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ABSTRACT

Traveling waves in the inner ear exhibit an amplitude
peak that shifts with frequency. The peaking is
commonly believed to rely on motile processes that
amplify the wave by inserting energy. We recorded the
vibrations at adjacent positions on the basilar mem-
brane in sensitive gerbil cochleae and tested the
putative power amplification in two ways. First, we
determined the energy flux of the traveling wave at its
peak and compared it to the acoustic power entering
the ear, thereby obtaining the net cochlear power
gain. For soft sounds, the energy flux at the peak was 1
±0.6 dB less than the middle ear input power. For
more intense sounds, increasingly smaller fractions of
the acoustic power actually reached the peak region.
Thus, we found no net power amplification of soft
sounds and a strong net attenuation of intense
sounds. Second, we analyzed local wave propagation
on the basilar membrane. We found that the waves
slowed down abruptly when approaching their peak,
causing an energy densification that quantitatively
matched the amplitude peaking, similar to the growth
of sea waves approaching the beach. Thus, we found
no local power amplification of soft sounds and strong
local attenuation of intense sounds. The most parsi-
monious interpretation of these findings is that
cochlear sensitivity is not realized by amplifying
acoustic energy, but by spatially focusing it, and that
dynamic compression is realized by adjusting the
amount of dissipation to sound intensity.
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INTRODUCTION

The cochlea is both a transducer that converts sound to
neural activity and a frequency analyzer that separates
acoustic components. Its elongated fluid-filled cavities
are separated by a thin elastic structure, the basilar
membrane (BM), whose motion is coupled to sensory
cells. The BM supports traveling waves that have two
crucial, but poorly understood properties. First, their
amplitude changes drastically during propagation,
exhibiting a peak that shifts position with frequency.
This frequency mapping underlies the spectral analysis.
Second, soft sounds evoke sharper peaking than do
intense sounds. This intensity dependency reflects the
ear’s dynamic range compression.

In the 1980s, the failure of classical fluid-mechanical
models to account for these unusual wave properties led
to the introduction of Bactive models,^ in which the
peaking of the wave is associated with a region of negative
damping (Kim et al. 1980b; Neely 1985). In this scenario,
motile processes in outer hair cells (OHCs) amplify the
waves. The injection of mechanical energy by this
Bcochlear amplifier^ is assumed to improve the sensitivity
to soft sounds, and its saturation is invoked to explain
compression (Ashmore et al. 2010).

Cochlear amplification has slowly gained acceptance
and is now the dominant view. There is a recent trend to
present cochlear amplification as proven (e.g., Hudspeth
2013) even though the evidence quoted in favor of it
comes from older studies: the loss of cochlear sensitivity
following OHC damage (Evans and Harrison 1976) and
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the existence of spontaneous emissions (Kemp, 1979).
Until recently, that same evidence was more cautiously
described as impressive, but inconclusive (Robles and
Ruggero 2001; Ashmore 2008; Shera 2007), since both
physiological vulnerability and spontaneous emissions
leave room for alternative explanations not based on
amplification. For instance, while it is undisputed that
OHCs control BM motion, that is not to say that they also
drive the vibrations in the sense of supplying the mechan-
ical energy. In an alternative scenario, OHCs control BM
motion by functioning as brakes that cause mechanical
energy to be absorbed rather than injected (Allen 1979). A
combination of the two roles, i.e., amplification at low
intensities and variable attenuation at high intensities, is
also conceivable. Spontaneous emissions certainly seem to
reveal processes capable of producing mechanical energy
(Talmadge et al. 1991), and there have been many
modeling attempts to link them to some form of
amplification (Shera 2003a; Duke and Jülicher 2008),
but to conclude from their mere existence that the
cochlea systematically amplifies its acoustic input at all
frequencies is rather tentative. Spontaneous emissions
may also be side effects of other forms of mechanical
control exerted by OHCs, for instance, negative feedback
of an automatic brake system. Particularly in the presence
of delayed coupling and tuned circuits, feedback, even
when negative, easily gives rise to ringing and other
instabilities (Doyle et al. 1992). It is also noteworthy that
spontaneous emissions are extremely rare in normal-
hearing nonprimate laboratory animals (Martin et al.
1988) and that even in normal-hearing humans, their
incidence is ∼40 % (Wier et al. 1984).

Arguably, the most problematic aspect of the
putative amplifier (and a good reason to keep an
open mind toward alternatives) has been its physio-
logical implementation (Ashmore et al. 2010).
Amplification requires phase-locked motile feedback
at high frequencies (9150 kHz in some species). While
somatic OHC motility by itself may be fast enough
(Frank et al. 1999), it is difficult to see how the AC
component of the OHC receptor potential evoked by
near-threshold sounds can have sufficient amplitude
to drive motility at such high frequencies, as it is
shunted by the membrane capacitance (Cody and
Russell 1987). It is unknown whether the alternative
mechanism, hair bundle motility (Kennedy et al.
2006), can operate at these very high frequencies.
For a parametric (rather than cycle-by-cycle) opera-
tion of OHCs, such as braking or adjusting the radial
profile of BM motion (Ren and Gillespie 2007), high-
frequency limitations are not a problem.

Rather than relying on circumstantial evidence, a
number of studies have attempted to estimate the
amount of amplification based on measurements in
the auditory periphery. Combining auditory nerve
recordings and otoacoustic emissions, Allen and

Fahey (1992) found a negative result, although their
conclusions have been disputed by others (Shera
2003b; de Boer et al. 2005). Cochlear mechanical
measurements are an obvious choice for tests of
amplification. In sensitive cochleae, the range of
sensitivity, assessed by normalizing BM vibrations to
the middle ear response, exceeds 50 dB, and compres-
sive growth persists to at least 100 dB sound pressure
level (SPL) (Rhode 2007). Thus, if a simple Bsaturating
amplifier^ were the only explanation of cochlear
compression, one would expect it to provide at least
50 dB of amplification at low intensities (as is indeed
the case for simplified positive-feedback models like
that of Cooper 1998) and persist to amplify to very high
intensities. Estimates of power gain at low intensities
derived from BM and neural data are variable: 40 dB
(Brass and Kemp 1993), 12 dB on average with
confidence intervals spanning [−4, ∞]dB (Shera
2007), and 0.4–17.7 dB (de Boer and Nuttall 2001).
The intensity range over which BM recordings and
intracochlear pressure measurements appear to indi-
cate amplification, is restricted to low and moderate
intensities in some studies (e.g., Olson 2001), whereas
in other studies, it appears to extend to high intensities
(de Boer and Nuttall 2000; Dong and Olson 2009). The
large variability among these studies is not well
understood but suggests that further work is needed
and that novel methods are welcome.

Active cochlear models implement amplification by
introducing a negative real part of cochlear imped-
ance (negative damping) over a limited, frequency-
dependent cochlear region just basal to the peak of
the wave. When traversing this region, the wave picks
up energy. In this region, then, there should be a
local power gain, i.e., a positive gradient in energy
flux. Here, we tested this prediction by determining
the energy flux of the traveling wave and by compar-
ing this flux both to the power input to the middle ear
(net gain) and across adjacent locations on the BM
(local gain). We base our analyses on BM recordings
at two adjacent locations, which allow a more direct
analysis of the energy transport under scrutiny than
previous analyses based on single-point BM recordings
or neural data.

METHODS

BM Recordings

Details of the animal preparation, experimental setup,
and stimuli are described in a recent publication
(Versteegh and Van der Heijden 2013). BM motion
was measured from pairs of locations spaced 145–
252 μm in seven cochleae of Mongolian gerbil
(Meriones unguiculatus; ∼60 g) in the 12–21-kHz
region, using a Doppler laser interferometer. All

582 VAN DER HEIJDEN AND VERSTEEGH: Evidence Against Cochlear Amplification



procedures were approved by the Erasmus MC
laboratory animal committee. Animals were anesthe-
tized, and the pinna was removed, followed by
opening the bulla, which gave access to the round
window. After tearing the round window membrane,
reflective beads were inserted into the cochlea and
allowed to settle on the BM. A glass cover slip
placed over the round window stabilized the air-
fluid interface. The use of reflective beads allowed
the recording of phase-locked, sub-nanometer BM
vibrations in response to sounds of very low
intensities (down to 0 dB SPL) by improving the
signal to noise ratio and preventing the interfer-
ence of spurious reflections from neighboring
structures. The specific mass of the beads (1.03
times that of water), their small size (20–25 μm,
i.e., an order of magnitude smaller than the
wavelength of the traveling wave), and their
incompressibility minimize their interference with
the traveling wave and BM motion; indeed, these
beads were shown to have little effect on BM
motion in sensitive cochleae (Cooper 1999). For
data to be included in the analysis, bead position
had to be stable during data collection (variations
G10 μm, monitored using the online camera built
into the vibrometer and from the adjustment of
the micrometers for horizontal beam positioning).
The physiological condition of the cochlea was
judged from the lower intensity limit at which the
BM response showed compressive nonlinearity
(Rhode 2007). Only data were accepted from
sensitive cochleae that showed compressive nonlin-
earity down to 10-dB SPL per component or lower
(Fig. 1).

In order to be accepted for analysis, spectral
components from the recordings must show
Rayleigh significant (pG0.001) phase locking to the
stimulus (Versteegh and Van der Heijden 2012).
These acceptance criteria exclude any data from
insensitive and damaged cochleae, from which a
significant phase locked responses to 10-dB-SPL
stimuli—whether linear or not—cannot be record-
ed at all. All data were collected within 2.5 h from
the tearing of the round window membrane. Best
frequency (BF) was determined from the peak of
the velocity-frequency curves normalized to stapes
motion.

Custom MATLAB software computed stimuli that
were sent to a TDT System 3 (24-bit D/A channel at
111.6 kHz; Tucker-Davis Technologies, Alachua, FL,
USA). A probe sealed with Vaseline to the bony rim of
the ear canal delivered sound stimuli. After correction
for the acoustical transfer of the probe, the spectrum
varied G4 dB in the 5–25-kHz range. A single-point
laser vibrometer (OFV-534; Polytec, Waldbronn,
Germany) connected to a velocity decoder (VD-06;

Polytec) and TDT System 3 (24-bit A/D channel at
111.6 kHz) measured BM velocity of two locations in
response to the same stimuli consecutively.

For the data underlying the group velocity mea-
surements (Fig. 3), stimuli were tone complexes with
an average frequency spacing of either 700 or 300 Hz
and a bandwidth of ∼2500 Hz, presented at a total
intensity of 16–86 dB SPL in 10-dB steps. Irregular
spacing of frequency components ensured that com-
bination tones up to the third order did not coincide
with any of the primary components (Meenderink
and Van der Heijden 2011). A single stimulus lasted
60 s but could be repeated up to three times and the
responses averaged. Group delays were determined
using two methods. In the temporal method, the
envelopes were extracted from the BM velocity
response using a Hilbert transform and squared to
lead to instantaneous power (up to an irrelevant
scaling factor). Cross-correlation functions of the
squared envelopes between the recording locations
were computed, and the location of the maximum was
determined. The fluctuations recorded at all three
locations (stapes and the two beads) were highly
similar (Fig. 3B; correlations between squared enve-
lope 90.9). Thus, the power fluctuations of the
stimulus were not deformed by excessive dispersion
or nonlinearity, allowing the straightforward assess-

FIG. 1. BM responses showing high sensitivity and compressive
nonlinearity at low intensities. BM responses from two adjacent
locations, normalized to stapes response. Nonlinear compressive
growth of the cochlear response is apparent from the systematic
decrease of stapes-to-BM gain with sound intensity. Any cochlear
trauma causes a linearization at lower levels, which would cause the
lower-intensity curves to overlap. Conversely, the persistence of
nonlinearity down to the lowest intensities is a stringent test of
cochlear sensitivity. Our criterion for data inclusion was the
persistence of compression down to 10-dB SPL per component or
better. Data shown were obtained from one of the five cochleae used
for group velocity measurements (Fig. 5). Intensity was varied from 0-
to 70-dB SPL per component in 10-dB steps. At both locations, the
amplitude curves showed compression down to 0-dB SPL, the lowest
intensity used (animal RG12433).
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ment of energy travel time from the response
envelopes. In the spectral method, phase difference
between the locations was plotted against frequency,
and a third-order polynomial was fitted to these
curves. The slope of these fits was then evaluated at
BF. The two methods are compared in Figure 3D. As
expected from the physical significance of group
velocity as the speed of energy transport (Whitham
1974), the two methods were equivalent. The average
data in Figure 3F were linearly extrapolated from 16–
86 to 10–90 dB SPL in order to be applied to the
energy flux analysis shown in Figure 4.

The local transfer functions (see BResults^ section)
shown in Figures 6 and 7 were obtained using the
same type of irregularly spaced tone complexes, this
time spanning a larger frequency range. In all
recordings, the lowest-intensity stimuli were presented
first, and the responses at both locations were
recorded before moving to the next (higher) stimulus
level. This order of stimulus presentation prevents any
temporary reduction of cochlear sensitivity induced
by prolonged high-intensity stimulation (Versteegh
and Van der Heijden 2013) from affecting lower-
intensity recordings.

Analysis of Fluid Motion

This section describes the details of the estimates of
kinetic energy density leading to the findings present-
ed in BResults^ section (Fig. 4A–C). Estimating kinetic
energy required analyzing the motion of the fluid
surrounding the BM. Large parts of the BM are
surrounded by free fluid or by supporting cells which,
lacking any structurally stiff parts, behave like mallea-
ble bags of fluid (Steele and Taber 1979a). Supporting
cells that have structural stiffness are organized in
tunnels that do not impede longitudinal flow and/or
in structures with abundant gaps, allowing the fluid to
flow around them. Motivated by this anatomy (Lim
1986), the fluid was treated as freely moving. This
reduces the analysis to solving the Laplace equation
for irrotational fluid motion, using the two-
dimensional pattern of BM reported by Ren et al.
(2011a) as boundary conditions.

The analysis employs the analytical framework
described by Steele and Taber (1979a) for computing
three-dimensional fluid motion from the transverse
motion profile of the BM and the geometry of the
rigid boundaries. Fluid motion is described by a
velocity potential obeying Laplace’s equation ∇2ϕ=0.
Rectangular boxes represent the scalae; (x,y,z) denote
longitudinal, radial, transverse directions (Fig. 2).
Width and height, L1=L2=500 μm, were chosen to
match the cross-sectional area in the gerbil’s basal
turn; the inner bony shelf width wS=250 μm
(Plassmann et al. 1987).

The boundary conditions are

∂ϕ
∂y

¼ 0 for y ¼ 0;L1;

∂ϕ
∂z

¼ vBMη yð Þcos kx−ωtð Þ for z ¼ 0;
∂ϕ
∂z

¼ 0 for z ¼ �L2:

ð1Þ

Here, vBM is the amplitude of transverse BM
velocity at its radial maximum; η(y) combines the
normalized radial profile of BM displacement with the
vanishing displacement of the bony shelves. The
cosine represents the longitudinal traveling wave
having wave number k and angular frequency ω.
Although this analysis is strictly valid only for a
homogeneous duct with nonvarying properties, its
application to the cochlea with its stiffness gradient
and subsequent longitudinal wavelength variation is
justified by the gradual nature of these gradients. As
explained in Sec. III of Steele and Taber, these are
the same conditions that justify the WKB approxima-
tion. Equation 7 of Steele and Taber provides the

FIG. 2. Schematic cross section of cochlear ducts used for
calculating the fluid motion near the BM. This cross section
illustrates the boundary conditions for the Laplace equation describ-
ing the irrotational fluid motion. All boundaries are rigid except the
basilar membrane (BM), whose motion is prescribed by the two-
dimensional data of Ren et al. (2011a). The BM is suspended
between the osseous spiral lamina (OSL) and the spiral ligament (SL).
Dimensions L1, L2, and ws are provided in the text.
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solution ϕ as a series of elementary functions,
and we used this expression to compute the
spatial distribution of kinetic energy shown in
Figure 4A. Whereas Steele and Taber used
standard modes of an elastic beam for the radial
profile η(y), we inserted the radial profile of BM
motion measured by Ren et al. (2011a) and
values of wave number k derived from these same
data. For the time average kinetic energy per unit
length EK, Eq. 16b of Steele and Taber provides
the expression

EK ¼ 1
2
ρheqv2BM

Z

0

L1

η2 yð Þdy; ð2Þ

with ρ the fluid mass density and heq an equivalent
thickness of fluid moving with the BM. heq depends
on η(y) and on the wavelength λ=2π/k (Eq. 14b of
Steele and Taber 1979a). The normalized radial
profile η(y) was obtained from Figure 2C of Ren

et al. (2011a), yielding ∫
0

L1

η2 yð Þdy=35 μm, which may
be viewed as an effective width of the fluid motion.
The wavelength λ was obtained by fitting parabolas
to the phase curves in Figure 4B of Ren et al.
(2011a) and evaluating their slopes at the 16-kHz
location at 2500 μm from the stapes. With increas-
ing intensity (10–90 dB SPL), λ increased from 254
to 403 μm, causing heq to vary from 31 to 43 μm.
BM displacement amplitudes ξBM were taken from
the raw data underlying Figure 4A of Ren et al.
(2011a), evaluated over a 20-μm stretch around the
2500-μm location. Displacement was converted to
velocity using vBM=ω ξBM. The confined character
of the spatial distribution of EK (Fig. 4A) and the
fact that kL1991,kL2991 imply that the scalae do
not constrain the fluid motion; the wave is a deep-
water wave and genuinely three-dimensional
(Steele and Taber 1979b). Indeed, varying L1

and L2 by ±50 % and wS from 50 to 400 μm
affected EK by less than 0.2 dB. Thus, the exact
geometry of the fixed boundaries (Fig. 2) is not
critical to the estimate.

Relation Between Wave Amplitude and Group
Velocity

This section presents the mathematical underpin-
ning of the analysis of group velocity gradient and
local amplitude gain presented in BResults^ section
when discussing the low-intensity curves of Figure 6.
We assume that the power flux P is constant (i.e.,
the wave is neither amplified nor attenuated) and
analyze the consequences of this Ansatz. P is the
product of group velocity and energy density; from

the equality of time average kinetic and potential
energy, given a local displacement amplitude A and
local stiffness s,

P ¼ 1
2
U sA2: ð3Þ

When the power flux P is constant (neither
amplified nor attenuated), the amplitude ratio G12

between adjacent locations 1 and 2 obeys

G2
12 ¼ A2=A1ð Þ2 ¼ s1U 1

s2U 2
: ð4Þ

Here, 1 and 2 are the basal and apical locations,
respectively. In the interpretation of data as shown in
Figures 6 and 7, it is important to realize that the
amplitudes measured at two adjacent locations may
differ by an additional unknown factor due to slight
differences in radial position of the two reflective
beads. This factor is independent of frequency and
intensity (Cooper 2000). From the measurements,
therefore, G12 can be determined up to an unknown
constant factor.

In the familiar example of sea waves entering a
shallow beach, gravity plays the role of restoring force
(Bstiffness^), and its constancy, s1=s2, reduces the RHS
of Eq. 4 to the ratio of group velocities. In that case,
the spatial variation of group velocity is entirely
caused by the dependence of effective fluid mass on
water depth. In the cochlea, s1/s2 differs from unity
owing to the longitudinal stiffness gradient. This is
taken into account as follows. In the low-frequency
limit, the waves are long and one-dimensional. There
is no dispersion: at a fixed location, group velocity ULF

and phase velocity cLF are equal and constant in the
low-frequency limit:

U LF ¼ cLF ¼
ffiffiffiffiffiffiffiffi
s=m

p
; ð5Þ

where m is the cross-sectional fluid mass per length
unit, and the subscript LF denotes the low-frequency
limit. Using Eq. 4, the local amplitude gain G12,LF in
the low-frequency limit becomes

G2
12;LF ¼

s1
s2

� �3=2

: ð6Þ

This expression is independent of frequency and
wavelength; it corresponds to the flat, linear, low-
frequency portion of the local gain functions
(Figs. 6 and 7; Figs. 2 and 3 of Ren et al. 2011b).
When normalizing G12 by G12,LF (which also
eliminates the unknown geometric factor arising
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from possible differences in radial position of the
two beads), one obtains

G12=G12;LF

� �2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
s2=s1

p U 1

U 2

≡γ12
U 1

U 2
:

ð7Þ

Apart from the factor γ12, the normalization of the
gain reduces the expression for the amplitude gain to
the ratio of local group velocities, just like the case of
sea waves approaching the beach. For nearby record-
ing locations, γ12 is slightly smaller than one. Based on
a frequency map created by longitudinal stiffness
variations proportional to the square of BF (Emadi
et al. 2004), γ12 equals the ratio of the BFs at the two
locations

γ12 ¼
f best;2
f best;1

; ð8Þ

which gives γ12=0.82 and γ12=0.79 for the data shown
in Figures 6 and 7, respectively.

When relating the phase and gain curves of the
local transfer functions in Figure 6, it is important to
realize that the asymptotic slopes of the phase curves
τLF and τHF do not directly correspond to U1 and U2:
the latter are the group velocities at the two locations
at a given frequency; the former correspond to group
velocity in two frequency ranges at a given location.
The two pairs are related by tonotopy (Bscaling^). On
account of the scaling invariance of U/ω (see Eq. 15
below), their ratios are related by

U 1

U 2
¼ f best;1

f best;2

τHF

τ LF

¼ 1
γ12

τHF

τ LF

;

ð9Þ

leading to the simple relation between normalized
peak gain and asymptotic slopes

G12=G12;LF

� �2 ¼ τHF

τLF

: ð10Þ

Equation 10 is the mathematical underpinning of
the scaling argument used in the discussion of
Figure 6 in the main text.

Degree of Damping of Waves

This section clarifies the derivation of the degree of
damping presented in BResults^ section when
discussing the high-intensity curves in Figure 6. A

vibrating system is called critically damped when its
amplitude decreases by a factor e2π during each cycle
of its (unforced) oscillation, so the rate of decay of the
energy equals 20 log(e2π)=54.6 dB per cycle. In an
underdamped (overdamped) system, the losses are
smaller (larger). The degree of damping is expressed
by the dimensionless damping coefficient ζ=L/54.6,
where L is the temporal decay rate of energy decay of
the system in decibel per cycle. Critical damping
corresponds to ζ=1. These definitions apply to travel-
ing waves without modification. Now, the energy, in
addition to being dissipated, is moving at the group
velocity (Lighthill 1978). In a nondispersive wave,
group velocity equals phase velocity, and the loss
per spatial cycle equals the loss per temporal cycle.
In a dispersive wave, the two are related through
the ratio χ=c/U of phase velocity c to group
velocity U, yielding a spatial decay rate of 54.6χ
dB/cycle for a critically damped wave. Using the
definitions of phase and group velocity in terms of
phase, frequency, and distance (Whitham 1974),
the ratio χ can be readily extracted from local
phase transfer functions (φ12 versus f) using
χ=U/c=φ12/(f ∂φ12/∂f), where f is the frequency,
φ12 is the phase difference between the locations,
and ∂φ12/∂f is the slope of the phase-frequency
curve. For the 80-dB-SPL curve at 14 kHz
(Fig. 6D), one obtains χ=3.0. Thus, for these waves,
critical damping would correspond to a spatial
power decay rate of 164 dB/cycle. The observed
rate of 36 dB/cycle (see BResults^ section) shows
that the wave is underdamped, having a dimen-
sionless damping coefficient of ζ=36/164=0.22.

Relation Between Local Amplitude Gain
and Local Phase Difference

This section describes the derivation of the predic-
tions of the phase curves presented in BResults^
section (Fig. 7B). Scaling invariance (Zweig 1976)
states a trade-off between the frequency dependence
and place dependence of the phase φ of BM
displacement, which equals the phase of the excess
pressure when damping is small (Lighthill 1978), of
the form

φ x;ωð Þ ¼ −Φ αx þ νð Þ; ð11Þ

where α is the gradient of the frequency-place map,
and

ν ¼ logω=ωre f ; ð12Þ
with ωref an arbitrary reference frequency. The local
wave number (spatial frequency) k then becomes

k ¼ ∂Φ=∂x ¼ αΦ 0 αx þ νð Þ; ð13Þ
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where the prime denotes the derivative. The group
velocity U equals

U ¼ ∂ω=∂k; ð14Þ
hence

U −1 ¼ ∂k=∂ω ¼ αΦ″ αx þ νð Þ∂ν=∂ω

¼ α

ω
Φ″ αx þ νð Þ: ð15Þ

Combining Eqs. 7 and 15 and defining

~G12 ¼ G12ffiffiffiffiffiffiffi
γ12

p
G12;LF

; ð16Þ

it follows

~G
2

12
νð Þ ¼ U x1; νð Þ=U x2; νð Þ

¼ Φ″ αx2 þ νð Þ=Φ″ αx1 þ νð Þ: ð17Þ

Defining

h νð Þ ¼ 1
2
logΦ″ ν þ αx1ð Þ; ð18Þ

it follows

log~G12 νð Þ ¼ h ν þ αDð Þ−h νð Þ; ð19Þ

where D is the distance x2-x1 between the recording
locations. The phase difference Φ12 between locations
x1 and x2 equals

Φ12 νð Þ ¼ Φ αx2 þ νð Þ−Φ αx1 þ νð Þ

¼ α

Z
x1

x2

dxΦ 0 αx þ νð Þ

¼ α

Zν

ν0

dμ
Z
x1

x2

dxΦ″ αx þ μð Þ;

ð20Þ

where the lower bound ν0=log(ω0/ωref) of the first
integral is indefinite, leading to an arbitrary integra-
tion constant. Combining Eqs. 18 and 20 yields

Φ12 ωð Þ ¼ α

Zlogω

logω0

dμ
ZD

0

dx e2h αxþμð Þ: ð21Þ

The local transfer data (Figs. 6 and 7) consist of the
phase difference Φ12 and amplitude gain G12, both as a
function of frequency. Equations 19 and 21 link these two
measurable quantities in terms of the auxiliary function
h(ν). In order to predict Φ12 from the G12 data, we first

obtained h(ν) by numerically solving Eq. 19. This yielded
h(ν) up to addition of an arbitrary periodic function with
period αD. This ambiguity was resolved by selecting the
most regular h(ν) obeying Eq. 19, i.e., by minimizing

Z
dν h″ νð Þð Þ2 ð22Þ

over the range of ν values dictated by the data. This
fixes h(ν) up to an additive constant (in the numerical
computations, solving Eq. 19 and minimizing Eq. 22
were realized by interpolating the data on a fine grid
and solving the discrete versions of these equations
using linear algebra). The h(ν) thus obtained was
inserted into Eq. 21 to yield the predicted local phase
transfer Φ12(ω). The undetermined integration con-
stant of Eq. 21 and the arbitrary additive constant to
h(ν) result in an indefinite offset and scaling factor,
respectively. Their values were chosen to best fit the
phase data in a least square sense.

RESULTS

Net Power Gain

All traveling waves transport energy. The energy flux
is the product of the energy density and the speed at
which it travels. In dispersive media like the cochlea,
the speed of the energy differs from the visible speed
of wave crests. Instead, it equals the propagation
speed of entire wave packets (Lighthill 1978), hence
its name Bgroup velocity.^

We determined group velocity in sensitive cochleae
by measuring vibrations of the stapes and two
neighboring BM locations (Fig. 3A) in response to
narrowband sound stimuli. These stimuli are an
ongoing series of wave packets because of their
magnitude fluctuations. The same fluctuations were
found in the recorded waveforms. In order to quantify
the power fluctuations, we extracted the Hilbert
envelope from the recordings at all three locations.
The squared envelopes were highly similar across the
three locations (Fig. 3B; correlations 90.9). Thus, the
power fluctuations of the stimulus were not deformed
by excessive dispersion or nonlinearity, allowing the
straightforward assessment of energy travel time from
the response envelopes. The alternative method
employs the slopes of phase-frequency curves
(Fig. 3C). The two methods produced equivalent
results (Fig. 3D), as expected from the generality of
the group velocity concept and its physical signifi-
cance as the velocity of energy transport in traveling
waves under a wide range of conditions including
damping and nonlinearity (Lighthill 1965; Whitham
1974). Group delay depended strongly on sound
intensity (Fig. 3E). Group velocity in five sensitive
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cochleae increased with intensity, varying from 0.9 m/
s at 10 dB SPL to 2.1 m/s at 90 dB SPL (Fig. 3F). Thus,
the acoustic energy, which approaches the ear at
340 m/s, is decelerated to a mere walking pace prior
to sensory detection. Comparable low-intensity group
velocities of ∼1 m/s can be inferred from published
data of sensitive cochleae (Ren et al. 2011a; Rhode
and Recio 2000). Our high-intensity values are some-
what lower than the rough 3-m/s estimate by Lighthill
(1981) based on 85-dB-SPL data from a damaged
cochlea (Rhode 1978).

Next, we estimated both the kinetic and potential
energy densities in the cochlea. The equality of their
time averages (Lighthill 1978) provides an important
cross-check. In order to estimate the kinetic energy,
three-dimensional motion of the fluid surrounding
the BM was computed from known spatial profiles of
BM motion (Ren et al. 2011a) using a fluid-dynamic
analysis (see BAnalysis of Fluid Motion^ section in
BMethods^). From the three-dimensional fluid mo-
tion, the cross-sectional distributions of velocity mag-
nitude were determined (Fig. 4A). Fluid motion was
found to decay exponentially with distance from BM,

characterized by an Bequivalent thickness^ (Steele
and Taber 1979b). Wavelength varied strongly with
intensity (Ren et al. 2011a); equivalent thickness
varied in proportion (Fig. 4B). Thus, fluid motion
was confined to smaller cross sections for softer
sounds. Kinetic energy distributions were computed
for each intensity and spatially integrated.

Potential energy was obtained by combining BM
stiffness data (Emadi et al. 2004) with data on BM
displacement (Ren et al. 2011a). A point stiffness of
0.79 N/m at the 16-kHz place of the gerbil cochlea
measured by Emadi et al. (2004) with a probe tip
diameter of 25 to 50 μm amounts to a stiffness per
unit length s=2.1×104 N/m2. Alternative estimates
from the literature are addressed in BDiscussion^
section. The time average potential energy per unit
length equals ¼ sξBM

2, where ξBM is the displacement
amplitude at the peak of the wave, extracted from
Figure 4A of Ren et al. (2011a). The potential and
kinetic energy estimates matched well (Fig. 4C). Their
slight (1.7 dB) divergence toward high intensities may
be attributed to the fact that in vitro stiffness data,
measured using a glass fiber, do not incorporate the

FIG. 3. Measuring the speed of cochlear energy transport. A
Schematized cochlea with recording locations indicated: stapes (St)
and two adjacent basilar membrane (BM) locations (1, 2). B
Waveforms recorded at these locations evoked by narrowband
sounds. Relative delays of magnitude fluctuations reflect energy
travel times. C Phase difference between locations 1 and 2 versus
frequency at various intensities (indicated in dB SPL). Triangle marks

best frequency (BF). D Comparison of group delays estimated from
phase-frequency plots (abscissa) and from temporal comparison of
magnitude fluctuations (ordinate). Unity line is shown for reference
(black line). E Intensity-dependent group delay between locations 1
and 2. F Group velocity at BF from five cochleae, BFs 12.7–
18.2 kHz. Thick black line: mean, linearly extrapolated to the 10–
90 dB-SPL range (B–E: animal RG12448).
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effect of stimulus intensity, whereas the wavelength
data of Figure 4B suggest that in vivo stiffness
increases somewhat with intensity.

The energy flux of the wave at its peak was
obtained by multiplying group velocity and energy
density (Fig. 4D). These estimates were compared to
the power input to the middle ear PME=Re(p

2/ZME),
with p the RMS sound pressure near the eardrum and
ZME the middle ear impedance. From Figure 11 of
Ravicz et al. (1992), ZME at 16 kHz is real and equal to
6×107 Pa s/m3. At 0 dB SPL, the RMS sound pressure
is 20 μPa, yielding PME=6.67×10

-18 W at 0 dB SPL.
Alternative estimates from the literature are addressed
in BDiscussion^ section.

Up to 40 dB SPL, traveling wave power was slightly
less than the acoustic middle ear input; at higher
intensities, it fell behind. The net power gain from
middle ear to the peaking wave (Fig. 4E) was never
positive. Thus, we found no indication of a net power
gain. Averaged over intensities ≤40 dB SPL, the gain
was −1.0±0.6 dB. Thus, 20±11 % of the power is lost.

With increasing intensity, the gain dropped to −34 dB.
Thus, at 90 dB SPL, only 0.04 % of the energy
entering the ear actually reached its characteristic
place in the cochlea.

Local Power Gain

The amplitude of the traveling wave is known to
exhibit a local peak near its best place, particularly at
low SPLs (e.g., Ren et al. 2011a). The rising flank of
the peak necessarily exhibits a local amplitude gain.
This, however, does not necessarily imply that there is
also a local power gain. That the wave amplitude may
well grow without injecting energy is illustrated by sea
waves approaching the beach. Their growth is not
caused by a coastal amplifier. The propagation speed
depends on depth: when the wave enters shallower
water, group velocity decreases (Lighthill 1978),
causing an energy densification (Bcongestion^) that
boosts the amplitude. Although this geometry of

FIG. 4. Net power gain in the traveling wave. A Cochlear cross
section showing the spatial distribution of fluid velocity magnitude
(16 kHz, 50-dB-SPL tone). Contour spacing 3 dB (twofold reductions
in kinetic energy). Organ of Corti sketched for reference. B Intensity
dependence of wavelength at 16 kHz. Right abscissa: equivalent
thickness of fluid motion (see text). C Energy density estimates
derived from BM data of Ren et al. (2011a). Triangles: kinetic energy
per unit length, summed over the cross section, of the 16-kHz wave
at peak location, with error bars based on across-animal variation of

BM displacement. Circles: potential energy, with error bars combin-
ing across-animal variation of BM displacement with spread in BM
stiffness data. D Energy flux of the 16-kHz traveling wave at the 16-
kHz place of the gerbil cochlea, derived from the data in the
previous panel, using the same symbols and colors. Solid line:
middle ear power input. E Net power gain from middle ear to
traveling wave peak, derived from the data in previous panel. Error
bars in D, E derive from across-animal standard errors in Ren et al.
(2011a).
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shoaling does not apply to the cochlea, the inverse
relation between local group velocity and local wave
amplitude is a general property of traveling waves
(Whitham 1974), and there may exist in the cochlea
other factors that affect group velocity. Amplitude
peaking by wave deceleration occurs in passive
resonant models (Lighthill 1981), but the idea is
more general: it also applies to scenarios in which
wave dispersion has nothing to do with resonance
(Ranke 1950; Van der Heijden 2014).

Experimentally, wave deceleration in the cochlea is
apparent from panoramic neural measurements,
obtained by comparing the responses to the same
stimulus across many single nerve fibers. These data
show that the cochlear traveling wave slows down
quite abruptly just prior to peaking (Kim et al. 1980a;
Van der Heijden and Joris 2006; Palmer and
Shackleton 2009; Temchin et al. 2012). An example
of this abrupt deceleration is shown in Figure 5, which
reproduces spatial phase profiles in a single cochlea
from Kim et al. (1980a). The key question is: can the
local amplitude growth be accounted for by the local
deceleration of energy transport? If so, there is no
obvious role for power amplification. We addressed
this question by studying local amplitude gain and
group velocity in finer detail.

We measured in vivo BM vibrations at two adjacent
locations, this time using a wideband multitone
stimulus presented at various SPLs (see BBM

Recordings^ section in BMethods^). Figure 6A shows
two sets of magnitude curves, normalized to stapes
motion. Stapes-to-BM amplitude gain decreased with
increasing intensity, reflecting the compressive nature
of the BM response. Compression was evident at the
lowest intensities used (0 dB SPL per tone),
indicating the high sensitivity of this cochlea.
Figure 6B shows the companion phase curves.
From these two sets of single-point data, we
constructed the local transfer functions as intro-
duced in Ren et al. (2011b) by plotting the
amplitude ratio and phase difference between the
two locations against frequency.

The local amplitude gain functions (Fig. 6C) quan-
tify the wave peaking. The low-frequency portion was
flat and invariant with intensity. In this linear, passive
range, the amplitude ratio between adjacent locations
is fixed by the BM stiffness gradient. We used this
Bpassive amplitude ratio^ of this linear range (lower
horizontal black line in Fig. 6C) as the reference for the
amplitude gain in the nonlinear, Bactive^ range (see
BRelation Between Wave Amplitude and Group
Velocity^ section in BMethods^ for mathematical
underpinning). At higher frequencies, local gain
became strongly intensity dependent. This compres-
sive range is commonly associated with amplification.
Positive amplitude gains were observed only at low
sound intensities (G40 dB SPL). The largest gain
(∼10 dB above the low-frequency reference, marked
by the two-sided arrow in Fig. 6C) occurred for the
lowest intensity (0 dB SPL) just below local best
frequency (BF). This maximum local gain captures
the steepest part of the growing flank of waves on
their way to peaking beyond the recording site.

The companion phase transfer functions (Fig. 6D)
curve downward, independent of sound intensity. As the
slopes correspond to group delay, this means that low-
frequency energy travels faster than high-frequency
energy. Considering the frequency-place map, this
implies that the energy slows down as it travels, in
agreement with the neural data reproduced in Figure 5.
The deceleration occurs just prior (basal) to the wave’s
peak region. Deceleration was abrupt at the low
intensities (Fig. 6D, blue curves) and turned smoother
with increasing intensity. For the softest sounds (0 dB
SPL), a G20 % increment in frequency produced a
tenfold reduction in group velocity (black lines in
Fig. 6D). Since the best frequencies of the two recording
locations differed by ∼20 %, the group velocity of waves
near the transition frequency fell tenfold between them.
This tenfold deceleration should cause a 10-dB increase
in energy density, a prediction matched by the observed
∼10-dB amplitude gain (two-sided arrow in Fig. 6C). The
quantitative match between phase bends and amplitude
gain was a general finding in sensitive cochleae. The
local amplitude gain was accounted for by the decelera-

FIG. 5. Deceleration of cochlear traveling waves shown by
panoramic neural data. These data were extracted from Figure 3 of
Kim et al. (1980a). The curves show the phase of many AN fibers of a
single ear of the cat in response to the same tone pair of 2100 and
2700 Hz. The abscissa is the cochlear position derived from the BFs
of the fibers. The distinct bend of the curves reflects the deceleration
of the waves, which occurs over a narrow region just basal to the
characteristic place of the tone marked by the filled circles.
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tion of the wave, and we found no indication of local
power gain.

With increasing intensity, amplitude gain dimin-
ished and turned into loss (Fig. 6C). Notice that the
transfer remained strongly compressive: the gain,
even when negative, continued to decrease with
intensity. Thus, at these high intensities, there was a
local amplitude reduction at all frequencies in the
nonlinear range. This shows at once that at these
intensities, the active mechanism that creates the
compression acts as a brake rather than an amplifier
(see BIntroduction^ section). In order to estimate the
local power loss at high intensities, one needs to
combine the local amplitude ratio with the change in
group velocity (just as was done for the 0-dB-SPL case
above). The 80-dB-SPL local phase transfer at 14 kHz
shows a sevenfold reduction in group velocity. In the
absence of damping, this deceleration of energy
transport would lead to an 8-dB local amplitude gain.
The observed 14-dB amplitude reduction (a gain of

minus 14 dB) therefore corresponds with a 22-dB
power loss caused by local damping. Given the 0.6-
cycle local phase difference, this corresponds to a
power loss of 36 dB per wave cycle, indicating that the
local wave propagation at 14 kHz, 80 dB SPL, was
underdamped with a dimensionless damping coeffi-
cient ζ=0.22 (see BDegree of Damping of Waves^
section of BMethods^). Notice that 14 kHz is below the BF
of the more apical of the two recording sites, so the 14-
kHz wave has not reached its own characteristic place.
Thus, a substantial amount of the energy of high-intensity
sounds is absorbed in the region situated basal to their
tonotopic place. The large size of the local losses and the
place where they occur are consistent with our earlier
observation (Fig. 4E) that only a minute fraction of the
acoustic energy of intense sounds reaches the character-
istic location. The bulk is dissipated just beforehand.

To further analyze the positive amplitude gain at
low intensities, we performed recordings using finer
frequency spacing. The local transfer functions

FIG. 6. Local amplitude gain and the deceleration of energy
transport. A BM amplitude normalized to stapes motion in response
to tone complexes presented at 0 to 80 dB SPL per component in 10-
dB steps. Each curve represents a single recording. The two sets of
curves were obtained from two adjacent locations in the same
cochlea (BF 15.0, 18.3 kHz), the darker curves corresponding to the
more basal location. B Companion phase curves. C Local transfer
functions obtained by plotting the local gain (i.e., amplitude ratio
across the two locations) against frequency. Lower black line marks
the low-frequency limit to which all the curves converge, indepen-

dent of intensity. This linear limit serves as the reference for the
excess gain of the intensity-dependent portions of the curves. Upper
black line marks the largest (10-dB) excess gain occurring in this
dataset. D Companion phase curves, showing the phase difference
between the two locations. The sharp bend at low intensities signals
the abrupt deceleration of energy transport just prior to the wave
peaking. The black lines match the slopes of the 0-dB-SPL curves
(dark blue) at both sides of the transition. Their slopes differ by a
factor of 10, marking the tenfold deceleration of the 0-dB-SPL curve
(animal RG12446).
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(Fig. 7A, B) showed the same trends as observed in
Figure 6: a positive local amplitude gain just below the
lowest BF and a sharp phase bend. Notice the subtle
effects of the 20-dB variation of stimulus intensity: a
reduction of the amplitude gain and a slight smoothing
and reduction of the phase bend. We derived the
mathematical relation between local amplitude gain
and phase transfer from the Ansatz that there is neither
net energy injection nor net dissipation, causing the
spatial gradient in group velocity to be the major
determinant of amplitude variation. We used this
mathematical relation to predict from the observed
amplitude gain the associated phase transfer (see
BRelation Between Local Amplitude Gain and Local
Phase Difference^ section in BMethods^). The predic-
tions (Fig. 7B, lines) correctly predict the location and
shape of the bend. For the lowest two intensities,
calculated phase curves were slightly too steep. This near
miss disappeared when allowing for a 1.8-dB underesti-
mation of the gain for the 0- and 10-dB-SPL curves
(Fig. 7C). The near miss suggests a small contribution of
a secondary factor (in addition to reduction of group
velocity), e.g., a simultaneous reduction in effective
stiffness or a very slight (G2 dB) amplification after all
(see BDiscussion^ section). Importantly, the calculations
faithfully reproduced the observed correlation between
amount of gain and sharpness of the phase bend, again
emphasizing the intimate relation between amplitude
growth and deceleration. Their quantitative match again
suggests that the amplitude gain is not created by energy
injection into the wave, but by the densification following
the deceleration of energy transport by the wave.

DISCUSSION

Summary

We estimated the net power gain from middle ear to
the peak of the traveling wave in two independent

ways. The first method, based on kinetic energy, used
the detailed spatial profile of BM motion (Ren et al.
2011a) to derive the motion of the surrounding fluid.
In the second method, we estimated the potential
energy from BM stiffness data (Emadi et al. 2004).
These two independent energy estimates were com-
bined with our own measurements of group velocity.
The two methods yielded highly similar values for the
energy flux, neither of which exceeded the middle ear
power input at any intensity. At high intensities, there
was a large (930 dB) net loss. Thus, we did not find
evidence for a net power gain at low intensities and
clear evidence for a net power loss at high intensities.

In a second series of experiments, we performed
two-point BM recordings and analyzed the local
energy flux. We observed a steep deceleration of the
wave that was sufficient to explain its peaking. We
found no local power gain between adjacent points on
the BM at any intensity. At high intensities, there was a
strong local power loss (36 dB per traveled cycle just
below BF).

Uncertainties in the Estimates of Net Power Gain

The determination of net power gain from middle ear
to the peaking wave necessarily involved combining
diverse sources of published data. This introduces
some uncertainty, especially when the sources dis-
agree. A fortunate circumstance was the availability of
all necessary data for the 16-kHz range of the gerbil:
no extrapolation was needed.

Uncertainties in BM stiffness estimation are due to
methodological challenges including the need to use
post mortem preparations, anisotropy of the anatom-
ical structures, and sensitivity to ion concentrations of
the bath (Emadi et al. 2004). The stiffness values of
Naidu and Mountain (1998) were systematically
higher than those of Emadi et al. (2004) employed
here. Underneath the OHCs, 2.5 mm from the base,

FIG. 7. Predicting local phase from local amplitude gain, assuming
zero power gain. A Low-intensity local amplitude gain obtained with
fine frequency spacing. Intensity per component is indicated in the
graph. B Companion local phase curves. Symbols: data. Lines:
prediction computed from the local amplitude data under the
assumption that there is no power gain, i.e., that the only source of

the local amplitude gain is the deceleration of the wave (see text).
The predictions accounted for 96.9 % of the variance in the phase
data. C As in B, but now allowing for a 1.8-dB near miss for the two
lowest intensities (see text), which eliminates the small systematic
deviations observed in B (animal RG12436).
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their stiffness values exceed that of Emadi et al. by a
factor of 3.4. Had we used the data of Naidu and
Mountain (despite the methodological issues
concerning those data raised by Emadi et al.), the
estimate of energy flux based on the potential energy
(circles in Fig. 4D) would be elevated by 5.3 dB,
yielding a 4.3-dB net power gain from middle ear to
BM at low intensities. But this would also introduce a
∼5-dB discrepancy between kinetic and potential
energy estimates, because the former are indepen-
dent of BM stiffness.

Middle ear losses present another source of
uncertainty, equally affecting the estimates based on
kinetic and potential energy. If, as suggested by de la
Rochefoucauld et al. (2008), only 30 % of the power
entering the middle ear is transferred to the cochlea,
this would elevate the energy flux estimates by 5.2 dB,
leading to a 4.2-dB value of the net power gain at low
intensities. Figure 11 of de la Rochefoucauld et al.
(2008) provides two alternative estimates of power
input to the cochlea, based on previous work (Olson
1998; Dong and Olson 2006). At 16 kHz, 0 dB SPL,
these cochlear power input estimates amount to
3.8×10−18 W and 1.2×10−18 W, respectively. Using
these values (instead of the 6.7×10−18 W value used
to compile Fig. 4E) would yield low-intensity, net
power gain estimates of 1.4 and 6.5 dB, respectively.
Notice that these alternative values were obtained
using considerably more invasive techniques (e.g.,
drilling a hole in the bony wall near the stapes) than
the data of Ravicz et al. (1992) that led to our minus 1-
dB estimate of net power gain at low intensities.
Perhaps more importantly, any uncertainties in acous-
tic power input are irrelevant in the measurement of
local power gain between adjacent cochlear locations,
which we found to be vanishing at low intensities and
increasingly negative at higher intensities (Figs. 6 and
7). Obviously, there can be no net gain without local
gain.

Considering the smallness of the potential correc-
tions and the mutual consistency of our three
independent estimates, it is difficult to reconcile our
findings with even a modest (5 dB) amount of power
amplification. In this respect, we fully confirm the
conclusions of Allen and Fahey (1992). Our findings
cast reasonable doubt on the existence of cochlear
power amplification and invalidate the much larger
(920 dB) estimates of power gain found in previous
studies as discussed below. In addition, our results
show that the propagation of waves at high intensities
is strongly dissipative. This is significant because the
cochlea’s dynamic compression persists to the high-
intensity range. Apparently, the active mechanism
works as a variable attenuator (Bbrake^) rather than
an amplifier at these intensities. Likewise, our findings
invalidate claims of negative damping persisting to

high intensities discussed below; if those claims were
correct, positive local power gains should be observed.

Previous Estimates of Power Gain and Negative
Partition Impedance

Brass and Kemp (1993) used a similar scheme to
deduce energy flux from BM recordings and found
significant power amplification. The crucial difference
between their study and ours is the assessment of
group velocity. Because they worked with single-point
recordings from Robles et al. (1986), they were unable
to assess group velocity directly and had to revert to
extrapolations based on tonotopy. Moreover, the
limited S/N ratio of the data (obtained with a
Mössbauer source) necessitated considerable numer-
ical smoothing of data in order to estimate group
velocity. The resulting estimated dependence of
group velocity on position (Fig. 2B of Brass and
Kemp 1993) is very shallow. In contrast, we deter-
mined group velocity by a direct comparison of
magnitude fluctuations between adjacent locations
(Fig. 3), did not apply any smoothing, and found a
steep transition in group velocity when varying
frequency (Figs. 6 and 7). The steepness is a key
observation of the current study, and the inferred
abrupt deceleration of energy transport is a key step
in reaching the conclusion that there is no local
power amplification.

Several studies have used Binverse methods^ to
estimate BM impedance or the amount of power gain
from BM data (Zweig 1991). While the estimates of
power amplification thus derived are highly variable,
some of these studies cannot be reconciled with our
current findings: negative damping up to high
intensities (e.g., 80–90 dB SPL in octave-wide bands,
de Boer and Nuttall 2000) and power gain estimates
of up to 17.7 dB (de Boer and Nuttall 2001). Unlike
Brass and Kemp (1993) and the current study, the
inverse method uses an explicit fluid dynamical model
in which the cochlear partition is treated as point
impedance zBM(x,ω), a quantity that depends on
frequency ω and place x, but not directly on
wavelength. Estimates of zBM(x,ω) are obtained by
fitting the model to (extrapolated) single-point BM
data. Claims of amplification follow from any negative
real part of zBM thus obtained (Bnegative damping^).

The central assumption of the inverse method is
the adequacy of point impedance to describe how the
cochlear partition interacts with the fluid. This
assumption is not self-evident (see also Brass and
Kemp 1993), as it ignores the finite dimensions and
internal structure of the organ of Corti. That simpli-
fication would be justified if the organ were small
compared to the typical scale of the wave (the
distance over which relative motion becomes compa-

VAN DER HEIJDEN AND VERSTEEGH: Evidence Against Cochlear Amplification 593



rable to absolute motion), but this is not the case for
near-BF waves. In the transverse direction (Bdepth^),
the motion of fluid participating in a wave falls off
exponentially, having a penetration depth of ∼λ/2π
(Lighthill 1978; Steele and Taber 1979a). Near BF, the
wavelength is ∼250 μm (Fig. 4C), so the penetration
depth equals ∼40 μm. Because the height of the
organ of Corti in the 16-kHz region well exceeds
50 μm (Edge et al. 1998), the amplitude of fluid
motion varies at least threefold over its height. Thus,
for these shorter wavelengths, the constituents of the
partition need not move uniformly. Any nonuniform
motion involves periodic internal deformations that
are unlikely to be captured by a point impedance
description. Only for much longer (lower-frequency)
waves is the motion virtually uniform.

Intriguingly, the transition between these regimes,
which takes place when the wavelength drops below a
millimeter, is situated just basal to the peak—exactly
in the region of alleged amplification. As long as one
holds on to a point impedance description, it seems
inevitable to invoke some degree of negative damping
to be able to explain experimental data (de Boer
1995; Olson 2001). But if one relaxes the assumption
of point impedance, negative damping may well
become unnecessary. In terms of inverse methods,
this amounts to allowing zBM to depend not only on
position and frequency, but also explicitly on wave-
length: zBM=zBM(x,ω,λ). This generalized notion of
partition impedance paves the way to explanations of
amplitude growth that are more in line with the main
experimental finding of this study: the abrupt decel-
eration of energy transport. An explicit implementa-
tion of this approach is the hydrodynamic waveguide
model of Van der Heijden (2014). This passive, linear
model has two coupled elastic beams (Bmembranes^).
Its traveling waves exhibit mode shape swapping, a rapid
change of the relative beam motion in the course of
propagation. The transition reduces both the group
velocity and the effective stiffness, and both reduc-
tions contribute to a local amplitude boost (the latter
contribution, from the stiffness reduction, may ex-
plain the near miss mentioned in connection with
Fig. 7). As discussed in that study, mode shape
swapping mimics the behavior of active models: over
a narrow spatial region, the wave amplitude is
boosted. This boost, however, is not created by
motile activity, but by the rapid transfer of power
from a nondispersive and stiff vibration mode into
a highly dispersive and compliant one. Yet, an
observer watching one beam, but unaware of the
other, would be tempted to attribute the sudden
boost to a local power source. Being unaware of
the other beam, the observer misses the spatially
distributed (nonpoint-like) character of the imped-
ance of the beam pair.

At first glance, the questioning of point impedance
may appear to undermine our own analysis of net
power gain (Fig. 2), because that does not take into
account the finite size of the partition, either. Note,
however, that the analysis deals with the vibration
right at the peak of the traveling wave amplitude,
whereas the region of alleged amplification is just
basal to the peak. What makes the observer of the
previous paragraph believe in amplification is not the
magnitude of the peak per se, but the steep amplitude
growth leading to the peak. Viewed from that
perspective, the problem is not an unduly large peak
magnitude, but the unexpected smallness of the wave
magnitude just basal to the peak. The steep growth
itself is more puzzling than its end product, the peak
magnitude. While the acoustic power entering the
cochlea is sufficient to create the peak magnitude, on
its way there, the power appears to be somehow
contained, i.e., prevented from generating the mag-
nitude of local motion that it could afford. The sharp
peak is then created by rapidly unleashing the power.
The waveguide model of Van der Heijden (2014)
demonstrates a possible physical mechanism of this
unleashing, namely, a transition of vibration mode. At
the peak (beyond the transition), the waves in that
model are of the three-dimensional, Bfanning^ type
(Steele and Taber 1979b), for which the cochlear
partition is well approximated by a point impedance.
It is in the transition region just basal to the peak that
the point impedance description breaks down.

Cochlear Attenuation

Although it cannot be entirely excluded that the lack of
power gain stems from a near-perfect balance between
power amplification and ordinary dissipation, the most
parsimonious interpretation of our findings is that there is
no amplifier, that cochlear sensitivity is not realized by
amplifying acoustic energy, but by spatially focusing it, and
that dynamic compression is realized by locally adjusting
the amount of dissipation to sound intensity. We end by
briefly exploring the physiological and functional impli-
cations of such an interpretation. While not solving all
known problems in cochlear mechanics, it offers alterna-
tive solutions to some and sheds new light on others.

The change of perspective from a saturating
amplifier to a variable attenuator has remarkably little
impact on the character of cochlear responses: both
schemes predict compression, two-tone suppression,
and distortion products (Van der Heijden 2005). But
the underlying physiological mechanisms differ great-
ly. Mechanical amplification is physiologically de-
manding, as it involves positive feedback which is
phase locked to high-frequency waveforms. Its prob-
lematic aspects include uncontrollable instabilities,
severe shunting of the input to motile elements due to
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low-pass filtering, and lack of a clearly identified
mechanism to couple high-frequency motile output
to BM vibration (Ashmore et al. 2010). Cochlear
attenuation is less demanding. It still requires an
active process that regulates dissipation, but its
feedback is negative, minimizing (though not neces-
sarily eliminating) stability problems. Moreover, it
involves a straightforward friction control, comparable
to the brakes of a car. Just like operating a brake
requires no synchronization to the wheel rotation, a
cochlear attenuator can do without phase locking to
high-frequency stimuli. This eliminates the remaining
physiological problems listed above. OHCs, whose
length can change with their membrane potential,
play a crucial role in cochlear compression, and
damaging them immediately reduces sensitivity. The
exact mechanism by which OHCs control the vibra-
tions is unknown, but if we assume that OHC
shortening acts to increase local friction, this explains
both the dynamic compression (through sound-
induced depolarization) and reduced sensitivity with
trauma (through loss of turgor). Neither phenome-
non specifically favors amplification over attenuation.

The analysis of abrupt phase bends (Fig. 6) showed that
the peaking of cochlear waves is quantitatively explainedby
the focusing of wave energy through selective deceleration.
Sharp phase bends are also apparent in panoramic studies
that pool phase data from large numbers of auditory nerve
fibers in cat (Kim et al. 1980a; Van der Heijden and Joris
2006), guinea pig (Palmer and Shackleton 2009), and
chinchilla (Temchin et al. 2012). Thus, abrupt wave
deceleration is a general cochlear phenomenon. The
smoothing of deceleration at high intensities (discussed in
connection with Figs. 6 and 7) is also a general finding in
mammals (Versteegh and Van der Heijden 2013).
Smoothing has an interesting consequence: the basalward
extension of the region over which the energy transport is
slowed down. Because slowing down the energy transport
enhances the spatial rate of dissipation, this suggests that
the Bpremature deceleration^ contributes to compressing
the dynamic range, in addition to the direct control of
damping. This additional mechanism would be especially
useful at the highest intensities, when large local power
losses are required to curb the spatial overlap of spectral
components.

The insight that the cochlea exerts a form of
mechanical sensitivity control predates models based on
cochlear amplification (Rose et al. 1971; Kim et al. 1973).
The functional necessity of a stage of dynamic range
compression prior to transduction was recognized and
analyzed by Allen (1979), who proposed a framework of
Bnonlinear damping [that] acts as a mechanical auto-
matic gain control.^ The results of the present study
support this view in which damping is an asset rather than
a drawback. The detection of faint tones, however useful,
is not themajor task of most ears. In the daily life of many

species, spectral analysis and dealing with noisy environ-
ments are much more common tasks, which impose
nontrivial challenges of an entirely different nature.
Because the cochlea is a waveguide, its function as a
spectral analyzer requires that it absorb all acoustic power
entering it. Any reflected component will interfere with
the processing of higher frequencies; any component
traveling beyond its proper region will interfere with
lower frequencies. If the cochlea is to resolve individual
components whose intensities differ by several orders of
magnitude, the absorption must be both well placed and
rigorous. Viewed in this light, dissipation is an indispens-
able tool rather than something that must be Bovercome
by amplification,^ and it is to be expected that the
mammalian cochlea has developed a fine control over
the amount of local dissipation.
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