
Comput Geosci (2016) 20:737–749
DOI 10.1007/s10596-015-9509-4

ORIGINAL PAPER

Value of information in closed-loop reservoir management

E. G. D. Barros1 · P. M. J. Van den Hof2 · J. D. Jansen1

Received: 5 November 2014 / Accepted: 10 June 2015 / Published online: 4 August 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper proposes a new methodology to per-
form value of information (VOI) analysis within a closed-
loop reservoir management (CLRM) framework. The work-
flow combines tools such as robust optimization and history
matching in an environment of uncertainty characteriza-
tion. The approach is illustrated with two simple examples:
an analytical reservoir toy model based on decline curves
and a water flooding problem in a two-dimensional five-
spot reservoir. The results are compared with previous work
on other measures of information valuation, and we show
that our method is a more complete, although also more
computationally intensive, approach to VOI analysis in a
CLRM framework. We recommend it to be used as the
reference for the development of more practical and less
computationally demanding tools for VOI assessment in
real fields.
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1 Introduction

Over the past decades, numerical techniques for reservoir
model-based optimization and history matching have devel-
oped rapidly, while it also has become possible to obtain in-
creasingly detailed reservoir information by deploying dif-
ferent types of well-based sensors and field-wide sensing
methods. Many of these technologies come at significant
costs, and an assessment of the associated value of infor-
mation (VOI) becomes therefore increasingly important
(Kikani [11] , ch. 3). In particular assessing the value of
future measurements during the field development planning
(FDP) phase of an oil field requires techniques to quan-
tify the VOI under geological uncertainty. An additional
complexity arises when it is attempted to quantify the VOI
for closed-loop reservoir management (CLRM), i.e., under
the assumption that frequent life-cycle optimization will be
performed using frequently updated reservoir models. This
paper describes a methodology to assess the VOI in such a
CLRM context.

In Section 2, we introduce the most relevant concepts and
review some previous work on information measures. Next,
in Section 3, we present the proposed workflow for VOI
analysis and thereafter, in Section 4, we illustrate it with
some case studies in which esults of the VOI calculations are
analyzed and compared with other information measures.
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Fig. 1 Closed-loop reservoir
management as a combination
of life-cycle optimization and
data assimilation
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Finally, in Section 5, we address the computational aspects
of applying this workflow to real field cases, and we suggest
a direction for further research

2 Background

2.1 Closed-loop reservoir management

Closed-loop reservoir management (CLRM) is a combi-
nation of frequent life-cycle production optimization and
data assimilation (also known as computer-assisted history
matching) (see Fig. 1). Life-cycle optimization aims at max-
imizing a financial measure, typically net present value
(NPV), over the producing life of the reservoir by optimiz-
ing the production strategy. This may involve well location
optimization, or, in a more restricted setting, optimization
of well rates and pressures for a given configuration of
wells, on the basis of one or more numerical reservoir mod-
els. Data assimilation involves modifying the parameters of
one or more reservoir models, or the underlying geological
models, with the aim to improve their predictive capac-
ity, using measured data from a potentially wide variety of
sources such as production data or time-lapse seismic. For
further information on CLRM see, e.g., Jansen et al. [8–10],
Naevdal et al. [16], Sarma et al. [19], Chen et al. [4], and
Wang et al. [22].

2.2 Robust optimization

An efficient model-based optimization algorithm is one of
the required elements for CLRM. Because of the inherent
uncertainty in the geological characterization of the sub-
surface, a non-deterministic approach is necessary. Robust
life-cycle optimization uses one or more ensembles of

geological realizations (reservoir models) to account for
uncertainties and to determine the production strategy that
maximizes a given objective function over the ensemble
(see, e.g., Yeten et al. [21] or Van Essen et al. [20]).
Figure 2 schematically represents robust optimization over
an ensemble of N realizations {m1,m2, . . . ,mN }, wherem
is a vector of uncertain model parameters (e.g., grid block
permeabilities or fault multipliers). The objective function
JNPV is defined as

JNPV = 1

N

N∑

i=1

Ji, (1)

i.e., as the ensemble mean (expected value) of the objec-
tive function values Ji of the individual realizations. The
objective function Ji for a single realization i is defined as

Ji =
T∫

t=0

qo(t,mi ) ro − qwp(t,mi ) rwp − qwi(t,mi ) rwi

(1 + b)t/τ
dt,

(2)

where t is time, T is the producing life of the reservoir, qo
is the oil production rate, qwp is the water production rate,

Fig. 2 Robust optimization: optimizing the objective function of an
ensemble of N realizations resulting in a single control vector u
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qwi is the water injection rate, ro is the price of oil produced,
rwp is the cost of water produced, rwi is the cost of water
injected, b is the discount factor expressed as a fraction per
year, and τ is the reference time for discounting (typically 1
year). The outcome of the optimization procedure is a vec-
tor u containing the settings of the control variables over
the producing life of the reservoir. Note that, although the
optimization is based on N models, only a single strategy u
is obtained. Typical elements of u are monthly or quarterly
settings of well head pressures, water injection rates, valve
openings, etc.

2.3 Data assimilation

Efficient data assimilation algorithms are also an essen-
tial element of CLRM. Many methods for reservoir-
focused data assimilation have been developed over the
past years, and we refer to Oliver et al. [17], Evensen [5],
Aanonsen et al. [1], and Oliver and Chen [18] for overviews.
An essential component of data assimilation is accounting
for uncertainties, and it is generally accepted that this is best
done in a Bayesian framework:

p(m|d) = p(d|m)p(m)

p(d)
, (3)

where p indicates the probability density and d is a vector
of measured data (e.g., oil and water flow rates or satura-
tion estimates from time-lapse seismic). In Eq. 3, the terms
p(m) and p(m|d) represent the prior and posterior proba-
bilities of the model parametersm, which are, in our setting,
represented by prior and posterior ensembles, respectively.
The underlying assumption in data assimilation is that a
reduced uncertainty in the model parameters leads to an
improved predictive capacity of the models, which, in turn,
leads to improved decisions. In our CLRM setting, decisions
take the form of control vectors u, aimed at maximizing the
objective function J .

2.4 Information valuation

Previous work on information valuation in reservoir engi-
neering focused on analyzing how additional information
impacts the model predictions. One way of valuing infor-
mation is proposed by Krymskaya et al. [12]. They use
the concept of observation impact, which was first intro-
duced in atmospheric modelling. Starting from a Bayesian
framework, they derive an observation sensitivity matrix
S which contains self and cross-sensitivities (diagonal and
off-diagonal elements of the matrix, respectively). The self-
sensitivities, which quantify how much the observation of
measured data impacts the prediction of these same data by
a history-matched model, provide a measure of the infor-
mation content in the data. Their joint influence can be
expressed with a global average influence index defined as

IGAI = tr(S)

Nobs
, 0 ≤ IGAI ≤ 1 , (4)

where Nobs is the number of observations (i.e., the number
of diagonal elements in S).

Another approach is taken by Le and Reynolds [13, 14]
who address the usefulness of information in terms of the
reduction in uncertainty of a variable of interest (e.g., NPV).
They introduce a method to estimate, in a computationally
feasible way, how much the assimilation of an observation
contributes to reducing the spread in the predictions of the
variable of interest, expressed as the difference between
P10 and P90 percentiles, i.e., between the 10 and 90 %
cumulative probability density levels.

Both approaches are based on data assimilation, and
Fig. 3 schematically represents how measured data are used
to update a prior ensemble of reservoir models, resulting
in a posterior ensemble which forms the basis to com-
pute various measures of information valuation. In Fig. 3,
the measurements are obtained in the form of synthetic
data generated by a synthetic truth. This preempts our pro-
posed method of information valuation in which we will
use an ensemble of models in the FDP stage, of which each

Fig. 3 Data assimilation and
information valuation
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realization will be selected as a synthetic truth in a consec-
utive set of twin experiments.

2.5 VOI and decision making

The studies that we referred to above ([12, 13] and [14])
only measure the effect of additional information on model
predictions and do not explicitly take into account how the
additional information is used to make better decisions. In
these studies, it is simply assumed that history-matched
models automatically lead to better decisions. However,
there seems to be a need for a more complete frame-
work to assess the VOI, including decision making, in the
context of reservoir management. VOI analysis originates
from the field of decision theory. It is an abstract concept,
which makes it into a powerful tool with many potential
applications, although implementation can be complicated.

An early reference to VOI originates from Howard [7]
who considered a bidding problem and was one of the first
to formalize the idea that information could be economically
valued within a context of decision making under uncertain-
ties. Since then, several applications have appeared in many
different fields, including the petroleum industry. Bratvold
et al. [3] produce an extensive literature review on VOI in
the oil industry. Their main message is that “one cannot
value information outside of a particular decision context.”
Thus, reducing uncertainty in a model prediction has no
value by itself, and VOI is decision-dependent.

3 Methodology

In our setting, the decision is the use of an optimized pro-
duction strategy as obtained in the CLRM framework. We
intend to not only quantify how information changes knowl-
edge (through data assimilation), but also how it influences
the results of decision making (through optimization). We
express the optimized production strategy in the form of
a control vector u which typically has tens to hundreds of

elements (e.g., bottom hole pressures, injection rates or
valve settings at different moments in time) and which needs
to be updated when new information becomes available. The
proposed workflow is depicted in Fig. 4. The procedure con-
sists of a sort of twin experiment on a large scale, because
the analysis is performed in the design phase—when no
real data are yet available. Note that classical CLRM is
performed during the operation of the field, whereas we
are considering here an a priori evaluation of the value of
CLRM (i.e., in the design phase). The workflow starts with
an initial ensemble of N realizations which characterizes
the uncertainty associated with the model parameters. From
this ensemble, one realization is selected to be the synthetic
truth and thereafter a new ensemble of N-1 members is gen-
erated, by sampling from the same distribution as used to
create the initial ensemble, to form the prior ensemble for
the robust optimization procedure. Next, synthetic data are
generated by running a reservoir simulation for the synthetic
truth while applying the robust strategy. The synthetic data
are perturbed by adding zero-mean Gaussian noise with a
predefined standard deviation. With these, data assimilation
is performed and a posterior ensemble obtained. As a next
step, robust optimization is carried out on this posterior to
find a new optimal production strategy (from the time the
data became available to the end of the reservoir life cycle).
The concept of a twin experiment in data assimilation is
in this way extended to include the effects of the model
updates on the reservoir management actions.

The strategies obtained for the prior and the posterior
ensembles are then tested on the synthetic truth, and their
economic outcomes (NPV values JNPV, prior and JNPV, post)

are evaluated. The difference between these outcomes is
a measure of the VOI incorporated through the CLRM
procedure for this particular choice of the synthetic truth.

The choice of one of the realizations to be the synthetic
truth in the procedure is completely random. In fact, because
the analysis is conducted during the FDP phase, any of
the models in the initial ensemble could be selected to be
the “truth.” Note that this also implies that the VOI is a

Fig. 4 Proposed workflow to
compute the value of
information. (t indicates the
observation time and T indicates
the end time)
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random variable. One of the underlying assumptions of our
proposed workflow is that the truth is a realization from the
same probability distribution function as used to create the
realizations of the ensemble. Hence, the methodology only
allows to quantify the VOI under uncertainty in the form
of known unknowns. Obviously, specifying uncertainty in
the form of unknown unknowns is impossible, which there-
fore is a fundamental shortcoming in any VOI analysis. (I.e.,
we may think that we know the complete reservoir descrip-
tion (as captured in the prior ensemble), but we may have
missed “unmodelled” features such an unexpected aquifer
or a sub-seismic fault.)

Because any of the N models in the initial ensemble
could be the truth, the procedure has to be repeated N times,
consecutively letting each one of the initial models act as
the synthetic truth. This allows us to quantify the expected
VOI over the entire ensemble:

VOI = J̄NPV = 1

N

N∑

i=1

(
J i
NPV, post − J i

NPV, prior

)
. (5)

We note that this repetition is similar to the use of multiple
plausible truth cases in Le and Reynolds [13, 14]. We also
note that in the literature on VOI, most of the times the term
VOI is used to refer to the expected VOI. The flowchart in
Fig. 5 shows the complete procedure. A further remark con-
cerns the size of the initial ensemble (N members) and those
of the prior ensembles (N-1 members). This choice results
from our approach to start by generating N ensembles of N

members each and subsequently selecting one member from
each of the N ensembles to be part of the initial ensemble,
such that theN ensembles with the remainingN-1 members
form the prior ensembles. However, other choices would be
equally possible. Finally, we note that, to be absolutely rig-
orous, we would have to repeat the whole workflow several
times with different realizations of the noise in the obser-
vation vectors. However, we argue that by far the largest
contribution to uncertainty originates from the geology, as
captured in the various ensembles of geological realizations.
In comparison, the effect of measurement noise is small and
sufficiently captured by using a new noise realization for
each synthetic measurement.
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Fig. 5 Complete workflow to compute the expected VOI



742 Comput Geosci (2016) 20:737–749

The workflow can be adapted to compute the expected
value of clairvoyance (VOC), which simply means that
at some time in the reservoir life, we suddenly know the
truth so we can perform life-cycle production optimiza-
tion on the true reservoir model. The estimated expectation
of VOC is then computed from Eq. 5 where each poste-
rior NPV is obtained while applying the optimal controls
determined for the associated synthetic true model. Such a
clairvoyance implies the availability of completely informa-
tive data without observation errors, and the expected VOC
therefore forms a theoretical upper bound (i.e., a “technical
limit”) to the expected VOI. Moreover, because this modi-
fied workflow does not require data assimilation, and, after
the truth has been revealed, only requires optimization of a
single (true) model, it is computationally significantly less
demanding.

4 Examples

4.1 Toy model

As a first step to test the proposed concept, we used a very
simple model with only a few parameters, based on reservoir
decline curves. It describes oil and water flow rates qo and
qw as a function of time t and a scalar control variable u

according to the following expressions:

qo(u, t) = (qo,ini + c1u) exp

(
− t

a + 1
c2

u

)
, (6)

qw(u, t) = H

[
tbt

(
1 − 1

c3
u

)]
(qw,∞

+u)

⎡

⎣1 − exp

⎛

⎝−
t − tbt

(
1 − 1

c3
u
)

c4a − 1
c5

u

⎞

⎠

⎤

⎦ , (7)

where qo,ini is the initial production rate, tbt is the water
breakthrough time, and qw,∞ is the asymptotic water pro-
duction rate, all for a situation without control, i.e., for u =
0. The oil production follows an exponential decline, and

the water production builds up exponentially from a break-
through time modelled by a Heaviside step function H . The
variables have dimensions as listed in Table 1, where L,
M , and t indicate length, monetary value, and time, respec-
tively. Some of the parameters are constants, while four
uncertain parameters are normally distributed with values
indicated in Table 1. The scalar control variable u somehow
mimics a water injection rate to the reservoir; higher values
of u slow down the decline of oil production but acceler-
ate water breakthrough and increase water production, as
shown in Fig. 6. Given the prices and costs associated with
oil and water production, there is room for optimization to
determine the value of u that maximizes the economics of
the reservoir over a fixed producing life-time. To allow for
regular updating of the control strategy over the producing
life of the reservoir, the scalar u can be replaced by a vector
u = [u1 u2 · · · uM ]T , where M is the number of control
intervals.

The question to be answered here was as follows: given
an initial ensemble of models describing the geological
uncertainties and an initial optimized control vector u,
what is the value of a production test in the form of a
measurements d = [qo(tdata) qw(tdata)]T of oil and water
production rates at a given time tdata, for different measure-
ment errors and observation times? The VOI assessment
procedure described in the previous section was applied,
and repeated for different observation times, tdata = {1, 2,
. . ., 80}. We used a random measurement error with a stan-
dard deviation σdata equal to 5 % of the measured value,
an ensemble of N = 100 model realizations and M =
8 control time steps. Ensemble optimization (EnOpt) and
ensemble Kalman filtering (EnKF) were used to perform the
robust optimization and the data assimilation respectively.
(We used the robust EnOpt implementation of Fonseca et al.
[6] which is a modified form of the original formulation
proposed by Chen et al. [4].) For general information on
EnKF, see, e.g., Evensen [5] or Aanonsen et al. [1]; we
used a straightforward implementation without localization
or inflation.) The VOI, the VOC, the observation impact
IGAI, and the uncertainty reduction �σNPV were computed
for each of the 80 observation times. The average NPV for

Table 1 Parameter values for
toy model Variables Constant parameters Uncertain parameters

qo [L3 t−1] c1 = 0.1 [−] qo,ini ∼ N(100, 8) [L3 t−1]

qw [L3 t−1] c2 = 4 [L3 t−2] a ∼ N(30.5, 3.67) [t]

tε [0, 80] [t] c3 = 150 [L3 t−1] qw,∞ ∼ N(132, 6) [L3 t−1]

uε [10, 50] [L3 t−1] c4 = 2 [−] tbt ∼ N(32, 6) [t]

c5 = 1.33 [L3 t−2]

ro =70 M L−3

rw =10 M L−3

b =0.10 [−]



Comput Geosci (2016) 20:737–749 743

Fig. 6 Toy model behavior: oil and water production for two fixed values of the control variable u (top); representation of uncertainty in the form
of P10 and P90 percentiles (bottom)

the initial ensemble is $108,900 when using base line con-
trol (i.e., the average of the upper (50) and lower bounds
(10), uini = {30, 30, . . . , 30}) and $114,300 when using
robust optimization over the prior (i.e., without additional
information). The initial uncertainty is σNPV,ini = $11,960,
computed as the average of the standard deviations in the
NPV of the different prior ensembles. We repeated the opti-
mization by starting from a more aggressive initial strategy
where the values of uini were at their bounds, which gave
near-identical results.

The expected VOC as a function of observation time tdata
is depicted in Fig. 7 (top left), where we expressed the mon-
etary value, arbitrarily, in $. The dashed line represents the
expected VOC, i.e., the ensemble mean. The dark solid line
and the two lighter solid lines represent the P50 and P10/P90
percentiles, respectively. Here, Px is defined as the prob-
ability that x% of the outcomes exceeds this value. The
expected VOC is the value one could obtain if the truth
could be revealed and all the uncertainty could be elimi-
nated at no costs at time tdata. Of course, these results depend
on the operation schedule (i.e., the number of control time
steps) and on the initial ensemble of realizations that char-
acterize the uncertainty. As can be seen, the VOC exhibits a
stepwise decrease over time, with the steps coinciding with
the eight control time steps. This stepwise behavior occurs
because knowing the truth only affects the way one operates
the reservoir from the moment of clairvoyance and because
the production strategy can only be updated at the defined
control time steps. The sooner clairvoyance is available, the

more control time steps can be tuned to re-optimize the pro-
duction strategy based on the truth, and, therefore, the more
value is obtained. Thus, this plot demonstrates the impor-
tance of timing when collecting additional information to
make decisions. Even clairvoyance can be completely use-
less (VOC= 0) when it is obtained too late (in this case after
tdata = 40).

The percentiles of the VOC distribution in Fig. 7 (top left)
illustrate that the VOC is itself a random variable, because,
despite knowing that the truth has been revealed, it is not
possible to know which of the model realizations is this
truth; all members of the initial ensemble are potentially true
in the design phase. Hence, the VOC for a particular case
may be higher or lower than the expected VOC.

In a similar fashion, Fig. 7 (top right, bottom left, and
bottom right) displays the VOI, the uncertainty reduction
in NPV, and the observation impact as a function of obser-
vation time tdata. In Fig. 7 (bottom right), the peak in the
observation impact indicates that production data is most
informative around tdata = 30; in Fig. 7 (bottom right),
the uncertainty reduction follows the same trend; and, in
Fig. 7 (top left), the VOI also increases at the same time.
This suggests that, in this example, measurements with a
higher observation impact also result in a larger uncertainty
reduction in NPV and a higher VOI. However, whereas the
observation impact and the uncertainty reduction both peak
around tdata = 30 and gently decrease afterwards, the VOI
exhibits a more abrupt decrease, similar to what is observed
for the VOC. This indicates that the VOI depends not only
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Fig. 7 Results for the VOI analysis in the toy model: VOC (top left); VOI (top right); it should be: uncertainty reduction (bottom left) and
observation impact (bottom right)

on the information content of the observations but also on
their timing, just as was discussed for the VOC. Moreover,
these results illustrate that the proposed workflow allows to
take both information content and timing into account and,
therefore, results in a more complete VOI assessment.

Figure 8 (left) shows the same results, but focusing on
the expected (or mean) values of VOC (black) and VOI
(blue). This plot clearly illustrates that the expected VOC is
always an upper bound to the expected VOI. Indeed, pro-
duction data, no matter how accurate, can never reveal all

uncertainties. After water breakthrough, production data is
more informative and it is more likely that the uncertainties
influencing the optimization of the production strategy be
revealed; thus, information more closely approaches clair-
voyance. Figure 8 (right) illustrates this in a different way
by displaying the chance of knowing (COK), defined as the
ratio VOI/VOC [2].

The different information measures suggest in this case
that the most valuable measurements are the ones around
tdata = 30. We conclude that a decision maker analyzing

Fig. 8 Results for the toy model: the expected VOI is upper-bounded by expected VOC (left); the ratio of VOI and VOC results in the COK (right)
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when to obtain a production test to optimally operate this
reservoir should take a measurement around this time and
should be willing to pay at most approximately $80—and
not$4,000 as the uncertainty reduction analysis would sug-
gest. Note that the model we used in this example is very
simple. The optimal strategies for the different realizations
are quite similar, which means that the robust strategy (the
one that maximizes the mean NPV of the ensemble) is
already quite good for all the realizations. For that reason,
in this case, the additional information does not lead to a
significant improvement in the production strategy.

4.2 2D five-spot model

As a next step, we applied the proposed VOI workflow
to a simple reservoir simulation model representing a two-
dimensional (2D) inverted five-spot water flooding config-
uration (see Fig. 9). In a 21 × 21 grid (700 × 700 m),
with heterogeneous permeability and porosity fields, the
model simulates the displacement of oil to the producers
in the corners by the water injected in the center. Table 2
lists the values of the physical parameters of the reservoir
model. We used 50 ensembles of N = 50 realizations of
the porosity and permeability fields, conditioned to hard
data in the wells, to model the geological uncertainties. The
simulations were used to determine the set of well con-
trols (bottom hole pressures) that maximizes the NPV. The
economic parameters considered in this example are also
indicated in Table 2. The optimization was run for a 1,500-
day time horizon with well controls updated every 150 days,
i.e., M = 10, and, with five wells, u has 50 elements. We
applied bound constraints to the optimization variables (200
bar ≤ pprod ≤ 300 bar and 300 bar ≤ pinj ≤ 500 bar). The
initial control values were chosen as the average of the upper
and lower bounds. The whole exercise was performed in the
open-source reservoir simulator MRST Lie et al. [15], by
modifying the adjoint-based optimization module to allow
for robust optimization and combining it with the EnKF

Table 2 Parameter values for 2D five-spot model

Rock-fluid parameters Initial conditions

ρo = 800 kg/m3 p0 = 300 bar

ρw = 1,000 kg/m3 Soi = 0.8 [−]

μo = 0.5 cP Swi = 0.2 [−]

μw = 1 cP

no = 2 [−] Economic parameters

Sor = 0.2 [−] ro = 80 $/bbl

kro,or = 0.9 [−] rwp =5 $/bbl

nw = 2 [−] rwi =5 $/bbl

Swc = 0.2 [−] b =0.15 [−]

krw,wc = 0.6 [−]

module to create a CLRM environment for VOI analysis.
The average NPV for the initial ensemble is $53.5 mil-
lion when using base line control (i.e., the average of the
upper and lower bounds on the bottom hole pressures: 400
bar in the injector and 250 bar in the producers) and $55.7
million when using robust optimization over the prior (i.e.,
without additional information). Just like for the toy model
example, the workflow was repeated for different observa-
tion times, tdata = {150, 300, . . . , 1350} days. For this 2D
model, we assessed the VOI of the production data (total
flow rates and water-cuts) with absolute measurement errors
(εflux = 5 m3/day and εwct = 0.1). The VOI, the VOC,
the observation impact IGAI, and the uncertainty reduction
�σNPV were computed for each of the nine observation
times.

Figure 10 depicts the results of the analysis for produc-
tion data. Again, dashed lines correspond to expected values
and solid lines to percentiles quantifying the uncertainty of
the information measures. The markers correspond to the
observation times at which the analysis was carried out.
In Fig. 10 (top left), we note that, like for the toy model
example, clairvoyance loses value with observation time,
following the previously described stepwise behavior. In

Fig. 9 2D five-spot model (left); 15 randomly chosen realizations of the uncertain permeability field (right)
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Fig. 10 Results for the VOI analysis of production data in the 2D model: VOC (top left); VOI (top right); uncertainty reduction (bottom left) and
observation impact (bottom right)

addition, by observing the percentiles, we realize that, in this
case, the VOC has a non-symmetric probability distribution.
The high values of P10 indicate that, for some realizations
of the truth, knowing the truth can be considerably more
valuable than indicated by the expected VOC; however, the
P50 values, which are always below those of the expected
VOC, indicate what is more likely to occur. The same holds
for the VOI, as can be observed in Fig. 10 (top right). The
observation that provides the best VOI is the one at tdata =
150 days. Note that in our example, the earliest observa-
tion seems to be the most valuable one, but that this may be
case-specific.

Figure 10 (bottom right) shows that the information con-
tent of the production data increases when water breaks

through in the producers but gently decreases thereafter.
The observation impact achieves its maximum at tdata =
600 days; this is the time when, on average, most of the
realizations have already experienced first water break-
through. Figure 10 (bottom left) displays the uncertainty
reduction in NPV where the initial uncertainty is σNPV,ini =
$4.1 million.

Figure 11 (left) depicts the expected values of VOI (blue
dots) and VOC (black line). The plot confirms that clair-
voyance can be considered the technical limit for any infor-
mation gathering strategy and that the expected VOC forms
an upper-bound to the expected VOI. We also note that
the expected VOI comes closer to the expected VOC with
time. Indeed, as water breakthrough is observed in more

Fig. 11 Results for the 2D model: the expected VOI is upper-bounded by expected VOC (left); the COK (right) is less informative than for the
toy model (c.f. Fig. 8)
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Fig. 12 Results for the VOI analysis of production data in the 2D
model using an accelerated procedure; VOC (top left); VOI (top
right); uncertainty reduction (bottom left) and observation impact

(bottom right). The results are nearly identical to those of Fig. 10
although the uncertainty in the various measures is somewhat under-
estimated

producers, the production data of this five-spot pattern
become more effective in revealing the main features of
the true permeability and porosity fields. Figure 11 (right)
displays the COK with time. Although the VOI clearly
approaches the VOC, their ratio does not change substan-
tially with time, unlike what was observed for the toy model
example.

In contrast to the toy model case, for this example, the
different information measures indicate different times for
the most valuable measurements. This shows that taking
into account the update of the optimal production strategy
can influence the conclusions drawn by this kind of analy-
sis. Using the proposed workflow as the reference for VOI

assessment, for this case, we recommend the production
data to be collected at tdata = 150 days, and we estimate this
additional information to be worth $2.8 million.

4.3 Accelerated procedure

We observed that there seems to be an opportunity to reduce
the number of simulations required in the proposed work-
flow by using the complete initial ensemble to perform
a single prior robust optimization (rather than perform-
ing the robust optimization N times for N priors). For
instance, in our 2D example, we could reduce the number of
prior robust optimizations from 50 to 1, which represents a

Fig. 13 Optimal well controls (BHP) at producer 1 for the 50 different prior ensembles in the 2D model example; rigorous procedure (left);
accelerated procedure (right). Similar differences were observed for the other wells in this example
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significant reduction of the computational costs of the VOI
assessment procedure: approximately 420,000 simulations
for the original formulation and 215,000 for the modified
formulation to compute the VOI for one observation time,
and approximately 2,100,000 simulations for the original
formulation and 1,895,000 simulations for the modified for-
mulation to compute all the VOI values depicted in Figs. 10
and 11 (9 observation times). Figure 12 depicts the results
for the VOI analysis of production data in the 2D model
using the accelerated procedure. They are nearly identical
to those of Fig. 10, which were obtained using the rigorous
procedure, although the uncertainty in the various measures
is somewhat under-estimated as can be seen from the differ-
ence between P10 and P90 values, especially at later times.
This reduction in uncertainty results from the use of a single
control strategy (based on a single prior robust optimization)
instead of a set of different control strategies as obtained in
the rigorous procedure (see Fig. 13). Note that the use of a
single ensemble in the accelerated procedure only concerns
the computation of the prior control strategy. The remain-
der of the procedure (columns 2 and 3 in Fig. 5) is still
performed using N different ensembles.

5 Discussion and conclusion

We proposed a new workflow for VOI assessment in
CLRM. The method uses elements available in the CLRM
framework, such as history matching and robust optimiza-
tion. First, we identified the opportunity to combine these
elements with concepts of information value theory to cre-
ate a VOI analysis instrument. We then designed a generic
procedure that can, in theory, be simply implemented in a
variety of applications, including our optimal reservoir man-
agement problem. Next, the workflow was illustrated with
two examples and the results were compared with previous
measures for information valuation. Because we take into
account that the production strategy is updated after new
information has been assimilated in the models, we believe
that our proposed method is more complete than previous
work to estimate the VOI in a reservoir engineering context.

The main drawback of our proposed VOI workflow is
its computational costs; it involves the repeated applica-
tion of robust optimization and data assimilation, which
requires a very large number of reservoir simulations.
Depending on the types of optimization and assimila-
tion methods used (e.g., adjoint-based, ensemble-based, or
gradient-free), there may be large differences in the com-
putational requirements, but even in case of using the most
efficient (i.e., adjoint-based) algorithms, the computational
load of the workflow will be huge. For instance, for the
toy model example with ensembles of 100 realizations, we
ran more than 50 million forward simulations (8,100 robust

optimizations with EnOpt) in order to obtain one of the
80 values of VOI displayed in Fig. 7 (top right). Hence,
if the method is to be applied to real-field cases, some
serious improvements regarding the number of simulations
required are necessary. In this paper, we showed a first step
in this direction by suggesting a way to reduce the num-
ber of robust optimizations necessary. However, more has
to be done. One potential method could be to use clustering
techniques to select a few representative realizations rather
than a full ensemble. Furthermore, reduced-order modelling
techniques to generate surrogate models could facilitate the
application of our workflow to larger reservoir models by
reducing the number of full reservoir simulations. Despite
its computational cost, we conclude that our approach con-
stitutes a rigorous VOI assessment for CLRM. For this
reason, we recommend that it be used as the reference for
the development of more practical and less computationally
demanding tools to be applied in real-field cases.
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