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Abstract High-throughput techniques are necessary to effi-
ciently screen potential lignocellulosic feedstocks for the pro-
duction of renewable fuels, chemicals, and bio-based mate-
rials, thereby reducing experimental time and expense while
supplanting tedious, destructive methods. The ratio of lignin
syringyl (S) to guaiacyl (G) monomers has been routinely
quantified as a way to probe biomass recalcitrance. Mid-
infrared and Raman spectroscopy have been demonstrated to
produce robust partial least squares models for the prediction
of lignin S/G ratios in a diverse group of Acacia and eucalypt
trees. The most accurate Raman model has now been used to
predict the S/G ratio from 269 unknown Acacia and eucalypt
feedstocks. This study demonstrates the application of a

partial least squares model composed of Raman spectral data
and lignin S/G ratios measured using pyrolysis/molecular
beam mass spectrometry (pyMBMS) for the prediction of S/
G ratios in an unknown data set. The predicted S/G ratios
calculated by the model were averaged according to plant
species, and the means were not found to differ from the
pyMBMS ratios when evaluating the mean values of each
method within the 95 % confidence interval. Pairwise com-
parisons within each data set were employed to assess statis-
tical differences between each biomass species. While some
pairwise appraisals failed to differentiate between species,
Acacias, in both data sets, clearly display significant differ-
ences in their S/G composition which distinguish them from
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eucalypts. This research shows the power of using Raman
spectroscopy to supplant tedious, destructive methods for the
evaluation of the lignin S/G ratio of diverse plant biomass
materials.

Keywords Lignocellulose . Raman spectroscopy .

High-throughput . Multivariate analysis . Lignin S/G .

Eucalyptus .Corymbia . Acacia

Abbreviations
ANOVA Analysis of Variance
CCC Corymbia citriodora subspecies citriodora
CCV Corymbia citriodora subspecies variegata
CV Cross-validation
EMSC Extended multiplicative scatter correction
MIR Mid-infrared spectroscopy
MVA Multivariate analysis
NIR Near-infrared spectroscopy
PLS Partial least squares regression
pyMBMS Pyrolysis molecular beam mass spectrometry
r Coefficient of correlation for validation set
R2Cal Coefficient of determination for calibration set
R2CV Coefficient of determination for full

cross-validation
RMSECV Root mean standard Error of cross-validation
RMSEP Root mean standard error of prediction
S/G Syringyl to guaiacyl ratio

Background

The ratio of lignin syringyl (S) to guaiacyl (G) moieties has
been characteristically quantified as one method to evaluate
biomass recalcitrance [1–7]. While higher S/G ratios have
resulted in increased lignin pulping reactivity [2, 7], a clear
trend linking S/G ratio to the enzymatic degradation of plant
cell walls has not been established. Some reports have indi-
cated high S/G to correlate with increased sugar release [4, 6],
while other studies have concluded that ratio reductions are
optimal [1]. Regardless of the exact effects S/G ratios have on
the saccharification of biomass, this parameter has proven to
be important in developing a better understanding of lignin
structure and degradation.

In a previous study, mid-infrared (MIR), near-infrared
(NIR), and FT-Raman spectra were coupled with lignin S/G
ratios obtained using pyrolysis/molecular beam mass spec-
trometry (pyMBMS) for the construction of multivariate anal-
ysis (MVA) models [8]. Various iterations were performed to
determine the spectral processing techniques that provided the
most robust calibration models. The models were vigorously
assessed using statistical metrics including root mean standard

error (RMSE) or Scree plots for determining the appropriate
number of factors, and the RMSE values and calculated coef-
ficients of correlation (r) and determination (R2) after using a
full cross-validation and a 50 sample validation data set. These
parameters illustrated increased accuracy from using MIR and
Raman spectroscopy for the development of models capable
of predicting lignin S/G ratios. For example, MIR and Raman
spectroscopy partial least squares (PLS) models resulted in a
root mean standard error of prediction (RMSEP) of 0.13 to
0.15 and 0.13 to 0.16, respectively, while the RMSEP mea-
sured using NIR spectra was slightly more erroneous (0.18 to
0.21). While the construction of these models illustrated the
potential of MVA and vibrational spectroscopy to screen bio-
mass based on lignin S/G ratios, the complete evaluation of
the MVA models required the prediction of the S/G ratios for
an unknown data set. The execution of this step is integral for
the determination of a model’s practicality for assessing future
samples.

The motivations for conducting this study were twofold.
One was to evaluate the most robust FT-Raman model for the
prediction of lignin S/G ratios from 269 trees from three gen-
era (Acacia, Corymbia, and Eucalyptus) encompassing 17 di-
verse species. The analysis of the S/G predictions calculated
from this model displayed an accuracy correlative to the
pyMBMS reference results, highlighting the use of non-
destructive Raman spectroscopy to reduce experimental time
and expense. The second rationale behind this study was to
determine which plants (whether measured directly using
pyMBMS or predicted using the Raman model) had the low-
est and highest lignin S/G ratios. Evaluations between species
were conducted using pairwise comparisons within mea-
sured and predicted S/G data sets to ensure that any
statistical differences found within the modeled data
could be verified against a widely accepted chemical
analysis technique.

Methods

Wood Samples

The sampling techniques used for the acquisition of the
wood samples used in this study have been described in
a previous manuscript [8]. In addition to the 245 sam-
ples used for the construction of the PLS model, 269
diverse Acacia and eucalypt samples comprised the un-
known sample matrix.

Fourier Transform Raman Spectroscopy

The FT-Raman spectral collection parameters have been de-
scribed in a previous manuscript [8].
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Pyrolysis/Molecular Beam Mass Spectrometry

The pyMBMS instrumental and spectral processing method-
ologies have been previously described [9].

Multivariate Analysis

All modeling was conducted using the Unscrambler X soft-
ware package (Camo, Inc., Oslo, Norway). Samples used for
calibrating and validating the original models were united,
creating a 245 sample calibration matrix composed of Acacia,
Corymbia, and Eucalyptus trees. The model was evaluated
employing a full cross-validation (CV) before predicting the
S/G ratios of 269 unknown samples. Overfitting of the data
was gauged by analyzing the RMSE or Scree plot and by
studying the effects of using non-optimal numbers of factors
on the predictive capacity of the model. The most influential
variables utilized for model construction were identified from
the regression coefficients plot. The model was recalculated
using solely these vibrational modes, thereby diminishing
spectral noise and subsequently increasing the calibration
and prediction accuracy.

Statistical Analysis

The predicted Raman and measured pyMBMS lignin S/G
ratios were compared to assess whether there were statistical
differences between the samples. A non-parametric Kruskal-
Wallis test (χ2=155.99, p value<2.2×10−16) was used to
evaluate differences between taxa for the Raman S/G predict-
ed values [10]. Post hoc comparisons between taxa were car-
ried out using Mann-WhitneyU tests with a Holm adjustment
for multiple comparisons [11]. Pyrolysis S/G ratios were ana-
lyzed with a standard one-factor analysis of variance
(ANOVA) (F(18,182)=16.82, p value<2×10−16). Tukey’s
honestly significant differences (HSD) protocol was per-
formed as a post hoc comparison between taxa. To determine
if there were any significant differences between the predicted
and reference S/G values for each species (Table 2), a Mann-
Whitney U test was conducted. Analyses were performed
using R Studio (R Studio, version 3.0.2, Boston, MA, USA).

Results and Discussion

In a previous study, PLS models employing first derivative
Raman spectra and an extended multiplicative scatter correc-
tion (EMSC) provided the highest accuracy and robustness
[8]. These models, developed to predict lignin S/G ratios in
Acacias and eucalypts, contained randomly generated calibra-
tion and validation sets encompassing 195 and 50 samples,
respectively. Figure 1 provides a comparison between first

derivative, EMSC-transformed Raman spectra of Acacia
microbotrya (black) and Eucalyptus globulus subspecies
globulus (red) trees. These two specific samples represent
the extremes encompassed in the pyMBMS measurements,
and the Raman spectra were analyzed to attempt the elucida-
tion the spectral differences correlative to this range. While
spectral differences near 781, 1037, 1150, 1259, 1332, 1603,
and 1627 cm−1 can be identified between the two samples,
lignin and its derivatives have vibrational modes at these lo-
cations corresponding to both S and G moieties, as well as
lignin skeletal and phenyl ring vibrations, making the assign-
ment of these bands challenging (see Table 1). Cellulose can
further complicate the assignment of some of these bands, as it
has known Raman peaks near 1119 and 1150 cm−1 [12].
The complexity of the Raman spectra of heterogeneous
biomass samples obscures sample-to-sample qualitative
comparisons. Figure 1 also illustrates the deficiency of
striking spectral disparities, thereby highlighting the pro-
ficiency of employing MVA to hone in on previously
obfuscated sample variance.

To predict the S/G ratio for the unknown data set consisting
of 269 Acacia and eucalypt samples, the validation set was
combined into the calibration matrix, providing a new, more
vigorous model. This resulted in a five-factor calibration mod-
el with a calibration R2 of 0.848 and a validation R2 of 0.824,
following a full CV, generating an RMSECVof 0.13. It should
be noted that these five factors do not represent individual
biomass constituents but rather represent sources of spectral
variance being drawn out by the model. The score plot pro-
duced by the model is shown in Fig. 2 and represents the

Fig. 1 Comparison of the first derivative+EMSC Raman spectra of low
S/G Acacia microbotrya (black spectrum, S/G=1.2) and higher S/G Eu-
calyptus globulus subspecies maidenii (red spectrum, S/G=3.0), as mea-
sured by pyrolysis/molecular beam mass spectrometry. The x-axis is in
wavenumbers, while the y-axis represents the Raman intensity (EMSC
extended multiplicative scatter correction, S/G syringyl to guaiacyl ratio).
Vertical dashed lines have been added to illustrate spectral differences
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classification of samples based on second and third principal
components (PCs) or factors. In this plot, the blue squares, red

circles, and green triangles represent the Acacia, Corymbia,
and Eucalyptus genera, respectively. Three distinct groups can
be identified, although the Corymbia and Eucalyptus groups
have some overlap. This is expected, as the pyMBMS mea-
sured lignin S/G ratios of these genera are more comparable,
juxtaposed to the Acacia samples. Also, as anticipated,
Corymbia and Eucalyptus trees measured to contain lower
S/G ratios using pyMBMS, such as all Eucalyptus crebra
samples (S/G=1.6±0.4) or a Corymbia torelliana heartwood
sample (S/G=1.5), were closest to theAcacias (A.microbotrya
S/G=1.3±0.1, Acacia saligna S/G=1.7±0.2). Since the bot-
tom left quadrant contains the plants with lower S/G ratios, on
average, the top right quadrant was expected to reveal an
opposite trend. Indeed, samples located at the farthest corner
of this quadrant show increased pyMBMS lignin S/G ratios
(Corymbia citriodora subspecies variegate (CCV)=2.6, Eu-
calyptus cladocalyx = 2.6, Eucalyptus dunnii= 2.8,
E. globulus=2.8, and Eucalyptus moluccana=2.5). Given
the lack of statistical differences between many of these higher
S/G samples (see Table 3), however, the classifications are
much less defined, contrasted to the Acacia cluster. The load-
ing plots for the first three factors are provided in Fig. 3a–c.
Loadings plots represent which vibrational modes are impor-
tant in composing a specific factor. The vibrational modes of
polymeric lignin and its individual phenylpropanoid constitu-
ents have similar spectral signatures, complicating the analysis
of the loading plots. While specific peaks indicative of G, S,
and polymeric lignin can be identified in the loading plots of
the first three factors, there is no discernible trend aligning a
specific factor with an unambiguous lignin moiety. Rather,
each of the loadings contributes G, S, and lignin spectral fea-
tures to the overall classification. This can be exemplified in
Fig. 2, where, as previously discussed, the lower left quadrant
contains samples with the lowest S/G ratios, while, in general,

Table 1 Raman vibrational modes identified from regression
coefficient plot and spectral assignments corresponding to lignin and/or
lignin monomers

Vibrational mode
from regression
coefficient plot

S/G/H vibrational mode and spectral assignment(s)

322–376 369 (S), 357, 370 (G) [22]

378–403 370–399 (S) [23]

453–476 Skeletal deformation of lignin [24]
468 (G, H) [22]

527–536
574–577
592–598

529, 564, 582 (S), 541, 559, 590 (G) [22]

717–725 711 (S) [25]
712 (G), 701 (H) [22]

733–739 741 (S) [25]
741 (H) [22]

748–771 761 (G) [25]

773–800 781–820 (S) [23]
784 (G) [25]
793 (G) [22]

773–800
835–839

819–864 (H) [23]
810 (S) [25]
799 (S), 823 (H) [22]

889–930 920 (G)[25]
907 (S), 921 (G) [22]

1001–1035
1041–1074

1024 (G) [25]
1043 (S), 1036 (G) [22]

1090–1093
1099–1137

1108 (S), 1124 (G), 1094 (H) [25]
1116 (S), 1122 (G), 1105 (H) [22]

1099–1137
1138–1155
1188–1192

1154 (S), 1158 (G), 1168 (H), 1170 (Lignin) [26]
1138–1160 (S), 1162–1188 (G), 1163–1179 (H) [23]
1148 (S), 1186 (G), 1164 (H) [25]
1152, 1187 (S), 1155, 1186 (G), 1173, 1199 (H) [22]

1215–1219 1200 (H) [26]
1213–1218 (H) [23]
1228 (S), 1215 (H) [25]
1214, 1241 (S), 1208, 1241 (G), 1216 (H) [22]

1232–1263
1281–1324
1329–1348

1337 (S), 1263 (H), 1270 (Lignin) [26]
1262–1275 (G), 1318–1332, 1331–1338 (S),
1286–1299 (H) [23]

1331 (S), 1270–1285 (G), 1338 H [25]
1331 (S), 1272, 1288 (G), 1298, 1331 (H) [22]

1433–1450 1454–1460 (S), 1452–1465 (G), 1452–1459 (H) [23]
1452 (S), 1455 (G), 1455 (H) [22]

1488 1488 (H) [25]

1583–1594 1594 (S), 1589, 1588, 1606 (H), 1591 [26]
1588 (S) [25]

1624–1629 1634 (S), 1633 (G), 1632 (H), 1634 (Lignin) [26]

1649–1657 Coniferyl (G) and sinapyl (S) alcohol [24]

1662–1708 1661–1664 (G, coniferyl alcohol, coniferaldehyde)
[24]

1662–1695 C=O conjugated monomers [25]

S, G, or H refers to syringyl, guaiacyl, or p-coumaryl lignin, respectively

Fig. 2 Scores plot showing the classification of samples by genus. The x-
and y-axes represent the second and third factors, respectively. The blue
squares represent the genus Acacia; the red circles depict the genus
Corymbia; and the green triangles show the genus Eucalyptus
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higher ratios can be identified along a diagonal path to the
upper right quadrant. This suggests that both factors 2 and 3

are being employed to develop the classification of the trees
based on S/G ratios.

Figure 4 shows the linearity of this pyMBMS/Raman mod-
el for both the calibration and full CV data sets. The reference
and cross-validated lignin S/G ratios deviate from the linear
trendline at higher S/G values. This overcompensation of S
lignin is likely due to the fact that syringyl units are being
preferentially released during the chemical degradation of lig-
nin [13, 14]. Regardless of this deviation, the calibration
(blue) and full CV (red) trendlines display a strong correlation.
Plotting the regression coefficients (Fig. 5) allowed the isola-
tion of integral spectral regions used for constructing the mod-
el. Table 1 lists the shaded wavenumber sections identified in
Fig. 5, and characteristic lignin and lignin monomer vibration-
al modes potentially corresponding to these regions, as previ-
ously assigned in the literature. It should be noted that given
the complex nature of biomass, there may be overlap between
the vibrational modes of lignin and lignin monomers, with
other cell wall constituents.

The model successfully identified and extracted the lignin
spectral regions, including the regions of significant variance
ascertained from Fig. 1. The regression coefficient plot was
evaluated for specific monomeric trends; however, no distinct
pattern emerged regarding the relationship between S or G
moieties being predominantly positively or negatively corre-
lated (Table 1). Despite some overlap between the Raman
spectral assignments, there is a general consensus amid the
references regarding peak location and their classification as
bonds indicative of lignin and lignin monomers. It should be
noted that differences in instrumental configurations can result
in variation of vibrational mode peak locations. The strongest
vibrational modes of cellulose occur at 1091 and 1117 cm−1

Fig. 3 Graphical representations of the a first PC loadings, b second PC
loadings, and c third PC loadings used in the classification of the plant
samples by genus

Fig. 4 Plot of the predicted lignin
S/G ratio using a model built from
first derivative, EMSC-
transformed FT-Raman spectra
and pyMBMS reference data. The
blue and red lines signify the lin-
earity of the calibration and pre-
diction data sets, following a full
cross-validation. The x-axis de-
picts the pyMBMS measured ra-
tio, while the y-axis indicates the
Raman predicted ratio. S/G
syringyl to guaiacyl ratio, FT
Fourier transform, pyMBMS py-
rolysis molecular beam mass
spectrometry, EMSC extended
multiplicative scatter correction
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[12]. These and weaker cellulose peaks are encompassed by
the spectral regions identified in the Raman regression coeffi-
cients plots. Further analysis revealed that the cellulose or
polysaccharide vibrational modes were either negatively cor-
related (Fig. 5, 1091 cm−1), not identified as important to the
model construction (1268 cm−1), or positively correlated due

to spectral overlap with lignin vibrational modes (e.g., 896,
1117, and 1338 cm−1). Other potential sources of spectral
overlap include xylan and extractive material such as proteins,
lipids, etc. [12, 15–17]. Interestingly, three spectral regions
identified in the regression coefficient plot correlated with
postulated H lignin markers, as listed in Table 1. These occur
between 833–838 and 1176–1178 cm−1, and at 1488 cm−1.
The distinctive bands of S and G lignin, as well as cellulose,
can be eliminated as correlative to these vibrational modes.
Although its content in hardwoods is often minute, Acacia and
Eucalyptus species have been determined to contain potential-
ly 2–9 % H lignin, depending on the age of the trees [18–21].
Further chemical or instrumental analysis, such as
thioacidolysis or 2D nuclear magnetic resonance, is required
to determine if these vibrational modes correspond to H
lignin.

As previously mentioned, the first motivation for
conducting this research was to evaluate whether MVA
models produced using Raman spectra and pyMBMS S/G
ratios could accurately predict the S/G ratios in an unknown
sample set, diminishing the need to destructively pyrolyze of
all samples. The pyMBMS reference S/G ratios averaged for
each plant species, including the number of samples for each
tree, and the range of S/G ratios contained in each data set
were previously reported [8]. Figure 6 illustrates the mean
pyMBMS ratios using the 95 % confidence interval. Table 2
reveals the Raman predicted S/G ratios for the plant species in
the unknown data matrix. A comparison between the
pyMBMS and Raman predicted S/G values for each species

Fig. 5 Regression coefficients plot illustrating the spectral regions
denoted as integral to the model calculation. The black shaded spectral
regions illustrate the vibrational modes used in producing the model,
while the blue shaded areas signify spectral noise excluded from the
model construction. The x-axis is in wavenumbers, while the y-axis is
the calculated regression coefficient values. FT Fourier transform, PLS
partial least squares

Fig. 6 Plot of species mean S/G ratios as determined by pyrolysis/
molecular beam mass spectroscopy (pyMBMS). The 95 % confidence
interval bars for each species is shown in blue. The number of samples for
each species measured is located above the x-axis. Species labeled from
left to right: E. kochii, A. microbotrya, A. saligna, Corymbia hybrids,

C. torelliana, C. citriodora subsp. citriodora, C. Citriodora subsp.
variegata, E. argophloia, E. cladocalyx, E. cloeziana, E. crebra,
E. dunnii, E. globulus (subspecies globulus and maidenii), E. grandis,
E. longirostrata, E. loxophleba, E. moluccana, E. occidentalis, and
E. polybractea. S/G syringyl to guaiacyl lignin ratio
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using a non-parametric Mann-Whitney U test shows no
significant differences (p value<0.05), with the excep-
tion of Eucalyptus argophloia (W=2, p value=0.03).
This significant difference could be attributed to a small
reference population (n=5), different genetic back-
grounds, and/or environmental microsite variation, but
the statistical comparison clearly illustrates the power
and advantages of using robust, high-throughput multi-
variate modeling to predict lignin monomeric content, as
the predicted lignin S/G ratios exhibit strong correlation
with the pyMBMS range and average.

Once the Raman/pyMBMS model was verified to exhibit
high accuracy, the ensuing question to explore was which
samples exhibited the most significant variance in S/G ratios
(i.e., which samples were at the measured or predicted S/G
extremes). Evaluation of statistical differences within the
pyMBMS and Raman data sets exposes some unique trends

between the S/G ratios of the species measured. Pairwise com-
parisons between species in each data set were evaluated using
Tukey’s honestly significant differences for the pyMBMSdata
and Holm corrected Mann-Whitney U tests for the Raman
data. These statistical analyses were selected since the
pyMBMS data roughly followed a normal distribution,
whereas the Raman predictions did not (negatively skewed).
A p value lower than 0.05 indicates that the S/G ratios of the
two species being compared are statistically different, while
p values at or above 0.05 indicate analogous S/G ratios.
A. microbotrya, A. saligna, and E. crebra are among the low-
est S/G ratios in both the reference [8] and predicted data sets
(Table 2). The Raman predictions for both Acacia species
show significant differences from each Corymbia species
(Corymbia citriodorasubspecies citriodora (CCC) and
CCV) and eight Eucalyptus species (Table 4). This result
was confirmed in the pyMBMS data set where the Acacias
displayed statistical differencesfrom 13 other eucalypts
(Table 3). Although the S/G ratios of the Acacia trees were
similar to E. crebra values in the Raman data set, E. crebra
only showed significant disparity with the Corymbia samples
and Eucalyptus loxophleba. This could potentially be attribut-
ed to the small number (n=6) of E. crebra samples used to
generate the Raman prediction model, the fact that E. crebra
was from a limited number of provenances sampled at only
one site, or because of the greater number of Corymbia (CCV,
n=61; CCC, n=44, sampled across multiple sites and prove-
nances) and E. loxophleba contained in the model (n=23,
multiple provenances), thereby increasing the predictive capa-
bilities of the model for those samples. The need for larger
sample sizes to predict significant variance between species is
further illustrated by E. cladocalyx (n=3), which showed sim-
ilarity with all other species (Table 4). CCV S/G ratios, pre-
dicted by Raman spectroscopy, reveal more statistical differ-
ences than those of CCC, when compared to the other plant
species. E. dunnii , Eucalyptus kochii , Eucalyptus
longirostrata, E. moluccana, and Eucalyptus occidentalis
show similarities within the genus, but significant variance
when juxtaposed with both Acacias (E. kochii differs only
from A. microbotrya) and CCC. The prediction of the S/G
ratio of unknown E. globulus subspecies maidenii shows no
statistical dissimilarity to other eucalypts, with the exception
of Eucalyptus cloeziana, Eucalyptus grandis, and Eucalyptus
polybractea.

An assessment of the Raman predicted S/G ratios with the
pyMBMS data further exemplifies the predictive capabilities
of Raman spectroscopic modeling. Using Tables 3 and 4, a
total of 136 evaluations were made to investigate which sta-
tistical dissimilarities were found in both predicted and refer-
ence data sets. Pairwise comparisons between species in the
Raman data set identified 40 statistical differences (shown in
bold), whereas 54 significant differences (shown in bold) were
detected for the same species within the pyMBMS data set

Table 2 Prediction matrix sample characteristics, S/G averages, and
comparisons with the pyMBMS measured ratios

Plant species No. of
samples

Prediction
range

Raman
predicted
S/G average

pyMBMS vs
Raman
comparisons
(p values)

A. microbotrya 10 0.9–1.5 1.3±0.2 0.8

A. saligna 11 1.2–2.0 1.7±0.2 0.7

C. citriodora subsp.
citriodora

44 2.0–2.7 2.3±0.1 0.6

Corymbia hybrids – – – NA

C. torelliana – – – NA

C. citriodora
subsp.variegata

61 2.2–2.7 2.5±0.1 0.6

E. argophloia 5 1.7–2.0 1.8±0.1 0.03

E. cladocalyx 2 2.1, 2.4 2.2±0.2 0.4

E. cloeziana 15 1.7–2.4 2.1±0.2 0.3

E. crebra 6 1.2–2.1 1.8±0.3 0.6

E. dunnii 11 2.2–2.5 2.4±0.1 0.4

E. globulusa 19 2.0–2.8 2.5±0.2 0.2

E. grandis 13 1.9–2.4 2.2±0.1 0.2

E. kochii 10 1.7–2.5 2.2±0.2 0.8

E. longirostrata 7 2.0–2.3 2.2±0.1 0.9

E. loxophleba 23 2.2–2.7 2.4±0.1 0.2

E. moluccana 11 1.8–2.5 2.2±0.2 0.9

E. occidentalis 9 2.2–2.6 2.4±0.1 0.6

E. polybractea 12 1.9–2.5 2.2±0.1 0.4

The number of pyMBMS calibration samples, calibration ranges, and S/G
averages for the plant species has been previously reported in the Addi-
tional Information of reference [8]

pyMBMS pyrolysis molecular beam mass spectrometry, S/G syringyl to
guaiacyl lignin ratio

The italicized value is the only p-value < 0.05, which indicates a statistical
difference between thepyMBMS and Raman mean S/G values
aE. globulus includes subspecies globulus and maidenii
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(C. torelliana and Corymbia hybrids were excluded for com-
parison as they were only tested using the reference method).
Of those, 28 evaluations between species were found to be
significant in both data sets (denoted with an asterisk). These
results clearly illustrate the lower S/G values of the Acacias
when contrasted with the eucalypt samples. The other signif-
icant variations in S/G ratios, discovered between species
within one data set, but not both, are likely due to the input
of small sample sizes into the tests (E. grandis (reference), n=
2; E. cladocalyx (predicted), n=2), or the use of a single factor
analysis of variance (ANOVA) and post hoc testing with the
pyMBMS data set, which is more robust at elucidating signif-
icant discrepancies than non-parametric tests. The data sets
clearly illustrate differences in monomeric lignin composition
between a diverse group of Acacia and eucalypt wood sam-
ples. Further investigation into additional sources of variance,
such as age and site effects, will provide understanding into
the biological context of wood formation for these important
forestry species.

Conclusions

There are greater than 900 diverse species of both Acacias and
eucalypts, the latter including Corymbia and Eucalyptus. In
order to isolate which trees may be the most advantageous for
developing biofuels and bio-based chemicals, phenotypic
traits that correlate to plant cell wall structure and recalcitrance
must be evaluated, such that suitable deconstruction strategies
can be postulated. Many of the standard techniques for mea-
suring monomeric content and ratio are laborious, destructive,
toxic, and may require complex data analysis, making these
methods unsuitable for screening large populations. The em-
ployment of Raman spectroscopy can enable the rapid, non-
destructive, screening of potential feedstocks, such as Acacias
and eucalypts, for traits deemed important for biofuel and/or
bio-based chemical production, and most attuned to the needs
of biorefineries. The construction of a robust, multivariate,
high-throughput Raman model has been previously
established. The current study examined the actual practicality
of using this model to gauge the lignin S/G ratio in a large
unknown data setof Acacias and eucalypts. The means of the
predicted Acacias and eucalypts S/G ratios were not statisti-
cally different from those measured using pyMBMS, with the
exception of E. argophloia, which could be due to the small
sample size analyzed, genetic variations, and/or environmen-
tal microsite variations. This research shows the potential of
using Raman spectroscopy to supplant tedious, destructive
methods for the evaluation of the lignin S/G ratios of different
biomass.
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