
Ann. Henri Poincaré 15 (2014), 345–367
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Infraparticle Problem, Asymptotic Fields
and Haag–Ruelle Theory

Andrzej Herdegen

Abstract. In this article we want to argue that an appropriate general-
ization of the Wigner concepts may lead to an asymptotic particle with
well-defined mass, although no mass hyperboloid in the energy–momen-
tum spectrum exists.

1. Introduction

It is a well-established fact that electrically charged particles do not produce
a discrete mass hyperboloid in the mass spectrum of the quantum theory
in which they participate. The evidence comes both from the perturbational
QED, as well as from more fundamental arguments [1]. Therefore, the Wigner
concept of an elementary particle as a carrier of an irreducible unitary represen-
tation of (the universal covering group of) the restricted Poincaré group does
not apply to these particles. In addition, the absence of a discrete mass hyper-
boloid has posed considerable difficulties in obtaining a manageable scattering
theory for such “infraparticles”, as they were named long ago [2]. Much effort
has been devoted to the construction of asymptotic charged states as vectors
in the Hilbert space of various models by “dressing” a charged particle with
a “cloud of radiation”; some recent examples include [3,4], where also further
bibliographic information may be found. Nevertheless, it seems that a con-
vincing characterization of particle-like charged states in relativistic QFT has
not been reached yet.

Another approach developed in [5,6] aims at an alternative, with respect
to the Wigner concept, general characterization of a particle. This approach
is based on a study, within the algebraic approach to QFT, of the effect of
localization of a particle in the process of measurement. The resulting theory
of asymptotic functionals and particle weights may be viewed as an extension
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of the Dirac notion of a particle as an improper eigenstate of the energy–
momentum vector. However, there is one essential point of departure from the
usual quantum-mechanical notion of improper eigenstates: weights with dif-
ferent four-momentum characteristics do not interfere. The scattering theory
must then be based on scattering cross-sections only, rather than amplitudes.
Is this indeed the price to be paid for inclusion of charged particles into the
scattering theory? We believe not, and below want to try out an alternative.

The obvious source of all the aforementioned difficulties is the fact that
a charged particle carries the Coulomb field, which extends to spatial infinity.
On the other hand, QFT relies heavily on the idea of locality. Now, these two
ingredients are hard to be brought to a peaceful coexistence. Locality implies
that electromagnetic fields of Coulomb-like decay produce flux at infinity which
is superselected—it commutes with all local observables. On the other hand,
charges with differing velocities produce different fluxes. To stay within one
superselection sector one has to “dress” particles with free infrared-singular
“clouds” of radiation which compensate changes of flux. There are arguments
within local algebraic approach to QFT [7] that by this procedure one can also
force the causal support of the charged particle into a spacelike cone, which
means that the particle (together with the surrounding electromagnetic field)
is created by an operation supported in this region. It is believed that it should
also be possible to base an analysis of quantum statistics on these localization
properties.

Another side of the problems we are here concerned with is the ques-
tion: “in front of” what background charged particles appear? That is to say,
what is the background representation space of radiation to which operations
creating charged particles are applied? The most standard answer is: the vac-
uum representation. However, it seems that the use of other, infrared singular,
representations of radiation may have advantages over the vacuum representa-
tion. Such “infravacuum” representations have been investigated since 1970’.
In fact, one of the main contributors in this field expressed the hope that
charged particles could be ‘“ordinary” particles, but moving in an “infravac-
uum”’ [8]. It seems that this is not possible, in the sense of the existence of
a discrete mass hyperboloid in the energy–momentum spectrum, as shown by
the analysis of the Gauss law [1]. Nevertheless, the following question is still
valid: how much of the infrared structure may be transferred from the particle
to the background electromagnetic field? In this article we want to investigate
how much of the local structure of fields may be abandoned, to still have a
reasonable notion of an asymptotic field, in absence of discrete masses in the
energy–momentum spectrum and of the vacuum state in the representation
space. We hope the scheme will have relevance for electrically charged parti-
cles, but we think it is of interest irrespective of the answer to this question.

In Sect. 2 we propose to consider the possibility that there exists a class
of charge-creating fields whose (anti-)commutators decay (rather mildly) in
spacelike directions, but no further assumptions on their locality with respect
to observables like electromagnetic field are needed. We then use a modi-
fied Haag–Ruelle type of the definition of an asymptotic field. However, our
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approach is based on direct averaging on hyperboloids x ·x = λ2, x0 > 0, with-
out the use of solutions of the Klein–Gordon equation. This method, which was
introduced in [9] (at the level of first-quantized Dirac field), has the advantage
of manifest Lorentz invariance. In Sect. 3 we obtain relation of such fields to
the fields of the form

∫ ̂

Ψ(p)ϕ̂(p)ei
(√

p2−m
)
λ d4p, (1)

where Ψ(x) is a spacetime translation of the quantum field operator Ψ. Our
tentative definition of an infraparticle of mass m involves the condition that
the above operator converges weakly to a non-zero operator (between states
of finite energy), when λ → ∞, for ϕ̂ supported in some neighborhood of the
mass hyperboloid. Using the language of a recent discussion by Dybalski [10]
of the spectrum of automorphism groups of an algebra, this should amount to
a singular continuous component of the spectrum concentrated on the mass
hyperboloid (but we do not go into further discussion of this). One obtains then
creation/annihilation operators of an asymptotic field, which transfer energy
momentum lying strictly on the mass hyperboloid. With some strengthening
of assumptions one also obtains bosonic/fermionic statistics. We use some of
the techniques of the Haag–Ruelle scattering theory [11–15], but our context
is more general.

We remark that construction similar to (1) was used in [16] to obtain
a Haag–Ruelle-type theory for plektons (in 2+1 dimensions). However, in the
present paper the fields defined by (1) are not a starting point, but rather they
appear as a result of asymptotic expansion.

What are physically motivated, general sufficient conditions for a theory
to admit non-zero operator limits defined above is an important problem for
future research. However, an important part of our motivation is the existence
of a model which provides an adequate context for the above ideas. We expect
that the algebraic model proposed in [17] and further developed in [18,19] is
a good candidate for algebra of asymptotic fields in QED. The matter and
electromagnetic fields of the model are as far decoupled, as the long-range
structure allows: remnant correlations manifest themselves in non-commuta-
tion of these fields, and Gauss’ law is respected. In particular, the charged
field of the model would be then expected to be the result of a limiting pro-
cedure of the type mentioned above, so repeated limiting should satisfy the
above structure. We indicate in Sect. 4 that this is indeed the case. Let us
also mention here that the electromagnetic field of the model should also be
the result of some asymptotic limiting. However, it seems that the procedures
discussed for such purpose in [20] and [21] fall short in this case. The reason
is twofold: (i) the space of test fields of the electromagnetic field of the model
is substantially larger than usual, including a class of non-Schwartz smearing
functions, and (ii) there are indications [19] that the model does not admit
spacelike-cone localization of charged electromagnetic fields, which prevents
application of the technique used in [21]. We do not address these problems in
this article.
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The Haag–Ruelle scattering theory assumes the existence of the vacuum
vector state and a discrete mass hyperboloid. Our relaxed assumptions on the
spacelike decay of (anti-)commutators and our definition of smearing may be
also used in this case. In Sect. 5 we show that this leads to an extension of
the applicability, with a simultaneous sharpening of the results of this formal-
ism. An extension of the Haag–Ruelle theory to quasi-local fields was given
earlier in [22], but on much more restrictive basis: existence of mass gap in
the energy–momentum spectrum and fast decrease of nonlocalities. A later
discussion by one of the authors [23], with more general assumptions, refers to
the scattering theory in the spirit of Buchholz [5] (see remarks above), rather
than Haag–Ruelle.

Appendix A contains some more sharp, than usually discussed, results
on regular wave-packets satisfying Klein–Gordon equation. These properties
are needed in Sect. 3. In Appendix B we state a decay property of correlations
of (anti-)commutators for local fields.

2. Asymptotic Relations

With a choice of an origin, the spacetime becomes the Minkowski vector space
(M, g), with x · y and x2 = x · x notation for scalar products. The interior of
the future light-cone will be denoted by V+, its closure by V+, and H+ will
stand for the future branch of the unit hyperboloid x2 = 1. For v ∈ H+ the
invariant measure d3v/v0 will be denoted by dμ(v). The scalar product and
norm for f, g in the Hilbert space L2(H+,dμ) will be denoted by (f, g)H+ and
‖f‖H+ respectively. If a Minkowski basis (e0, . . . , e3) is chosen, we shall denote
by �x the orthogonal projection of x ∈ M onto the subspace orthogonal to e0,
with �x · �y denoting the Euclidean scalar product in this subspace and |�x| the
norm. Then |x|2 = |x0|2 + |�x|2. The Lebesgue measure element in M will be
denoted by dx.

We assume that a QFT is defined in terms of a field *-algebra F of
bounded operators acting in a Hilbert space H. The algebra includes, beside
observables, also operators interpolating between inequivalent representations
of observables, such as creators/annihilators of electric charge. Spacetime trans-
lations are performed by a unitary, continuous representation U(a) of the
translation group acting in H, and the spectrum of its generators is contained
in V+ (relativistic energy positivity). However, we neither assume the existence
of the vacuum vector state, nor the action of a Lorentz group representation
in H. For each bounded operator A acting in H and an integrable function ϕ
one denotes

A(x) = U(x)AU(−x), A(ϕ) =
∫
ϕ(x)A(x) dx, (2)

so that

A(χ)(x) =
∫
χ(y − x)A(y) dy, A(χ)(ϕ) = A(χ ∗ ϕ), (3)

where χ ∗ ϕ is the convolution of functions.
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In all what follows we consider two versions of the constructions, fermio-
nic or bosonic indicated by subscripts ±.

Assumption 1. The algebra F contains a subset K±, closed under conjugation,
with the following property. There is a κ > 0 such that for Ψ1,Ψ2 ∈ K± the
following bounds hold:

‖[Ψ1,Ψ2(a)]±‖ � c

(r + |�a| − |a0|)κ
for a2 � 0 (i.e. |�a| − |a0| � 0), (4)

with some constants c and r.
The assumption is covariant: if the bound holds in any particular refer-

ence system, it is valid in all other, with some other constant c.

The covariance of the condition follows from the relations

|�a| − |a0| = −a2/(|�a| + |a0|), α−1 � (|�a| + |a0|)(|�a′| + |a′0|)−1 � α,

where primed quantities refer to another Minkowski basis and α > 1 is a con-
stant depending on the relation between the bases.

We note that as [Ψ1(x),Ψ2(y)]± = U(x)[Ψ1,Ψ2(y − x)]±U(−x), one has
‖[Ψ1(x),Ψ2(y)]±‖ = ‖[Ψ1,Ψ2(y−x)]±‖. Thus the fields Ψ(x) need not be local,
but the interference of operations performed by their application decreases
with the spacelike distance.

An important fact about the bounds of the above Assumption is that
they are conserved under smearing:

Proposition 1. If χi are Schwartz functions and Ψi satisfy Assumption 1
(i = 1, 2), then also Ψi(χi) satisfy the bounds (4) (possibly with some other
constant c).

Proof. By a change of integration variables one shows that for each n > 4:

‖[Ψ1(χ1),Ψ2(χ2)(a)]±‖ �
∫
ρ12(z)‖[Ψ1,Ψ2(a+ z)]±‖dz

� const
∫ ‖[Ψ1,Ψ2(a+ z)]±‖

(r + |z|)n
dz, (5)

where ρ12(z) =
∫ |χ1(w)χ2(w+z)|dw, and in the second step we used the fact

that ρ12 is of fast decrease. Let now a2 � 0 and split the integration domain in
the rhs of (5) into two sets: (i) |z| � (|�a| − |a0|)/4, and (ii) the rest. In domain
(ii) we use the fact that ‖[Ψ1,Ψ2(b)]±‖ � 2‖Ψ1‖‖Ψ2‖ for all b, so this region
contributes a term bounded by const(r + |�a| − |a0|)−n+4; now n � 4 + κ is
enough for the thesis. In the domain (i) one has

|�a+ �z| − |a0 + z0| � |�a| − |�z| − |a0| − |z0| � (|�a| − |a0|)/2,
so ‖[Ψ1,Ψ2(a+ z)]±‖ is bounded by the rhs of (4) multiplied by 2κ; this again
is sufficient for the thesis. �

We now introduce another type of smearing of Ψ, used earlier for classical
fields in [9].
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Definition 1. For Ψ ∈ K±, λ > 0, and a Schwartz function f on H+, we denote

Ψ[λ, f ] =
( λ

2π

)3/2
∫

Ψ(λv)f(v) dμ(v). (6)

Theorem 2. (i) Let κ > 3 in Assumption 1, what we assume from now on.
Then

lim sup
λ→∞

∥∥[Ψ1[λ, f1],Ψ2[λ, f2]
]
±
∥∥ � const

∫
|f1(v)f2(v)|(v0)3 dμ(v). (7)

(ii) Let, in addition, the supports of fi be disjoint, and denote cosh γ12 =
inf{v1 · v2 | vi ∈ supp fi} > 1. Then for any 0 � γ < γ12 the bound

∥∥[Ψ1[λ1, f1],Ψ2[λ2, f2]
]
±
∥∥ � const

(λ1λ2)(κ−3)/2
(8)

holds uniformly for exp(−γ) � λ1/λ2 � exp(γ).

Proof. (ii) Denote λ =
√
λ1λ2, s =

√
λ1/λ2, so λ1v − λ2u = λ(sv − s−1u). If

exp(−γ/2) � s � exp(γ/2), then −(sv − s−1u)2 � 2(cosh γ12 − cosh γ) > 0.
As at the same time |s�v − s−1�u| + |sv0 − s−1u0| � 2 exp(γ/2)(v0 + u0), so
|s�v − s−1�u| − |sv0 − s−1u0| � (cosh γ12 − cosh γ) exp(−γ/2)(v0 + u0)−1. With
the use of Assumption 1 one finds then that the lhs of (8) is bounded by

const
∫

λ3 |f1(v)||f2(u)|dμ(u) dμ(v)
[r + λ(|s�v − s−1�u| − |sv0 − s−1u0|)]κ

� constλ−(κ−3)

∫
|f1(v)||f2(u)|(v0 + u0)κ dμ(u) dμ(v), (9)

which ends this part of the proof.
(i) It is easy to see that for λ1 = λ2 = λ (s = 1) the first form of the bound (9)
is valid irrespective of the support properties of fi. We change the integration
variables to �w = λ(�u− �v), �z = (�u+ �v)/2, and then this bound becomes

∥∥[Ψ1[λ, f1],Ψ2[λ, f2]
]
±
∥∥ � const

∫ |f1(v)f2(u)|d3w d3z

v0u0

[
r + |�w| − 2|�z · �w|

u0 + v0

]κ , (10)

where u and v are functions of �w, �z and λ. It is now sufficient to show that the
limit for λ → ∞ of the rhs of this bound is equal to the rhs of (7). Elementary
calculation shows that d(u0+v0)/dλ � 0, so u0+v0 � limλ→∞(u0+v0) = 2z0,
where we introduced the vector z ∈ H+ with the space part �z. Thus we have

[
r + |�w| − 2|�z · �w|

u0 + v0

]−κ

� lim
λ→∞

[
...
]−κ

=
[
r + |�w| − |�z · �w|

z0

]−κ

.

Taking into account that f1(u)f2(v) is a Schwartz function on H+ ×H+, we
can apply the Lebesgue theorem and draw the λ → ∞ limit under the integral.
In this way we find that the limit of the rhs of (10) is

const
∫

|f1(z)f2(z)|
{∫ [

r + |�w| − |�z · �w|
z0

]−κ

d3w

}
dμ(z)
z0

.
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Performing the elementary integral inside the braces one arrives at the
thesis. �

Remark. The functional dependence on a of the bound in Assumption 1 is
designed not to enforce steep descent in the neighborhood of the lightcone.
Explicitly depending only on invariants, but more restrictive, alternative for
the rhs of the bound (4) would be [r +

√−a2]−κ for a2 < 0. One can show
that Propositions 1 and 2 remain in force, with the modification that the rhs
in (7) takes the explicitly invariant form const

∫ |f1(v)f2(v)|dμ(v).

3. Fourier Transforms and a Particle

We use the following convention for Fourier transforms:

χ̂(p) =
1

(2π)2

∫
χ(x)eip·x dx, (11)

and the inverse transform of χ is denoted by

̂

χ. The distributional transform is

then defined as usually by T̂ (χ) = T (χ̂), which is equivalent to

̂

T (χ̂) = T (χ).
We apply this also to the operators defined in (2) and use the usual symbolic
integral notation:

Ψ(χ) =

̂
Ψ(χ̂) =

∫ ̂
Ψ(p)χ̂(p) dp. (12)

Note also that

Ψ(χ)∗ = Ψ∗(χ) =

̂

Ψ∗(χ̂), and supp χ̂ = − supp χ̂. (13)

It is well-known that the momentum transfer of Ψ(χ) is restricted by the sup-
port of χ̂ (see e.g. [24]). More precisely, if E(Δ) projects onto the subspace of
H with spectral values of the energy–momentum operators in a Borel set Δ,
then

Δ2 ∩ (supp χ̂+ Δ1) = ∅ implies E(Δ2)Ψ(χ)E(Δ1) = 0. (14)

We now apply the smearing defined in (6) to Ψ(χ) and find that

Ψ(χ)[λ, f ] = Ψ(Fλ), with Fλ(x) =
( λ

2π

)3/2
∫
χ(x− λv)f(v) dμ(v), (15)

and then

Ψ(χ)[λ, f ]∗ = Ψ∗(χ)[λ, f ]. (16)

It is obvious that Fλ is a Schwartz function and

F̂λ(p) =
( λ

2π

)3/2

χ̂(p)
∫
f(v)eiλp·v dμ(v). (17)

One of the consequences of Theorem 2 is the following corollary.
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Proposition 3. If Assumption 1 with κ > 3 holds, then

(i) in fermionic case:

lim sup
λ→∞

‖Ψ(χ)[λ, f ]‖ � const‖(v0)3/2f(v)‖H+ , (18)

(ii) in bosonic case: if Δ ⊆ V+ is a bounded set and 0 /∈ supp χ̂, then

lim sup
λ→∞

‖Ψ(χ)[λ, f ]E(Δ)‖ � const ‖(v0)3/2f(v)‖H+ . (19)

In the proof we shall use the following result due to Buchholz ([25],
Lemma 2.1 and its obvious consequence).

Lemma 4. Let A be a bounded operator and P the orthogonal projection oper-
ator onto the kernel space of An. Then:

‖AP‖2 � (n− 1)‖[A,A∗]‖, ‖A∗P‖2 � n‖[A,A∗]‖. (20)

Proof of Proposition 3. (i) As ‖A∗A‖ � ‖[A∗, A]+‖ for any bounded operator,
this is a direct consequence of (16) and Theorem 2.
(ii) Suppose first that supp χ̂ ⊆ {p | p0 � −δ} for some δ > 0. Then the
energy–momentum transfer of [Ψ(χ)[λ, f ]]n is contained in {p | p0 �−nδ}, so
[Ψ(χ)[λ, f ]]nE(Δ) = 0 for sufficiently large n. With the use of the Lemma the
thesis now follows as in (i). If supp χ̂ ⊆ {p | p0 � δ} similar reasoning holds
with the use of Ψ(χ)[λ, f ]∗. In the general case, a closed set not containing zero
vector may by covered by sets of the two above considered types, with respect
to several Minkowski bases (note that for v ∈ H+ there is α−1v0 � v0′ � αv0

for zero-coordinates in two Minkowski bases, with α independent of v). �

From now on we assume that supp χ̂ is compact and contained in V+.
This allows us to apply the result of Proposition 11 in Appendix A for the
expansion of F̂λ(p) in Eqs. (15) and (17). We apply the operator distribution̂

Ψ(p) to both sides of the identity (59). This immediately gives

e−i3π/4
N∑

j=0

λ−jΨ(χj)[λ, fj ] =
∫

eiλ
√

p2
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dp+ Ψ(Rλ), (21)

where χ̂0(p) = (p2)3/4χ̂(p), f0 = f and the other functions are defined in
Appendix A. All functions fj and χj are smooth, fj are of compact support,
and supp χ̂j = supp χ̂. This results in the next theorem, which we precede
with the following denotation.

Let χ be a smooth function such that the support of χ̂ is compact and
contained in V+. Then χ� will denote the function defined by

χ̂�(p) = (p2)3/4χ̂(p). (22)

We note that the mapping χ 
→ χ� is a linear isomorphism of this class of
functions.
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Theorem 5. If Assumption 1 with κ > 3 holds, and supp χ̂ is compact, con-
tained in V+, then the following asymptotic relations hold:

e−i3π/4Ψ(χ�)[λ, f ]E(Δ)=
∫

eiλ
√

p2
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dpE(Δ)+O‖.‖(λ−1).

(23)

Subscript ‖.‖ indicates that the respective bounds hold in operator norm. Here
and in what follows Δ is a bounded Borel set in bosonic case, and E(Δ) = 1
in fermionic case.

Proof. The estimate (61) shows that in (21): ‖Ψ(Rλ)‖ � const‖Ψ‖λ−N+3/2.
The choice N = 3, with the use of Proposition 3 for Ψ(χj)[λ, fj ] (j = 1, 2, 3),
yields the result. �

Knowing that both sides of the relation (23) remain bounded in norm,
we can try the following further specification.

Assumption 2. We assume that for some m > 0, all Schwartz functions f on
H+, and all smooth χ̂ with compact support in some neighborhood of mH+,
there exist weak limits

Ψout
m (χ�)[f ]E(Δ) = w− lim

λ→∞
e−i(λm+3π/4)Ψ(χ�)[λ, f ]E(Δ)

= w− lim
λ→∞

∫
eiλ
(√

p2−m
)
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dpE(Δ).

(24)

Let h be a smooth real function on (0,∞), with compact support, and
such that

∫
h(λ) dλ = 1. Denote h̃(ω) =

∫
eiωλh(λ) dλ. Now, for Λ > 0, mul-

tiply the expressions under the limit signs in Eq. (24) by

hΛ(λ) = Λ−1h(λ/Λ), (25)

and integrate over λ. This gives

Ψout
m (χ�)[f ]E(Δ) = w− lim

Λ→∞

∫
hΛ(λ)e−i(λm+3π/4)Ψ(χ�)[λ, f ] dλE(Δ)

= w− lim
Λ→∞

∫
h̃
(
Λ[
√
p2 −m]

)
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dpE(Δ).

(26)

Lemma 6. If supp χ̂ ∩mH+ = ∅, then Ψout
m (χ�)[f ] = 0.

Proof. For any ϕ1, ϕ2 ∈ H, the product (ϕ1,

̂

Ψ(p)ϕ2) defines a tempered dis-
tribution, so may be represented by continuous functions and their distribu-
tional derivatives. Therefore, all contributions to the operator under the limit
on the rhs of (26), placed between ϕ1, ϕ2, are of the form

Λk

∫
[Dαh̃]

(
Λ[
√
p2 −m]

)
Dβχ̂(p)F (p) dp
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in standard multi-index notation, where F is a continuous function. This is
easily shown to vanish faster than any inverse power of Λ for Λ → ∞, if the
premise holds. �

Definition 2. Suppose Assumption 2 is satisfied with nonzero limit operators.
Let f be of compact support supp f ⊂ H+, and let compactly supported χ̂
satisfy χ̂(p) = 1 in some neighborhood of the set m supp f ⊂ mH+.
Then we set

Ψout
m [f ]E(Δ) = w− lim

λ→∞
e−i(λm+3π/4)Ψ(χ�)[λ, f ]E(Δ)

= w− lim
λ→∞

∫
eiλ
(√

p2−m
)
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dpE(Δ) (27)

and we interpret this as a creation operator of an asymptotic particle with
mass m.

Note that due to the preceding lemma the definition is indeed independent of
χ in the assumed class.

Proposition 7. Let the assumptions leading to Definition 2 be satisfied. Then
the following holds:

‖Ψout
m [f ]E(Δ)‖ � const‖(v0)3/2f(v)‖H+ , (28)

Δ2 ∩ (m supp f + Δ1) = ∅ implies E(Δ2)Ψout
m [f ]E(Δ1) = 0. (29)

Moreover, if supp fi ⊆ Dν = {v ∈ H+ | |�v| � ν} (i = 1, 2), then

supp f1 − supp f2 ⊆ Dν −Dν ⊂
{
q
∣∣ |q0|/|�q | � ν√

ν2 + 1
, |�q | � 2ν

}
. (30)

In this case Δ2 ∩ (m(Dν −Dν) + Δ1

)
= ∅ implies

E(Δ2)Ψout
1m [f1]∗Ψout

2m [f2]E(Δ1) = E(Δ2)Ψout
1m [f1]Ψout

2m [f2]∗E(Δ1) = 0 (31)

Proof. The estimate (28) is a direct consequence of Proposition 3. To prove the
statement (29) let first Δ1,Δ2 be compact and satisfy the assumption. Then
one can find an open neighborhood U ofm supp f such that Δ2 ∩ (U + Δ1)=∅.
The implication follows in this case by choosing χ̂ in the class defining Ψout

m [f ],
with support in U . The general case now follows by regularity of spectral mea-
sures. Relations (31) may be shown in similar way. The estimate in (30) follows
easily from the obvious identity for v, u ∈ H+: v0−u0 = (�v−�u)·(�v+�u)/(v0+u0).

�

Remark. Property (29) is decisive for the interpretation: creation of an
asymptotic particle adds energy–momentum strictly on the mass hyperboloid.
However, this need not be reflected in the presence of a discrete mass hyperbo-
loid in the energy–momentum spectrum, if there is no vacuum in the Hilbert
space.
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More can be inferred if one adds a stronger assumption on the nature of
convergence in Definition 2 with added smearing of the form leading to (26).

Assumption 3. We assume that under the conditions of Definition 2 the field
Ψout

m [f ] defined there may be obtained as a strong limit:

Ψout
m [f ]E(Δ) = s− lim

Λ→∞

∫
hΛ(λ)e−i(λm+3π/4)Ψ(χ�)[λ, f ] dλE(Δ)

= s− lim
Λ→∞

∫
h̃
(
Λ[
√
p2−m]

)
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dpE(Δ), (32)

where hΛ is defined by (25), with h any function in the class defined there.

Proposition 8. If Assumption 3 is satisfied, then supp f1 ∩ supp f2 = ∅ implies[
Ψout

1m [f1]	,Ψout
2m [f2]	

]
±E(Δ) = 0, (33)[

Ψout
1m [f1]	,

[
Ψout

2m [f2]	,Ψout
3m [f3]	

]
±
]
E(Δ) = 0. (34)

where � is either empty or the adjoint operator star ∗ (uncorrelated at the two
or three operators).

Proof. First note that for the given bounded Δ there is some other bounded
Δ′ such that

Ψi(χ�
i )[λi, fi]	Ψj(χ�

j )[λj , fj ]	E(Δ)=Ψi(χ�
i )[λi, fi]	E(Δ′)Ψj(χ�

j )[λj , fj ]	E(Δ).

Therefore,∥∥[Ψout
1m [f1]	,Ψout

2m [f2]	
]
±E(Δ)

∥∥
� lim

Λ→∞

∫
|h1(ξ1)h2(ξ2)|

∥∥[Ψ1(χ�
1)[Λξ1, f1]

	,Ψ2(χ�
2)[Λξ2, f2]

	
]
±
∥∥dξ1 dξ2.

Let now supports of fi be separated as in Theorem 2 (ii). But the supports
of hi may be chosen such that exp(−γ) � ξ1/ξ2 � exp(γ) in the notation of
this theorem. Then the expression under the limit vanishes as Λ−(κ−3), which
gives the first relation of Proposition. For the second relation it is sufficient to
note that one can decompose f3 = f31 + f32, where the support of f3i does
not intersect that of fi. Then the thesis follows for f32 directly, and for f31 by
Poisson’s identity (or similar identity in fermionic case). �

Remark. Property (33) is responsible for appropriate fermionic/bosonic sta-
tistics of the asymptotic particles. Property (34) generalizes a part of the
structure needed for asymptotic Fock space construction (see below the Haag–
Ruelle case). However, in absence of vacuum situation is more complex. We
do not study this question in generality here.

4. A Model

As mentioned in Sect. 1, our principal motivation is the study of the charged
particle problem in quantum electrodynamics. Whether the concepts intro-
duced in preceding sections will be of relevance for that case is not known
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yet. However, here we want to point out that an algebraic model put forward
some time ago [17] as a candidate for the algebra of asymptotic fields in QED
fits into the scheme. The model includes no dynamical interdependence of the
matter and radiation fields, but there do exist remnant correlations between
them which ensure the validity of a form of Gauss’ law [17]. In addition, we
want to emphasize the importance of the choice of hyperboloids rather than
constant time hypersurfaces for the limiting procedure. For classical fields, this
type of limiting was shown in [9] to be applicable also in the long-range case
(by an appropriate choice of electromagnetic gauge). This fact was one of the
constituents in the construction of the model, and we expect this property to
survive quantization.

The algebra of the model given in [17] does not refer to any spacetime
localization of fields. In later articles [18] and [19] two alternative versions of
localization were formulated: in regions restricted spatially, but extending to
timelike infinity, or in generalized time-slices (linearly fattening towards spa-
tial infinity). In either of this cases the algebra of the model may be given as
follows:

Was(J)∗ = Was(−J), Was(0) = E,

Was(J1)Was(J2) = exp
[
− i

2
{J1, J2}

]
Was(J1 + J2),

[ψas(χ1), ψas(χ2)]+ = 0, [ψas(χ1), ψas(χ2)∗]+ = 〈χ1, χ2〉,
Was(J)ψas(χ) = ψas(χ′)Was(J), where [χ′] = SJ [χ].

(35)

The elements Was(J) describe the exponentiated electromagnetic field, and
elements ψas(χ) form a free, in the sense of the field equation, Dirac field.
The smearing functions J and χ are not, in general, of compact support. The
scalar product for Dirac fields 〈χ1, χ2〉 is standard, but the symplectic form
for electromagnetic fields {J1, J2} is a nontrivial extension of the standard
form to a larger function space. The most important constitutive element of
the structure is the presence of the nontrivial linear automorphisms SJ of the
space of equivalence classes of matter test functions (functions in one class,
denoted by [χ], give rise to the same element of the algebra), which define
the non-commutativity of Dirac and electromagnetic fields. This non-commu-
tativity prevents the model from complete factorization, in any Hilbert space
representation, into matter × radiation structure. Also, no physical vacuum
representation is admitted by the model [17].

A large class of physically motivated representations of the above algebra
has the following properties. The Hilbert space of the representation has the
form H = HF ⊗ Hr, where HF is the standard Fock space of the Dirac field,
which is represented in HF in standard vacuum representation. Translations
are represented by unitary group of operators U(x) = UF (x) ⊗Ur(x). But Hr

is not a vacuum Fock space and the electromagnetic field is not represented
in Hr alone. Thus the structure does not factorize into tensor product. The
spectrum of U(x) is contained in V+, but includes no discrete hyperboloid,
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and there is no vacuum vector in the total representation space. (We refer the
reader to the original articles for more details and interpretation.)

The assumptions of our present constructions are satisfied immediately
in these representations. Assumption 1 is easily verified for spaces of test func-
tions χ used in [18] and [19] (in the first case the functions can be made to
vanish arbitrarily fast at infinity, and in the second case they are Schwartz
functions). Assumptions 2 and 3 are satisfied trivially: if ψas(χ) is substituted
for Ψ in (24), the operator under the limit on the far rhs does not depend on λ.
This is because ψas(χ) commutes with Ur(x), so its translations are as in the
free field case.

This is of course a rather trivial application, but it shows that the struc-
ture considered here is free from contradiction. Also, if the model could indeed
be derived by some limiting procedure of the type considered in this paper,
then this is what one should expect: repeat limiting should be trivial.

5. Haag–Ruelle Case

The logic of the Haag–Ruelle construction (HR) is somewhat different from
the one we follow in this article. The HR formalism is designed to construct
an asymptotic Hilbert space which may be generated from the vacuum by the
asymptotic fields, with no regard to the question of asymptotic completeness;
this space may be a proper subspace of the Hilbert space of the theory. There-
fore, one does not need a condition engaging, like our Assumption 2, the whole
Hilbert space of the theory for the limiting hypothesis. Instead, the existence
of vacuum and of a discrete hyperboloid in the energy–momentum spectrum
supply a more specific setting, in which the existence of asymptotic fields may
be proved on an asymptotic (sub-)space.

In this section we want to indicate that a manifestly Lorentz-invariant
variation of the HR construction may be based on the averaging on hyperbo-
loids introduced by Definition 1. For the derivation of scattering states and
statistics our Assumption 1 (instead of strict locality) is sufficient. For the
derivation of the Fock structure of asymptotic states we engage an additional
Assumption 4 on a cluster property of (anti-)commutators (see Paragraph 5.6
below). This assumption is satisfied automatically for local and almost local
fields (translations of local fields smeared with Schwartz functions), but in
general its derivation from Assumption 1 has not been proven. On the other
hand, the decay of the correlations contained in Assumption 4 may be very
weak, which may suggest that such derivation from Assumption 1, or similar
condition, should be possible. This is an open problem.

In addition to widening the applicability of the HR theory, our construc-
tion brings also a few refinements, which apply, in particular, to the orthodox—
strictly local—HR case: weaker spectral condition (formula (41)) and lack of a
non-covariant and rather unphysical condition on 3-momentum-space behav-
ior of test functions (appropriate vanishing for �p → 0, see [15]). The HR case,
of course, does not refer to the infraparticle problem; we include it in our
discussion as another testing ground for our method.
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5.1. We note first that everything up to, and including Theorem 5, remains
valid. Therefore, if we denote

ΨΛ[f ] =
∫
h(ξ)e−i(Λξm+3π/4)Ψ(χ�)[Λξ, f ] dξ, (36)

Ψ′
Λ[f ] =

∫
h̃
(
Λ[
√
p2 −m]

)
χ̂(p)f

(
p/
√
p2
) ̂

Ψ(p) dp, (37)

then (ΨΛ[f ] − Ψ′
Λ[f ])E(Δ) = O‖.‖(Λ−1). For brevity, the notation omits the

dependence of these operators on χ and h. We assume that supp χ̂ is contained
in some neighborhood of mH+ and χ̂(p) = 1 in some smaller neighborhood of
m supp f ⊆ mH+.

5.2. Let supp f1∩supp f2 = ∅. Then for hi with appropriate supports there is

lim
Λ→∞

∥∥[Ψ1Λ[f1]	,Ψ2Λ[f2]	
]
±E(Δ)

∥∥ = 0, (38)

lim
Λ→∞

∥∥∥
[
Ψ1Λ[f1]	,

[
Ψ2Λ[f2]	,Ψ3Λ[f3]	

]
±
]
E(Δ)

∥∥∥ = 0. (39)

The limits do not change if some of the operators ΨiΛ[fi] are replaced by their
primed versions Ψ′

iΛ[fi], and/or their derivatives with respect to Λ.
Proof closely parallels that of Proposition 8, with supports of hi speci-

fied there, the only difference being that here we do not assume the existence
of the limits of operators. Admissibility of adding a prime is obvious, while
differentiating on Λ amounts to the replacement of hΛ by −Λ−1gΛ, where
g(λ) = d[λh(λ)]/dλ and gΛ(λ) = Λ−1g(λ/Λ).

5.3. Now one assumes the existence of the vacuum vector Ω in the represen-
tation space. For 0 � μ < m denote

Eμ = E
({p | |

√
p2 −m| � μ, p0 > 0}). (40)

Then for any 0 < ε < m

ε∫

0

‖(Eμ − E0)ΨΩ‖dμ
μ
< ∞ implies

∞∫

0

∥∥∥dΨ′
Λ[f ]Ω
dΛ

∥∥∥dΛ < ∞. (41)

To prove this, we denote R =
√
P 2−m1 and observe that dΨ′

Λ[f ]Ω/dΛ =
R h̃′(ΛR)F (P )ΨΩ, where F is of compact support intersecting mH+, and
h̃′(ω) = dh̃(ω)/dω. Therefore for some δ > 0 there is ‖dΨ′

Λ[f ]Ω/dΛ‖ �
const‖Eδ|R|(1 + Λ2R2)−2ΨΩ‖. The integral over Λ ∈ 〈0, δ−2〉 is obviously
finite. For Λ > δ−2 we split the rhs into two terms and estimate:

‖(Eδ − EΛ−1/2)|R|(1 + Λ2R2)−2ΨΩ‖ � δ‖EδΨΩ‖(1 + Λ)−2,

‖EΛ−1/2 |R|(1 + Λ2R2)−2ΨΩ‖ � const‖(EΛ−1/2 − E0)ΨΩ‖Λ−1,
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where the constant on the rhs of the latter estimate is equal to the maximum of
the function |s|(1 + s2)−2, s ∈ R. Integrating this latter estimate one obtains
the implication (41).

5.4. Let the above spectral condition be satisfied for all Ψ ∈ K±. Then for fi

with disjoint supports, and supports of hi adjusted as in Paragraph 5.2, there
exist strong limits

s− lim
Λ→∞

Ψ1Λ[f1] . . .ΨnΛ[fn]Ω = s− lim
Λ→∞

Ψ′
1Λ[f1] . . .Ψ′

nΛ[fn]Ω. (42)

These limits depend only on the one-operator asymptotic vectors

s− lim
Λ→∞

Ψ′
Λ[f ]Ω = (2π)2f(P/m)E0ΨΩ. (43)

Thus the structure is nontrivial if, and only if, E0 �= 0, i.e. there is a discrete
mass hyperboloid in the spectrum of energy–momentum, and there exist Ψ
which interpolate between Ω and E0H.

The existence of the limit is shown by standard Cook method, with the
use of Paragraphs 5.2 and 5.3. The one-operator limit is rather obvious, and
then the second part is shown by (anti-)commuting (with the use of (38))
a particular operator to the right, to stand at the vector Ω.

5.5. To obtain the Fock structure of asymptotic states one needs two addi-
tional elements. The first is the following generalization. For η ∈ (0, 1〉 let
s(Λ) = (mΛ)η/m (so that s is a length and s = Λ for η = 1). Denote

hη
Λ(λ) = s−1h(s−1(λ− Λ) + 1) (44)

and define Ψη
Λ[f ] similarly as ΨΛ[f ], with hΛ replaced by hη

Λ (so, in particular
hΛ = h1

Λ and Ψ1
Λ[f ] = ΨΛ[f ]). Then for η < 1 there is

s− lim
Λ→∞

Ψη
1Λ[f1] . . .Ψ

η
nΛ[fn]Ω = s− lim

Λ→∞
Ψ1Λ[f1] . . .ΨnΛ[fn]Ω, (45)

with arbitrary choice of functions hi on the lhs, while on the rhs the supports
of functions hi respect the demands of Paragraph 5.4.

To justify this, we note that by the results of Paragraph 5.4 we are free
to choose the support of functions hi on the rhs in arbitrarily small interval
〈1 − δ, 1 + δ〉. Then by inspection of the proof of Proposition 8 one can show
that limits (38) and (39) are valid for any choice of single Ψ-operators appear-
ing on both sides of the above relation (or their adjoints), if δ is sufficiently
small. Then the proof of (45) follows the idea by Buchholz ([15], Lemma 2.4)
(with a minor necessary refinement: as all fields Ψη

Λ[f ] act on vector states of
bounded energy, their norms may be assumed bounded).

5.6. The second element used for the derivation of the Fock structure is the
following assumption. We denote by E⊥

Ω the projection onto the orthogonal
complement of the linear span of Ω. We also make the following observation
and introduce the function K:
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(Ω, [Ψ1(x1),Ψ2(x2)]±E⊥
Ω [Ψ3(x3),Ψ4(x4)]±Ω)

= (Ω, B12(x1 − x2)E⊥
ΩU
(− 1

2 (x1 + x2 − x3 − x4)
)
B34(x3 − x4)Ω)

≡ K(x1 − x2, x3 − x4,
1
2 (x1 + x2 − x3 − x4)), (46)

where Bij(z) = [Ψi(z/2),Ψj(−z/2)]±.

Assumption 4. Let Ψi ∈ K±, i = 1, . . . , 4, and N be any positive integer. Then
for large enough, positive d, and

|y1| � d, |y2| � d, |�y| � |y0| + c1d, (47)

the following estimate holds

|K(y1, y2, y)| � c2
dM

(|�y| − |y0|)ε
+ c3d

−N , (48)

and the positive constants ci,M and ε do not depend on d.
The assumption is covariant: if it holds in any particular reference sys-

tem, it is valid in all other, with some other constants ci.

Proposition 9. Assumption 4 is closed with respect to smearing of fields Ψ with
Schwartz functions; more precisely, it remains valid, with some other constants
ci, under replacement Ψi → Ψi(χi).

Proof. Replacing Ψi by Ψi(χi) in (46) amounts to the replacement K → K∗ϕ,

(K ∗ ϕ)(y1, y2, y) =
∫
K(y1 − z1, y2 − z2, y − z)ϕ(z1, z2, z) dz1dz2dz,

where ϕ is a Schwartz function. Let

|y1| � d′, |y2| � d′, |�y| − |y0| � c′1d
′, |z1| � d′, |z2| � d′, |z| � d′

– integration over the rest of the domain of zi, z-variables gives a d′−N contri-
bution. Set d′ = d/2 and choose c′1 � max{4, 4c1}. Then

|y1 − z1| � d, |y2 − z2| � d,

|�y − �z| − |y0 − z0| � 1
2
(|�y| − |y0|) +

1
2
(|�y| − |y0| − 4d′) � 1

2
(|�y| − |y0|) � c1d,

so by Assumption 4, in this region,

|K(y1 − z1, y2 − z2, y − z)| � c2 d
M

(|�y − �z| − |y0 − z0|)ε
+ c3d

−N

� 2εc2 d
M

(|�y| − |y0|)ε
+ c3d

−N

which is sufficient to conclude the proof. �

Assumption 4 holds, in particular, for local and almost local fields, as
shown by Propositions 12 (in Appendix B) and 9. Its derivation in general
case from Assumption 1 or similar condition is an open problem. We note,
however, that the decay it assumes may be very slow (any ε > 0).
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5.7. We shall need below the following simple geometrical facts. For vi ∈
H+, |�vi| � ν, β = ν/

√
ν2 + 1, and λi > 0, one has

|λ1v
0
1 − λ2v

0
2 | � |λ1 − λ2| + β|λ1�v1 − λ2�v2|, (49)

|λ1�v1 − λ2�v2| − |λ1v
0
1 − λ2v

0
2 | � (1 − β)|λ1�v1 − λ2�v2| − |λ1 − λ2|. (50)

If in addition |λ1 − λ2| � σ, |λ1�v1 − λ2�v2| � 2σ/(1 − β), then

|λ1�v1 − λ2�v2| − |λ1v
0
1 − λ2v

0
2 | � 1

2
(1 − β)|λ1�v1 − λ2�v2| � σ. (51)

Inequality (49) follows from |�vi|/v0
i � β and

|λ1v
0
1 − λ2v

0
2 | =

|λ2
1 − λ2

2 + (λ1�v1 + λ2�v2) · (λ1�v1 − λ2�v2)|
λ1v0

1 + λ2v0
2

� |λ2
1 − λ2

2|
λ1 + λ2

+
λ1|�v1| + λ2|�v2|
λ1v0

1 + λ2v0
2

|λ1�v1 − λ2�v2|,

and the other are its consequences.

5.8. With the running assumptions, for sufficiently small η, there is

lim
Λ→∞

Ψη
1Λ[f1]∗Ψ

η
2Λ[f2]Ω = (2π)4(Ψ1Ω, (f1f2)(P/m)E0Ψ2Ω)Ω. (52)

The projection of this equality onto Ω follows from relations (43) and (45).
Thus, the relation will be true, if

lim
Λ→∞

∥∥E⊥
Ω

[
Ψη

1Λ[f1]∗,Ψ
η
2Λ[f2]

]
±Ω
∥∥ = 0. (53)

The latter is a consequence of the next lemma. We denote

supph ⊆ 〈τ1, τ2〉 ⊂ (0,∞),

supphη
Λ ⊆ 〈Λ1,Λ2〉 = 〈Λ + (τ1 − 1)s,Λ + (τ2 − 1)s〉,

Λ2 − Λ1 = (τ2 − τ1)s = τs.

(54)

Lemma 10.

lim
Λ→∞

λ1,λ2∈〈Λ1,Λ2〉

∥∥E⊥
Ω

[
Ψ1(χ�

1)[λ1, f1]∗,Ψ2(χ�
2)[λ2, f2]

]
±Ω
∥∥ = 0. (55)

Proof. To simplify notation we write Ψi(χ�
i ) = Ψ�

i and recall that both Assump-
tions 1 and 4 remain valid for Ψ�

i . The vector inside the norm signs involves
integration over v1, v2 ∈ H+, |�vi| � ν, for some ν > 0. We divide this domain
into two parts: (i) |λ1�v1 − λ2�v2| � 2τs/(1 − β), and (ii) the rest. In region
(ii) we change variables �v1 to �w = λ1�v1 − λ2�v2. Then the norm of this part is
bounded by

const (λ2/λ1)3/2

∫

|�w|�2τs/(1−β)

d3w

(r + |�w|)κ
� const s−(κ−3),
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where we used relations of Paragraph 5.7 (with σ = τs) and the decay of the
commutator, Assumption 1. The norm squared of part (i) is bounded by

const (λ1λ2)3
∫

dμ(v1) . . . dμ(v4)

×|(Ω, [Ψ�
1(λ1v1),Ψ�

2(λ2v2)∗]±E⊥
Ω [Ψ�

1(λ1v3)∗,Ψ�
2(λ2v4)]±Ω)|,

where integration is restricted to |�vi| � ν, |λ1�v1 − λ2�v2| � 2τs/(1 − β),
|λ1�v3 − λ2�v4| � 2τs/(1 − β). Again, we divide this domain into two regions:
(iii) 1

2 |λ1�v1 + λ2�v2 − λ1�v3 − λ2�v4| � 4ατs, with the constant α to be specified
below, and (iv) the rest. The integral over (iii) is easily seen (by a change
of variables) to be bounded by const s9/Λ3, which vanishes in the limit for
η < 1/3. Finally, we consider the region (iv). First, we note that

(λ1v1 + λ2v2)2 = 2λ2
1 + 2λ2

2 − (λ1v1 − λ2v2)2

� 4Λ2
2 + |λ1�v1 − λ2�v2|2 � 4Λ2

2 + 4τ2s2/(1 − β)2,

and for sufficiently large Λ this is bounded by 4(Λ2 + τs)2. The same holds for
λ1v3 + λ2v4. Therefore,

1
2
(λ1v1 + λ2v2) = ξ1u1,

1
2
(λ1v3 + λ2v4) = ξ2u2,

where u1, u2 ∈ H+,Λ1 � ξi � Λ2 + τs = Λ1 + 2τs, and |�ui| � Λ2ν/Λ1 �
τ2ν/τ1 ≡ ν′ (for Λ � 1/m). We put β′ = ν′/

√
ν′2 + 1 and α = γ/(1 − β′),

with γ � 1 to be further specified. We note that now

|ξ1 − ξ2| � 2τs � 2γτs, |ξ1�u1 − ξ2�u2| � 4γτs/(1 − β′).

Thus using again the relations of Paragraph 5.7, with σ = 2γτs and β → β′,
we find

|ξ1�u1 − ξ2�u2| − |ξ1u0
1 − ξ2u

0
2| � 1

2
(1 − β′)|ξ1�u1 − ξ2�u2| � 2γτs. (56)

Moreover, with the use of relation (49) one obtains

|λ1v1 − λ2v2| � bs, |λ1v3 − λ2v4| � bs,

where b =
√

8τ/(1 − β). It is now visible that for large enough Λ (and con-
sequently s), with d = bs and γ chosen large enough to satisfy 2γτ/b =
γ(1 − β)/

√
2 > c1, the premisses of Assumption 4 are satisfied. Therefore,

in this region∣∣∣∣K(λ1v1 − λ2v2, λ1v3 − λ2v4,
1
2
(λ1v1 + λ2v2 − λ1v3 − λ2v4))

∣∣∣∣
� const

sM

|λ1�v1 + λ2�v2 − λ1�v3 − λ2�v4|ε + const s−N

(use also the first inequality in (56)). We change the variables �v1, �v2 and �v3
to �w1 = λ1�v1 − λ2�v2, �w2 = λ1�v3 − λ2�v4 and �w = λ1�v1 + λ2�v2 − λ1�v3 − λ2�v4
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and note that |�wi| � 2τs/(1 − β) and 8γτs/(1 − β′) � |�w| � 4Λ2ν. Thus the
integral over region (iv) is bounded by

const s6Λ−3
1

4Λ2ν∫

8γτs/(1−β′)

( sM

|�w|ε + s−N
)
|�w|2 d|�w| � const

(
sM+6Λ−ε′

+ s6−N
)
,

where ε′ = min{ε, 3}. This vanishes in the limit, if N > 6 and
η < ε′/(M + 6). �
5.9. The Fock structure of the products

lim
Λ→∞

(Ψη
1Λ[f1] . . .Ψ

η
kΛ[fk]Ω,Ψη

(k+1)Λ[fk+1] . . .Ψ
η
nΛ[fn]Ω) (57)

is now easily obtained by transferring the operators from the left to the ad-
joints on the right, commuting them to far right and using (52) (see [15] for
details of the technique).

6. Conclusions

We have introduced an asymptotic limiting of fields based on averaging over
hyperboloids rather than constant time hyperplanes. If a class of fields satis-
fies a rather slow spacelike decay condition of their (anti-)commutators, then
their asymptotic behavior is naturally related to their spectral properties with
respect to energy–momentum. In that case the asymptotic behavior admits a
condition which generalizes the condition of the existence of a discrete mass
hyperboloid in the energy momentum spectrum in the vacuum representation.
The resulting asymptotic fields transfer energy momentum with sharp Lorentz
square, interpreted as mass squared of a particle. With some stronger assump-
tions on the asymptotic limiting the asymptotic fields satisfy fermionic/bosonic
statistics (but not the Fock structure).

The question whether the scheme will have relevance for realistic quan-
tum electrodynamics is an open problem. However, a model proposed some
time ago as an algebra of asymptotic fields in electrodynamics, in which Gauss’
law is respected, fits into the scheme. It is an important problem for future
research to find more general conditions for non-vanishing of the asymptotic
limit fields as defined in the present paper.

The ideas at the base of these constructions were also put to a slightly dif-
ferent use to generalize the Haag–Ruelle scattering theory. It was shown that
they allow some sharpening of results, while at the same time substantially
relaxing assumptions on spacelike decay properties.

In the article only outgoing fields were considered, but incoming case
strictly parallels these constructions.

Appendix A. On Regular Wave Packets

Here some properties of wave packets are discussed in a sharper form needed
in this article, than usually considered.
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Let f be a smooth function on H+, of compact support. Then for v ∈ H+,
ρ > 0, there is
∫
f(u)eiρv·u dμ(u) = ei3π/4

(
2π
ρ

)3/2

eiρ

(
N∑

k=0

ρ−kLkf(v) +O(ρ−N−1)

)
,

(58)

where L0 = id and Lk for k � 1 are differential operators with smooth coef-
ficient functions. The bound of the rest inside the parentheses, and of its
v-derivatives, is uniform on each compact set of v’s. Moreover, each differenti-
ation of the rest with respect to ρ increases its decay rate by one power, with
preserved uniformity. This follows from direct application of the stationary
phase method, as presented in [26] (or, in a somewhat less explicit way, in
[27]). Note that the lhs of (58) is a regular wave packet in the vector variables
ρv covering V+.

Choose now fj , j = 0, . . . , N , with f0 = f , and other fj with similar reg-
ularity properties, and substitute in the above formula f → fj , N → N − j.
Combining the resulting formulae one finds

N∑
j=0

ρ−j

∫
fj(u)eiρv·u dμ(u)

= ei3π/4

(
2π
ρ

)3/2

eiρ

⎛
⎝ N∑

k=0

ρ−k
k∑

j=0

Lk−jfj(v) +O(ρ−N−1)

⎞
⎠ .

Putting now recursively fk = −∑k−1
j=0 Lk−jfj for k = 1, . . . , N one obtains

N∑
j=0

ρ−j

∫
fj(u)eiρv·u dμ(u) = ei3π/4

(
2π
ρ

)3/2

eiρ
(
f(v) +O(ρ−N−1)

)
,

where the rest inside the parenthesis has the same properties as that in (58).

Proposition 11. Let χ̂ be a smooth real function on M with compact sup-
port contained inside the future lightcone, and denote χ̂j(p) = χ̂(p)(p2)3/4−j/2,
j = 0, . . . , N . Then, with standing assumptions and notation, for λ > 0, there
is

e−i3π/4
N∑

j=0

λ−j
( λ

2π

)3/2

χ̂j(p)
∫
fj(u)eiλp·u dμ(u)

= eiλ
√

p2
χ̂(p)f

(
p/
√
p2
)

+ R̂λ(p), (59)

where R̂λ is smooth, of compact support, and satisfies the bounds

|DαR̂λ(p)| � constλ−N−1+|α|. (60)

The latter bounds imply∫
|Rλ(x)|dx � constλ−N+3/2. (61)
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Proof. All statements, except for the last estimate, follow directly from the
preceding discussion, with v = p/

√
p2 and ρ = λ

√
p2. To show (61), we note

that for k = 0, 1, 2, . . . the bounds (60) imply∫
|Rλ(x)|2|x|kdx � constλ−2N−2+k.

For even k this follows directly by the Plancherel formula, and then for k =
2l + 1 by writing |Rλ(x)|2|x|2l+1 = |Rλ(x)||x|l × |Rλ(x)||x|l+1 and using the
Schwartz inequality. Writing

|Rλ(x)| = |Rλ(x)|(|x|5 + 1)1/2 × (|x|5 + 1)−1/2

and using the Schwartz inequality we arrive at (61). �

Appendix B. Decay of Correlations of Commutators: Local
Case

Here we adapt an estimate due to Araki et al. [28] to obtain the following
result.

Proposition 12. Let Ψi, i = 1, . . . , 4, be strictly local (in the bosonic or fermi-
onic sense) field operators, localized in the double cone CR. Then Assumption 4
is satisfied for d � R, with c1 = 8,M = 3, ε = 2 and c3 = 0.

We note that another form of cluster property (due to Buchholz [20])
was used in the Haag–Ruelle theory discussion by Dybalski ([15], Lemma 3.1).
However, that result is not sharp enough for our purpose.

We begin by stating the original result ([28], formula (3.4)1) in the fol-
lowing form. We denote ∂0B = ∂0B(x)|x=0.

Theorem 13. Let B1 B2 be local operators, localized in the double cones Cr1 , Cr2 ,
respectively. Then for |�y| � |y0| + r, r = r1 + r2, the following estimate holds

|(Ω, B1E
⊥
ΩU(y)B2Ω)| � const r3

(|�y| − r)2 − |y0|2
[
C1 + C0

|y0|
(|�y| − r)2 − |y0|2

]
, (62)

where const is a universal constant, C1 = ‖∂0B1Ω‖‖B∗
2Ω‖ + ‖∂0B2Ω‖‖B∗

1Ω‖
and C0 = ‖B1Ω‖‖B∗

2Ω‖ + ‖B2Ω‖‖B∗
1Ω‖.

Corollary 14. If in the above theorem |�y| � |y0| + 2r, then

|(Ω, B1E
⊥
ΩU(y)B2Ω)| � constC

r3

(|�y| − |y0|)2 , (63)

where C = C1 + C0/2r.

Proof. In this case there is |�y| − r − |y0| � (|�y| − |y0|)/2, so (|�y| − r)2 − |y0|2
is bounded from below by (|�y| − |y0|)2/4 and also by 2r|y0|, which implies the
result. �

1 There is a misprint in this formula in the original article: constants C0 and C1 should
exchange their places, as is clear from the derivation (and for dimensional reasons).
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Remark. In fact, in this case a sharper form of the estimate (63), with
const r3/|y2| on the rhs, is also valid. However, we deliberately use the weaker
form for generalization in the Haag–Ruelle-type construction (Sect. 5).

Proof of Proposition 12. We use the formula (46). It is a simple geometric
fact that in the present case B12(x1 − x2) and B34(x3 − x4) are localized in
CR′ and CR′′ respectively, with R′ = R + (|x0

1 − x0
2| + |�x1 − �x2|)/2 � 2d and

R′′ = R + (|x0
3 − x0

4| + |�x3 − �x4|)/2 � 2d (for the bounds the assumptions
of the Proposition were used). The use of Corollary with r = 4d gives now
immediately the thesis. �

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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