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1. Introduction

In the theory of dynamical systems there exist several notions of their stability
(see e.g. [9]). We consider here a rendering of Ulam–Hyers stability and other
similar stabilities to one-dimensional dynamical systems.

The theory of stability of functional equations started with the question
posed by Ulam: if a function satisfies Cauchy’s equation for the additive func-
tion up to some degree of accuracy, does there exist an additive function close
to this function? Hyers investigated in [3] (the first paper on the stability of
functional equations) this question of Ulam’s.

More precisely, we say that a functional equation is Ulam–Hyers stable if for
every ε > 0 there exists a δ > 0 such that for every function H which satisfies
this functional equation approximately, with δ-accuracy, there exists a solution
F of this functional equation which is in the ε-neighborhood of H. In this way
we can also consider the stability of systems of functional equations. We can
also consider the stability of a functional equation, or a system of functional
equations, in some class of functions demanding that H and F appearing in
the definition above are from this class of functions.
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There are also various modifications of the notion above known, e.g. b-
stability, uniform b-stability, superstability, inverse stability and so on. The
precise definitions of these concepts will be given later.

In this paper we deal with stability (in these various senses) of systems of
functional equations, or one functional equation, in some classes of functions,
which define equivalently one-dimensional dynamical systems. In the whole
paper let I be an interval in R with nonempty interior.

The classic definition of dynamical system reads as follows:
Definition 1. The continuous function F : R × I → I, is called a dynamical

system if the translation equation:

F (t, F (s, x)) = F (t + s, x) for t, s ∈ R, x ∈ I (1.1)

as well as the identity condition:

F (0, x) = x for x ∈ I (1.2)

are satisfied.
It has been proved in [7] that if I = R, then the system (1.1) & (1.2) is

Ulam–Hyers stable, that is for every ε > 0 there exists a δ = ε/10 such that
for every continuous function H : R × I → I for which

|H(t,H(s, x)) − H(t + s, x)| ≤ δ for t, s ∈ R and x ∈ I (1.3)

and
|H(0, x) − x| ≤ δ for x ∈ I (1.4)

there exists a dynamical system F such that

|H(t, x) − F (t, x)| ≤ ε for t ∈ R, x ∈ I. (1.5)

If I �= R, the system (1.1) and (1.2) is not stable (see Remark 3.3, too). In [7]
these results were presented in the section colloquially named as “stability of
dynamical systems”. Colloquially, but incorrectly1. In the theory of stability
in the sense of Ulam–Hyers, it is the functional equation that can be stable
or not. And the dynamical system is a function which is a solution of some
system of equations. Thus the correct question is: is the system of functional
equations, which defines dynamical systems, stable? For the system (1.1) and
(1.2) the answer is yes, if I = R, and no, if I �= R.

But there are also other systems of equations, which are equivalent to the
system (1.1) and (1.2). For example, dynamical systems may also be defined
equivalently in the following way:

Definition 2. The continuous function F : R × I → I is called a dynamical
system if F is a solution of the translation equation such that

F ′(0, x) = 1 for x ∈ I (1.6)

[hereinafter F ′(0, x) means the derivative of F (0, ·) : I → I at the point x].

1In the title of this paper, too.
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We will prove in this paper that the system (1.1) and (1.6) [equivalent
to the system (1.1) and (1.2)] is Ulam–Hyers stable for every interval I, i.e.,
for every ε > 0 there exists a δ > 0 such that for every continuous function
H : R × I → I which satisfies (1.3) and

|H ′(0, x) − 1| ≤ δ for x ∈ I

there exists a dynamical system F satisfying (1.5).
Though, for convenience, we will write that the dynamical system is sta-

ble (or not), having in mind the system of equations defining this dynamical
system.

Remark 1.1. The situation described above—that from two equivalent func-
tional equations one may be stable and the other not, occurs also in the case
of the equation of homomorphism. For the equivalent equations

f(xy) = f(x) + f(y)

and

f(x) + f(y) − f(xy) = 0

for f : R → R, where ρ(a, b) = |ea − eb| is a metric in R, the second equation
is stable and the first is not (see [1]).

In the example above, the metric is not natural. (With the natural metric
ρ(a, b) = |a − b| one should consider the equations

exp(f(xy)) = exp(f(x) + f(y))

and

exp(f(x) + f(y) − f(xy)) = 1

to obtain this phenomenon).
In our case the metric is natural. So there have to be other reasons why

dynamical systems in the sense of different, however equivalent, definitions are
stable or not.

It is interesting that in the class of continuous functions the translation
equation is stable [7]. The identity equation, that is Eq. (1.2) is stable too (for
F (t, x) = H(t, x)−H(0, x)+x we have |F (t, x)−H(t, x)| ≤ δ if |H(0, x)−x| ≤
δ). However, the system (1.1) and (1.2) is not stable if I �= R. For other similar
cases in the theory of stability see also [4].

2. Other definitions of dynamical system and other definitions
of stability

We have already mentioned in the introduction that a one-dimensional dy-
namical system can be defined equivalently by definitions 1 and 2. But there
are also other equivalent definitions.
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Let K1 be the class of all continuous functions F : R × I → I such that
F (0, ·) is strictly increasing,
let K2 be the class of all continuous functions F : R × I → I such that F ′(0, ·)
exists,
let K3 be the class of all continuous functions F : R × I → I such that F is a
surjection.

Definition 3. The solution of the translation equation F : R × I → I, such
that F ∈ K1, is called a dynamical system.

This definition is equivalent to definitions 1 and 2 since F (0, F (0, x)) =
F (0, x), thus F (0, ·) is the identity function on F (0, I), and as it is strictly
increasing, is the identity function on I.

If F is a continuous solution of the translation equation such that F (0, ·) is
increasing, but not strictly increasing, then F may not be a dynamical system.
For example, the function

F (t, x) =

⎧
⎨

⎩

0, if x ≤ 0, t ∈ R;
x, if x ∈ (0, 1), t ∈ R;
1, if x ≥ 1, t ∈ R

is a continuous solution of the translation equation, F (0, ·) is increasing, but
not strictly, and it is not a dynamical system.

Definition 4. The non-constant function F : R×I → I is called a dynamical
system if F is a solution of the translation equation and F ∈ K2.

This definition is equivalent to the definition 1 (and, hence, to the defin-
itions 2 and 3) since F (0, F (s, x)) = F (s, x), F (0, u) = u for u ∈ F (R, I) (a
subinterval of I) and the existence of F ′(0, x) implies F (R, I) = I.

Definition 5. F : R×I → I, F ∈ K3, which satisfies the translation equation,
is called a dynamical system.

This definition is equivalent to the precedents, since F (0, F (t, x)) = F (t, x),
thus, taking into account the surjectivity of F , we have F (0, x) = x for x ∈ I.

The Ulam–Hyers stability has already been made precise, in the introduc-
tion, for system (1.1) and (1.2) and for system (1.1) and (1.6). Moreover, we
say that the translation equation is Ulam–Hyers stable in the class Ki for
i = 1, 2, 3, if for every ε > 0 there exists a δ > 0 such that for every H ∈ Ki

such that (1.3) holds, there exists a dynamical system F : R× I → I such that
(1.5) holds true.

Thus we have explained what we mean by “Ulam–Hyers stability of dy-
namical systems in the sense of definitions 1–5”.

For a given function H : R × I → I we put
H(t, s, x) := H(t,H(s, x)) − H(t + s, x), s, t ∈ R, x ∈ I.

In the theory of functional equations several notions of stability are con-
sidered (see [5] and [6]):

a/b-stability
– For dynamical systems in the sense of definition 1 (respectively 2):
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for every continuous function H : R×I → I if H and H(0, ·)−IdI (respectively
H and H ′(0, ·)−1) are bounded, then there exists a dynamical system F : R×
I → I such that H − F is bounded,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every function H ∈ K1 (respectively H ∈ K2, H ∈ K3) if H is bounded,
then there exists a dynamical system F : R×I → I such that H−F is bounded,

b/uniform b-stability
i.e., b-stability in which the boundedness of H − F does not depend on H,
more precisely:
– For dynamical systems in the sense of definition 1 (respectively 2):
for every δ > 0 there exists an ε > 0 such that for every continuous function
H : R × I → I if H and H(0, ·) − IdI (respectively H ′(0, ·) − 1) are bounded
by δ, then there exists a dynamical system F : R × I → I such that H − F is
bounded by ε,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every δ > 0 there exists an ε > 0 such that for every function H ∈ K1

(respectively H ∈ K2, H ∈ K3) if H is bounded by δ, then there exists a
dynamical system F : R × I → I such that H − F is bounded by ε,

c/inverse stability
– For dynamical systems in the sense of definition 1 (respectively 2):
for every ε > 0 there exists a δ > 0 such that for every H : R × I → I if there
exists a dynamical system F : R × I → I such that

|H(t, x) − F (t, x)| ≤ δ, for t ∈ R, x ∈ I, (2.1)

then
|H(t, s, x)| ≤ ε, for s, t ∈ R, x ∈ I (2.2)

and |H(0, x) − x| ≤ ε for x ∈ I (respectively |H ′(0, x) − 1| ≤ ε for x ∈ I),
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every ε > 0 there exists a δ > 0 such that for every H : R×I → I such that
H ∈ K1 (respectively H ∈ K2, H ∈ K3)) if there exists a dynamical system
F : R × I → I such that (2.1) is satisfied, then we have (2.2),

d/inverse b-stability
– For dynamical systems in the sense of definition 1 (respectively 2):
for every H : R × I → I if there exists a dynamical system F : R × I → I such
that H − F is bounded, then H and H(0, ·) − IdI (respectively H ′(0, ·) − 1)
are bounded,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every H ∈ K1 (respectively H ∈ K2, H ∈ K3)) if there exists a dynamical
system F : R × I → I such that H − F is bounded, then H is bounded,

e/inverse uniform b-stability
i.e., the inverse b-stability for which the boundedness of the difference/
differences appearing in the consequence of the implication does not depend
on H. More precisely:
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– For dynamical systems in the sense of definition 1 (respectively 2):
for every δ > 0 there exists an ε > 0 such that for every H : R× I → I if there
exists a dynamical system F : R × I → I such that H − F is bounded by δ,
then H and H(0, ·) − IdI (respectively H ′(0, ·) − 1) are bounded by ε,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every δ > 0 there exists an ε > 0 such that for every H ∈ K1 (respectively
H ∈ K2, H ∈ K3)) if there exists a dynamical system F : R × I → I such that
H − F is bounded by δ, then H is bounded by ε,

f/superstability
– For dynamical systems in the sense of definition 1 (respectively 2):
if H and H(0, ·)−IdI (respectively H ′(0, ·)−1) are bounded, then H is bounded
or it is a dynamical system,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every H ∈ K1 (respectively H ∈ K2, H ∈ K3)) if H is bounded, then H is
bounded or it is a dynamical system.

g/inverse superstability
– For dynamical systems in the sense of definition 1 (respectively 2):
if H is bounded or it is a dynamical system, then H and H(0, ·) − IdI (respec-
tively H ′(0, ·) − 1) are bounded,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every H ∈ K1 (respectively H ∈ K2, H ∈ K3)) if H is bounded or it is a
dynamical system, then H is bounded.

h/hiperstability
– For dynamical systems in the sense of definition 1 (respectively 2):
if H and H(0, ·) − IdI (respectively H ′(0, ·) − 1) are bounded, then H is a
dynamical system,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every H ∈ K1 (respectively H ∈ K2, H ∈ K3)) if H is bounded, then H is
a dynamical system.

i/inverse hiperstability
– For dynamical systems in the sense of definition 1 (respectively 2):
if H is a dynamical system, then H and H(0, ·)− IdI (respectively H ′(0, ·)−1)
are bounded,
– For dynamical systems in the sense of definition 3 (respectively 4, 5):
for every H ∈ K1 (respectively H ∈ K2, H ∈ K3)) if H is a dynamical system,
then H is bounded.

3. Positive results

Theorem 3.1. Let H : R × I → I be a continuous function satisfying

|H(t, s, x)| ≤ δ1 for t, s ∈ R, x ∈ I and some δ1 > 0, (3.1)
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and
|H(0, x) − x| ≤ δ2 for x ∈ I, and some δ2 > 0, (3.2)

such that H(0, ·) is monotone. Then there exists a dynamical system
F : R × I → I such that
(a) if H(0, ·) is increasing, then

|H(t, x) − F (x, t)| ≤ max{6δ1 + δ2, 9δ1} for t ∈ R, x ∈ I,

(b) if H(0, ·) is decreasing, then

|H(t, x) − F (t, x)| ≤ 2δ2 for t ∈ R, x ∈ I. (3.3)

Proof. (a) Let us consider the following cases.
i) For every x ∈ I the interval H(R, x) has the length not greater than 6δ1.

Put F (t, x) := x. Then, of course, F is a dynamical system and

|F (t, x)−H(t, x)|≤|x − H(0, x)|+|H(0, x)−H(t, x)|≤δ2+6δ1, t ∈ R, x ∈ I.

ii) There are some x ∈ I for which the length of the interval H(R, x) =: Ax

is greater than 6δ1. In this case we use some facts proven in [7] (see the
beginning of the proof of Theorem 1.1, section 3 in [7]). Put L6δ1 :=
{x ∈ I : |Ax| > 6δ1}. The intervals Ax, for x ∈ L6δ1 , are either equal
or disjoint. Let (Bn : n ∈ N), where N ⊂ N is a set of indices, be the
injective sequence of all intervals Ax, x ∈ L6δ1 . We have

⋃

n∈N

Bn =
⋃

x∈L6δ1

Ax = L6δ1 ∩ H(R, I). (3.4)

It has been shown that Bn are open intervals,

H(t, inf Bn) = inf Bn, H(t, sup Bn) = supBn for t ∈ R (3.5)

provided inf Bn, respectively supBn, are in I (see the proof of Lemma 2.3(iii)
in [7]), and for any point x of Bn we have Ax = Bn. Thus for the intervals
Bn the assumptions of the main result from [2] are satisfied and we infer that
there exist homeomorphisms hn : Bn → R such that

|h−1
n (hn(x) + t) − H(t, x)| ≤ 9δ1, t ∈ R, x ∈ Bn. (3.6)

Let c := inf
⋃

n∈N Bn and d := sup
⋃

n∈N Bn, particularly, c = inf Bn and
d = supBm for some n,m ∈ N . We will show that for x < c and for x > d
we have |Ax| ≤ 6δ1. Fix an x < c (for x > d the proof is analogous). By
the monotonicity of H(0, ·) and (3.5) we have H(0, x) ≤ H(0, c) = c. Since
H(0, x) ∈ H(R, I) we deduce by (3.4) that |AH(0,x)| ≤ 6δ1. Hence |Ax| ≤ 6δ1,
as follows from Corollary 2.3(i) from [7]. We have shown that

[(−∞, c) ∪ (d,∞)] ∩ I ⊂ I \ L6δ1 .

But

I \ H(R, I) ⊂ [(−∞, c) ∪ (d,∞)] ∩ I,
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thus

L6δ1 ∩ (I \ H(R, I)) = ∅

and we get

L6δ1 = (L6δ1 ∩ H(R, I)) ∪ (L6δ1 ∩ (I \ H(R, I))) =
⋃

n∈N

Bn.

Put

F (t, x) =
{

h−1
n (hn(x) + t), if x ∈ Bn, t ∈ R, n ∈ N ;

x, if x /∈ ⋃
n∈N Bn, t ∈ R.

F defined in this way is a dynamical system (see [8]). Moreover, by (3.6) we
know that |F (t, x)−H(t, x)| ≤ 9δ1 for x ∈ Bn, n ∈ N , t ∈ R. If x /∈ ⋃

n∈N Bn =
L6δ1 then |Ax| ≤ 6δ1 and we have

|F (t, x) − H(t, x)| ≤ |x − H(0, x)| + |H(0, x) − H(t, x)| = δ2 + 6δ1, t ∈ R.

(b) If H(0, ·) is decreasing, the interval I must be bounded since in the
opposite case limx→+∞ |H(0, x) − x| = +∞ or limx→−∞ |H(0, x) − x| = +∞,
thus their is a contradiction to (3.2). Put a := inf I and b := sup I and
H(0, a) := limx→a+0 H(0, x) if a /∈ I, H(0, b) := limx→b−0 H(0, x) if b /∈ I.
We have

b − a = b − H(0, b) + H(0, b) − H(0, a) + H(0, a) − a ≤
δ2 + [H(0, b) − H(0, a)] + δ2 ≤ 2δ2.

The function F given by F (t, x) = x, for x ∈ I and t ∈ R, is a dynamical
system for which (3.3) is satisfied. �
Remark 3.2. The assumption (3.2) is essential in the theorem. Really, for I = R

and H(t, x) := f(x), where

f(x) =

⎧
⎨

⎩

−1, for x < −1;
x, for |x| ≤ 1;
1, for x > 1,

we have f(f(x)) = f(x) for x ∈ R, thus (3.1) is satisfied, H(0, ·) is monotone
and there does not exist any dynamical system F for which |H−F | is bounded,
since |H(0, x) − F (0, x)| = |1 − x| → +∞ if x → +∞.

Remark 3.3. The assumption that H(0, ·) is monotone is essential in the theo-
rem, too. Let us consider the following example. Suppose that I is an interval
bounded from below. Let a := inf I and b ∈ I, b > a. Put ε := b−a

4 . Fix any
δ > 0. Let c ∈ (a, b) be such a point that c − a < min{ δ

2 , ε}. Let f : I → R

be a differentiable2 function such that f(a) ∈ (c, c + δ
2 ), f(x) = x for x ≥ c,

f(x) > x for x < c, f is strictly decreasing on interval (a, d) and strictly in-
creasing on interval (d, c) for some d ∈ (a, c). Let c1 ∈ (a, d) be such a point

2 For this example it is sufficient that f is continuous—however, see the end of this remark.
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that f(c1) = c. Let h : (c, b) → R be a strictly increasing homeomorphism. We
define H : R × I → I by the formula

H(t, x) =
{

h−1(h(f(x)) + t), if f(x) ∈ (c, b), t ∈ R;
f(x), if f(x) ∈ I \ (c, b), t ∈ R.

Then H(0, x) = f(x) for x ∈ I. We have

|f(x) − x| ≤ |f(a) − a| = (f(a) − c) + (c − a) ≤ δ, x ∈ I. (3.7)

Thus

|H(0, x) − x| ≤ δ, x ∈ I.

Now we check that (3.1) is satisfied with δ1 = δ. Fix x ∈ I and s, t ∈ R. Let
us consider the following cases.

i) x < c1.
In this case f(x) ∈ (c, b) and H(s, x) = h−1(h(f(x)) + s) ∈ (c, b), hence
f(H(s, x)) = H(s, x) ∈ (c, b). We have

H(s + t, x) = h−1(h(f(x)) + s + t) = h−1(h(h−1(h(f(x)) + s)) + t)
= h−1(h(H(s, x)) + t) = h−1(h(f(H(s, x))) + t) = H(t,H(s, x)).

ii) x ∈ [c1, c] ∪ ([b,∞) ∩ I).
In this case f(x) ∈ I \ (c, b) and f(f(x)) ∈ I \ (c, b). Hence H(s + t, x) =
f(x) and H(s,H(t, x)) = H(s, f(x)) = f(f(x)). From (3.7) we infer that
|f(f(x)) − f(x)| ≤ δ, thus (3.1) is satisfied.

iii) x ∈ (c, b).
In this case f(x) = x ∈ (c, b), hence

H(s,H(t, x)) = H(s, h−1(h(f(x)) + t)) = h−1(h(f(x)) + s + t) = H(s + t, x).

Suppose that F : R × I → I is a dynamical system such that |F (t, x) −
H(t, x)| ≤ ε. Fix x ∈ (a, c1). We have

lim
t→∞ H(t, x) = lim

t→∞ h−1(h(f(x)) + t) = b.

Hence there exists a t1 ∈ R such that

F (t1, x) > b − 2ε > c. (3.8)

We also have F (0, x) = x < c. From the continuity of F (·, x) we infer that
there exists an s ∈ R such that F (s, x) = c. Put t2 = t1 − s. Then

|F (t1, x) − c| = |F (t2, F (s, x)) − c| = |F (t2, c) − H(t2, c)| ≤ ε.

But b − c = (b − a) − (c − a) > 4ε − ε = 3ε, therefore F (t1, x) ≤ c + ε <
b − 3ε + ε = b − 2ε, which is a contradiction to (3.8).

Moreover this example proves that the dynamical system from the definition
1 is not Ulam–Hyers stable if I �= R (even in the class of functions F : R×I → I
for which F ′(0, x) exists).
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Remark 3.4. The function H(0, ·) is evidently monotone if the function H ′(0, ·)
has the constant sign, in particular if H ′(0, x) �= 0 for x ∈ I. The example above
shows that if H ′(0, x) is zero at least at one point x then the system may be
non-stable.

Remark 3.5. The general form of dynamical systems is as follows [8]:

F (t, x) =
{

h−1(h(x) + t), if x ∈ In, t ∈ R, n ∈ N ;
x, if x ∈ I \ ⋃

n∈N In, t ∈ R,
(3.9)

where In ⊂ I, n ∈ N ⊂ N, are open and disjoint intervals, and hn : In → R,
n ∈ N , are the homeomorphisms.

Notice that the dynamical system F in the above proof is of this form (with
In = Bn) and, moreover, infn∈N |In| = infn∈N |Bn| ≥ 6δ > 0.

Let us call any F of the form (3.9) with the additional assumption
infn∈N |In| > 0 a simple dynamical system. Every dynamical system F satisfies
the conditions (3.1) and (3.2) with arbitrary δ1 > 0 and δ2 > 0, hence for every
ε > 0 there exists a simple dynamical system F1 such that |F (t, x)−F1(t, x)| ≤
ε for t ∈ R, x ∈ I.

Thus for every dynamical system F there exists a simple dynamical system
arbitrarily close to F . However, not every simple dynamical system can be
approximated by a dynamical system of the form (3.9) with infn∈N |In| = 0.
Indeed, let F : R × R → R be a simple dynamical system given by F (t, x) =
t+x. If F1 is a dynamical system with infn∈N |In| = 0 then it has at least one
fixed-point, e.g. x0. We have |F (t, x0)−F1(t, x0)| = |t+x0−x0| = |t| → +∞ as
t → +∞. Thus there does not exist a dynamical system F1 with infn∈N |In| = 0
such that |F (t, x) − F1(t, x)| is bounded.

If the dynamical system is stable, it is possible to formulate the problem
of uniqueness: for H given, is the dynamical system F which approximates H
unique or not? The answer is not. Really, if H is a dynamical system which is
not simple, then there exist two such dynamical systems: H and, by the above,
the simple dynamical system F which approximates H.

Corollary 3.6. The translation equation is stable in the class of continuous
functions H : R × I → I for which H(0, x) = x for x ∈ I.

Remark 3.7. In the above corollary we stated that if a continuous
H : R × I → I satisfies the identity condition exactly and the translation
equation approximately, then there exists F : R × I → I which satisfies both
the identity condition and the translation equation and is close to H.

Let us consider the “reverse” case in which H satisfies the translation equa-
tion exactly and the identity condition approximately. In Theorem 4.2 from [7]
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it was proven that3 there exists an ε > 0 such that for every δ > 0 there exists
a continuous H : R × I → I which satisfies the translation equation (exactly)
and the identity condition up to δ and is such that for every dynamical system
F : R × I → I we have |H(t, x) − F (t, x)| > ε for some (t, x) ∈ R × I.

Corollary 3.8. If the continuous function H : R × I → I is such that

|H(t, s, x)| ≤ δ for t, s ∈ R, x ∈ I and some δ ∈
(

0,
2
5

)

,

and

|H ′(0, x) − 1| ≤ δ for x ∈ I,

then there exists a dynamical system F : R × I → I such that

|H(t, x) − F (t, x)| ≤ 10δ for t ∈ R, x ∈ I.

Proof. Put h(x) = H(0, x) for x ∈ I. We have

|H(0,H(0, x)) − H(0, x)| ≤ δ, x ∈ I,

thus (3.2) is satisfied for every x ∈ H(0, I) = h(I). We have |h′(x) − 1| ≤ δ,
thus:

0 < 1 − δ ≤ h′(x) ≤ 1 + δ, (3.10)
thus the function h is increasing. Let y1 = inf I, y2 = sup I, x1 = inf h(I),
x2 = suph(I). We will show that (3.2) is satisfied with δ2 = 4δ. Let us consider
some cases.
1/ For y1 > −∞ and y2 = +∞, h is unbounded (since, in the contrary case,
we would have

h(n) − h(y1 + 1)
n − (y1 + 1)

= h′(ξ(n)) → 0 for n → +∞,

which is a contradiction to (3.10)).
a/ If x1 = y1, then h(I) = I and the condition (3.2) is satisfied.
b/ If x1 > y1 and y1 ∈ I, then we have h(y1) = x1 and |h(x1) − x1| ≤ δ,

and since h(x1) − x1 = h(x1) − h(y1) = h′(ξ)(x1 − y1) for a ξ

(1 − δ)(x1 − y1) ≤ h′(ξ)(x1 − y1) = |h(x1) − x1| ≤ δ,

thus x1 − y1 ≤ δ
1−δ .

We have for x ∈ [y1, x1)

|h(x) − x| ≤ |h(x) − x1| + |x1 − x| = h′(ξ)(x − y1) + (x1 − x)

≤ δ

1 − δ
[h′(ξ) + 1] ≤ δ(δ + 2)

1 − δ
≤ 4δ.

3 Let the second author correct some lapse from [7] on this occasion. Actually, in the proof
of this Theorem 4.2 in [7] it was incorrectly stated “Such H belongs to Dδ(I), actually even
to D(I)”. It should be written there: “Such H belongs to Dδ(I), actually H even satisfies
the translation equation”.
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Since |h(x) − x| ≤ 4δ for x ∈ I, by the Theorem 3.1 there exists a dynamical
system F such that |H(t, x) − F (t, x)| ≤ 10δ for t ∈ R, x ∈ I.

c/ If x1 > y1 and y1 /∈ I, then we put h(y1) = x1 and we consider as above.
2/ If y1 = −∞ and y2 = +∞, then by (3.10) the function h is unbounded
from above and below, thus h(I) = R and (3.2) is satisfied.

The proof in the other cases is analogous. �

The above corollary shows that a dynamical system in the sense of
definition 2 is Ulam–Hyers stable as well as uniformly b-stable (hence b-stable).

Let us recall

Theorem 3.9. (Theorem 4.1 in [7]) If H : R × I → I is continuous, surjective,
and satisfies (1.3) then there exists a dynamical system F : R × I → I such
that |F (t, x) − H(t, x)| ≤ 9δ.

This theorem shows that a dynamical system in the sense of definition 5 is
Ulam–Hyers stable and uniformly b-stable (hence b-stable).

Remark 3.10. In this case the function H(0, x) may be non-monotone, e.g. the
function

H(t, x) = f(x) =

⎧
⎨

⎩

x + δ, for x ≤ 0;
−x + δ, for 0 < x < δ;
x − δ, for x ≥ δ,

for which |H(0, x) − x| = |f(x) − x| ≤ δ for x ∈ R.

Moreover, notice that if I = R then inequality (1.4) for continuous
H : R × I → I implies that H is surjective. Thus we have the following

Corollary 3.11. If I = R then a dynamical system in the sense of definition 1
is uniformly b-stable.

The other “positive results” are trivial:

Proposition 3.12. If I is bounded then a dynamical system in the sense of
definitions 1–5 is uniformly b-stable, thus b-stable, superstable and inversely
superstable.

If I is bounded then a dynamical system in the sense of definitions 1, 3–5
is inversely uniformly b-stable, thus inversely b-stable, too.

A dynamical system in the sense of definitions 3–5 is inversely superstable.
A dynamical system in the sense of definitions 1–5 is inversely hiperstable.

4. Negative results

Theorem 4.1. A dynamical system in the sense of definitions 3 and 4 (even if
we suppose that F ′(0, x) �= 0 for x ∈ I) is not Ulam–Hyers stable.
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Proof. Let a, b ∈ I, a < b, ε < b−a
2 , δ > 0. Let f : I → [a, a+b

2 ] ∩ [a, a + δ]
be a strictly increasing differentiable function such that f ′(x) �= 0, x ∈ I. For
H(t, x) = f(x) we have |H(t, s, x)| ≤ δ and

|H(0, b) − F (0, b)| = |H(0, b) − b| = b − H(0, b) ≥ b − a + b

2
=

b − a

2
> ε

for every dynamical system F . �

Theorem 4.2. If I is unbounded, a dynamical system in the sense of definitions
3 and 4 (even if we suppose that F ′(0, x) �= 0 for x ∈ I) is not b-stable (thus
is not uniformly b-stable).

Proof. Let’s say that I is unbounded from above. Let ε > 0, a, b ∈ I, a < b,
b − a < ε. Let f : I → [a, b] be a strictly increasing function, differentiable
with f ′(x) �= 0. For H(t, x) = f(x) we have |H(t, s, x)| ≤ b − a ≤ ε. But
|H(0, x) − F (0, x)| = |f(x) − x| → ∞ as x → ∞ for every dynamical system
F . �

Theorem 4.3. If unbounded I is bounded from one side then a dynamical system
in the sense of definition 1 is not b-stable (thus is not uniformly b-stable).

Proof. Suppose that I is an interval bounded from below, unbounded from
above. Let a := inf I and b ∈ I, a < b. Let f : R → R be a function given by
f(x) = |x− b|+ b. Let h : (b,∞) → R be a strictly increasing homeomorphism.
We define H : R × I → I by the formula

H(t, x) =
{

h−1(h(f(x)) + t), if f(x) ∈ (b,∞), t ∈ R;
f(x), if f(x) = b, t ∈ R.

Then H(0, x) = f(x) for x ∈ I. We have

|f(x) − x| ≤ |f(a) − a| x ∈ I. (4.1)

Thus |H(0, x) − x| is bounded. Moreover, the translation equation is satisfied,
since f(f(x)) = f(x).

Suppose that F : R × I → I is a dynamical system such that |F (t, x) −
H(t, x)| ≤ M(x) for some M : I → R. Fix x ∈ (a, b). We have

lim
t→∞ H(t, x) = lim

t→∞ h−1(h(f(x)) + t) = ∞.

Hence
lim

t→∞ F (t, x) = ∞. (4.2)

We also have F (0, x) = x < b. From the continuity of F (·, x) we infer that
there exists an s ∈ R such that F (s, x) = b. We have |F (t, b) − H(t, b)| =
|F (t, b) − b| ≤ M(b) for every t ∈ R, this gives

F (t, x) = F (t − s, F (s, x)) = F (t − s, b) ∈ [b − M(b), b + M(b)], t ∈ R,

which is a contradiction to (4.2). �
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Theorem 4.4. A dynamical system in the sense of definitions 1–5 is not in-
versely stable.

Proof. Fix a, b, c, d ∈ I, c < a < b < d. Let ε < min{(b − a)/2, 2(a − c), 1/2}.
Let δ ∈ (0, ε/2). We define F : R × I → I by the formula

F (t, x) =
{

h−1(h(x) + t), if x ∈ (a, b), t ∈ R;
x, if x ∈ I \ (a, b),

where h : (a, b) → R is a strictly increasing homeomorphism. Let g : R → [0, δ]
be a differentiable function such that g(x) = 0 for x ≤ a and for x ≥ d,
g(b) > 0, |g′(x)| ≤ 1/2 and there exists a y ∈ (a, b) such that g′(y) > ε.

We define H : R×I → R by H(t, x) = F (t, x)−g(x). To see that H(R, I) ⊂ I
let us consider the following:
if x ∈ (−∞, a] ∩ I, then H(t, x) = F (t, x) ∈ I;
if x ∈ (a,∞) ∩ I, then H(t, x) = F (t, x) − g(x) ∈ [F (t, x) − δ, F (t, x)] ⊂
[a − δ, F (t, x)] ⊂ [c, F (t, x)] ⊂ I.

We have |H(t, x) − F (t, x)| = |g(x)| ≤ δ.
Moreover, H(s + t, b) = F (s + t, b) − g(b) = b − g(b) ≥ b − δ and H(t, b) =

F (t, b) − g(b) = b − g(b) ∈ (a, b). Hence F (s,H(t, b)) → a as s → −∞. Let s0
be such that F (s0,H(t, b)) < a + δ. We have H(s0,H(t, b)) = F (s0,H(t, b)) −
g(H(t, b)) < a + δ.

Therefore H(s0 + t, b) − H(s0,H(t, b)) > b − δ − a − δ > 2ε − 2δ > ε.
Furthermore, H(0, x) = F (0, x) − g(x) = x − g(x), thus H(0, ·) is differen-

tiable, H ′(0, x) = 1 − g′(x) > 0, so H(0, ·) is strictly increasing.
Moreover, H is surjective: for x ≤ c or x ≥ d we have x = F (0, x) =

F (0, x) − 0 = H(0, x), hence x ∈ V := H(R, I). But V is an interval, thus
V = I.

Additionally, |H ′(0, y) − 1| = |g′(y)| > ε. �

Theorem 4.5. If I is unbounded then a dynamical system in the sense of defin-
itions 1, 3–5 is not inversely b-stable (thus is not inversely uniformly b-stable).

For every I, a dynamical system in the sense of definition 2 is not inversely
b-stable (thus is not inversely uniformly b-stable).

Proof. Let
a = 0, α = 1 if I = R,
a = inf I, α = 1 if I is bounded from below,
a = sup I, α = −1 if I is bounded from above.
Put F (t, x) = (x−a)et+a for t ∈ R, x ∈ I, and H(t, x) = F (t, x)+αδ for some
δ > 0. We see that F is a dynamical system, |H(t, x) − F (t, x)| ≤ δ for t ∈ R,
x ∈ I, H ′(0, x) = 1 and H(t, s, x) = αδet is unbounded. Thus a dynamical
system in the sense of definitions 1–4 is not inversely stable.
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If I = R, then the function H is a surjection, thus the example above proves
that a dynamical system in the sense of definition 5 is not inversely stable.

If unbounded I is bounded for example from below, then H is not a sur-
jection. In this case we put:

H∗(t, x) =
{

H(t, x), if x > a + 1, t ∈ R;
(δ + et)(x − a) + a, if x < a + 1, x ∈ I, t ∈ R.

This function is a surjection, |H∗(t, x) − F (t, x)| ≤ δ and H
∗(t, s, x) is un-

bounded. Thus a dynamical system in the sense of definition 5 is not inversely
stable in this case either.

Thus we have proven the first part of this Theorem.
Now assume that I is an arbitrary nondegenerate interval. Let f : I → I be

a differentiable function such that f(·) − IdI is bounded, and with unbounded
derivative. Then for H,F : R × I → I given by H(t, x) = f(x) for x ∈ I and
t ∈ R, F (t, x) = x for t ∈ R and x ∈ I, we have: |F − H| is bounded, F is a
dynamical system, |H ′(0, ·) − 1| is unbounded. �

Theorem 4.6. If I is unbounded then a dynamical system in the sense of defi-
nitions 1–5 is not superstable.

Proof. Let a, b ∈ I, a < b. Let f : R → R be a differentiable function, with
3/2 ≥ f ′(x) ≥ 1/2 such that f(x) = x for x ≥ b and for x ≤ a, f(x) > x for
x ∈ (a, b). We have |f(x)−x| ≤ b−a for x ∈ R, in particular |f(f(x))−f(x)| ≤
b − a for x ∈ R. Let us define H(t, x) = f(x). Then |H(t, s, x)| ≤ b − a, H(0, ·)
is differentiable with |H ′(0, x) − 1| ≤ 1/2. Moreover H(0, R) = R, hence H
is a surjection. But H is not a dynamical system (for x ∈ (a, b) we have
H(0, x) = f(x) > x) and H is unbounded.

Thus we have proven that a dynamical system in the sense of definitions
1, 2 and 5 is not superstable. Now we are going to prove that the dynamical
system, also in the sense of definitions 3 and 4, is not superstable.

Assume for example that I is an interval unbounded from above, inf I <
a ∈ I. Let f : R → [a − 1,∞) be a differentiable function, with f ′(x) > 0
such that f(x) = x for x ≥ a, f(x) > x for x < a. We have |f(x) − x| ≤ 1 for
x ∈ [a−1, a], and f(x) = x for x ≥ a, hence |f(f(x))−f(x)| ≤ 1 for x ∈ R. Let
us define H(t, x) = f(x). Then |H(t, s, x)| ≤ 1, H(0, ·) is differentiable with
H ′(0, x) > 0 (hence strictly increasing). But H is not a dynamical system (for
x < a we have H(0, x) = f(x) > x) and H is unbounded. �

Theorem 4.7. If I is unbounded then a dynamical system in the sense of defi-
nition 1 is not inversely superstable.

Proof. For bounded H the difference H(0, x) − x is unbounded. �

Theorem 4.8. A dynamical system in the sense of definition 2 is not inversely
superstable.
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Proof. If H(t, x) = f(x), where f : I → I is a bounded differentiable function
with the derivative unbounded, then H ′(0, ·) − 1 is unbounded. �

Theorem 4.9. A dynamical system in the sense of definitions 1–5 is not hiper-
stable.

Proof. A dynamical system in the sense of definitions 1–5 is not superstable
for unbounded I, thus, for such I, it is not hiperstable.

Assume that I is bounded. Let f : I → I be a differentiable, not identi-
cally equal to IdI , strictly increasing surjection with bounded derivative (for
example

f(x) =
(x − a)2

b − a
+ a, x ∈ I,

where a = inf I, b = sup I). Then H given by H(t, x) := f(x) belongs to Ki

for i = 1, 2, 3, the functions H, H(0, ·) − IdI and H ′(0, ·) − 1 are bounded but
H is not a dynamical system since f ◦ f �= f . �

5. Summary

In the table below, the answer is given to the question: is a dynamical system
in the sense of the definition given in the first row of the table, stable in the
sense given in the first column?

Every stability is considered in the class of continuous functions.
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The stability of a dynamical system depends thus on the system considered
as its definition and often on the interval I (there are only four possibilities:
every I, bounded I, I = R, no I).

This table permits to determine the relations between the different types
of stabilities for the dynamical system of specific definition. E.g. inverse b-
stability, inverse uniform b-stability, superstability and inverse superstability
are equivalent for a system in the sense of definition 1 since they are equivalent
to the boundedness of I. Moreover only superstability (for bounded I) and the
inverse hiperstability (for every I) are true for a system for every definition.
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