
Results. Math. 63 (2013), 1071–1078
c© 2012 The Author(s).
This article is published with open access at Springerlink.com
1422-6383/13/031071-8
published online May 1, 2012

DOI 10.1007/s00025-012-0253-y Results in Mathematics

A Point Model for the Free Cyclic
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Abstract. We show that the set of all (unimodular and non-unimodular)
free cyclic submodules of T 2, where T is the ring of ternions over a commu-
tative field, admits a point model in terms of a smooth algebraic variety.
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1. Introduction

The present paper is devoted to the study of the geometry of free cyclic sub-
modules of T 2, where T denotes the ring of ternions (upper triangular 2 × 2
matrices) over a commutative field F. In a more geometric language we refer to
these submodules as ternionic points. We show that the set of all such points
admits a model in terms of a smooth algebraic variety in a projective space on
an 8-dimensional vector space over F. Our exposition is based on the Grass-
mann variety representing the planes (3-dimensional subspaces) of F

6 and the
recent paper [8], where a model for the set of ternionic points in terms of planes
of F

6 was given and exhibited.
From [9], the set of ternionic points splits into two orbits under the

natural action of GL2(T ). One orbit comprises the set of unimodular points,
the elements of the other orbit are called non-unimodular points. The variety
representing the entire set of ternionic points accordingly splits into two parts.
The first arises by removing a single line from the variety, i.e., we obtain a
quasiprojective variety in the terminology of [15]. The second part is just that
distinguished line. So, as regards the unimodular points, our results parallel
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those of A. Herzer, who developed a very general representation theory (for
unimodular points only). See [5, Chapt. 11 and 12] and [10] for further details.
It seems worth pointing out that all points of the distinguished line are smooth,
thus giving a negative answer to the question whether non-unimodularity of a
ternionic point would imply its image point being singular.

The geometry over ternions based on unimodular points has attracted
many authors. We refer to [1–4,6,7], and the references therein. There are but
a few papers dealing with the properties of the remaining (non-unimodular)
ternionic points [8,9,13,14].

Results and notions which are used without further reference can be
found, for example, in [5,10], and [12].

2. Main Results

Let F be a commutative field and T be the ring of ternions, i.e., the upper
triangular matrices (

a11 a12

0 a22

)
(1)

with entries aij ∈ F. Sometimes we identify x ∈ F with the ternion xI, where
I is the 2×2 identity matrix. F is the center of T and T is a three-dimensional
algebra over F.

According to [9] the non-zero cyclic submodules of the free T -left module
T 2 fall into five orbits under the natural action of the group GL2(T ). In the
following we focus on two types of submodules given by a representative

X0 = T

[(
1 0
0 1

)
,

(
0 0
0 0

)]
=

{[(
x y
0 z

)
,

(
0 0
0 0

)]∣∣∣∣ x, y, z ∈ F

}
(2)

and

Y0 = T

[(
0 0
0 1

)
,

(
0 1
0 0

)]
=

{[(
0 y
0 z

)
,

(
0 x
0 0

)]∣∣∣∣ x, y, z ∈ F

}
. (3)

An arbitrary submodule X from the orbit of X0 given in (2) is obtained
by applying S ∈ GL2(T ) to X0, i.e., X = X0S and will be called X-submodule
in the following. Submodules of this type are free and arise from unimodular
pairs of T 2. They are the points of the projective line over T as considered in
[5] and [10]. This yields the general form of an X-submodule as

X =
{[(

a11x a12x + a22y
0 a22z

)
,

(
b11x b12x + b22y

0 b22z

)]∣∣∣∣ x, y, z ∈ F

}
, (4)

with the constraint

(a11, b11) �= (0, 0) �= (a22, b22). (5)
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In the same way we obtain the general form of the Y -submodules using (3)

Y =
{[(

0 a22y + c22x
0 a22z

)
,

(
0 b22y + d22x
0 b22z

)]∣∣∣∣ x, y, z ∈ F

}
, (6)

with the additional condition

a22d22 − b22c22 �= 0. (7)

The Y -submodules are precisely those free cyclic submodules which cannot be
generated by a unimodular pair. We call them free non-unimodular points.

We identify T 2 with F
6 by(

a11 a12 b11 b12

0 a22 0 b22

)
�→ (a11, b11, a22, b22, a12, b12) ∈ F

6.

From (4) we see that the X-submodules are three-dimensional subspaces of F
6

and we can extract the base vectors
(a11, b11, 0, 0, a12, b12),
(0, 0, 0, 0, a22, b22),
(0, 0, a22, b22, 0, 0).

(8)

In the following we use the Grassmann variety G ⊂ F
20 = F

6 ∧ F
6 ∧ F

6 rep-
resenting the three-dimensional subspaces of F

6. We denote the vectors of the
standard basis of F

20 by eijk, 1 ≤ i < j < k ≤ 6, and write Eijk = Feijk for
the respective base point of the projective coordinate system.

Every X-submodule is now represented by a point in the Grassmann
variety G. We compute the Grassmann coordinates of an X-submodule with
base points (8) and the non-vanishing coordinates read

p135 = −a11a
2
22, p136 = p145 = −a11a22b22, p146 = −a11b

2
22,

p235 = −b11a
2
22, p236 = p245 = −b11a22b22, p246 = −b11b

2
22,

p356 = a22(a12b22 − b12a22),

p456 = b22(a12b22 − b12a22).

(9)

This gives a parametric representation of the Grassmann image X , say, of the
set of X-submodules. The parameters a11, a22, b11, b22 ∈ F in (9) are subject
to the restrictions given in (5), but there is no restriction on a12 and b12. An
easy calculation shows that the Grassmann image Y of the set comprising all
Y -submodules is the line spanned by E356 and E456. A parametric represen-
tation of Y is given by

p356 = a22(a22d22 − b22c22) and p456 = b22(a22d22 − b22c22), (10)

where again only the non-vanishing coordinate functions are given.
We want to understand the set X ∪ Y. For that end we derive the equa-

tions of X ∪ Y and show the geometric meaning of both, its parametrization
and the equations as well.
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At first we observe that X ∪ Y is contained in a subspace of dimension 8
which is given by the linear equations

p123 = p124 = p125 = p126 = p134 = p156 = p234 = p256 = p345 = p346 = 0,

p236 − p245 = 0, p136 − p145 = 0.
(11)

These are precisely the vanishing coordinate functions not mentioned in (9)
together with two obvious identities.

In order to describe X ∪ Y we show:

Lemma 1. For any (u, v) ∈ F
2 \ {(0, 0)} and i ∈ {1, 2} let

qi(u, v) = u2ei35 + uv(ei36 + ei45) + v2ei46, (12)
r(u, v) = ue356 + ve456. (13)

Then γ(u, v) := Fq1(u, v) + Fq2(u, v) + Fr(u, v) is a plane. As (u, v) varies in
F

2 \ {(0, 0)} the union of these planes equals X ∪ Y.

Proof. First we note that for i ∈ {1, 2} and variable (u, v) the points Fqi(u, v)
comprise a conic section ci in the plane spanned by Ei35, F(ei36 + ei45), and
Ei46, whereas the points Fr(u, v) form the line spanned by E356 and E456.
Hence any γ(u, v) is a plane.

Given any point of X with parameters as in (9) and (5), we let u = a22

and v = b22. Then one immediately reads off from (9) that this point belongs
to γ(u, v).

Conversely, let G be a point of γ(u, v) which lies off the line Y. So we
may assume G = Fg, where

g = g1q1(u, v) + g2q2(u, v) + g3r(u, v)

with (g1, g2, g3) ∈ F
3 and (g1, g2) �= (0, 0). In order to show that the coordi-

nates of G can be expressed as in (9) it suffices to let a22 = u, b22 = v, a11 =
−g1, b11 = −g2. Moreover, since (a22, b22) �= (0, 0) there exists at least one pair
(a12, b12) ∈ F

2 such that a12b22 − b12a22 = g3.
We already know from (10) that Y is the Grassmann image of the set of

all Y -modules. �

The parametric representation of X and Y from (9) and (10) allows us to
derive equations of X ∪Y by eliminating parameters. From now on we restrict
ourselves to the 8-dimensional subspace given by Eqs. (11) and disregard the
ambient 20-dimensional space. In other words, Eqs. (11) are always assumed
to be satisfied without further notice. We find nine quadratic equations which
will be arranged in three groups. The first two equations

p135p146 − p2
145 = 0, p235p246 − p2

245 = 0 (14)

describe quadratic cones erected on the conic sections ci mentioned in the
proof of Lemma 1. These quadratic cones have five-dimensional subspaces for
their vertices and six-dimensional generators.
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Further we consider the quadratic equations

p146p245 − p145p246 = 0, p135p246 − p235p146 = 0,
p135p245 − p145p235 = 0.

(15)

They determine three quadratic cones on ruled quadrics. Together with the
linear equations p356 = p456 = 0 the equations (15) describe a Segre variety S
which is the product of a line and a plane, cf. [11, p. 189]. In parametric form
this Segre variety can be written as the set of all points with coordinates

pi35 = u1vi, pi36 = pi45 = u2vi, pi46 = u3vi (16)

with i ∈ {1, 2}, (u1, u2, u3) ∈ F
3 \ {(0, 0, 0)}, and (v1, v2) ∈ F

2 \ {(0, 0)}, where
all other coordinates are understood to be zero.

Finally the third set of quadratic equations reads

p135p456 − p145p356 = 0, p145p456 − p146p356 = 0,

p235p456 − p245p356 = 0, p245p456 − p246p356 = 0. (17)

These are the equations of quadratic cones on ruled quadrics. All of them
have four-dimensional vertices, six-dimensional generators, and share the line
Y spanned by the base points E356 and E456.

Now we can prove the following result:

Theorem 1. The set X ∪Y is a smooth algebraic variety given by the equations
(11), (14), (15), and (17).

Proof. It is easily verified that the coordinate functions of both parametric
representations, namely that of X given in (9) and that of Y given in (10)
annihilate Eqs. (11), (14), (15), and (17).

Conversely, we have to show that for any point P = F(. . . , pijk, . . .) given
by Eqs. (11), (14), (15), and (17) there are parameters such that P can be
written as in (9) or (10), respectively.

We distinguish two cases: Assume first that (p356, p456) �= (0, 0), whereas
all other coordinates of P vanish. Then we let a22 = p356 and b22 = p456.
There exists at least one pair (c22, d22) ∈ F

2 such that (7) is satisfied. Now
(10) shows that P is a point on Y.

Otherwise (p135, p145, p146, p235, p245, p246) is a non-trivial zero of (15).
We infer from (16) that there are parameters (u1, u2, u3) ∈ F

3 \ {(0, 0, 0)} and
(v1, v2) ∈ F

2 \ {(0, 0)} such that

(pi35, pi45, pi46) = (u1vi, u2vi, u3vi) for i ∈ {1, 2}. (18)

Hence (pi35, pi45, pi46) �= (0, 0, 0) for at least one value of i. We may assume
w.l.o.g. that this is the case for i = 1, whence v1 �= 0. We substitute (18) in the
first equation of (14), divide by v2

1 , and get the constraint u1u3 −u2
2 = 0 which
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reminds us of the equation of a conic section. The well-known Veronese parame-
trization of a conic section shows that there exists a pair (a22, b22) ∈ F

2\{(0, 0)}
and a constant k ∈ F \ {0} such that

(u1, u2, u3) = k(a2
22, a22b22, b

2
22).

Further we define a11 := −kv1, b11 := −kv2, whence pi35, pi45, and pi46 for
i ∈ {1, 2} are already given as in (9). Now we substitute into (17) and obtain

−a11a22(a22p456 − b22p356) = 0, −a11b22(a22p456 − b22p356) = 0,
−b11a22(a22p456 − b22p356) = 0, −b11b22(a22p456 − b22p356) = 0.

At least one of these equations shows us that (p356, p456) = m(a22, b22) for
some m ∈ F. As (a22, b22) �= (0, 0) we can find a12, b12 ∈ F such that m =
a12b22 − b12a22. Thus, finally, the coordinates of P are expressed like in (9)
which shows P ∈ X .

In order to show that X ∪Y is smooth we compute the partial derivatives
of the parametrization given in (9). Then it is a simple and straightforward
calculation that the subspace spanned by the derivatives is of dimension 4 at
any point of X ∪ Y, regardless of the characteristic of F. �

3. Final Remarks

The contents of Lemma 1 as well as the parametrization of X given in (9)
admit a geometric interpretation. The homogeneous parameter (a22, b22) �=
(0, 0) determines a unique point Fqi(a22, b22) on either conic section ci.
Further (a22, b22) determines a unique point Fr(a22, b22) on the line Y. Any
plane γ mentioned in Lemma 1 is spanned by these three points. Thus there is
a projective mapping from the projective line of parameters to the planes on
X ∪ Y. The homogeneous parameters (a12, b12) �= (0, 0) and (a11, b11) �= (0, 0)
serve as coordinates of points of X within the generator planes γ.

We exhibit some subrings within the ternions. Firstly, for a11 = a22 and
a12 = 0 in (1) we obtain the subring of scalar matrices. It is clearly isomor-
phic to the ground field F. Accordingly, by letting a11 = a22, b11 = b22, and
a12 = b12 in (9), we obtain a parametric representation of a twisted cubic
F ⊂ X as a model for the projective line of F. Note that no Y -submodule can
be written in terms of scalar matrices.

Secondly, letting a11 = a22 in (1) we find a representation of the dual
numbers over F. As before, no non-unimodular points arise from dual numbers.
Hence a parametric representation of the free cyclic submodules is obtained
from (9) by substituting a22 = a11 and b22 = b11. This yields a ruled surface
in a subspace of dimension 6. Any pair (a11, b11) �= (0, 0) fixes a point on the
line joining the previously mentioned points C1 and C2. So we have a twisted
cubic winding about a “tube-like surface” T ⊂ S whose generators are the
lines spanned by corresponding points C1 and C2. The cubic curve meets any
generator of this tube-like surface exactly once. The ruled surface appearing
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as the point model of the free cyclic submodules over the dual numbers has
two distinguished directrices: the twisted cubic F and the line Y. There is a
projective correspondence between the directrices, and corresponding points
are joined in order to form the generators of this ruled surface.

Thirdly, we put a12 = 0, then formula (1) gives a representation of the
double numbers over F. The unimodular points of the projective line over the
double numbers form the tube-like surface T mentioned above. This is easily
seen, if we insert a12 = b12 = 0 in (9). The surface T is a ruled surface whose
two-dimensional generators appear as the subspaces spanned by corresponding
points of C1 and C2. The surface T is a subset of the Segre S, for ci is con-
tained in the plane spanned by FEi35, F(ei36 +ei45), and FEi45 with i ∈ {1, 2}.
Non-unimodular points over the double numbers do not exist.
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