆wyyX = W, (2.42)

where w denotes the vector field on R
3 generating the infinitesimal version of W , and

W := X∗w is the vector field on M obtained by pushing forward w with X. With the fact

that δw = 0, we furthermore get the variation

0 = δw = δ(X∗
W) = X∗(δW + LXW) ⇒ δW = −LXW = [W,X ]. (2.43)

With this, we have all the ingredients to compute the contraction of the boundary symmetry

with the symplectic structure, and to analyse whether the resulting expression is integrable

(i.e. whether a generator does exist). The result of the contraction is

−∆wyyΩ= δ

∫

S

Q[W]+Q[Wyduu−1]−
∫

S

Wy(θ+XyL+dQ[X ]+dQ[δuu−1+Xyduu−1]) .

(2.44)

Before discussing the integrability of this expression and the existence of a generator Q[W],

one can already see that it will generically lead to an observable. Indeed, the Poisson

bracket with the generator of Lorentz transformations is

{

G[α],Q[W]
}

= −δαyy∆wyyΩ =

∫

S

αWy (De) ≃ 0, (2.45)

and that with the generator of diffeomorphisms is

{

D[ξ],Q[W]
}

= −Lξyy∆wyyΩ =

∫

S

Wy

(

Fℓξy e+Deξyω
)

≃ 0, (2.46)

thereby showing that Q[W] (when it exists) is an observable.

In order to discuss the integrability of these generators and their algebra, we can

decompose the vector field at the boundary S into its tangential and normal parts as

W = W‖ + W⊥. Following [3] we can then call the transformations generated by vector

fields with W⊥ = 0 surface-preserving diffeomorphisms (SPDs hereafter), and that with

W⊥ 6= 0 surface translations.

It is clear from (2.44) that SPDs have an integrable generator given by

Q[W]
SPD

=

∫

S

Q[W] +Q[Wy duu−1] =

∫

S

Wy ω̃ẽ, (2.47)

where for the second equality we have introduced the dressed field ω̃ := u∗ω = u−1ωu +

u−1du, thereby showing once again (just like in [16] and above for Lorentz boundary
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symmetries) that the generator of the boundary symmetry is a dressed version of the usual

Hamiltonian boundary charge. For these generators we then find the algebra

{

Q[V ],Q[W]
}

= −∆vyy∆wyyΩ
SPD

= −Q
[

[V ,W]
]

, (2.48)

and with the observables associated with Lorentz transformations we have

{

Q[W],Q[α]
}

= −∆wyy∆αyyΩ =

∫

S

αLW ẽ
SPD

= −
∫

S

LWαẽ = −Q[LWα], (2.49)

where we have used the fact that W is tangential in order to perform the integration by

parts of the Lie derivative.

Together, the commutation relations (2.41), (2.48), and (2.49) show that the group of

surface-preserving transformations, containing both SPDs and Lorentz transformations, is

given by

Diff(S)⋉H, (2.50)

where H = SL(2,R) or H = SU(2) depending on the signature. This is the same result as

that found in [3]. There however, there is only one generator of boundary symmetries (since

in the metric formulation there are no local Lorentz transformations), given by the integral

on S of the Wald-Noether charge for W. However, because in the metric formulation this

charge contains derivatives of the vector field, it can naturally be decomposed into two

contributions: the curvature in the normal plane to S smeared with W‖, and the normal

metric smeared with ∂⊥W⊥. The first part has commutation relations reproducing that

of Diff(S), while the second one gives that of H (which is SL(2,R) in the Lorentzian

calculation of [3]).

In order to analyse the surface translations and implement them on the extended phase

space, one has to impose boundary conditions at S in order to make the second term on

the right-hand side of (2.44) integrable. This can be done if there exists a (2, 0)-form B

such that we have separately

(θ + dQ[δuu−1])
∣

∣

S
= δB, (XyL+ dQ[X ] + dQ[Xy duu−1])

∣

∣

S
= LXB, (2.51)

such that the sum is

(θ + XyL+ dQ[X ] + dQ[δuu−1 + Xy duu−1])
∣

∣

S
= δB + LXB. (2.52)

We will see below why it is necessary to have this separation between two terms. For the

moment, one can notice that if this holds then the surface translations are integrable and

their generator is given by

Q[W] =

∫

S

Q[W] +Q[Wy duu−1]−WyB. (2.53)

This condition defining B can be rewritten more compactly in terms of the finite transfor-

mations of the potential. Indeed, since

θX,u = X∗
(

θ + LX yy θ + δ(δuu−1+Xyduu−1)yy θ
)

≃ X∗(θ + XyL+ dQ[X ] + dQ[δuu−1 + Xy duu−1]), (2.54)
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we can rewrite the condition of integrability of the surface translations in the form

θX,u
∣

∣

s
≃ δ(X∗B). (2.55)

Assuming that B does not depend on X, such that ∆vB = 0, we then get that the algebra

of the extended generators (2.53) is given by

{

Q[V ],Q[W]
}

=−Q
[

[V ,W]
]

−
∫

S

Vy
(

LWB−Wy(dB)−dQ[W]−dQ[Wyduu−1]
)

. (2.56)

By contracting the condition (2.52) with ∆w one can further show that

LWB = WyL+ dQ[W] + dQ[Wy duu−1], (2.57)

and therefore rewrite the boundary symmetry algebra in the form

{

Q[V ],Q[W]
}

= −Q
[

[V ,W]
]

−
∫

S

VyWy (L− dB). (2.58)

The remaining boundary integral on the right-hand side, although it depends on the fields,

can now be shown to define a central extension of the algebra of Diff(S). For this, one

can compute its field space variation and show that it vanishes on-shell. The variation is

given by

δ

∫

S

VyWy (L− dB) =

∫

S

VyWy δ(L− dB) + VyWy

(

LX (L− dB)
)

. (2.59)

Taking the exterior derivative of the first condition in (2.51), one gets that the first term

is vanishing as

δ(L− dB)
∣

∣

S
≃ (dθ − dδB)

∣

∣

S
= 0. (2.60)

Using the second condition in (2.51) one gets that

LX (L− dB)
∣

∣

S
=

(

d(XyL)− d(LXB)
)
∣

∣

S
= 0. (2.61)

Now that we have seen how the boundary condition (2.52) affects the Poisson bracket be-

tween the diffeomorphism boundary observables, and that it leads to a central extension, we

have to also inspect the Poisson brackets with the boundary observables (2.39). Obviously,

the commutation relations (2.41) are unchanged. However, because of the integration by

parts of the Lie derivative, (2.49) becomes

{

Q[W],Q[α]
}

=

∫

S

αLW ẽ = −Q[LWα] +

∫

S

Wy

(

d(αẽ)
)

, (2.62)

and we therefore have to understand how to interpret the extra term on the right-hand side.

First of all, notice that this agrees with the other way to compute this bracket, which is

{

Q[α],Q[W]
}

= ∆αyy δQ[W] = Q[LWα]−
∫

S

Wy (∆αB), (2.63)

since from the contraction of (2.51) with ∆α one can see that ∆αB = d(αẽ)
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In order to understand the extra term in these commutation relations, we have to

impose additional boundary conditions at S. One first possibility is to impose boundary

conditions which lead to a central extension. The variation being given by

δ

∫

S

Wy

(

d(αẽ)
)

=

∫

S

Wy

(

d
[

α(δẽ+ LX ẽ)
])

, (2.64)

one obtains a central extension if the boundary conditions

(δẽ+ LX ẽ)
∣

∣

S
= 0 (2.65)

are imposed. However, one can also impose boundary conditions such that the extra term

is simply vanishing (instead of being central). This can be achieved with the condition

dQ[δuu−1]
∣

∣

S
= d(δuu−1e)

∣

∣

S
= 0, (2.66)

which then implies that ∆αB = 0 and that
{

Q[W],Q[α]
}

= −Q[LWα].

3 Conclusion

In this article we have constructed the extended phase space containing edge mode fields

for first order three-dimensional gravity with diffeomorphism and Lorentz gauge symmetry,

and then studied the algebra of boundary symmetries. This is the natural continuity of

previous work providing the same construction for Yang-Mills theory and metric gravity [3],

for BF and Chern-Simons theory [16], and for metric gravity with higher curvature [17].

We have followed here the systematic derivation which applies to all of these theories. This

requires the introduction in the phase space of edge mode fields for each of the gauge trans-

formations acting in the theory, namely the choice of coordinate frame X in the case of

diffeomorphisms, and the group elements u in the case of Lorentz transformations. With

these extra fields, we have constructed the extended symplectic potential (2.14) which is

invariant on-shell under finite diffeomorphisms and Lorentz transformations, and which

then defines the extended symplectic structure (2.24). We have then studied how this

extended phase space provides a natural separation between the role of gauge transforma-

tions and boundary symmetries. In section 2.2, we have shown that gauge transformations

are degenerate directions of the symplectic structure even when they have support on the

boundary of the local region. In section 2.3 we have defined the boundary symmetries

and computed the algebra satisfied by their generators. This has revealed the same group

of boundary symmetries as in the metric case, namely the semi-direct product structure

GS = Diff(S)⋉H in the case of surface-preserving transformations, where H = SL(2,R) or

H = SU(2) depending on the signature. This shows that using first order variables, despite

introducing local Lorentz symmetry, does not lead to an extension of the boundary sym-

metries. Instead, it separates the generators of GS into two contributions: one coming from

the first order diffeomorphism Hamiltonian charge, which is linear in the vector field and

generates the algebra of Diff(S), and one coming from the Hamiltonian charge associated

with Lorentz transformations and generating the algebra of H (with the bracket between
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the two types of generators giving the semi-direct product structure). We have also briefly

discussed the boundary conditions on the extended symplectic potential which enable to

promote surface translations to Hamiltonian transformations acting on the phase space.

Just as for the previous works [3, 16, 17], one important task is now to understand

the representation theory of the boundary symmetries (this is already partly understood

for the Kač-Moody algebras appearing in BF and Chern-Simons theory [33]), and how it

can be used to regularize and define entanglement entropy in the gravitational context. In

three dimensions, we expect that the availability of different descriptions of the boundary

symmetries (namely as GS , with possible central extensions, or as the Kač-Moody algebras

of BF and Chern-Simons theory) will shed light on this problem. The availability of

this dual description means essentially that one can trade the effects of diffeomorphisms

for that of internal symmetry transformations whose representation theory is in principle

easier to construct.

Finally, one important and interesting line of work would be to understand the rela-

tionship between the various symmetry groups and algebras which are known to appear

in three-dimensional gravity, and which describe spacetime symmetries or the physics of

point particles. These depend of course on the signature of spacetime, on the sign of

the cosmological constant, on the location of the boundary (at finite distance or infinity)

and on possible boundary conditions or choice of asymptotic behavior for the fields. To

be more concrete, let us consider the case of a vanishing cosmological constant. Then,

the group of symmetries preserving the structure of asymptotically-flat spacetime is the

three-dimensional BMS group BMS3 [25, 34–38]. Representations of BMS3 were studied

in [39–41], where it was also shown that one can rewrite BMS3 = Diff(S)⋉Vect(S). This

makes it explicit that BMS3 is actually “smaller” than the group GS of boundary symme-

tries at finite distance which we have derived in this paper. However, this remarks begs

for a clearer definition, as BMS3 and GS are not defined at the same location in spacetime

and in terms of the same geometrical structures, and it is not clear how the former is

embedded in the latter. In addition, it is known that BMS3 admits certain natural and

physically relevant central extensions [39], and it would therefore be interesting to com-

pare these to the central extensions discussed in the main text and to that appearing in the

Kač-Moody boundary algebra of BF and Chern-Simons theory. Finally, the fact that we

have here studied finite boundaries is reminiscent of structures appearing when coupling

point particles to three-dimensional gravity. Indeed, this coupling typically requires the

introduction of small boundaries around the particles in order to regularize the curvature

and torsion contraints [42]. In the quantum theory, the mass and spin of point particles are

representation labels of an algebra which is not that of the classical spacetime, but which

presents a quantum deformation. This is given by the Drinfel’d double of SU(2) in the flat

Euclidean case for example [43–45]. Now, it turns out that representations of BMS3 do also

lead to a notion of particles, which are however not strictly classical particles but instead

BMS3 particles dressed by soft modes. We leave the precise study of these mathematical

structures for future work, hoping that it will help clarify further the role and the physical

interpretation of the boundary symmetries at finite distance which we have described in

this work.
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A Relation to usual boundary observables

As explained in [16] and seen in the main text, the boundary observables which gener-

ate the boundary symmetries on the extended phase space are a dressed version of the

“usual” Hamiltonian boundary observables defined on the non-extended phase space. In

this appendix we recall the construction of these usual Hamiltonian boundary observables

following [22, 26–28] and using the criterion of functional differentiability of the constraints.

It should be kept in mind that the calculations of this appendix do not use the edge mode

fields X and u and the extended phase space.

We start with the 2+1 decomposition of the action, which will identify the constraints

of the theory. This is given by

S =

∫

M

e ∧
(

F +
1

6ℓ2
[e ∧ e]

)

=

∫

R

dt

∫

Σ
d2x ε̃ab

(

∂0ωaeb + ω0Daeb + e0

(

1

2
Fab +

1

2ℓ2
[ea, eb]

)

− ∂a(ebω0)

)

=

∫

R

dt

∫

Σ
∂0ω ∧ e+ ω0De+

1√
q
NEFℓ +My eF − d(eω0), (A.1)

where we have introduced the density vector

Ei :=
1

2
ε̃ab[ea, eb]

i = [e1, e2]
i, EiEjηij = q := det(qab), Eiejaηij = 0, (A.2)

and used the change of variables

ei0 = Maeia +
1√
q
NEi, N :=

1√
q
ei0E

jηij , Ma :=
1

q
ε̃abEi[e0, eb]

jηij . (A.3)

This rewriting of the triad Lagrange multiplier is what enables to trade the curvature

constraint Fℓ (enforced by e0 and generating the translations (2.4)) for the scalar and

vector constraints. The smeared constraints of the theory are then given by the following

Gauss, scalar, and vector constraints:

G[α] =−
∫

Σ
αDe, C[N ] =−

∫

Σ

1√
q
NEFℓ, V [ξ] =−

∫

Σ
ξyeFℓ=−

∫

Σ
ξyeF, (A.4)

for a Lie algebra-valued function α, a scalar N , and a vector field ξ. The vector constraint

does not depend on the cosmological constant because the corresponding cubic contribution

from e is vanishing on the two-dimensional manifold Σ.
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Let us now compute the variation of the constraints and at the condition of functional

differentiability. Assuming that δα = 0, the variation of the Gauss constraint is given by

δG[α] =
∫

Σ
Dα ∧ δe+ [e, α] ∧ δω −

∫

S

αδe. (A.5)

This can be made functionally differentiable without restricting the dynamical fields at S

by using smearing fields ᾱ vanishing10 at S. Then, for an arbitrary α which does not have

to vanish at S the quantity

Q[α] =

∫

Σ
Dα ∧ e = G[α] +

∫

S

αe ≃
∫

S

αe (A.6)

is an observable since

{

G[ᾱ],Q[β]
}

= G
[

[ᾱ, β]
]

+

∫

S

[ᾱ, β]e = G
[

[ᾱ, β]
]

≃ 0, (A.7)

and it satisfies the Poisson brackets

{

Q[α],Q[β]
}

= Q
[

[α, β]
]

. (A.8)

Notice that these brackets are well-defined without additional conditions since Q[α] is

functionally differentiable if δα = 0. One can see from this calculation that the procedure

leading to the Hamiltonian observable (A.6) is to integrate the Gauss constraint by parts,

discard the boundary term, and use an arbitrary smearing field α which is not constrained

to vanish at S. This then commutes with the constraint since this latter is well-defined

only for smearing fields ᾱ that are vanishing at S.

Similarly, the scalar constraint C[N ] can be made functionally differentiable without

restricting the dynamical fields at S by choosing smearing functions N̄ vanishing at S.

One can then attempt at constructing an observable by integrating by parts, discarding

the boundary term, and using an arbitrary N . However, it is easy to see that the resulting

quantity is again not functionally differentiable unless this a priori arbitrary smearing field

is also constrained to vanish at S. This therefore shows that there are no Hamiltonian

observables arising from the scalar constraint via this construction. Of course, this is the

case because we are here insisting on not restricting the dynamical fields at S, and only the

smearing fields. Once again, recall that the reason for studying this condition is that this is

what reproduces the observables which we have constructed on the extended phase space.

Instead of studying next the vector constraint, we are going to study the constraint

generating spatial diffeomorphisms. This is a combination of the vector and Gauss con-

10We will denote with an overline all the smearing fields which are compactly supported, i.e. vanishing

at S.
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straints given by the following equivalent expressions:

D[ξ] = V [ξ] + G[ξyω]

= −
∫

Σ
dωξy e+ deξyω

=

∫

Σ

(

ξy (dω)
)

∧ e+
(

ξy (de)
)

∧ ω

=

∫

Σ
Lξω ∧ e−

∫

S

ξyωe

=

∫

Σ
Lξe ∧ ω −

∫

S

ξy eω. (A.9)

Assuming that δξ = 0 the variation of this constraint is given by

δD[ξ] =

∫

Σ
Lξω ∧ δe+ Lξe ∧ δω −

∫

S

ξy eδω + ξyωδe. (A.10)

Again, this can be made functionally differentiable without restricting the dynamical fields

at S by using smearing vector fields ξ̄ that are vanishing at S, and then one indeed has that

{

D[ξ̄], e
}

= Lξ̄e,
{

D[ξ̄], ω
}

= Lξ̄ω. (A.11)

Let us now consider the quantity

Q[ξ] =

∫

Σ
Lξω ∧ e = D[ξ] +

∫

S

ξyωe ≃
∫

S

ξyωe (A.12)

for an arbitrary ξ which does not have to vanish at S. This corresponds indeed to the

diffeomorphism constraint once we have integrated by parts and discarded the boundary

term. Since

δQ[ξ] =

∫

Σ
Lξω ∧ δe+ Lξe ∧ δω +

∫

S

ξy (δω ∧ e), (A.13)

this can be made functionally differentiable without restricting the dynamical fields if ξ is

restricted to be tangential to S. The quantity Q[ξ] is then an observable since

{

D[ξ̄],Q[ζ]
}

=

∫

Σ
Lζω ∧ Lξ̄e− Lξ̄ω ∧ Lζe = −D

[

[ξ̄, ζ]
]

≃ 0, (A.14)

and the algebra of these observables is given by

{

Q[ξ],Q[ζ]
}

= −Q
[

[ξ, ζ]
]

. (A.15)

In addition, we have that the Poisson bracket with the observables (A.6) is given by

{

Q[ξ],Q[α]
}

= −Q[Lξα]. (A.16)

As expected, the algebra defined by (A.8), (A.15) and (A.16), is isomorphic to the alge-

bra Diff(S)⋉H of surface preserving symmetries defined in the main text. In addition, the

observable (2.39) on the extended phase space is a dressed version of the observable (A.6),
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and the observable (2.47) is a dressed version of (A.12). Finally, while on the usual phase

space the construction of these observable requires to constrain the smearing fields at S,

this requirement is relaxed on the extended phase space.

Now, it is also the case that the usual boundary observables derived above correspond

to the Hamiltonian boundary charges on the non-extended phase space, where the sym-

plectic structure has no boundary contribution and is simply given by

ΩΣ = −
∫

Σ
δω ∧ δe. (A.17)

We recall here these calculations in order to show in particular that the generator of the

gauge-covariant diffeomorphisms is in general non-integrable even in the case of tangential

diffeomorphisms at S. For Lorentz transformations we have

−δαyyΩΣ = −
∫

Σ
δe ∧Dα+ δω ∧ [e, α] = δG[α] +

∫

S

αδe, (A.18)

so the generator is integrable if δα = 0 but not vanishing on-shell. Instead, it is equal to

the Hamiltonian boundary charge. For diffeomorphisms we have

−LξyyΩΣ =

∫

Σ
Lξω ∧ δe+ Lξe ∧ δω = δD[ξ] +

∫

S

δωξy e+ δeξyω, (A.19)

and the surface term is equal to
∫

S

δQ[ξ]− ξy θ =

∫

S

δ(eξyω)− ξy (δω ∧ e), (A.20)

which is therefore integrable if ξ is tangential at S. Finally, for gauge-covariant diffeo-

morphisms we can repeat the calculation (2.35) (without the weak equality since on the

non-extended phase space there are no edge mode fields X) to find

−Lg
ξyyΩΣ=

∫

Σ
−δ(ξyeF )−ξyδωDe+

∫

S

ξyeδω= δV [ξ]+G[ξyδω]+
∫

S

ξyeδω, (A.21)

which shows that the gauge-covariant diffeomorphisms are not integrable (even in the case

of tangential diffeomorphisms).

B Gibbons-Hawking-York corner term

In this appendix we compute the Hamiltonian charges for Lorentz transformations, diffeo-

morphisms and covariant diffeomorphisms, in the case where the symplectic structure is

extended on the boundary S by using the corner contribution coming from the Gibbons-

Hawking-York (GHY) boundary term. It should be kept in mind that the calculations of

this appendix do not use the edge mode fields X and u and the extended phase space

constructed in the main text.

In first order variables, the GHY boundary term can be constructed in terms of the

internal unit normal ni = nµeiµ. The action then takes the form [46–49]

S[e, ω, n] =

∫

M

e ∧
(

F +
1

6ℓ2
[e ∧ e]

)

+

∫

∂M

[e, n] ∧Dn, (B.1)
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where Dn = dn+[ω, n] and ninjηij = ±1 depending on the signature. Treating the normal

n as a dynamical variable, the variation of the boundary term is given by

δ([e, n] ∧Dn) = δ[e, n] ∧Dn+ [e, n] ∧ δ[ω, n] + d[e, n]δn− d([e, n]δn), (B.2)

and one can see that the integration by part produces a corner contribution. As explained

in [16], if the boundary of the manifold is smooth then the boundary terms and their

corner contributions do not contribute to the symplectic structure. However, if the total

boundary is not smooth one can consider a mixed variational principle where boundary

terms and corner contributions can be added separately on (say) the time-like boundary.

This is for example how boundary contributions to the symplectic structure were added

in [49–51]. Here one can use the same reasoning to add the corner contribution from

the GHY boundary term to the potential, and thereby obtain a boundary contribution

to the symplectic structure. Thinking carefully about sings and orientations shows that

one should actually add the corner piece of (B.2) to the potential with a minus sign, so

that the total symplectic structure becomes Ω = ΩΣ + ΩS , with ΩΣ the bulk symplectic

structure (A.17) used repeatedly above, and

ΩS =

∫

S

δ[e, n]δn =

∫

S

[δe, n]δn+ [δn, δn]e. (B.3)

With this boundary symplectic structure, one can then compute the contraction with

infinitesimal Lorentz transformations and diffeomorphisms to obtain

−δαyyΩS = −
∫

S

αδe, −LξyyΩS =

∫

S

δ([n, dn]ξy e)− ξy (de)[n, δn]
SPD

=

∫

S

δ([n, dn]ξy e),

(B.4)

where we have assumed that the diffeomorphism vector field ξ is tangential at S. With

this it is then immediate to see that

−δαyyΩ = δG[α], (B.5)

which means that Lorentz transformations have a vanishing charge. For (tangential) dif-

feomorphism we get that

−LξyyΩ
SPD

= δD[ξ] + δ

∫

S

ξy e(ω + [n, dn]), (B.6)

and using ξy eω = [ξy e, n][ω, n] the charge can be rewritten as

∫

S

[ξy e, n]Dn. (B.7)

Finally, the covariant diffeomorphisms now become integrable as well and we have

−Lg
ξyyΩ

SPD

= δV [ξ] + G[ξy δω] + δ

∫

S

[ξy e, n]Dn, (B.8)
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so their charge is the same as that of non-covariant diffeomorphisms. A little rewriting now

shows that this charge is nothing but the Komar charge which we would have obtained for

diffeomorphisms in the metric formulation, i.e.
∫

S

[ξy e, n]Dn ≃
∫

S

(kanb − nakb)∇aξb. (B.9)

The final result of this appendix is therefore that the algebra of boundary charges is un-

changed if we introduce the normal n and the corner contribution from the GHY term. The

effect of this extension of the phase space including n is to set the charges of Lorentz trans-

formations to zero, but this information about Lorentz transformations is in a sense “trans-

ferred” to the diffeomorphisms, whose charges then do not take the first order form (A.20),

but instead become the Komar expression (B.9). Since the result of the present work was

to show that the algebra of Lorentz and first order diffeomorphism charges (whether it is

realized on the extended or on the usual phase space) is the same as that of second order

(or metric) diffeomorphism Komar charges, we see that the inclusion of n in the phase

space via the GHY corner term does also leave this algebra unchanged.

C Chern-Simons theory

For the sake of completeness, and because of the known and important relationship be-

tween Chern-Simons theory and three-dimensional gravity, we discuss in this appendix

the extended phase space of Chern-Simons theory with edge mode fields associated with

internal gauge transformations and diffeomorphisms.

The case of internal gauge transformations was treated briefly in [16], and we recall

here the details. The Lagrangian and the potential are given by

L = A ∧
(

F − 1

6
[A ∧A]

)

, θ = δA ∧A. (C.1)

The extended pre-symplectic potential which is gauge-invariant on-shell under finite gauge

transformations g ∈ G is

θe := θ + 2d(Aδuu−1) + δ(A ∧ duu−1) + d(δuu−1) ∧ duu−1, (C.2)

where the G-valued edge mode field u transforms as g∗u = g−1u. To compute the extended

symplectic structure, we now use the fact that

δ
(

d(δuu−1) ∧ duu−1
)

= d
(

d(δuu−1)δuu−1
)

, (C.3)

and obtain Ω = ΩΣ +ΩS , with the usual bulk symplectic structure

ΩΣ = −
∫

Σ
δA ∧ δA, (C.4)

and the boundary symplectic structure

ΩS =

∫

S

(

2δA+D(δuu−1)
)

δuu−1. (C.5)
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We can now contract infinitesimal gauge transformations (which act on u as δαu = −αu)

with the extended symplectic structure to find

−δαyyΩ = 2

∫

Σ
Dα ∧ δA− 2

∫

S

αδA = δF [α], (C.6)

were

F [α] = −2

∫

Σ
αF ≃ 0 (C.7)

is the flatness constraint. Boundary symmetries ∆α are now defined by their action

∆αA = 0 on the gauge field and ∆αu = uα on the edge mode field. With this, we get

the contraction

−∆αyyΩ = 2

∫

S

uαu−1
(

δA+D(δuu−1)
)

= 2δ

∫

S

αÃ, (C.8)

where the dressed gauge field is Ã := u∗A = u−1Au + u−1du. The generator is therefore

integrable and given by

Q[α] = 2

∫

S

αÃ. (C.9)

As expected this is gauge-invariant, i.e.
{

F [α],Q[β]
}

= −δαyy∆βyyΩ = 0, (C.10)

and leads to the centrally-extended algebra

{

Q[α],Q[β]
}

= 2

∫

S

D(uαu−1)uβu−1 = Q
[

[α, β]
]

+ 2

∫

S

dαβ. (C.11)

This is the Kač-Moody algebra of the Lie algebra of G.

Let us now discuss diffeomorphisms. These are in general realized in Chern-Simons

theory as field dependent gauge transformations with parameter α = ξyA. Because of

this field dependency, on the usual (i.e. non-extended) phase space carrying the symplec-

tic structure (C.4) the Hamiltonian charge is not integrable unless additional boundary

conditions are specified. Here one can however see that on the extended phase space the

contraction (C.6) becomes

−δξyAyyΩ ≃ 2

∫

Σ
D(ξyA) ∧ δA− δ(ξyA)F − 2

∫

S

ξyAδA = δF [ξyA], (C.12)

where we have used the equations of motion to introduce an extra curvature term. This

shows indeed that F [ξyA] is the on-shell generator of diffeomorphisms.

Another way to study diffeomorphisms is to follow the approach of the main text and

to introduce edge mode fields X. For Chern-Simons theory, the Noether current and charge

associated with diffeomorphisms are given by

J = LξA ∧A− ξyL

= D(ξyA) ∧A+ ξyF ∧A− ξyL

= d(ξyAA)− ξyADA+ ξyF ∧A− ξyL

= d(ξyAA)− 2ξyAF

≃ d(ξyAA). (C.13)
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The extended symplectic structure can be found following the same reasoning as in the

main text, and it is therefore given by (2.24) with Q[X ] = XyAA and u = 1, which is

Ω =

∫

Σ
δθ +

∫

S

Xy θ +
1

2
XyXyL+ δAXyA− 1

2
A[X ,X ]yA−AXy δA+ Xy

(

d(AXyA)
)

.

(C.14)

With this we get that

−LξyyΩ ≃ 2

∫

Σ
LξA ∧ δA− 2

∫

S

ξyAδA ≃ δD[ξ], (C.15)

with

D[ξ] := −2

∫

S

dAξyA. (C.16)

For boundary symmetries, we have

−∆wyyΩ = δ

∫

S

Q[W]−
∫

S

Wy (θ + XyL+ dQ[X ]), (C.17)

which is of course identical to the result of the main text with u = 1 and Q[W] the

diffeomorphism Noether charge computed above.
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