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Abstract The concept of subgame perfect ε-equilibrium (ε-SPE), where ε is an error-
term, has in recent years emerged as a prominent solution concept for perfect informa-
tion games of infinite duration.We propose two refinements of this concept: continuity
ε-SPE and φ-tolerance equilibrium. A continuity ε-SPE is an ε-SPE in which, in any
subgame, the induced play is a continuity point of the payoff functions. We prove that
continuity ε-SPE exists for each ε > 0 if the payoff functions are bounded and lower
semicontinuous. A loss tolerance function φ is a function that assigns to each history h
a positive real number φ(h). A strategy profile is said to be a φ-tolerance equilibrium
if for each history h it is a φ(h)-equilibrium in the subgame starting at h. We prove
that, for each loss tolerance function φ, there exists a φ-tolerance equilibrium provided
that the payoff functions are bounded and continuous. We give counterexamples to
show the sharpness of the existence results.

Keywords Perfect information games · Subgame perfect equilibria · Discontinuous
games

1 Introduction

Perfect information games are routinely used in various areas of economics such as
bargaining theory (e.g. Binmore et al. 1992) and coalition formation (e.g. Ray 2007),
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as well as in logic and computer science (e.g. Apt and Grädel 2011). We examine a
rich class of perfect information games with deterministic transitions. Such a game
can be given by a finite set of players and a directed tree with a root and no terminal
nodes. Each node in the tree is associated with a player, who controls this node. Play
of the game starts at the root. At every node that play visits, the player who controls
this node has to choose one of the outgoing arcs, which brings play to the next node.
This induces an infinite path, called play, in the tree, and depending on this play, each
player receives a payoff.

This setup encompasses all games of finite duration (as we can replace every ter-
minal node with one infinite sequence of arcs). Another important special case is the
situation when the players receive instantaneous payoffs at every period of the game
and then aggregate them into one payoff, for example by taking the discounted sum.

In these games, subgame perfect equilibrium (cf. Selten 1965), SPE for short, is the
most common refinement of Nash equilibrium. A strategy profile is called an SPE if
it induces a Nash equilibrium in every subgame. More precisely, for every node in
the tree, given play reaches this node from the root, the continuation strategies form a
Nash equilibrium.

Various conditions have been found which guarantee the existence of an SPE (cf. for
example Fudenberg and Levine 1983; Harris 1985; Maitra and Sudderth 2007). Yet,
without strong conditions, an SPE can easily fail to exist, even in one-player games.
Suppose for example that a player has to choose a natural number, and his payoff is
1− 1

n if he chooses n ∈ N. In this game, the player has obviously no optimal strategy,
and therefore the game admits no Nash equilibrium and no SPE either. Or as a similar
example, suppose that a player can choose to stop or to continue at time periods t ∈ N,
and his payoff is 1 − 1

t if he decides to stop the game at period t and his payoff is 0
if he never stops. A common feature of these two games is that, although the player
has no optimal strategy, he does have approximately optimal strategies at his disposal.
Indeed, for every error-term ε > 0, if the player chooses an n ≥ 1

ε
in the first game

or stops at a period t ≥ 1
ε
in the second game, then his payoff is at least 1 − ε. For a

small error-term ε, these approximately optimal strategies are fairly satisfactory, and
offer a remedy to the non-existence of optimal solutions.1

It has been discovered in recent years that there are various classes of perfect infor-
mation games in which, despite the non-existence of SPE, one can construct approx-
imate SPEs with arbitrarily small errors. The main definition of approximate SPE is
called subgame perfect ε-equilibrium, ε-SPE for short, where ε > 0, which is a strat-
egy profile that induces an ε-equilibrium in every subgame.2 Here, an ε-equilibrium is
a strategy profile such that no player can gainmore than ε by a unilateral deviation. The

1 Approximate solutions in games are in general not only justified by the non-existence of exact solutions.
In applications, we often need to make simplifying assumptions and use approximations of payoffs, either
becausewedonot know the precise data, or just becausewe try to keep themodel tractable. In such situations,
an approximate solution with a very small error-term is arguably just as good as an exact solution. Besides,
approximate solutions sometimes have an easier form than the exact ones, and sometimes they can be
calculated in an easier fashion.
2 An alteratively approach is to require perfection in a sufficiently “large” set of subgames, as is done in
Himmelberg et al. (1976), Lehrer and Sorin (1998), and Mashiah-Yaakovi (2014).
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concept of ε-SPE has appealing properties. The definition is natural, and as mentioned
above, it often provides a way out when an exact SPE fails to exist.

Existence of ε-SPE has been shown in various classes of gameswith perfect informa-
tion: e.g. in Carmona (2005) for games with bounded continuous at infinity payoffs, in
Flesch et al. (2010) for games with bounded lower semicontinuous payoffs, in Purves
and Sudderth (2011) for games with bounded upper semicontinuous payoffs, in Flesch
et al. (2013) for free transition games, in Solan and Vieille (2001, 2003), Solan (2005)
and Mashiah-Yaakovi (2009) for quitting games. Laraki et al. (2013) consider zero-
sum games with semicontinuous payoffs, and prove that both players have ε-optimal
strategies and one of the players even has a subgame perfect ε-optimal strategy.

Yet, there are reasons to impose additional requirements and look for refinements.
Flesch et al. (2014) pointed out the drawback of ε-SPE that it does not rule out that a
player chooses, with small probability, an action that leads to a bad payoff. This causes
a problem if one interprets a probability distribution, which a strategy prescribes on
the actions, as a lottery that the player uses when choosing an action. Indeed, in
the unlikely but possible event that the lottery picks an action with low payoff, the
player may become reluctant to execute this action. Flesch et al. (2014) proposed
and examined a refinement, called strong ε-SPE, which avoids this shortcoming. As
another refinement, Brihaye et al. (2013) investigated so-called secure SPE, which
can be applied for assume-guarantee synthesis and model checking. Secure refers to
a property that the players, in some sense, do not have to fear deviations when an
opponent changes his strategy to another one which gives this opponent the same
payoff. An analog of this concept would be a secure ε-SPE .

1.1 Our contribution

In this paper, we identify further properties that one may wish to require from a
strategy profile in addition to being an ε-SPE, and propose two refinements of the
concept ε-SPE: continuity ε-SPE and φ-tolerance equilibrium. We also examine their
properties and their existence, mainly when the payoff functions are bounded and
semicontinuous.

1.2 Continuity ε-SPE

When the payoff functions are not fully continuous, it can happen that an ε-SPE induces
an infinite play which is not a continuity point of the payoff functions. This has the
consequence that arbitrarily small perturbations in the strategies, even at arbitrarily far
time periods, can lead to drastic changes in payoffs. This is particularly problematic
if the players are not absolutely certain about their opponents strategies, or when
strategies cannot be executed with exact precision.

Therefore, we examine a refinement of ε-SPE, called continuity ε-SPE, which
requires from the ε-SPE that, in every subgame, the induced play is a continuity point
of the payoff functions. This concept has an appealing finitistic nature, due to the addi-
tional continuity property: in any subgame, if such a profile is followed then eventually
a time period is reached after which the payoffs are essentially fixed, i.e. any other
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continuation profile would give almost the same payoff. Roughly speaking, the game
is strategically over in finite time.

Of course, not all games admit a continuity ε-SPE for every ε > 0. But we prove
this to be the case when the payoff functions are bounded and lower semicontinuous.
Bounded and upper semicontinuous payoffs are not sufficient, as a counter-example
demonstrates.

1.3 φ-tolerance equilibrium

The mistake of a strategy profile in a certain subgame is defined as the maximal
improvement in this subgame that a player can gain by a unilateral deviation from his
strategy. With this terminology, an ε-SPE is a strategy profile for which the mistake is
at most ε in every subgame.

It may however be reasonable to also require that the mistakes in the ensuing sub-
games converge to 0 as play progresses. The need for this type of refinement was
already recognized by Mailath et al. (2005), who introduced the concept of contem-
poraneous perfect ε-equilibrium, in the more restricted context of games in which
each player receives a payoff at every period of the game and aims at maximizing his
total discounted payoff. In a subgame of such a discounted game, with a first node at
a far period, the payoffs are discounted heavily, and therefore every strategy profile
of the original game automatically induces an ε-equilibrium in this subgame. Conse-
quently, ε-SPE does not guarantee acceptable outcomes and realistic behavior in far
subgames in such discounted games. The main point is that not only the payoffs, but
the maximally allowed mistake ε should also be discounted.

There is in fact another motivation to assume that the mistakes tend to zero as
time progresses. Since a subgame is smaller than the original game, one could argue
that in certain situations it should be easier for the players to overview the strategic
possibilities in a subgame and to reason about them than in the original game. Hence,
it may be reasonable to assume that the players only tolerate smaller mistakes once
play reaches later subgames.

With these motivations in mind, let φ be a function that assigns a positive number
φ(h) to every history h. Any such function is called a loss tolerance function, and the
value φ(h) is called a tolerance level at h. A strategy profile is called a φ-tolerance
equilibrium if for every history h it induces a φ(h)-equilibrium in the subgame that
begins at h. We obtain ε-SPE as a special case by taking φ to be a constant function
assigning the tolerance level of ε to each history.We aremost interested in cases where
tolerance levels converge to zero as the length of the history increases. We prove that,
if the payoff functions are bounded and continuous, then a φ-tolerance equilibrium
exists for every loss tolerance function. Counter-examples demonstrate that continuity
cannot be replaced with lower or upper semicontinuity.

1.4 Vanishing loss

At this point we have introduced two refinements of ε-SPE that at first glance might
appear to be unrelated. Yet, common to the two concepts is an intuitive property that
we call vanishing loss.

123



On refinements of subgame perfect ε-equilibrium 527

A strategy profile is said to exhibit vanishing loss if the maximal improvement any
player can gain by unilaterally deviating from the given strategy approaches zero as
the play proceeds.We do not consider the property of vanishing loss as an independent
refinement. However, we do think that this is a noteworthy property. In fact, much of
the motivation we have given for our refinements stems from vanishing loss.

1.5 Structure of the paper

In Sect. 2, we define the model precisely. Then, we discuss continuity ε-SPE in Sect. 3.
We turn to loss tolerance equilibrium in Sect. 4, and prove the existence result in
Sect. 5. Section 6 concludes with the discussion of vanishing loss.

2 The model

2.1 The game

Let N = {1, . . . , n} denote the set of players and let A be an arbitrary non-empty set.
Let N = {0, 1, 2, . . .}. We denote by H the set of all finite sequences of elements of
A, including the empty sequence ø. We write |h| to denote the length of h ∈ H . We
denote by AN the set of all infinite sequences of elements of A. The elements of A
are called actions, the elements of H are called histories, and the elements of AN are
called plays. There is a function ι : H → N which assigns an active player to each
history. Further, each player i ∈ N is given a payoff function ui : AN → R.

The game is played as follows: At period 0, player ι(ø) chooses an action a0.
Suppose that up to period t ∈ N of the game the sequence h = (a0, . . . , at ) of
actions has been chosen. Then player ι(h) chooses an action at+1. The chosen action
is observed by all players. Continuing this way the players generate a play p =
(a0, a1, . . . ), and finally each player i ∈ N receives payoff ui (p).

2.2 Strategies

A pure strategy for player i is a function σi : ι−1(i) → A, where ι−1(i) is the set
of histories where player i moves. As we only consider pure strategies, we omit the
qualification “pure” in the sequel. A strategy profile is a tuple (σ1, . . . , σn)where each
σi is a strategy for player i . Given a strategy profile σ = (σ1, . . . , σn) and a strategy ηi
for player i we write σ/ηi to denote the strategy profile obtained from σ by replacing
σi with ηi .

For the concatenation of histories and actions we use the following notations. For
a history h = (a0, . . . , at ) ∈ H and an action b ∈ A, we denote the sequence
(a0, . . . , at , b) by (h, b) or simply hb, and for a sequence of actions (b0, b1, . . .) in A
let (h, b0, b1, . . .) = (a0, . . . , at , b0, b1, . . .).

We can identify a strategy profile σ with a function σ : H → A. Define the play
induced by σ starting from the history h, denoted by π(σ ; h), inductively as follows:
Let h0 = h. If ht has been defined for some t ≥ 0, then let at = σ(ht ) and set
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ht+1 = (ht , at ). Then π(σ ; h) = (h, a0, a1, . . . ). For the special case h = ø, we
simply write π(σ) = π(σ ; ø).

2.3 Subgame-perfect ε-equilibrium

Let ε ≥ 0 be an error-term. A strategy profile σ is called an ε-equilibrium if no player
can gain more than ε by a unilateral deviation, i.e. if for each player i ∈ N and for
each strategy σ ′

i of player i it holds that

ui (π(σ )) ≥ ui (π(σ/σ ′
i )) − ε.

A stronger concept arises if we require that the strategy profile induces an
ε-equilibrium in every subgame, i.e. conditional on history h ∈ H being reached.
A strategy profile σ is called a subgame perfect ε-equilibrium, ε-SPE for short, if for
each history h ∈ H , each player i ∈ N , and each strategy σ ′

i of player i it holds that

ui (π(σ ; h)) ≥ ui (π(σ/σ ′
i ; h)) − ε.

A 0-equilibrium is simply called an equilibrium, and a 0-SPE is simply called an
SPE.

2.4 The topological structure

Following, among others, Martin (1975), Fudenberg and Levine (1983), Flesch et al.
(2010), Purves and Sudderth (2011), we endow the set A with the discrete topology
and AN with the product topology. The topology on AN is completely metrizable,3

and a basis of this topology is formed by the cylinder sets O(h) = {p ∈ AN : h < p}
for h ∈ H , where for a history h ∈ H and a play p ∈ AN we write h < p if h is the
initial segment of p. Thus a sequence of plays (pn)n∈N converges to a play p precisely
when for every k ∈ N there exists an Nk ∈ N such that pn coincides with p on the
first k coordinates for every n ≥ Nk .

A function f : AN → R is said to be continuous at a play p ∈ AN if, for every
sequence of plays (pn)n∈N converging to p, we have limn→∞ f (pn) = f (p). Thus,
f is continuous at p precisely when for every δ > 0 there is an Nδ ∈ N such that if a
play q coincides with p on the first Nδ coordinates then | f (p) − f (q)| ≤ δ. Further,
f is said to be continuous if it is continuous at each play in AN.
Continuity of a payoff functionwith respect to the chosen topology on AN is implied

by a condition known as continuity at infinity, see e.g. Fudenberg and Levine (1983).
The condition only says that the actions taken at distant stages of the game have little
effect on the payoff. For example, a discounted sum of bounded instantaneous payoffs
automatically satisfies continuity at infinity.

3 One can take for example the metric d : AN × AN → Rwhich is defined for each p, q ∈ AN as follows:
if p = q then d(p, q) = 0, and otherwise d(p, q) = 2−m(p,q) where m(p, q) ∈ N is the first coordinate
on which p and q differ.
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A function f : AN → R is said to be lower semicontinuous, lsc for short, at
a play p ∈ AN if, for every sequence of plays (pn)n∈N converging to p, we have
lim infn→∞ f (pn) ≥ f (p). We say that f is lsc if it is lsc at each play in AN.
Equivalently, f is lsc if the set {q ∈ AN : f (q) > α} is open in AN for every α ∈ R.

A function f : AN → R is said to be upper semicontinuous, usc for short, at
a play p ∈ AN if, for every sequence of plays (pn)n∈N converging to p, we have
lim supn→∞ f (pn) ≤ f (p). We say that f is usc if it is usc at each play in AN.
Equivalently, f is usc if the set {q ∈ AN : f (q) < α} is open in AN for every α ∈ R.

2.5 Existence results

Mertens and Neyman (cf. Mertens 1987) showed, by using the result of Martin
(1975), that if each player’s payoff function is bounded and Borel measurable then an
ε-equilibrium exists for every ε > 0. An ε-SPE does not necessarily exist under these
conditions, which was demonstrated by an example in Flesch et al. (2014). Never-
theless, semicontinuity proved to be a useful condition. Flesch et al. (2010) proved
that an ε-SPE exists for every ε > 0 when the payoffs are bounded and lsc, whereas
Purves and Sudderth (2011) proved the same when the payoffs are bounded and usc.
Very general topological conditions for existence of SPE are given in Alós-Ferrer and
Ritzberger (2013).

3 Continuity ε-SPE

In this section, we examine a refinement of ε-SPE, which requires that, in every sub-
game, the payoff functions are continuous at the induced play. We start with the
following illustrative example.

Example 3.1 Consider a 1-player game where A = {0, 1} and the payoff u1(p) is 1
if p = 1∞ = (1, 1, 1, . . . ) and is 0 otherwise. Any SPE (and in fact any equilibrium)
induces the play 1∞ from the root. Such an SPE however does not guarantee within
finite time that the payoff will be 1, or at least close to 1, and the player has to play
action 1 consistently at every period. To be more precise, for any error-term δ ∈ [0, 1),
the player is not guaranteed a payoff within a distance of δ from 1 by following the
strategy for a finite number of periods. Consequently, any mistake, even at far periods,
will be costly. The exact cause of this problem lies in the fact that the payoff function
is discontinuous at the play p (even though the payoff function is usc).

Now consider the same game, but now with a different payoff function. At every
period of the game, the player receives a payoff of 1 if he chooses action 1 and receives
a payoff of 0 if he chooses action 0. The payoff for a play q = (a0, a1, . . .) is then the
total discounted payoff with discount factor β ∈ (0, 1), i.e.

u1(q) = (1 − β)

∞∑

t=0

β t at . (3.1)

Clearly, the unique SPE is to choose action 1 at every period, which again induces the
play p = 1∞ from the root with payoff u1(p) = 1. But now, in contrast with the
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previous payoff function, u1 is continuous at p (and in fact continuous everywhere).
And indeed, for any error-term δ > 0, the player can guarantee a payoff of at least
1 − δ in finite time, by simply playing action 1 at the first Nδ periods, for a large
enough Nδ . A similar property holds in every subgame.

We call a play p of the game a continuity play if the payoff function of every player
is continuous at p. Otherwise, the play is called a discontinuity play.

Definition 3.2 Let ε ≥ 0. A strategy profile σ is called a continuity strategy profile if
σ induces a continuity play in every subgame, i.e.π(σ ; h) is a continuity play for every
history h ∈ H . A continuity strategy profile σ that is an ε-SPE is called a continuity
ε-SPE.

Suppose that σ is a continuity ε-SPE in a game G. Then σ enjoys the following
property: for any δ > 0 and any history h ∈ H there is a period Nδ,h such that if,
starting at h, the players follow σ until period Nδ,h , then regardless how they play
after period Nδ,h , their payoffs will be within a distance of δ from u(π(σ ; h)). This
means that, in every subgame, the payoffs are essentially fixed after a finite number
of periods (up to payoff 2δ), and hence the game effectively ends in finite time. In
contrast, when the induced play of the game fails to be a continuity play of the payoff
functions, the game never settles, and the players may have to play the entire infinite
sequence of actions with full precision to be sure about the payoffs that they receive.

Now we will examine the existence of continuity ε-SPE when the payoff functions
are semicontinuous. As Example 3.1 demonstrated, bounded and usc payoffs are not
sufficient to guarantee the existence. It turns out however that bounded and lsc payoffs
are sufficient, and we will prove it below.

Example 3.3 We construct a game with bounded and lsc payoffs having an SPE such
that all payoff functions are discontinuous at the equilibrium play. There are two
players, and the action set is A = {L , R}. The players move alternatingly, starting
from player 1. Player 1’s payoff function only depends on actions of player 2. Player
1’s payoff is 0 if player 2 plays L all the time, and it is 1 otherwise. Symmetrically,
player 2’s payoff only depends on player 1’s actions:

u1(a0, a1, a2, . . . ) =
{
0 ∀t ∈ N, a2t+1 = L

1 otherwise.

u2(a0, a1, a2, . . . ) =
{
0 ∀t ∈ N, a2t = L

1 otherwise.

Both payoff functions are lsc. Consider the strategy profile σ such that σ(h) = L for
each h ∈ H . It is an SPE, and it induces the play (L , L , L , . . . ), which is a discontinuity
point of both payoff functions. Note that there is another SPE in which both players
play R at every history. This is clearly a continuity SPE.

The result below strengthens themain theorem inFlesch et al. (2010).A set D ⊂ AN

is dense if it intersects every non-empty open subset of AN, or equivalently, if it
intersects every cylinder set O(h).
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Theorem 3.4 Suppose that all payoff functions are bounded and lsc. Let D be a subset
of AN and let ε > 0. The game admits an ε-SPE σ for which π(σ ; h) ∈ D for each
h ∈ H if and only if D is dense in AN.

Proof 
⇒: Suppose that σ is an ε-SPE (or in fact any strategy profile) such that
π(σ ; h) ∈ D for each h ∈ H . Take the cylinder set O(h) = {p ∈ AN : h < p}
corresponding to an arbitrary history h ∈ H . Since π(σ ; h) ∈ D ∩ O(h), we have
D ∩ O(h) = ∅. Because the cylinder sets form a basis of the topology of AN, the set
D is dense in AN indeed.

⇐
: Suppose that D is dense in AN. The proof is nearly identical to the proof
of Theorem 2.3 in Flesch et al. (2010). The only alteration we introduce is in the
definition of P0(h). We replace formula (2) in Flesch et al. (2010) by the following:

P0(h) = {p ∈ D : h < p}.

The rest of the proof remains the same, word for word. ��
If player i’s payoff function ui is bounded and lsc, then the set of continuity points

Di of ui is a dense subset of AN (see for example Fort 1951). By taking D = ∩i∈N Di ,
Theorem 3.4 yields the following stronger result.

Corollary 3.5 Suppose that all payoff functions are bounded and lsc. Then, for every
ε > 0, the game admits a continuity ε-SPE.

4 Loss tolerance equilibrium

An ε-SPE allows a player to play a suboptimal strategy in any subgame, provided that
the payoff loss the player incurs does not exceed a fixed margin of ε. We could say
that a payoff loss of ε is tolerated in every subgame.

In gameswith discounted payoffs, ε-SPE places no restrictions on behavior at remote
decision nodes. As an illustration, consider the following example.

Example 4.1 Consider a 1-player game where A = [0, 1) and the payoff function is
given for a play q = (a0, a1, . . .) by the total discounted payoff with discount factor
β ∈ (0, 1), i.e.

u1(q) = (1 − β)

∞∑

t=0

β t at . (4.1)

The game admits no SPE but does admit an ε-SPE for each 0 < ε < 1, for example
playing 1−ε in each period. However, there is also an arguably unnatural ε-SPE where
the player plays 1 − 1

2ε in the first t periods and plays 0 thereafter, with t being large
enough to satisfy β t < ε

2 . To see that such a strategy is indeed an ε-SPE simply notice
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that after period t the distance between any two feasible payoffs is at most ε, and so
any course of action is compatible with the concept of ε-SPE.

Same observations apply to all games with continuous payoffs. As the play of the
game proceeds, the set of feasible payoffs shrinks, and so a period is eventually reached
after which all feasible payoffs differ by no more than ε. In any such subgame, ε-SPE
places no restrictions.

These considerations motivate us to abandon constant loss tolerance and introduce
a loss tolerance function assigning a tolerance level to each decision node. Clearly we
are most interested in the case where tolerance level declines as the game proceeds.

Definition 4.2 A tolerance function is any function φ : H → (0,+∞). The value
φ(h) of the tolerance function is called the tolerance level at h. Given a loss tolerance
function φ, the strategy profile σ is said to be a φ-tolerance equilibrium if for each
player i ∈ N , each strategy ηi of player i and each history h ∈ H it holds that

ui (π(σ/ηi ; h)) − ui (π(σ ; h)) ≤ φ(h). (4.2)

Equivalently, σ is a φ-tolerance equilibrium if for each h ∈ H it induces a φ(h)-
equilibrium in the subgame that starts at h. The most interesting case is the one where
φ is decreasing, in the sense of assigning smaller tolerance levels to longer histories.
If φ(h) ≤ ε for each h then clearly each φ-tolerance equilibrium is an ε-SPE. With
φ(h) = β |h|, where β is a discount factor, our φ-tolerance equilibrium is closely
related to the concept of contemporaneous equilibrium of Mailath et al. (2005).

The differences between three concepts: SPE, ε-SPE, and loss tolerance equilibrium
are illustrated by the following example.

Example 4.3 This is a 3-period game. Formally, the game is infinite, but only the
actions a0, a1, and a2 matter for the payoffs. In period 0 player 1 can choose to play
in or out . If player 1 chooses out the game ends and both players receive payoff
zero. If player 1 chooses in, the game continues and in period 1 player 1 chooses a
positive integer a1. In period 2 player 2 can play yes or no. If player 2 plays yes the
payoffs are (1, 0), if no the payoffs are (− 1

a1
, 1
a1

). Thus formally ι(ø) = ι(in) = 1,

and ι(in, a1) = 2, and the payoffs are given by

(u1(a0, a1, a2), u2(a0, a1, a2)) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0) a0 = out

(1, 0) a0 = in, a2 = yes(
− 1

a1
, 1
a1

)
a0 = in, a2 = no,

where a1 ∈ {1, 2, . . . }.
Intuitively we should expect that in this game player 2 always plays no and player

1 chooses out . Turning to the formal analysis, notice that the game has no SPE. Indeed,
if player 2 plays no at history (in, a1) for each a1, then player 1 at history (in) has no
best response.

Fix an n ≥ 1. The game has a 1
n –SPE. For example the strategy profile

σ(ø) = out, σ (in) = n, σ (in, a1) = no for each a1 ∈ {1, 2, . . . }
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is a 1
n –SPE. However, in a 1

n –SPE it is not necessarily the case that player 2 always
chooses no. For example, the strategy profile

σ ′(ø) = in, σ ′(in) = n, σ ′(in, a1) =
{
no a1 < n

yes a1 ≥ n

is also a 1
n –SPE. The reason is that player 2, even though he has an exact best response

at each of his decision nodes, is allowed to play suboptimally provided that he incurs
a payoff loss of not more than 1

n .
Now consider the loss tolerance function φ given by φ(ø) = φ(in) = 1

n and
φ(in, a1) = 1

2a1
. It is clear that σ is a φ-tolerance equilibrium while σ ′ is not. In fact,

in each φ-tolerance equilibrium with φ specified above, player 2 always plays no and
player 1 chooses out .

The main result of this section is the following theorem.

Theorem 4.4 Suppose that all payoff functions are bounded and continuous. Then,
for each loss tolerance function φ, the game admits a φ-tolerance equilibrium.

The novelty of Theorem 4.4 is that it covers games where the action set A is infinite.
For the special case when A is finite, the conclusion of the theorem follows from the
fact that for such games an SPE exist, by the results of Fudenberg and Levine (1983) and
Harris (1985). From the technical point of view, the main challenge is that the space
of plays AN is not compact unless A is finite. It is for this reason that the truncation
technique of Fudenberg and Levine (1983) does not suffice to prove Theorem 4.4.
Instead, we carry out an iterative procedure similar to that in Flesch et al. (2010). It
differs from the one in Harris (1985) in that the latter terminates in countably many
steps, whereas ours is transfinite. For more discussion on our proof see Sect. 5.

Thus Theorem 4.4 is particularly useful in games where the payoffs are continuous
at infinity butwhere the action set is not compact, as is the case inExample 4.3.Another
important class of games that is covered by the theorem are discounted games where
the instantaneous reward function is discontinuous in actions.

To conclude this section we argue, by means of two examples, that loss tolerance
equilibrium may fail to exist if the payoff functions are only semicontinuous.

Example 4.5 Consider the following 1-player game with lsc payoffs. The action set
is A = {s, c} where s stands for stop and c for continue. If player 1 plays s in period
t the game stops4 with payoff t

t+1 . If the player never plays action s his payoff is 0.

p1

0

p1

1
2

p1

2
3

p1

3
4

· · · 0

s

c

s

c

s

c

s

c

4 Strictly speaking the game goes on, but once action s has been played, subsequent actions do not affect
the payoff.
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Define the loss tolerance functionφ by lettingφ(t) = 1
t+2 wherewewrite t to denote

the history reached if action c is played t times. We show that this game admits no
φ-tolerance equilibrium. Suppose on the contrary that σ is a φ-tolerance equilibrium.
First assume that σ(t) = s for some time t . Then the payoff for the strategy σ at t
is t

t+1 . However, because 1 − t
t+1 > φ(t), the player could improve this payoff at

t by more than φ(t) by playing c sufficiently many times and then playing s. Hence
we conclude that φ(t) = c for each t . But then the payoff for σ is 0 and it could be
improved bymore thanφ(0) at the beginning of the game by playing c twice and then s.

Example 4.6 The following is a game with usc payoffs having no φ-tolerance equi-
librium:

p1

1, 1

p2

1
2 ,

1
4

p1

1
3 ,

1
3

p2

1
4 ,

1
6

p1

1
5 ,

1
5

p2

1
6 ,

1
8

· · · 2, 0

s

c

s

c

s

c

s

c

s

c

s

c

In this game, there are two players, who move in turn. The action set is A = {s, c}
where s stands for stop and c stands for continue. There are three possible scenarios.
If player 1 stops the game at period t ∈ {0, 2, 4, . . .}, then the payoffs are ( 1

t+1 ,
1

t+1 ).

If player 2 stops the game at period t ∈ {1, 3, 5, . . .}, then the payoffs are ( 1
t+1 ,

1
t+3 ).

Finally, if neither player stops, then the payoffs are (2, 0). Note that the payoff function
of player 1 is usc, while the payoff function of player 2 is even continuous.

Define the tolerance level by

φ(t) = 1
2 min

{
1

t+1 − 1
t+2 ,

1
t+2 − 1

t+3

}

where we write t to denote the history reached once c has been played t times. We
argue that there is no φ-tolerance equilibrium. Suppose by way of contradiction that
σ is a φ-tolerance equilibrium. We distinguish two cases.

Suppose first that there is some period t0 after which σ2 never quits. Since the
tolerance level is always smaller than 1, σ1 prescribes player 1 to always continue
after t0, and this yields payoff (2, 0). Then, however, at any odd period t > t0, player
2 could improve his payoff with 1

t+3 by quitting, and this gain is greater than φ(t).
Now suppose that σ2 quits at infinitely many odd periods, say at t1 < t2 < t3 < · · ·

etc. Then our choice of the loss tolerance function forces player 1 to quit at t2 − 1.
But then it forces player 2 to continue at t2 − 2. At position t2 − 3 player 1 has to stop,
and at position t2 − 4 player 2 must continue. Working backwards we find that player
1 quits at each position t < t2 and that player 2 continues at each position t < t2. This
contradicts our supposition that player 2 quits at t1. This completes the argument.

5 The proof of Theorem 4.4

The proof of the theorem relies on Lemma 5.1 which warrants some attention on its
own right. It is in essence an φ-version of a well-known one-shot deviation principle.
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We say that the strategy σ is φ-robust to one-shot deviations if by deviating from σ

at any single history h the player ι(h) cannot improve his payoff by more than φ(h).
More precisely, σ is φ-robust to one-shot deviations if for every h ∈ H

uι(h)(π(σ ; h)) ≥ uι(h)(π(σ ; ha)) − φ(h) for each a ∈ A. (5.1)

Clearly each φ-tolerance equilibrium is φ-robust to one-shot deviations. The con-
verse is not true, but we have the following result.

Lemma 5.1 Suppose the functions ui are bounded and lsc. Then the following con-
ditions are equivalent:

[1] For each loss tolerance function φ there exists a φ-tolerance equilibrium.
[2] For each loss tolerance function φ there exists a strategy profile that is φ-robust

to one-shot deviations.

Proof That [1] implies [2] is immediate since each φ-tolerance equilibrium is φ-
robust to one-shot deviations.We show the converse implication. Let the loss tolerance
function φ be given. Without loss of generality we can assume that it is a decreasing
function in the sense that φ(h) > φ(h′) whenever h < h′. Define the loss tolerance
function φ0 by φ0(h) = 2−|h|−1φ(h). Let the strategy profile σ be φ0-robust to one-
shot deviations. We show that σ is a φ-tolerance equilibrium.

Let h be any history and ηi a pure strategy for player i . We want to prove inequality
(4.2). Write η = σ/ηi . Let h0, h1, h2, . . . be the successive enumeration of the initial
segments of the play π(η; h) starting from h, that is h0 = h and hk+1 = hkη(hk) for
each k. We have

ui (π(σ ; hk)) ≥ ui (π(σ ; hkη(hk))) − φ0(hk). (5.2)

Indeed, at histories hk that belong to player i this inequality is an instance of (5.1)
with a = η(hk). At histories hk that do not belong to player i the inequality holds as
we have η(hk) = σ(hk) and so π(σ ; hk) = π(σ ; hkη(hk)). Now we have

φ0(hk) = 2−|hk |−1φ(hk) ≤ 2−|hk |−1φ(h0) ≤ 2−k−1φ(h0), (5.3)

where we used the fact that |hk | = |h0| + k. Combining (5.2) and (5.3) and using the
fact that hk+1 = hkη(hk) we obtain

ui (π(σ ; hk)) ≥ ui (π(σ ; hk+1)) − 2−k−1φ(h0).

Unraveling this recursive relation we obtain

ui (π(σ ; h0)) ≥ ui (π(σ ; hm+1)) −
m∑

k=0

2−k−1φ(h0).

The sequence {π(σ ; hm)}m∈N of plays converges to the play π(η; h0) asm approaches
infinity. To see this, simply notice that hm is the initial segment of both plays π(η; h0)
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and π(σ ; hm). Hence passing to the limit and using the lower semicontinuity of the
payoff function, we obtain

ui (π(σ ; h0)) ≥ lim inf
m→∞ ui (π(σ ; hm+1)) −

∞∑

k=0

2−k−1φ(h0) ≥ ui (π(η; h0)) − φ(h0),

as desired. ��

We can now complete the proof of the theorem. We follow the approach of Flesch
et al. (2010) with two crucial modifications. The first one is concerned with the dis-
cretization of the payoff function. In both cases discretizations are introduced as a
player is allowed to ignore a small difference in the payoff. However, while Flesch
et al. (2010) use one fixed discretization as determined by a fixed level of loss tolerance
ε, we are forced to use different discretizations for each of the players’ decision nodes
h, as determined by the respective tolerance levels φ(h).

The second modification is in the argument that the procedure always returns a
non-empty set of plays. By making use of the continuity of the payoff functions we
are able to avoid some of the more difficult steps of the proof of Flesch et al. (2010).
For more on this point see the remarks at the end of the proof.

Proof of Theorem 4.4 In view of Lemma 5.1 it is enough to show that for each loss tol-
erance function φ there exists a strategy profile that is φ-robust to one-shot deviations.
For each h ∈ H define the function vh by letting

vh(p) = φ(h)

⌈
uι(h)(p)

φ(h)

⌉

where �r� is the largest integer that is not greater than r . Since the functions ui are
bounded, the function vh only takes finitely many values. Moreover �r� is usc as a
function of r , and so vh is usc as a function of p.

We define by transfinite recursion the following sequences. For ordinal 0 let

P0(h) = {p ∈ AN : h < p}
α0(h) = min

p∈P0(h)
vh(p).

For each successor ordinal ξ + 1 let

αξ+1(h) = max
a∈A

min
p∈Pξ (h,a)

vh(p) (5.4)

Pξ+1(h) =
{
p ∈

⋃

a∈A

Pξ (h, a) : vh(p) ≥ αξ+1(h)

}
. (5.5)
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For each limit ordinal ξ we set

Pξ (h) =
⋂

λ<ξ

Pλ(h)

αξ (h) = min
p∈Pξ (h)

vh(p).
(5.6)

By convention, aminimumover the empty set if+∞. These definitions are precisely
the same as in Flesch et al. (2010) except that we use the function vh in place of the
function uι(h). We state the following basic properties of these sequences without
proof. The proof (which is straightforward) is exactly the same as the proof of Lemma
3.1, and of Properties Q2 and Q3 in Flesch et al. (2010).

Lemma 5.2 Let ξ be an ordinal and h ∈ H. [1] Let a be an element of A that attains
the maximum in (5.4). Then Pξ (h, a) ⊆ Pξ+1(h). [2] If ξ is a limit ordinal or zero,
p ∈ Pξ (h) and h < h′ < p, then p ∈ Pξ (h′).

Lemma 5.3 (Monotonicity of the sequences) Let η and λ be ordinals and h ∈ H. If
η < λ then Pη(h) ⊇ Pλ(h) and αη(h) ≤ αλ(h).

We now turn to the key step of the proof. It is here at this step that we are able to
use the continuity of the payoff functions to simplify the argument.

Lemma 5.4 The set Pξ (h) is non-empty for each ordinal ξ and each h ∈ H.

Proof The proof is by transfinite induction on ξ . Thus fix an ordinal ξ and suppose
that Pν(h) is non-empty for each ordinal ν < ξ and each history h ∈ H . We have to
prove that Pξ (h) = � for each h ∈ H .

If ξ = 0 the claim is clearly true. If ξ is a successor ordinal it follows from
Lemma 5.2. Suppose ξ is a limit ordinal.

For each h ∈ H define

α̃(h) = max
λ<ξ

αλ(h).

Note that the maximum is well defined: vh and hence also αλ(h) only take finitely
many values. Moreover since the sequence αλ(h) is non-decreasing in λ we have
α̃(h) = αλ(h) for all sufficiently large ordinals λ < ξ .

Now fix a history h ∈ H . We recursively define a sequence of histories and ordinals
as follows. Set h0 = h. Suppose for some k ∈ N the history hk has been defined. Let
ξk be a successor ordinal satisfying

αξk (hk) = α̃(hk).

If k ≥ 1 we moreover require that ξk−1 − 1 ≤ ξk . An ordinal ξk with these properties
exists by the remarks above. By (5.4) there is an ak ∈ A such that

αξk (hk) = min
p∈Pξk−1(hk ,ak )

vhk (p).
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Set hk+1 = (hk, ak). This completes the induction step.
We have the inclusions

Pξk (hk) ⊇ Pξk−1(hk+1) ⊇ Pξk+1(hk+1),

where the first inclusion holds by the choice of the action ak and by part [1] of
Lemma 5.2, and the second inclusion holds because ξk −1 ≤ ξk+1 and by Lemma 5.3.
Combining these we obtain an infinite chain of inclusions

· · ·

Pξk−1−1(hk)

Pξk(hk)

Pξk−1(hk+1)

Pξk+1(hk+1)

· · ·

For each � ∈ N let p� be an arbitrary element of the set Pξ�
(h�). Let p =

(h0, a0, a1, . . .). Since h� is an initial segment of p�, the sequence {p�}�∈N of plays
converges to the play p. If k ≤ � then Pξk (hk) ⊇ Pξ�

(h�) and so p� is an element of
Pξk (hk). Thus we have

vhk (p�) ≥ αξk (hk) = α̃(hk)

whenever k ≤ �, where the inequality follows from (5.5). Taking the limit as �

approaches infinity and making use of the upper semicontinuity of vhk we obtain

vhk (p) ≥ lim sup
�→∞

vhk (p�) ≥ α̃(hk).

Consequently for each λ < ξ it holds that

vhk (p) ≥ αλ(hk). (5.7)

Now let �λ be the assertion that p ∈ Pλ(hk) for each k ∈ N. We prove that �λ

holds for each λ < ξ . The assertion �0 is true since hk is an initial segment of p.
Suppose �ν is true for each ν < λ. If λ is a limit ordinal then �λ is true by definition
(5.6). Suppose that λ is a successor ordinal. Take a k ∈ N. Then p ∈ Pλ−1(hk+1)

by �λ−1. Together with (5.7) and definition (5.5) this implies that p ∈ Pλ(hk). This
completes the induction step.

In particular we have shown that p ∈ Pλ(h) for each λ < ξ . Hence p ∈ Pξ (h). ��
A reader will notice that the construction above is similar to that of the odd iteration

in Flesch et al. (2010). The difference is that our version of the odd iteration is infinite.
The continuity of the payoff functions helps us to avoid having to switch between
odd and even iterations as is done in Flesch et al. (2010). We remark that the proof of
Lemma 3.3 in Flesch et al. (2010) asserting the finiteness of the odd iteration cannot
be carried over to our setup, because of our use of different dicretizations at different
histories.
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To complete the proof one constructs a strategy profile σ . This is done just as in the
proof of Theorem 2.3 in Flesch et al. (2010) using the function vh in place of uι(h). By
Lemma 5.3 there exists an ordinal ξ∗ such that Pξ∗(h) = Pξ∗+1(h) for each h ∈ H
and consequently αξ∗(h) = αξ∗+1(h) for each h ∈ H . By Lemma 5.4 the sets Pξ∗(h)

are non-empty for each h. We can assume without loss of generality that ξ∗ is a limit
ordinal. Let p(ø) be an arbitrary element of Pξ∗(ø), and for each history of the form
ha let p(ha) ∈ Pξ∗(ha) be a play that attains the minimum in the following problem

min
p∈Pξ∗ (ha)

vh(p).

The strategy profile σ is defined as follows: Follow p(ø), as long as no one deviates
from it. Suppose the first deviation from p(ø) occurs at history h0 where player i0 plays
action a0. Then switch to the play p(h0a0) and follow it as long as no one deviates.
Suppose the first deviation from p(h0a0) occurs at history h1 where player i1 plays
action a1. Then switch to the play p(h1a1). And so on.

We next argue that for every history h ∈ H and action a ∈ A

vh(π(σ ; h)) ≥ vh(π(σ ; ha)).

If σ(h) = a then π(σ ; h) = π(σ ; ha) so there is nothing to prove. Suppose otherwise.
By construction there exists a history h′ ≤ h such that π(σ ; h) = p(h′). Moreover,
π(σ ; ha) = p(ha). Hence it is sufficient to show that vh(p(h′)) ≥ vh(p(ha)). Now
p(h′) ∈ Pξ∗(h′). By claim [2] of Lemma 5.2 we have p(h′) ∈ Pξ∗(h) and so p(h′) ∈
Pξ∗+1(h). Hence

vh(p(h
′)) ≥ αξ∗+1(h) ≥ min

p∈Pξ∗ (ha)
vh(p) = vh(p(ha)),

as desired.
Finally we prove that σ is φ-robust to one-shot deviations. We have

uι(h)(π(σ ; h)) ≥ vh(π(σ ; h)) ≥ vh(π(σ ; ha)) ≥ uι(h)(π(σ ; ha)) − φ(h).

This completes the proof of Theorem 4.4. ��
Remark 5.5 For certain games the number of iterations in the proof of Theorem 4.4
may need to be transfinite. Indeed, let τ be the smallest ordinal for which Pτ (h) =
Pτ+1(h) for each h ∈ H . The following example shows that τ can be arbitrarily large.

Let ξ be any ordinal. Slightly modifying Example 4.1.1 in Flesch et al. (2010) we
obtain a gamewhere τ = ξ . In this game players 1 and 2 choose a decreasing sequence
a0 > a1 > · · · of ordinals, with a0 = ξ . The rules are as follows: If the current ordinal
at is a successor ordinal, then player 1 plays at+1 = at − 1 or he quits. If the current
ordinal at is a limit ordinal, then player 2 chooses any ordinal at+1 smaller than at .
Finally, if at = 0, then the play terminates. The payoff for player 1 equals 1 if the
sequence (at ) eventually reaches 0 and equals 0 otherwise. The payoff for player 2
equals 0 for every play. The payoffs are continuous and the proof that τ = ξ is similar
to that in Flesch et al. (2010).
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6 Vanishing loss

In this section we discuss a property of vanishing loss, which is closely related to the
two refinements introduced earlier. We deliberately keep our discussion informal. The
point here is not to prove new results but rather to emphasize the connections between
continuity ε-SPE and loss tolerance equilibrium.

We are interested in strategy profiles such that themaximal improvement any player
can gain by unilaterally deviating from the given strategy approaches zero as the play
proceeds. To fix the ideas we define a loss λ(σ ; h) associated to a strategy profile
σ at history h as the maximal improvement that a player could gain by unilaterally
deviating from his strategy in the subgame that starts at h. Formally λ(σ ; h) is the
supremum of the left-hand side of Eq. (4.2) over all strategies ηi and all players i . In
particular σ is an ε-SPE if λ(h; σ) ≤ ε for each h and it is a φ-tolerance equilibrium
if λ(σ ; h) ≤ φ(h) for each h.

Definition 6.1 A strategy profile σ exhibits vanishing loss along the play p =
(a0, a1, . . . ) ∈ AN if

lim
t→∞ λ(σ ; (a0, . . . , at )) = 0.

A strategy profile σ has vanishing loss if σ exhibits vanishing loss along the play
π(σ ; h) for every history h ∈ H .

The requirement of vanishing losses is intuitive: it might reflect the fact that the
players become more experienced in the course of the game. It might also manifest
the fact that a player thinks harder about a choice at a specific decision node once that
node is reached, than he does in the beginning of the game. Finally, it might simply
reflect the fact that the possibilities for deviating profitably shrink as time goes by.

Vanishing loss is a property shared by the two refinements we introduced. More
precisely:

[1] Each continuity ε-SPE has vanishing loss.
[2] Any φ-tolerance equilibrium has vanishing loss provided that the tolerance level

φ(h) converges to zero as the length of the history increases.

Item [2] follows immediately from the definitions. Item [1] is only slightly less trivial,
and can be verified by using the fact that the induced plays are continuity points of
all payoff functions. In fact [1] follows from the following somewhat more general
observation:

[3] For each strategy profile σ if π(σ ; h) is a point of upper semicontinuity of all
payoff functions, then σ exhibits vanishing loss along the path π(σ ; h).

Hence in games with usc payoff functions, any strategy profile σ has vanishing loss,
and thus Definition 6.1 has no bite in such games. If the payoff functions are lsc rather
than usc, it is no longer true that every strategy profile has vanishing loss. However,
by item [1] above and Corollary 3.5, a game with bounded and lsc payoffs does have
a strategy profile with vanishing loss.
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Beyond games where the payoff functions are semicontinuous, the existence of
strategy profiles with vanishing loss is difficult to guarantee. In the following example,
for small ε no ε-SPE has vanishing loss along the induced play.

Example 6.2 In this game, there is only one player, who can choose at every period
between playing down (d) or moving to the right (r). If in total he plays k times action
right then his payoff is k

k+1 , whereas if he moves to the right infinitely many times
then his payoff is 0. This game can be schematically represented as follows, where it
is understood that the payoffs corresponding to the arc are only obtained if action r is
not played any more:

p1

0

p1

1
2

p1

2
3

p1

3
4

· · · 0

d

r

d

r

d

r

d

r

Formally A = {d, r}, and the payoff u1(a0, a1, . . . ) is zero if the set

R(a0, a1, . . . ) = {t ∈ N : at = r}

is infinite, and it is k
k+1 if it has cardinality k < ∞. It is easy to see that u1 is

discontinuous at each play in AN and is consequently neither lsc nor usc.
For each ε > 0 there exists an ε-SPE, for example: Let k be such that k

k+1 > 1− ε.
Play r if in the past action r has been played less than k times, play d otherwise.

As we argue below, there is no ε-SPE σ , with ε < 1, that exhibits vanishing
loss along the induced play. Let p = π(σ). Then R(p) is finite, say consisting of k
elements, so that u1(p) = k

k+1 . As the action r is played exactly k times along p, the
play p is of the form (h, d, d, d, . . . ) for some finite history h. Now take any history
h′ < p that is longer than h and consider the play p′ = (h′, r, d, d, d, . . . ). The play
p′ results in the payoff of k+1

k+2 . Hence for every h
′ such that h < h′ < p it holds that

λ(σ ; h′) ≥ k+1
k+2 − k

k+1 .

This provides a lower bound on the loss along the play p.
Interestingly, for ε ∈ (0, 1), each ε-SPE exhibits vanishing loss along the play

q = (r, r, r, . . . ), even though q is not the induced equilibrium play.
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