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Abstract
Purpose The aim of this pilot study was to explore simul-
taneous functional PET/MR for biological characterization
of tumors and potential future treatment adaptations. To
investigate the extent of complementarity between different
PET/MR-based functional datasets, a pairwise correlation
analysis was performed.
Methods Functional datasets of N=15 head and neck (HN)
cancer patients were evaluated. For patients of group A
(N=7), combined PET/MR datasets including FDG-PET
and ADC maps were available. Patients of group B (N=8)
had FMISO-PET, DCE-MRI and ADC maps from com-
bined PET/MRI, an additional dynamic FMISO-PET/CT
acquired directly after FMISO tracer injection as well as an
FDG-PET/CT acquired a few days earlier. From DCE-MR,
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Tübingen, Tübingen, Germany

3 Department of Diagnostic and Interventional Radiology,
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parameter maps K trans, ve and vp were obtained with the
extended Tofts model. Moreover, parameter maps of mean
DCE enhancement, �SDCE, and mean FMISO signal 0-4
min p.i., AFMISO, were derived. Pairwise correlations were
quantified using the Spearman correlation coefficient (r) on
both a voxel and a regional level within the gross tumor
volume.
Results Between some pairs of functional imaging modal-
ities moderate correlations were observed with respect to
the median over all patient datasets, whereas distinct cor-
relations were only present on an individual basis. High-
est inter-modality median correlations on the voxel level
were obtained for FDG/FMISO (r = 0.56), FDG/AFMISO

(r = 0.55), AFMISO/�SDCE (r = 0.46), and FDG/ADC
(r = −0.39). Correlations on the regional level showed
comparable results.
Conclusion The results of this study suggest that the exam-
ined functional datasets provide complementary informa-
tion. However, only pairwise correlations were examined,
and correlations could still exist between combinations of
three or more datasets. These results might contribute to the
future design of individually adapted treatment approaches
based on multiparametric functional imaging.

Keywords Integrated PET/MR · Head and neck cancer ·
Treatment individualization · Multiparametric functional
imaging · Correlation analysis · Hypoxia imaging

Introduction

Biological tumor characterization based on functional and
molecular imaging might be highly valuable for radiother-
apy (RT). On the one hand, it could allow for an improved
target volume definition and an individualized dose
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prescription within the tumor according to local biological
characteristics. Such dose painting strategies can be readily
applied with the technical availability of intensity modu-
lated RT (IMRT). Moreover, functional imaging might be
of high value for early response assessment and poten-
tial treatment adaptation in the course of fractionated RT
[1, 2]. Other fields of application are the assessment of
chemotherapy and the application of targeted agents, such
as hypoxia-sensitizing or antiangiogenic drugs [3, 4].

Both positron emission tomography (PET) and magnetic
resonance imaging (MRI) may provide functional informa-
tion beneficial for personalized treatment strategies. PET
imaging using [18F]-fluorodeoxyglucose (FDG) can be used
to monitor glucose metabolism, whereas the hypoxic status
of the tumor can be assessed using dedicated tracers such
as [18F]-fluoromisonidazole (FMISO). Diffusion weighted
MRI (DW-MRI) provides the possibility to quantify the
diffusion of water molecules, which is related to cellular
density [5]. Dynamic contrast-enhanced MRI (DCE-MRI)
yields a temporally varying signal due to the distribution of
contrast agent in blood pool and tissue. By compartmental
modeling estimates of quantitative physiological parameters
can be derived [6].

With the advent of combined PET/MR imaging [7, 8]
the acquisition of simultaneous, intrinsically registered PET
and MR data has become possible. This facilitates the com-
parison and combined analysis of PET- and MR-derived
functional imaging data. Simultaneous PET/MR may thus
be of high potential for treatment individualization [9, 10].

Recent studies have associated different functional imag-
ing information with RT outcome for head and neck (HN)
cancer. This applies to FDG-PET [11, 12], static as well
as dynamic FMISO-PET [13–16], apparent diffusion coef-
ficients (ADCs) inferred by DW-MRI [17], as well as
DCE-MRI [18, 19]. These studies provide a rationale to
adapt RT treatment plans according to functional imaging
information.

It is not clear yet if datasets from different functional
imaging modalities are completely complementary, or if
information is to some extent redundant. Initial analyses
of correlations between different functional datasets have
already been performed in recent studies. The studies of
Rajendran et al. [20] and Thorwarth et al. [21] revealed
good voxel-by-voxel correlation of FDG and FMISO in
some HN tumors, whereas others showed no clear correla-
tion. The biological basis of the observed correlations may
be the hypoxia-inducible factor 1α (HIF 1α) [20]. Simi-
lar results were obtained by Zegers et al. [22] comparing
uptake of FDG and the hypoxia PET tracer [18F]-HX4 in
patients with non–small cell lung cancer. Houweling et al.
[23] quantified correlations between FDG and ADCmaps of
HN tumors on a voxel level, and found a negative correlation
in most patients. Both Newbold et al. [24] and Donaldson

et al. [25] found correlations between hypoxia derived from
pimonidazole staining and DCE-derived parameter maps on
a region-of-interest (ROI) level. A study by Jansen et al.
[26] found that neck nodal metastases with positive FMISO
uptake differed significantly in median K trans values from
those with no FMISO uptake.

Earlier studies have shown that a dynamic imaging pro-
tocol may be superior compared to a single time frame for
hypoxia quantification using FMISO-PET [16]. However,
in addition to a late static scan several hours post injection
(p.i.), such a dynamic protocol requires a PET acquisi-
tion during tracer wash-in in the first minutes p.i. [27],
which may hamper its usage in clinical routine. A positive
correlation result between early FMISO and DCE informa-
tion would potentially provide the possibility to infer early
FMISO information from DCE, which would facilitate its
clinical usage.

To address the question if available functional infor-
mation of PET/MR is complementary or to some extend
redundant, this study extends beyond existing studies by
considering a comprehensive set of functional data. Correla-
tions of various functional datasets are quantified on a voxel
as well as on a regional level within HN tumors by means of
the Spearman correlation coefficient. For the analysis, FDG-
PET, FMISO-PET acquired in the wash-in, as well as in the
retention phase, ADC maps extracted from DW-MRI, and
DCE-MRI derived maps are taken into account. The study is
a first explorative, hypothesis generating approach to inves-
tigate the utilization of integrated PET/MR for personalized
treatment strategies.

Material and methods

Patient data

Datasets from 15 HN cancer patients from two different
studies were available in total, examined with combined
PET/MR (Biograph mMR, Siemens Healthcare, Erlangen,
Germany) and PET/CT (Biograph mCT, Siemens Health-
care, Erlangen, Germany) before the start of RT. The studies
were approved by the local ethics committee. All patients
gave written informed consent for participating in the imag-
ing studies.

For 7 patients (group A) the PET/MR imaging session
was performed about 2 h (120 – 166min, median: 129min)
after injection of FDG (320 – 388MBq, median: 357MBq).
The other 8 patients (group B) were imaged 0–40min after
injection of FMISO (165 – 377MBq, median: 339MBq)
in PET/CT using a dynamic acquisition mode, with a
subsequent PET/MR imaging session about 3 h p.i. (164 –
206min, median: 174min). For these patients, an additional
FDG-PET/CT (307 – 354MBq, median: 330MBq) acquired
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1 – 30 days earlier (median: 8 days) at about 1 h p.i. (55 –
81min, median: 71min) was also available. An overview of
the patient cohort including the imaging data available for
each patient is shown in Table 1.

PET images obtained from PET/MR were reconstructed
to a voxel size of 2.8 × 2.8 × 2.0mm3 using an OSEM
3D algorithm with 2 iterations and 21 subsets (2i21s) and
a 3D Gaussian filter of 4mm. MR-based PET attenuation
correction was performed by a vendor-provided segmen-
tation approach based on spoiled gradient-echo sequences
with DIXON-based fat-water separation [28]. FMISO-PET
images from the PET/CT were reconstructed to a voxel size
of 4.1 × 4.1 × 5.0mm3 using OSEM 3D with 4i8s and
a 3D Gaussian filter of 5mm. FDG-PET images from the
PET/CT were reconstructed to a voxel size of 2.0 × 2.0 ×
3.0mm3 using OSEM 3D with 3i24s and a 3D Gaussian
filter of 3mm.

MRI acquisitions at the Biograph mMR were performed
with the standard 16 channel head neck coil. An anatomi-
cal, transversal T2-weighted acquisition using a short time
inversion recovery (STIR) sequence was acquired for each
patient (repetition time (TR)/echo time (TE)/inversion time
(TI) = 4830ms/37ms/220ms, flip angle 160◦, voxel size
0.7 × 0.7 × 4.8mm3, bandwidth 220Hz/px, 2 averages,
acquisition time 3m58s).

In addition, DW-MR images were obtained using
a single-shot spin-echo echo-planar imaging (TR/TE
= 7400ms/49ms, b-values 50 s/mm2 and 800 s/mm2,

bandwidth 2083Hz/px, voxel size 2.1 × 2.1 × 5.0mm3, 3
averages, spectral attenuated inversion recovery fat suppres-
sion, acquisition time 2m26s). ADC maps were obtained
from the scanner software (Syngo MR B18P).

For N=5 patients also DCE-MR datasets were obtained.
An axial T1-weighted fast spoiled gradient echo sequence
(TWIST, TR/TE = 2.86ms/1.01ms, flip angle 12◦, voxel
size 1.1 × 1.1 × 4.0mm3, temporal resolution 2.9 s, band-
width 530Hz/px, acquisition time 4m18s) was performed
after an automatic fast bolus injection of 0.1mmol Gd-
DTPA per kg patient weight, followed by a saline flush. The
field of view included the entire tumor and the common
carotid arteries.

For the derivation of the native longitudinal relaxation
times needed for DCE-quantification, additional VIBE
sequences were acquired with two different flip angles
(α1 = 2 ◦, α2 = 12 ◦) before contrast agent injection
(TR/TE = 4.04ms/1.52ms). The image grid was identical to
the one of the DCE-MR acquisitions.

Calculation of parameter maps

The activity of the dynamic FMISO-PET datasets acquired
during tracer wash-in was integrated for each voxel between
0 to 4min p.i. using the rectangle method. By normalizing
with respect to the acquisition time range of 4min, a map
of mean activity, AFMISO, was obtained. For DCE images,
the time-dependent signal enhancement of each voxel was

Table 1 Patient characteristics and acquired datasets

Tumor volume of imaging DCE- DW- # samples

Patient Gender Age localization GTV [cm3] modalitiesa MRIb MRIc voxel level regional level

1 m 70 Hypopharynx 35 A - x 453 7+

2 f 57 Oropharynx 41 A - x 2519 24

3 m 62 Larynx 16 A - x 1050 11

4 m 64 Oropharynx 19 A - x 1172 13

5 m 44 Cervical lymph node 19 A - x 1176 12

6 f 77 Nasopharynx 16 A - x 1005 12

7 m 52 Hypopharynx 16 A - x 743 6+

8 f 62 Base of tongue 16 B x (x)∗ 1008 13

9 f 57 Oropharynx 23 B x x 423 21

10 m 48 Oropharynx 33 B x (x)∗ 2112 30

11 m 56 Hypopharynx 50 B x x 3148 45

12 m 64 Oropharynx 167 B - x 10462 166

13 m 57 Oropharynx 10 B - x 638 6+

14 f 55 Oropharynx 56 B x x 3556 52

15 f 53 Oropharynx 32 B - x 2005 27

a A: FDG-PET/MR 2 h p.i., B: FDG-PET/CT 1 h p.i. + dynamic FMISO-PET/CT 0–40min p.i. + FMISO-PET/MR 3 h p.i., b x: DCE-MRI
acquired, -: no DCE-MRI available, c x: ADC-map acquired and evaluated, (x)∗ ADC-map omitted due to spatial distortions (according to visual
assessment), + not used for evaluation due to small sample size
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calculated by subtraction of the mean signal before con-
trast agent injection. Subsequently, maps of mean signal
enhancement �SDCE from 0 to 4min p.i. were calculated
analogous to the AFMISO maps.

Before compartmental analysis, DCE images were
resampled to the FMISO image grid from PET/MR. Signal-
time-curves of DCE were fitted with an in-house imple-
mented software (Matlab R2014b) using the extended Tofts
model [29] and the Levenberg-Marquardt least squares
algorithm. The arterial input function (AIF) was derived
for each patient independently from a fit of the signal-time
curve in the common carotid artery. Parameter maps of
the volume fraction of the extracellular-extravascular space
(EES), ve, the volume fraction of the blood plasma, vp, and
the volume transfer rate from plasma to the EES, K trans,
were obtained. For regional analysis (see below) compart-
mental analysis was performed separately on the regional
level of 3 × 3 × 4 voxels of the resampled DCE images.

Image registration and tumor volume delineation

For performing the correlation analysis, the GTV of each
patient from group A was delineated by an experienced
radiation oncologist based on combined information of the
FDG-PET and the T2-weighted STIR image [30]. ADC
maps were resampled to match the FDG image grid with
b-spline interpolation of 3rd order using the Insight Seg-
mentation and Registration Toolkit (ITK version 4.5.2,
www.itk.org).

For delineation of the GTVs of group B, manual contours
defined by an experienced radiation oncologist on corre-
sponding planning CTs were transferred to the PET/MR
datasets by deformable registration of the CT and STIR
images. The registrations were performed with elastix
[31] using a b-spline parametrized transform and mutual
information as similarity measure. Details of the used
deformable registration algorithm and the respective param-
eter set are given in [32]. ADC images from PET/MR
were resampled to match the FMISO image grid. Addition-
ally, the FDG image from PET/CT was transformed to the
FMISO image grid from PET/MR by deformable registra-
tion of the corresponding CT and STIR images with the
method described above. The AFMISO map was registered to
the PET/MR dataset in the same way.

Statistical analysis

Correlation analysis was performed for all available pair-
wise combinations of functional and parametric maps with
Python 2.7.6 using the SciPy library (www.scipy.org). Cor-
relations were quantified by evaluating for each patient
seperately the Spearman correlation coefficient on a voxel

as well as on a regional level within the GTV. For voxel-
based analysis, samples were defined by the PET image grid
from PET/MR. For regional analysis, samples were defined
as averages from non-overlapping sub-regions of the GTV.
Each sub-region was defined over 3×3×4 voxels of the PET
image grid, corresponding to a size of 8.4 × 8.4 × 8mm3.
Patients with less than ten subregions were excluded from
regional analysis (cf. Table 1).

Results

All functional images and parameter maps used for pair-
wise correlation analysis, together with the anatomical STIR
acquisition and the delineated GTV, are exemplarily visual-
ized for Patient 11 in Fig. 1.

Exemplary scatter plots of the voxel-based pairwise cor-
relation analysis are shown in Fig. 2, visualizing results
of two exemplary patients. Scatter plots and corresponding
correlation coefficients show that there were patients for
which pairs of functional data which showed rather strong
correlations (e.g. FDG/ADC, �SDCE/AFMISO for Patient
11), while for other patients the correlations of the same
pairs were much lower (cf. Patient 14).

Figure 3 shows a correlation matrix representing the
median Spearman correlation coefficients obtained over
the available patient datasets for all pairwise combina-
tions of functional data, both for voxel-based and regional
analysis. Highest inter-modality median coefficients of the
voxel-based analysis were obtained for the combinations
FDG/FMISO (r = 0.56, range: 0.08 – 0.80, N = 8),
FDG/AFMISO (r = 0.55, range: 0.19 – 0.76, N = 8),
AFMISO/�SDCE (r = 0.46, range: 0.30 – 0.57, N = 5),
and ADC/FDG (r = −0.39, range: -0.82 – 0.30, N = 13).
For regional analysis, values changed to FDG/FMISO (r =
0.51, range: 0.06 – 0.86, N = 7), FDG/AFMISO (r = 0.32,
range: -0.02 – 0.61, N = 7), AFMISO/�SDCE (r = 0.40,
range: -0.09 – 0.61, N = 5), and ADC/FDG (r = −0.28,
range: -0.98 – 0.62, N = 10).

The inter-patient variation of Spearman correlation coef-
ficients for both voxel and regional analysis are shown in
Figure 4 for the pairs of highest median voxel correla-
tions. Moreover, correlation coefficients are shown for each
patient individually in Fig. 5.

Discussion

While weak correlations were observed between some func-
tional imaging modalities in the median over all patient
datasets, distinct correlations were only present on an indi-
vidual basis. This applies both to the voxel-based and the

www.itk.org
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Fig. 1 Dataset of Patient 11,
showing transversal slices of the
anatomical T2-weighted image
(STIR), ADC map, FMISO
image at 3 h p.i., the
DCE-derived maps K trans, ve
and vp, the maps of mean signal
enhancement �SDCE and mean
FMISO activity AFMISO in the
time range of 0–4min p.i, and
the FDG image at 1 h p.i. All
images and parameter maps
were acquired in a single
PET/MRI session, except for the
FDG image and the AFMISO map
which were transferred to the
PET/MR dataset by deformable
registration. The delineation of
the GTV is shown in red

regional analysis. FDG and FMISO showed the largest inter-
modality median correlations in our study. However, the
respective correlation coefficients varied strongly within the
patient cohort. This result is in line with the findings of
Rajendran et al. [20] and Thorwarth et al. [21]. Similar
to Houweling et al. [23], moderate negative correlations
were observed between FDG and ADC, with a pronounced
variability across patients. No correlations were observed
between FMISO and DCE-derived parameters maps. This
is different from Newbold et al. [24], Donaldson et al. [25],
and Jansen et al. [26]. However, our study is not read-
ily comparable to the results of these authors, since the
first authors quantified hypoxia by means of pimonidazole
staining after tumor resection and the latter performed the
analysis for neck nodal metastases.

We also found a moderate correlation between AFMISO

and �SDCE. This indicates that they may be measures of
similar physiological parameters. However, according to
this first analysis the observed correlation does not seem to
be sufficient to infer the early FMISO information during
wash-in from the DCE data. Instead of using �SDCE maps
directly for correlation analysis, they could have also been
converted to maps of contrast agent concentration using
native T1 maps derived from the VIBE acquisitions. While
this might have a slight impact on correlations quantified

with the Spearman coefficient due to the dependency of
the relation between signal enhancement and concentration
on native T1, the conversion to concentration maps would
introduce an additional source of error due to uncertainties
in native T1 derivation.

For ADC and ve maps, correlations may be expected as
ADC is commonly related to the fraction of EES, and ve
is interpreted as the fraction of EES itself. However, in our
study weak correlations are only observed on a regional
level. One explanation of missing correlations could be
that DCE parameter maps in regions with low vasculariza-
tion are not reliable due to the weak delivery of contrast
agent. However, correlation analysis between ADC and ve
should be performed with further datasets to provide more
representative results.

Some of the highest correlations were found between the
DCE-based mapsK trans, ve, vp, as well as�SDCE. This may
be either due to inherently correlated parameter estimates in
the extended Tofts model used for data analysis, or due to
biological relations between the respective parameters.

The determination of multimodal parameter correlations
may be substantially compromised by different factors,
such as geometrical inaccuracies associated with imag-
ing techniques and image registration, as well as inter-
polation errors and statistical uncertainties. Geometrical
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Fig. 2 Exemplary scatter plots for Patients 11 (top) and 14 (bottom),
with samples obtained on the voxel level. For increased compara-
bility across patients, FDG activity concentrations were converted to
standardized uptake values (SUVs). FMISO data was normalized by

devision by the background signal in a deep neck muscle, resulting
in the tumor to background ratio (TBR). The Spearman correlation
coefficients r associated with the scatterplots are shown within each
plot
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Fig. 3 Correlation matrix showing for each pair of functional information the median Spearman correlation coefficients obtained over all respec-
tive patient datasets. The upper right triangle shows coefficients derived on the voxel level, whereas the lower left triangle shows the coefficients
derived on the regional level
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Fig. 4 Boxplots showing the inter-patient variation of Spearman correlation coefficients for the pairs with the median voxel correlations according
to Fig. 3. For each functional pair, the results from voxel-based analysis (dark color, left boxes) and from regional analysis (light color, right boxes)
are shown

distortions are particularly present in the ADC maps, which
were acquired using EPI sequences. For future acquisitions,
ideally sequences which are less prone to geometrical dis-
tortions should be used in combination with a method for
geometrical distortion correction [33, 34]. Also, since no
patient positioning system was used during image acquisi-
tion in the combined PET/MR examinations, movement of
the patients during image acquisition cannot be excluded a
priori. Hardware solutions for effective patient immobiliza-
tion are currently being developed [35]. Finally, geometrical
uncertainties are associated with images that were trans-
ferred to the PET/MR datasets by deformable registration,
which may lead to a reduction of absolute correlation val-
ues [36]. An independent analysis of the errors introduced
by the different factors is not possible with realistic patient
data. In order to account for geometrical uncertainties, a
correlation analysis on a regional level was added to the

voxel analysis. Such a regional analysis is more robust with
respect to geometrical uncertainties, interpolation errors and
image noise, whereas averaging may underestimate exist-
ing correlations, and additional statistical uncertainties may
be introduced. Both increases and decreases in correla-
tion coefficients compared to the voxel-based analysis were
observed. However, similar inter-patient distributions were
observed (cf. Fig. 4). As a main result of our study we found
large variations of correlation coefficients between patients,
which most probably can not be explained by the present
inaccuracies alone.

DCE parameter maps were derived with the extended
Tofts model. However, model parameters may be misin-
terpreted for some physiological conditions such as highly
vascularized tissues with intermediate flow [37]. For other
conditions, the model may not fit the data accurately. Other
models with fewer assumptions like the four parameter
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Fig. 5 Spearman correlation coefficients obtained for the individual patients. Color encoding is the same as in Fig. 4, with dark and light colors
showing the results from voxel-based and regional analysis, respectively
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two-compartment exchange model (2CXM) could be used
instead if data quality is sufficient in terms of temporal
resolution, signal-to-noise ratio and artifacts [6].

Only a limited number of patients was available in this
study, especially with respect to DCE-MRI data. Further
evaluation should be performed when more patient data is
available.

The results in this study extend the correlation analyses
performed in previous studies by considering a comprehen-
sive set of functional data. The present results suggest that
the different functional datasets derived from DCE-MRI,
DW-MRI, FDG-PET and FMISO-PET provide complemen-
tary information. Since all these imaging methods were
proven to be prognostic for treatment outcome [11–19], this
suggests that each method may be of separate value for the
adaptation of treatment strategies. However, only pairwise
correlations have been analyzed so far. It appears interesting
to elaborate if the information from one functional imag-
ing method could be deduced from a combination of several
other functional imaging methods. Such an analysis could in
the future be performed with machine learning approaches
[38] when more patient datasets are available. On the other
hand, one may obtain more coherent correlation results if
only subgroups of HN tumors are analyzed, for example
patients with equal tumor localization, size and staging.

Analyses exploring a potential redundancy between func-
tional PET/MR data may be of value for RT and other
treatment modalities due to several reasons. Firstly, using
redundant image data and parameter maps for biologically
adapted treatments would unnecessarily increase the num-
ber of parameters to be adapted with respect to improved
outcome. Thus, the correlation analysis performed in the
present study constitutes a first step towards the integra-
tion of functional imaging into treatment individualization.
Before biologically adapted treatments can be used clini-
cally, a number of additional steps are required, such as
the correlation of functional parameters to treatment out-
come and a thorough regional failure analysis. Further
research is needed to clarify which parameter combination
provides accurate information about locoregional control
probability. Secondly, functional imaging data may concate-
nate multiple physiological parameters, and interpretation
is not always straightforward. A more detailed understand-
ing of functional images and the parameter maps obtained
by post-processing models is necessary [37, 39]. Explor-
ing a potential inter-dependency between different datasets
may support the interpretation of functional imaging data.
Moreover, present or missing correlations between different
datasets could potentially also be associated with biolog-
ical evidence related to treatment response of individual
patients. A more comprehensive picture of these issues
would allow for a knowledge-driven treatment adaptation,
which would then need to be validated in clinical trials.

Conclusion

Multiparameteric PET/MR provides a substantial amount
of different functional imaging data, which may be highly
beneficial for cancer treatment adaptation. The results of
our study suggest that the associated datasets provide com-
plementary information, and thus could all be of sepa-
rate value for defining treatment adaption strategies, as
well as for treatment response assessment and follow-
up. Results of this correlation study might in the future
contribute to the design of individually adapted treatment
approaches based on multiparametric functional PET/MR
imaging.
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