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Abstract Glioblastoma multiforme (GBM) is the most

common primary brain tumor that is invariably lethal.

Novel treatments are desperately needed. In various can-

cers, heparin and its low molecular weight derivatives

(LMWHs), commonly used for the prevention and treat-

ment of thrombosis, have shown therapeutic potential.

Here we systematically review preclinical and clinical

studies of heparin and LMWHs as anti-tumor agents in

GBM. Even though the number of studies is limited, there

is suggestive evidence that heparin may have various

effects on GBM. These effects include the inhibition of

tumor growth and angiogenesis in vitro and in vivo, and the

blocking of uptake of extracellular vesicles. However,

heparin can also block the uptake of (potential) anti-tumor

agents. Clinical studies suggest a non-significant trend of

prolonged survival of LMWH treated GBM patients, with

some evidence of increased major bleedings. Heparin

mimetics lacking anticoagulant effect are therefore a

potential alternative to heparin/LMWH and are discussed

as well.
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Introduction

Glioblastoma multiforme (GBM) is the most common

primary brain tumor and is without exception lethal.

Despite (advances in) neurosurgery, radiation and

chemotherapy, median survival still does not extend

beyond 15 months, emphasizing a dire need for novel

treatments [1]. Most GBM patients are treated peri-opera-

tively with low molecular weight heparin (LMWH) for the

prevention of thrombotic complications. While LMWH is a

well-established drug for the prevention and treatment of

thrombosis, it has regained interest as a potential anti-

cancer agent. This interest in heparins as anti-cancer agents

was ignited by the sub-analysis [2] (n = 129) of two trials

published in 1992 [3, 4], indicating lower mortality rates

among cancer patients receiving LMWH as opposed to

heparin, a finding that was later disputed in a larger anal-

ysis (n = 672) that included brain tumor patients [5].

Interestingly though, a 2013 Cochrane meta-analysis found

a significant survival benefit for LWMH/heparin treated

patients after 24 months, but not after 12 months [6].

In vitro cancer studies indicate both heparin and LMWH

to inhibit angiogenesis, invasion, and metastasis of solid

tumors [7]. Moreover, the uptake of extracellular vesicles

(EVs), 50–1000 nm membrane vesicles, implicated in

GBM biology [8, 9], is blocked by heparin [10]. In animal

models for different, non-GBM tumors, heparin [11] and

LMWH [12] were shown to inhibit tumor growth and to

prolong survival. The effect of heparin-based therapies on

GBM tumors and thus its potential for GBM patients is

currently unknown. Here we systematically review
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literature on the effects of heparin/LMWH on GBM in

preclinical and clinical settings (Supplementary Table 1 for

search terms and Supplementary Fig. 1 for flow-chart).

Pharmacodynamic properties of heparin

Unfractionated heparin (UFH, here; heparin) is a highly sul-

fated glycosaminoglycan (GAG), closely related to heparan

sulfate, which binds to a range of target molecules and can

subsequently affect their activity [13]. Heparin is produced

endogenously by basophils andmast cells, and can be found in

a variety of organs. The GAG chains in heparin each contain

200–300 saccharide units, resulting in a variable molecular

weight. Heparin, isolated frommucosa of animals, is the most

widely used anticoagulant in the world [14]. It used to be the

drug of choice for the prevention and treatment of venous

thromboembolism (VTE), but since 1999 it has been replaced

by LMWHs [15]. LMWH variants such as dalteparin, nadro-

parin and tinzaparin are heparin fragments with less than 18

saccharide units per GAG chain and a molecular mass of

approximately 5000 Da. The anticoagulant activity of heparin

and LMWHs is indirect and largely based on binding of hep-

arin or heparin fragments to antithrombin 3 [16], a plasma

protease inhibitorwith the ability to inactivate several enzymes

of the coagulation cascade, including factors X and II. Heparin

also promotes tissue factor pathway inhibitor (TFPI) by neu-

tralizing the effects of tissue factor (TF), a high affinity

receptor for coagulation factor VII and therefore an important

initiator of the coagulation cascade [17]. Interestingly, TF has

been implicated in glioma biology and its expression seems to

be related to molecular subtype and to mutations in EGFR and

other genes implicated inGBM[18].Moreover, TFwas shown

to be the driver of growth activation of dormant GBM cells in

an in vivo model [19] and increased expression of TF is found

on microparticles in GBM patients [20].

Specific non-anticoagulant effects have been ascribed to

heparin as well. It downregulates the inflammatory

response by binding immune-activating enzymes and

inhibits adhesion of leukocytes to the endothelial wall [21].

Several animal studies and case reports also suggest a

beneficial effect on wound healing and tissue repair [22].

However, most research into non-anticoagulant effects of

heparin has focused on its impact in cancer [7, 23, 24].

GBM specific studies will be discussed below.

Preclinical data

Angiogenesis

One of the hallmarks of GBM is angiogenesis and

numerous factors have been shown to play an important

role in this process [25, 26]. Heparin and LMWH influence

angiogenesis by affecting some of these factors [27–31] as

discussed below.

Tumor-derived adhesion factor (TAF), also known as

mac25, is expressed in normal brain, lung, and muscle, but

also in various human cancer tissues [27]. In GBMs, TAF

is localized specifically in small blood vessels near tumor

cells. In vitro it co-localizes with collagen IV and is found

in tube-like structures of endothelial cells, indicating a role

in angiogenesis. TAF is a heparin binding protein and

heparin (10lg/ml) inhibits binding of TAF to endothelial

cells [27]. High concentrations of heparin (20lg/ml) pre-

vent the formation of tube-like structures by endothelial

cells, indicating the ability of heparin to inhibit early steps

of angiogenesis.

Secondly, heparin and tinzaparin (an LMWH) reduce

endothelial cell proliferation in a dose-dependent manner

in vitro [28]. Heparin was shown to bind to heparan sulfate

proteoglycans (HSPGs), preventing the ability of HSPGs to

act as co-receptors for pro-angiogenic factors and antago-

nizing proliferation in this way.

Hypoxia, an important feature of GBMs, has been shown

to influence several biological processes, including neovas-

cularization (mediated by vascular endothelial growth fac-

tor; VEGF) and activation of the coagulation system

(mediated by expression of TF) [32, 33]. Protease-activated

receptor 2 (PAR-2), a G-protein coupled receptor active in

coagulation dependent signaling, is up-regulated by hypoxia

and TF [34]. The induction of PARs was found to activate

heparin binding EGF-like growth factor (HB-EGF), a pro-

angiogenic growth factor [29]. Heparin can inhibit HB-EGF

activity through interference with HSPG binding, and also

reverse PAR-2 dependent proliferation of endothelial cells,

thereby inhibiting GBM neovascularization [29].

Moreover, in a U87-MG GBM xenograft mouse model

it has been shown that heparin can bind to hepatocyte

growth factor/scatter factor (HGF/SF), which plays a role

in tumorigenesis and angiogenesis and is expressed in

GBM [35]. Blocking of HGF/SF with heparin and a neu-

tralizing HGF antibody resulted in reduced tumor burden

due to decreased angiogenesis in vivo [30].

SU5416 is a tyrosine kinase receptor inhibitor that

inhibits both vascular endothelial growth factor receptor 2

(VEGFR-2) and c-kit [31]. Subsequently, this drug has

been shown to reduce vascular density in GBM [36].

In vivo, combined treatment with SU5416 and dalteparin

(an LMWH) enhanced the inhibition of tumor growth by

SU5416, whereas dalteparin alone did not result in reduced

tumor growth [31]. A possible explanation for this obser-

vation could be competitive binding of VEGF by LMWH

and SU5416. Combining LMWH with a VEGFR-2 inhi-

bitor (i.e. SU5416) could thereby promote the anti-angio-

genic effect of SU5416.
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Extracellular vesicles

Recently, accumulating evidence suggests that EVs,

50–1000 nm membrane vesicles released by all cell types,

play a role in tumor biology [8, 37]. For instance, EVs

derived from GBM cells have been shown to have a

stimulating effect on neovascularization, tumor cell growth

[8], and to modify monocytic cells [38]. EVs can be taken

up by recipient cells and transfer tumor-derived contents,

including functional RNAs, miRNAs and protein [9, 39].

Blocking the uptake of EVs has gained interest as a pos-

sible anti-cancer strategy. Recently, heparin has been

shown to block transfer of EVs into cells [10]. A heparin

concentration of 0.1 lg/ml resulted in a 90 % reduction in

EV uptake into U87-MG glioma cells in an in vitro co-

culture system. Other work showed that HSPGs on the

recipient cell surface act as a receptor for EVs, and that

these HSPGs can be inhibited in a dose dependent manner

by heparin or other HS mimetics [40]. These data suggest

that heparin interacts with tumor-derived EVs and blocks

attachment of EVs to recipient cells, which could possibly

result in an anti-tumor effect.

Extracellular matrix

Connecting to and modifying extracellular matrix (ECM)

proteins is crucial for survival and migration of (glioma)

cells [41]. Heparin has been shown to inhibit GBM cell-

attachment to laminin and fibronectin, two ECM proteins

[42]. A different study did not demonstrate enoxaparin (an

LMWH) to have a significant inhibitory effect on migration

of tumor cells in culture; tumor cell proliferation was

however inhibited [43]. This is not in line with what others

have observed, as Okumura and co-workers found an

increase of tumor cell proliferation by exposure of cells to

heparin [44]. Unfortunately, different cell culture condi-

tions, such as the presence of ECM or basic fibroblast

growth factor (bFGF), make it impossible to draw definite

conclusions.

Interaction with (potential) therapeutics

Targeted drug delivery for GBM treatment has gained

interest [45]. However, the delivery method has to meet

several requirements, such as bypassing the immune sys-

tem, crossing the blood–brain barrier, and selectively tar-

geting GBM cells. Low-density lipoprotein (LDL), an

endogenous carrier of cholesterol, could potentially meet

these requirements and was tested as a drug carrier tar-

geting GBM cells. LDL is of particular interest for drug

delivery, since LDL-receptor activity is increased in

dividing cells. LDL carrying the drug aclacinomycin A (I-

LDL-aclacinomycin A) was found to reduce tumor cell

growth in vitro [46]. The presence of heparin however,

inhibited receptor-mediated uptake of I-LDL-aclacino-

mycin A in a glioblastoma cell line [47], indicating that

heparin might inhibit receptor-mediated uptake and

degradation of LDL by tumor cells.

The same effect was observed when a viral vector was

used to deliver genes encoding anti-tumor proteins to GBM

cells. Using an AAV library to select capsid variants, a new

chimeric AAV vector was created that was able to suc-

cessfully transduce a multitude of glioma cell lines [48]. In

fact some serotypes of AAV (2, 3, 6 and 13) enter cells via

heparin binding [49]. Incubation of cells with the viral

vector in the presence of heparin can therefore greatly

reduce the transduction efficiency. Taking these results into

account, the combination of heparin and targeted drug

delivery such as LDL or an AAV vector could prove to be

counteractive.

Clinical data

Three studies describe the effect of heparin and/or LMWHs

on survival in human GBM patients [50–52].

In 2002, the Eastern Cooperative Oncology Group

(ECOG) initiated a controlled trial to investigate if LMWH

treatment, in combination with radiation therapy, could

improve overall survival (OS) in newly diagnosed GBM

patients [50]. The patient population for this trial consisted

of 42 supratentorial GBM patients with an estimated

expected survival of at least 8 weeks and an ECOG per-

formance status of 0–2. On the first day of radiotherapy,

LMWH (dalteparin) was introduced daily for a planned

24 months or until progression of disease, at a dose of

5000 IE subcutaneously which is considered a prophylactic

dose for VTE [15]. After first progression, patients could

continue dalteparin therapy in addition to standard regi-

mens. A comparable group of 72 patients was selected

from the Radiation Therapy Oncology Group (RTOG)

GBM database to serve as historical controls. Median

survival was 11.9 months in the trial group, a non-signifi-

cant improvement (P value of 0.47) compared to the RTOG

database cohort. Within the study group, a subgroup of four

patients who continued dalteparin after first (radiological)

progression had a median survival of 7.9 months, com-

pared to 3 months in the group who stopped LMWH

treatment. The study closed early as the original recruit-

ment goal seemed unrealistic after the introduction of

temozolomide as standard of care for GBM patients in

2004 [50].

The PRODIGE trial, a randomized placebo-controlled

trial, studied the effect of long term subcutaneous LMWH

(dalteparin) treatment in patients with newly diagnosed

high grade glioma (WHO grade 3 or 4) [51]. Primary
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endpoints were documented symptomatic deep venous

thrombosis (DVT) or pulmonary embolism occurring dur-

ing the 6 months post-randomization; secondary endpoints

were OS and hemorrhage. The treatment group received

5000 IE dalteparin subcutaneously daily, control glioma

patients were injected with saline. The trial faced diffi-

culties recruiting patients and was terminated early because

of insufficient study drug quantity and a trend towards

increased incidence of major bleeding in patients who

received LMWH. A total of 186 patients were randomized,

treated and analyzed. Long-term treatment with LMWH

did not result in improved survival rates, as the 12-month

mortality rates were 47.8 % for LMWH? and 45.4 % for

placebo patients, a non-significant difference. Twenty-two

patients developed VTE in the first six months: nine in the

LMWH? group and 13 in the placebo group [hazard ratio

(HR) = 0.51, 95 % confidence interval (CI): 0.19–1.4, P

value = 0.29]. At 12 months, there were five (5.1 %)

major bleeds in the LMWH? group and one (1.2 %) on

placebo (HR = 4.2, 95 % CI: 0.48–36, P value = 0.22).

A recent retrospective cohort study investigated the

effect of systemic LMWH in 30 GBM patients who

underwent surgical intervention (resection or biopsy) and

subsequent chemo-radiation and adjuvant temozolomide

therapy [52]. Thirteen patients received the LMWH

enoxaparin (4000 IU/day) for 6 weeks, and 17 did not. The

baseline characteristics age, gender, method of surgery and

performance status were similar in the two groups. Main

endpoints of the study were 1- and 2-year OS, an additional

endpoint was progression free survival.

One-year OS was 41.2 % in the LMWH- group and

84.6 % in the LMWH? patients (P value 0.016). Two-year

survival, median OS, and progression free survival were

also more favorable in the group that received LWMH,

although this difference was not significant. The addition of

LMWH did not increase temozolomide toxicity and no

DVT or bleeding occurred in either of the groups.

Discussion

Preclinical studies show an inhibitory effect of heparin and

LMWH on GBM growth and angiogenesis. As heparin and

LMWH are already widely used in cancer patients, they

seem attractive candidates for potential anti-GBM therapy.

Only three studies on the effect of heparin or LMWH in

GBM patients have been published [50–52]. The first study

showed increased survival in patients who continued dal-

teparin after first progression [50]. These results could have

been influenced by selection, as clinical status determined

treatment choice. The PRODIGE trial [51] was terminated

early, before significant results could be observed. Zincir-

cioglu et al. showed in a small trial, which included, contrary

to the first two studies, patients who received temozolomide

in combination with radiotherapy, that 2-year OS was

improved by daily injections of LMWH [52]. However, the

study groups were not randomly chosen, as the group treated

with LMWH had risk factors for VTE, which was the reason

and indication for anticoagulant therapy. The non-treatment

group lacked such risk factors, making the groups less

comparable at baseline. On the other hand it could be stated

that the LMWH? group showed improved OS in spite of

their increased risk factors for VTE; a hopeful indication that

additional trials should be undertaken.

Studies have attempted to define precise risks (bleeding,

thrombocytopenia) and benefits of different heparin vari-

ants in overall cancer treatment. A 2013 Cochrane review

renders an overview [6]. Nine described trials included

patients with a variety of cancer types and stages, mostly

solid tumors. The overall effect of parenteral administered

heparin/LMWH therapy on the survival of cancer patients

was significant at 24 months, but not at 12 months. At

24 months, the mortality risk ratio for the heparin/LMWH

treated group was 0.92 (95 % CI 0.88–0.97). Other meta-

analyses show similar results, with a non-significant trend

towards a beneficial effect of LMWH on cancer patient

survival [7, 53–56].

A potential drawback of the use of heparin as a drug

targeting GBM angiogenesis, migration, and growth are the

anticoagulant properties of heparin/LMWH. For this rea-

son, most cancer patients will receive heparin/LMWH for a

limited period of time. Potentially, these short exposure

times could influence the anti-cancer effect, resulting in no

concrete survival benefits.

To avoid the anticoagulant effects, and thereby risk of

major bleeding, heparin mimetic agents have been devel-

oped that lack anticoagulant effects [28, 57–60]. These

mimics could possibly be administered in higher concen-

trations and longer treatment regimes. In several tumor

models promising results have been shown. In a human

gastric carcinoma mouse model, N-desulfated heparin

(lacking anticoagulant effects) was shown to decrease

metastasis, tumor angiogenesis and levels of bFGF [57]. A

comparison of LMWH enoxaparin and non-anticoagulant

LMWH (NA-LMWH) treatment of a B16F10 melanoma

mouse model indicated that both drugs reduced lung tumor

formation, while only enoxaparin prolonged blood clotting

time [58]. Another heparin-like compound, M402, inhib-

ited tumor cell migration and sprouting in vitro and

demonstrated a survival benefit in a murine mammary

carcinoma model [60]. In a mouse model of pancreatic

cancer, sulfated non-anticoagulant heparins (S-NACH) as

well as the LMWH tinzaparin inhibited tumor growth and

angiogenesis [59]. Prolonged bleeding time and hemor-

rhage were absent in the S-NACH treated group, in contrast

to the tinzaparin treated mice. In contrast, another study on
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a heparan sulfate antibody (aHS), intended to target

HSPGs like heparin does, found that aHS stimulated

angiogenesis in primary human ECs [28]. This effect was

counteracted by heparin. Beneficial anti-tumor effects of

non-anticoagulant heparins in GBM models have not yet

been published yet.

Although the preliminary results as described in this

review may be promising, a well-designed trial is yet to be

conducted. Choice of the study drug is debatable: a com-

monly used LMWH seems self-evident, as this is the

common VTE prophylaxis and LMWHs are already widely

prescribed. However, with the possible increased risk of

(intracranial) hemorrhage, a non-anticoagulant heparin or

heparin mimetics should be taken into consideration.

Without the increased bleeding risk, greater liberty exists

regarding dosage and a significant therapeutic effect could

potentially be achieved.
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