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Game-theoretic characterization of the Gurarii space

Wies�law Kubís

Abstract. We present a simple and natural infinite game building an in-
creasing chain of finite-dimensional Banach spaces. We show that one of
the players has a strategy with the property that, no matter how the
other player plays, the completion of the union of the chain is linearly
isometric to the Gurarĭı space.
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1. Introduction. We consider the following game. Namely, two players (called
Eve and Odd) alternately choose finite-dimensional Banach spaces E0 ⊆ E1 ⊆
E2 ⊆ · · · , with no additional rules. The inclusion En ⊆ En+1 means that En is
a linear subspace of En+1 and the norm of En+1 restricted to En coincides with
that of En. For obvious reasons, Eve should start the game. The result is the
completion of the chain

⋃
n∈N

En. We shall denote this game by BM(B). This
is in fact a special case of an abstract Banach–Mazur game studied recently
in [7]. In model theory, this is sometimes called the ∀∃-game, see [5]. Main
result:

Theorem 1. There exists a unique, up to linear isometries, separable Banach
space G such that Odd has a strategy Σ in BM(B) leading to G, namely, the
completion of every chain resulting from a play of BM(B) is linearly isometric
to G, assuming Odd uses strategy Σ, and no matter how Eve plays.

Furthermore, G is the Gurarĭı space.

The result above may serve as a strong argument that the Gurarĭı space (see
the definition below) should be considered as one of the classical Banach spaces.
Indeed, Theorem 1 is completely elementary and can even be presented with
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no difficulties to undergraduate students who know the very basic concepts of
Banach space theory.

It turns out that the Gurarĭı space G (constructed by Gurarĭı in 1966) is
not so well known, even to people working in functional analysis. The reason
might be that this is a Banach space constructed usually by some inductive
set-theoretic arguments, without providing any concrete formula for the norm.
Furthermore, the fact that G is actually unique up to linear isometries was
proved by Lusky [9] only ten years after Gurarĭı’s work [4]. An elementary proof
of the uniqueness of G has been found recently by Kubís and Solecki [8]. The-
orem 1 offers an alternative argument, still using the crucial lemma from [8].

In fact, uniqueness of a space G satisfying the assertion of Theorem 1 is
almost trivial: if there were two Banach spaces G0, G1 in Theorem 1, then we
can play the game so that Odd uses his strategy leading to G1, while after the
first move Eve uses Odd’s strategy leading to G2. Both players win, therefore
G1 is linearly isometric to G2.

Below, after recalling the definition of the Gurarĭı space, we show that it
indeed satisfies the assertion of Theorem 1. Finally, we discuss other variants of
the Banach–Mazur game, for example, playing with separable Banach spaces
or with a fixed (rich enough) subclass of finite-dimensional spaces. Again, the
Gurarĭı space is the unique object for which Odd has a winning strategy.

2. Preliminaries. The Gurarĭı space is the unique separable Banach space G

satisfying the following condition:

(G) For every ε > 0, for every finite-dimensional normed spaces A ⊆ B, every
isometric embedding e : A → G has an extension f : B → G that is an
ε-isometric embedding, namely,

(1 − ε)‖x‖ ≤ ‖f(x)‖ ≤ (1 + ε)‖x‖
for every x ∈ B.

As we have already mentioned, this space has been found by Gurarĭı [4] in
1966, yet its uniqueness was proved only ten years later by Lusky [9] using
rather advanced method of representing matrices. An elementary proof can be
found in [8]. According to [3, Thm. 2.7], the Gurarĭı space can be characterized
by the following condition:

(H) For every ε > 0, for every finite-dimensional normed spaces A ⊆ B, for
every isometric embedding e : A → G, there exists an isometric embed-
ding f : B → G such that ‖e − f � A‖ < ε.

Actually, in the proof of equivalence (G)⇐⇒(H), one has to use the crucial
lemma from [8]:

Lemma 1. Let 0 < ε < 1, and let f : X → Y be an ε-isometric embedding
between Banach spaces. Then there exists a norm on X⊕Y such that, denoting
by i : X → X ⊕ Y , j : Y → X ⊕ Y the canonical embeddings, it holds that

‖j ◦ f − i‖ ≤ ε.
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The proof given in [8] uses functionals, however there is a direct formula
for the norm on X ⊕ Y satisfying the assertion of Lemma 1:

‖(x, y)‖ = inf{‖x0‖ + ‖y0‖ + ε‖x1‖ : x = x0 + x1, y = y0 − f(x1)}.

Easy computations showing that it works can be found in [2, p. 753]. In fact,
[2] deals with p-Banach spaces; p = 1 is our case.

By a chain of normed spaces we mean a sequence {En}n∈N such that each
En is a normed space, En is a linear subspace of En+1, and the norm of En+1

restricted to En coincides with that of En for every n ∈ N. All mappings in
this note are assumed to be linear.

3. Proof of Theorem 1. Let us fix a separable Banach space G satisfying
(H). We do not assume a priori that it is uniquely determined, therefore the
arguments below will also show the uniqueness of G. Odd’s strategy Σ in
BM(B) can be described as follows.

Fix a countable set {vn}n∈N linearly dense in G. Let E0 be the first move
of Eve. Odd finds an isometric embedding f0 : E0 → G and finds E1 ⊇ E0

together with an isometric embedding f1 : E1 → G extending f0 and such that
v0 ∈ f1[E1].

Suppose now that n = 2k > 0 and En was the last move of Eve. We
assume that a linear isometric embedding fn−1 : En−1 → G has been fixed.
Using (H) we choose a linear isometric embedding fn : En → G such that
fn � En−1 is 2−k-close to fn−1. Extend fn to a linear isometric embedding
fn+1 : En+1 → G so that En+1 ⊇ En and fn+1[En+1] contains all the vectors
v0, . . . , vk. The finite-dimensional space En+1 is Odd’s move. This finishes the
description of Odd’s strategy Σ.

Let {En}n∈N be the chain of finite-dimensional normed spaces resulting
from a fixed play, when Odd was using strategy Σ. In particular, Odd has
recorded a sequence {fn : En → G}n∈N of linear isometric embeddings such
that f2n+1 � E2n−1 is 2−n-close to f2n−1 for each n ∈ N. Let E∞ =

⋃
n∈N

En.
For each x ∈ E∞ the sequence {fn(x)}n∈N is Cauchy, therefore we can set
f∞(x) = limn→∞ fn(x), thus defining a linear isometric embedding f∞ : E∞ →
G. The assumption that f2n+1[E2n+1] contains all the vectors v0, . . . , vn en-
sures that f∞[E∞] is dense in G. Finally, f∞ extends to a linear isometry from
the completion of E∞ onto G. This completes the proof of Theorem 1.

4. Playing with a subclass of finite-dimensional spaces. It is natural to ask
whether Theorem 1 remains true when the game is restricted to a rich enough
subclass of finite-dimensional normed spaces. Of course, the minimal assump-
tion on the class must be the existence of a chain whose completion is the
Gurarĭı space. It turns out that this is sufficient.

Let F be a class of finite-dimensional normed spaces, closed under isome-
tries. Namely, if E ∈ F and E′ is linearly isometric to E, then E′ ∈ F . We say
that F is dominating (in the class of all finite-dimensional spaces) if for every
E ∈ F , for every isometric embedding e : E → X with X finite-dimensional,
for every ε > 0 there exists an ε-isometric embedding f : X → F such that
F ∈ F and f ◦ e is an isometric embedding. Note that, by condition (G), if
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{Fn}n∈N is a chain of finite-dimensional subspaces of the Gurarĭı space whose
union is dense, then the class F consisting of all spaces linearly isometric to
some Fn is dominating.

The game BM(F ) is defined precisely in the same way as BM(B), simply
restricting the class of spaces to F .

Theorem 2. Let F be a dominating class of finite-dimensional normed spaces.
Then Odd has a strategy Σ in BM(F ) leading to the Gurarĭı space G. Namely,
the completion of every chain resulting from a play of BM(F ) is linearly iso-
metric to G whenever Odd uses strategy Σ.

Proof. The strategy is a suitable adaptation of the one from the proof of
Theorem 1. Fix a linearly dense set {vn}n∈N in G such that ‖vi‖ = 1 for i ∈ N.
Suppose n = 2k ≥ 0 and En ∈ F was the last move of Eve. We assume that a
linear isometric embedding fn−1 : En−1 → G has been defined, where f−1 = 0
and E−1 = {0}. Using (H) we choose an isometric embedding fn : En → G such
that fn � En−1 is 2−k-close to fn−1. Extend fn to a linear isometric embedding
g : X → G so that X ⊇ En is finite-dimensional and {v0, . . . , vk} ⊆ g[X]. We
need to “correct” X so that it becomes a member of F . Using the fact that
F is dominating, we find a 2−(k+1)-isometric embedding s : X → F such that
F ∈ F and s � En is isometric. We may assume that X ⊆ F and s is the
inclusion. We set En+1 := F . This finishes the description of Odd’s strategy,
yet for the inductive arguments we still need to define the embedding fn+1.

Using Lemma 1, we find isometric embeddings i : X → Z, j : F → Z such
that Z is finite-dimensional and ‖j ◦ s − i‖ ≤ 2−(k+1). Using (H), we find
an isometric embedding h : Z → G such that ‖h ◦ i − g‖ ≤ 2−(k+1). We set
fn+1 := h ◦ j.

Note that fn+1 � X = h ◦ j � X = h ◦ j ◦ s, therefore

‖fn+1 � X − g‖ ≤ ‖h ◦ j ◦ s − h ◦ i‖ + ‖h ◦ i − g‖ ≤ 2−(k+1) + 2−(k+1) = 2−k.

Thus ‖fn+1 � En − fn‖ ≤ 2−k. Furthermore, if vi = g(xi), then ‖fn+1(xi) −
vi‖ = ‖fn+1(xi)−g(xi)‖ ≤ 2−k‖xi‖ = 2−k, showing that dist(vi, fn+1[En+1]) ≤
2−k for i ≤ k.

Let {En}n∈N ⊆ F be the chain resulting from a play when Odd was using
the strategy described above. In particular, we have a sequence {fn : En →
G}n∈N of linear isometric embeddings converging uniformly to an isometric
embedding f∞ : E∞ → G, where E∞ =

⋃
n∈N

En. Finally, E∞ is dense in G,
because

lim
n→∞ dist(vi, fn[En]) = 0

for each i ∈ N. It follows that the unique extension of f∞ to the completion of
E∞ is an isometry onto G. This completes the proof. �

An immediate corollary to Theorem 2 is that if F is a dominating class of
finite-dimensional normed spaces, then there exists a chain in F whose union
is isometric to a dense subspace of the Gurarĭı space. Another corollary is the
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known fact that the Gurarĭı space contains a chain of finite-dimensional �∞-
spaces with a dense union, as the class of all such spaces is easily seen to be
dominating.

5. Final remarks. Below we collect some comments around Theorem 1.

5.1. Universality. It has been noticed by Gurarĭı that G contains isometric
copies of all separable Banach spaces. In fact, the space G can be constructed
in such a way that it contains any prescribed separable Banach space, e.g., the
space C([0, 1]), which is well known to be universal. The paper [8] contains a
more direct and elementary proof of the isometric universality of G. The main
result of this note offers yet another direct proof (cf. [7, Thm. 10]).

Namely, fix a separable Banach space X and fix a chain {Xn}n∈N ⊆ X of
finite-dimensional spaces whose union is dense in X. We describe a strategy of
Eve that leads to an isometric embedding of X into G. Specifically, Eve starts
with E0 := X0 and records the identity embedding e0 : X0 → E0. Once Odd
has chosen En with n = 2k + 1, having recorded a linear isometric embedding
ek : Xk → En−1, Eve finds En+1 ⊇ En such that there is a linear isometric
embedding ek+1 : Xk+1 → En+1 extending ek. This is her response to En.
The only missing ingredient showing that such a strategy is possible is the
amalgamation property of finite-dimensional normed spaces:

Lemma 2. Let f : Z → X, g : Z → Y be linear isometric embeddings of Banach
spaces. Then there are a Banach space W and linear isometric embeddings
f ′ : X → W , g′ : Y → W such that f ′ ◦ f = g′ ◦ g. Furthermore, if X, Y are
finite-dimensional, then so is W .

The above lemma belongs to the folklore and can be found in several texts,
e.g., [3] or [1].

In any case, when Eve uses the strategy described above and Odd uses a
strategy leading to the Gurarĭı space, Eve constructs a linear isometric em-
bedding e : X → G such that e � Xn = en for every n ∈ N. This shows that G

is isometrically universal in the class of all separable Banach spaces.

5.2. Playing with separable spaces. It is natural to ask what happens if both
players are allowed to choose infinite-dimensional separable Banach spaces. As
it happens, in this case Odd has a very simple tactic (i.e., a strategy depending
only on the last move of Eve) again leading to the Gurarĭı space. This follows
immediately from the following.

Proposition 1. ([3, Lemma 3.3]) Let {Gn}n∈N be a chain of Banach spaces such
that each Gn is linearly isometric to the Gurarĭı space. Then the completion
of the union

⋃
n∈N

Gn is linearly isometric to the Gurarĭı space.

Thus, knowing that G contains isometric copies of all separable Banach
spaces, Odd can always choose a space linearly isometric to G, so that the
resulting chain consists of Gurarĭı spaces.
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5.3. Other variants of the game. It is evident that the Banach–Mazur game
considered in this note can be played with other mathematical structures. The
works [7] and [6] discuss this game in model theory, showing in particular that
Odd has a winning strategy leading to the so-called Fräıssé limit of a class
of structures (which exists under some natural assumptions). Another variant
of this game appears when finite-dimensional normed spaces are replaced by
finite metric spaces. Almost the same arguments as in the proof of Theorem 1
show that Odd has a strategy leading to the Urysohn space [10], the unique
complete separable metric space U satisfying the following condition:

(U) For every finite metric spaces A ⊆ B, every isometric embedding e : A →
U can be extended to an isometric embedding f : B → U.

It turns out that U is uniquely determined by a weaker condition (analog of
(H)) asserting that f is ε-close to e with arbitrarily small ε > 0, not necessarily
extending e. An analog of Theorem 1 is rather obvious; the proof is practically
the same as in the case of normed spaces, simply replacing all phrases “finite-
dimensional” by “finite” and deleting all adjectives “linear”.

5.4. Strategies versus tactics. The proof of Theorem 1 (as well as of Theo-
rem 2) actually gives a Markov strategy, that is, a strategy depending only
on the step n and the last move of Eve. When playing with separable spaces,
Odd has a tactic, that is, a strategy depending on Eve’s last move only (such
a strategy is also called stationary). We do not know whether Odd has a win-
ning tactic in the Banach–Mazur game played with finite-dimensional normed
spaces or finite metric spaces, where “winning” means obtaining the Gurarĭı
space or the Urysohn space, respectively.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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