ORIGINAL PAPER

Twenty-five years of international exchanges of plant genetic resources facilitated by the CGIAR genebanks: a case study on global interdependence

Gea Galluzzi $^1\cdot$ Michael Halewood $^1\cdot$ Isabel López Noriega $^1\cdot$ Ronnie Vernooy 1

Received: 31 August 2015/Revised: 12 April 2016/Accepted: 16 April 2016/ Published online: 13 May 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract This article analyses 25 years of data about international movements of plant genetic resources for food and agriculture (PGRFA), facilitated by the gene banks hosted by seven centres of the Consultative Group on International Agricultural Research. It identifies trends in the movements of PGRFA for use in research and development, and describes the diversity of those resources transferred over time. The paper also presents data on the number of countries involved in the global exchanges, analyses their development status and describes their role as providers and/or recipients, providing a picture of the breadth of these global exchanges. We highlight that it is primarily developing and transition economies that have participated in the flows, and that the transferred germplasm has been largely used within their public agricultural research and development programmes. We conclude that, when provided the opportunity of facilitated access, countries will use a wide diversity of germplasm from many other countries, sub-regions and continents as inputs into their agricultural research and development programmes. We highlight the importance of enabling the continuation of the non-monetary benefits from international access to germplasm. We discuss the implications for the process of development and reform of the multilateral system of access and benefit sharing under International Treaty on Plant Genetic Resources for Food and Agriculture.

Keywords Plant genetic resources \cdot Interdependence \cdot International Treaty on Plant Genetic Resources for Food and Agriculture \cdot Multilateral system \cdot Conservation \cdot Breeding

Gea Galluzzi geagalluzzi@gmail.com

Communicated by Anurag chaurasia.

¹ Bioversity International, Via dei Tre Denari 472/a, Maccarese, Rome, Italy

Introduction

Plant genetic resources for food and agriculture (PGRFA) are the basic building blocks of crop improvement and adaptation and, by extension, of food security. As a result of the history of crop domestication and global dispersal and adaptation, all countries are now highly dependent upon plant genetic resources located (or originally collected from) beyond their borders. Global interdependence on plant genetic resources has been previously discussed (Crosby 1972, 1986; Diamond 1997; Fowler et al. 2001; Halewood et al. 2014; Mann 2011; SGRP 2011), and predictions have been made of increased future interdependence as a result of challenges such as climate change (Lane and Jarvis 2007; Burke et al. 2009; Jarvis et al. 2010; Fujisaka et al. 2011; Ramirez-Villegas et al. 2013) and the evolution of food systems and diets (Khoury et al. 2014). Global recognition of the policy significance of interdependence on PGRFA arguably reached its zenith in 2001 when 'interdependence' was explicitly included in Article 11 of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) as one of two criteria—the other being relevance for food security—for including crops or forages in the multilateral system of access and benefit sharing (MLS).¹

Through the MLS, ITPGRFA parties agree to create a global, virtual pool of genetic resources for 64 crops and forages (these are listed in the Treaty's Annex 1). In addition to conservation, this germplasm is intended to be utilized for the purposes of training, breeding and research for food and agriculture. Member states agree to provide facilitated access to one another (including natural and legal persons within their borders) on the understanding that monetary benefits will be shared if the recipients incorporate materials in new, commercialized PGRFA products that are not available to others for research, training or breeding. The multilateral architecture of access and benefit sharing under the ITPGRFA was designed to reflect countries' current and future interdependence on PGRFA. The system was meant to minimize transaction costs that could otherwise multiply beyond acceptable limits, given the magnitude of international exchanges of genetic resources that accompany agricultural research, development and plant breeding.

In recent years, ITPGRFA member states have expressed concerns that the MLS has not been functioning at the anticipated levels, either in terms of generating financial benefits by users to be shared through the international Benefit-Sharing Fund (BSF) or in terms of materials being made available to, and accessed through, the MLS. Based on this concern, the ITPGRFA's Governing Body created the Ad Hoc Open Ended Working Group to Enhance the Functioning of the MLS. Its mandate is to develop a range of optional measures to both increase user-based payments and contributions to the BSF in a sustainable and predictable long-term manner and enhance the functioning of the Multilateral System by additional measures.

This article focuses on an issue at the heart of the MLS—the state of global interdependence on PGRFA. We hope that the data presented here will be useful within any process aimed at revising or reforming the terms and conditions of the MLS. It is critically important to keep interdependence in mind when developing policies concerning the conditions under which genetic resources can be accessed and used as well as the ways in which benefits derived from their use should be shared. Illustrating the volume, diversity and geographical spread of global flows of plant genetic resources mediated by Consultative Group on International Agricultural Research (CGIAR) centres, the findings

¹ International Treaty on Plant Genetic Resources for Food and Agriculture, 29 June 2004, http://www.planttreaty.org/content/texts-treaty-official-versions (accessed 15 December 2015).

highlight the benefits accrued by virtually all countries in the world—namely, being granted access to a rich variety of materials (and associated technology and information) otherwise unavailable within their own borders and difficult to access under bilateral conditions. The resulting conclusions highlight the importance of the system's non-monetary modalities for sharing benefits, most of which have involved users in developing countries. We hope that such evidence will encourage efforts to maintain and enhance these mechanisms, in addition to improving the mechanisms associated with monetary payments to the BSF.

Data sources and methods

Data on the holdings, acquisitions and distributions of nine CGIAR genebanks was retrieved from the CGIAR's System-wide Information Network on Genetic Resources (SINGER).² A system-wide database such as SINGER has never been established for the distribution of germplasm from the CGIAR's breeding programmes, and, therefore, our study focuses on genebank distributions only. We asked each of the genebank curators to validate the accuracy of the data stored in SINGER and/or to provide updates or integrations. In the end, we obtained validated or updated data for seven genebanks, which are those included in this study (Table 1). Given the magnitude of the distributions from the other centres whose data is not included in this research, i.e., CIMMYT, CIAT, IITA, the final conclusions regarding the extent of international interdependence would likely have been even stronger had their data been included.

Distribution data followed a standard format gathering information according to the fields shown in Table 2.

Distribution records were available beginning in 1973 for some of the genebanks included in the study, but there were large gaps in the records until 1985 (due to data storage and reporting systems not being fully in place in all centres). Thereafter, the data were more uniform, which led to the decision to consider only the data from 1985 onwards. Since our focus was the germplasm sent to countries and within-country recipients, intraand inter-CGIAR centre distributions were removed as well as those from CGIAR genebanks to the Svalbard Global Seed Vault. The total number of distributed samples shown in Table 1 was the basis for our analysis. These centres' mandate crops (and their wild relatives) include key staples for worldwide food security, such as rice, tropical and dryland legumes and cereals, potatoes and other roots and tubers, bananas and plantains and tropical forages (see Appendix, Tables 6, 7 for details on the collections hosted at all CGIAR centres).

Various ways of measuring international PGRFA movements were explored. We considered the total number of samples distributed [a single sample consisting ideally of between 50 and 100 viable seeds or less vegetative propagules (CGKB 2014)], the number of accessions distributed (excluding the repeated distributions of the same accession) and the number of species distributed. The latter two statistics provide a picture of the diversity, rather than the sheer volume, of the flows.

Further analyses qualified the international germplasm flows facilitated by the genebanks using the number of countries from which the materials distributed were originally

² SINGER has been discontinued, with much of its data and functionality—minus distribution data—incorporated into GENESYS, http://www.genesys-pgr.org (accessed 20 November 2014).

	AfricaRice	Bioversity	CIP	ICARDA	ICRISAT	ILRI	IRRI
Samples distributed	38,963	13,436	84,380	246,026	418,934	30,830	166,681

Table 1 Total number of samples sent to national recipients from the seven CGIAR genebanks (1985 - 2009)

Table inclu from

le 2 Fields of information uded in the distribution data	CGIAR centre	Transfer year
CGIAR genebanks	Accession number	Recipient country code
-	Genus	Recipient country name
	Species	Recipient institute
	Country of origin	Recipient last name
	Biological status	Recipient first name
	Recipient code	Recipient user type
	Recipient region	Transfer date

collected or improved, the number of recipient countries and types of recipient institutions, the number of genera and species distributed, and the type of materials exchanged. Countries were classified based on their development status according to the United Nations classification system (UN 2012), which helped to analyse the germplasm contributions according to the economy of the donor or recipient country. All data handling and analyses were performed in R (R Development Core Team 2011).

Results and discussion

Global flows of PGRFA, 1985–2009: volumes and diversity

Between 1985 and 2009, germplasm conserved in the selected CGIAR genebanks was distributed to a broad range of users. According to the available data, 999,250 samples of 262,872 accessions belonging to 1470 different plant species were distributed during that period. The average number of samples distributed per year (39,970) is below that of the U.S. National Plant Germplasm System (NPGS), where total annual distributions have increased from around 120,000 (Bretting 2007) to more than 200,000 (Heisey and Day Rubenstein 2015) over the past few years. About 30 % of NPGS yearly distributions are typically to requestors from outside the U.S. However, in making this comparison, our lack of data from three important CGIAR genebanks should be kept in mind. Notwithstanding the missing data, the yearly volumes described are much higher than the average number of distributions of other important germplasm systems, such as the Russian Vavilov Institute (6400) (FAO 2009), the German Institute of Plant Genetics and Crop Plant Resources (4400 of barley only) (Ullrich 2011), the Centre for Genetic Resources in the Netherlands (2500) (Centre for Genetic Resources 2008), the Brazilian Empresa Brasileira de Pesquisa Agropecuária (1800) (Da Silva Mariante et al. 2009), the Institute of Crop Germpasm Resources in China (1550) (ICGR 2015), the Plant Genetic Resources Institute of Canada (1500) (Fowler and Hodgkin 2004). These numbers are useful for providing a general idea of the CGIAR's relative contribution on the international scene, but they should be considered with caution because of the differences in the reporting periods and the limitations of our data.

Virtually all countries in the world have been involved in the exchange of germplasm. The materials listed in Table 1 were originally collected in, or provided by, at least 189 countries and distributed to at least 191 countries. In addition to distributions from the various genebanks, large amounts of germplasm in different stages of improvement have been sent out by the centres' breeding programmes, although no system-wide mechanism has ever been set up to document these distributions over time. However, data provided by the centres³ for the fourth session of the ITPGRFA's Governing Body indicate that from August 2008 to December 2009 these breeding programmes sent out over 500,000 samples (SGRP 2011). This amount points to the outstanding contribution that the CGIAR breeders make to international flows of germplasm, in addition to the centres' genebanks.

According to data available through the GENESYS portal, which gathers information on numerous national and international genebanks, the international ex situ collections hosted by the CGIAR centres currently include 712,834 accessions of their mandate crops and related gene pools, originally collected from a vast number of countries (Appendix, Tables 6, 7, 8). The genebanks that were analysed in this study, currently host 445,785 accessions of 2848 species.⁴ Our data suggest that samples of roughly half the diversity held have been distributed at least once by these genebanks.

During the period analysed, there appears to be have been a slight downward trend in the overall number of samples distributed, as already highlighted elsewhere (Halewood et al. 2013). A similar decline was observed in the diversity of the materials distributed, which was measured according to the number of accessions distributed and the number of species represented (Table 3). This trend may be attributed to the fact that the requests became more targeted as more characterization and evaluation data became available, which led to breeders and researchers making requests for smaller sets of materials (Halewood et al. 2013; López Noriega et al. 2013a). For those CGIAR genebanks actively distributing sets of materials for international adaptation trials, the decline could also be due to decreases in the funding made available for these multi-location field operations. It could be that some of the requests that were traditionally made to the CGIAR are now being directed to other genebanks. In addition to institutions that have always been at the forefront of international distributions, alongside the CGIAR, such as the US Department of Agriculture (USDA), a number of national institutions in other countries have been increasing their collections and may be receiving more germplasm requests (FAO 2010). In addition, some private sector users—those most likely to apply some form of intellectual property rights to the final PGRFA products—may have refrained in recent years from requesting germplasm from the CGIAR because of their reluctance to accept the benefitsharing clauses of the MLS (Halewood and Nnadozie 2008). It is important to note that traditionally these companies have been an extremely small portion of the users of CGIAR materials, as described later.

Types of materials and frequency of distribution

According to GENESYS, over 50 % of the total germplasm distributed by the CGIAR genebanks over the 25 years analysed are landraces or traditional cultivars, which are predominant within these collections (Fowler et al. 2001; Genesys 2014). Breeding and

³ Except IITA, which did not provide information for this report.

⁴ GENESYS, http://www.genesys-pgr.org (accessed 20 November 2014).

Generalized linear model with Poisson error distribution

Parameter/year	Estimate	P value	Method
Samples	-0.031	<2e-16	Generalized linear model with Poisson error distribution
Accessions	-0.065	<2e-16	Generalized linear model with Poisson error distribution

< 2e - 16

 Table 3 Results of the models used for analysing trends in the overall flows over time (1979–2009)

research lines constitute less than 20 % of the materials distributed, while advanced or improved cultivars comprise only 7 % of the distributions. Wild and weedy relatives amount to 12 % of the samples sent out by the analysed genebanks, not only suggesting their importance as sources of useful traits but also reflecting the greater difficulty of using them in breeding compared to other materials (Fig. 1). The decision about which materials to conserve in the long term is made by each centre independently, often following the outcomes of economic analyses on the costs and benefits of conserving materials in genebanks or breeding programmes (Koo et al. 2004). The data in this study reveal that most centres give priority for long-term storage in their genebanks to materials that belong to the primary genepools – that is, the landraces and wild relatives of their mandate crops. This strategy also reflects the fact that all centres with genebanks also have breeding programmes that actively exchange research, breeding and improved lines with partners worldwide, making the conservation of these sets by the genebank neither necessary nor efficient. However, research, breeding and advanced lines are sometimes included in long-term collections, when the properties, or the use of the material, justify it. For instance, this may be the case with materials that have accumulated unique genetic properties (for example, allele combinations), those that are laborious to reproduce (for example, inter-specific hybrids) or those that are commonly used as benchmark varieties in evaluation trials.

Based on the number of samples per accession sent to recipients, there appears to be enormous variation in the popularity of any single accession. Almost 60 % of the accessions in the dataset have been distributed between two and ten times, while only 5.7 % (150 accessions) have been distributed more than 100 times. Most of the latter come from ILRI, CIP and ICRISAT and have been distributed to an average of over 38 countries (SD 20.5) (see Appendix, Table 9 for details on the top 50 most 'popular' accessions of our dataset).

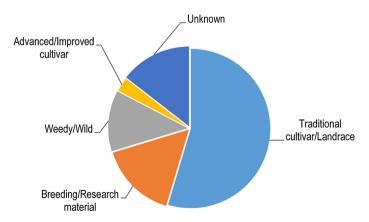


Fig. 1 Proportion of the different types of germplasm distributed by the selected CGIAR genebanks based on accession data (1985–2009)

Species

-0.013

More than half of these frequently distributed materials are improved lines, whereas landraces, wild relatives and, to a lesser extent, breeding materials constitute the bulk of the accessions transferred less frequently. Among the possible reasons for the 'popular' materials to be more frequently requested (that is, by many institutions worldwide) is the fact that the characterization and/or evaluation data already accumulated on them increases their value for breeding and research. This information, in turn, facilitates their use including in institutions and countries with limited capacity or infrastructure for conducting lengthy and costly pre-breeding research using non-adapted populations and wild relatives (FAO 2010).

Providers and recipients

Of the total 189 countries from which material distributed by the seven CGIAR genebanks was obtained, 112 are developing countries, 54 are developed countries and 23 have economies in transition. Of the total 191 recipients, 116 are developing countries, 19 are economies in transition and 56 are developed countries. Data for developing countries and countries with economies in transition has been combined in our analyses. Both developed and developing countries are net recipients—that is, they receive more diversity than they contribute to international gene banks. While this 'sink' behaviour is more evident for developed countries, which tend to harbour comparatively less indigenous genetic diversity in their territories, the majority of global exchanges of germplasm mediated by the CGIAR genebanks is distributed South to South—that is, between developing countries (Fig. 2).

In their analysis of the flows from six of the CGIAR genebanks and from the USDA's National Plant Germplasm System (NPGS) between 1990 and 1999, Smale and Kelly Day Rubenstein (2002) also observed that a predominance of developing countries and transition economies were providers and recipients. So too did the CGIAR's System-wide Genetic Resources Programme (2011) in its biannual reports to the Governing Body of the ITPGRFA. Tables 4a, b provide more detail on the amount, diversity and geographical coverage of the distributions facilitated by the international genebanks for the top 25 provider countries and the top 25 recipient countries.

Almost all of the top providers listed in Table 4 are developing countries. Many of them are important centres of origin, domestication or diversification of the crops curated by the

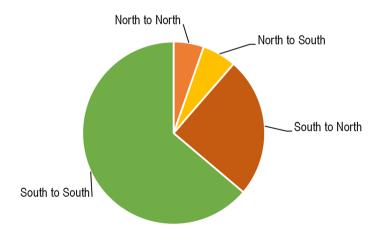


Fig. 2 Number of accessions exchanged between developed (the 'North') and developing and transition countries (the 'South')

Provider	Total samples	Accessions	Genera	Recipient	Recipient	Total samples	Accessions	Genera	Provider
country	provided	provided	provided	countries	country	received	received	received	countries
India	1188,911	48,635	35	144	India	284,454	115,849	70	181
Peru	62,899	16,216	23	158	United States	45,992	39,963	97	178
Ethiopia	40,143	13,683	94	120	China	33,690	18,664	48	151
United States	36,652	6294	30	156	Ethiopia	28,863	17,572	175	150
Iran	29,829	9779	26	87	Australia	20,218	17,566	63	150
Turkey	29,579	9634	29	83	Japan	17,628	12,022	32	141
Syrian Arab Republic	26,029	7487	27	78	United Kingdom	17,231	14,283	89	144
Sudan	24,262	3457	17	61	Morocco	16,362	14,618	38	76
The Philippines	21,626	4016	7	109	The Philippines	16,332	8798	50	107
Côte d'Ivoire	20,494	3037	4	78	Tunisia	13,399	9106	18	70
China	18,559	7225	21	125	Iran	13,083	12,301	18	135
Nigeria	16,060	3462	27	126	Austria	12,703	12,657	24	92
Zimbabwe	15,477	4500	19	62	Italy	12,345	10,003	36	116
Cameroon	15,216	2942	13	67	Syrian Arab Republic	10,598	8610	19	92
Jordan	12,328	3319	20	99	South Korea	10,195	8423	26	137
Morocco	12,257	4106	34	69	Russia	9614	8636	12	92
Bangladesh	12,092	3839	14	94	Pakistan	9512	7901	64	139
Indonesia	11,696	3774	12	93	Turkey	9295	7221	25	96
Uganda	11,172	2565	13	103	Canada	9160	7709	38	121
Tunisia	10,799	3523	22	74	Indonesia	8965	8395	32	110
Pakistan	10,587	2950	23	66	Peru	7953	4053	33	75
Kenva	10.509	2205	38	104	Eevnt	7921	6685	54	126

Table 4 continued	led								
Provider country	Total samples provided	Accessions provided	Genera provided	Recipient countries	Recipient country	Total samples received	Accessions received	Genera received	Provider countries
Algeria	9743	3522	24	65	Germany	7276	6253	63	130
Tanzania	8438	2132	37	96	Brazil	6903	6030	34	129
Nepal	7725	2745	19	73	Thailand	6821	4899	27	103
									Î

genebanks considered in this study, including India (rice, millet), Peru (potatoes), Syria and Turkey (wheat and barley), China (rice) and a number of African countries (particularly for tropical forages). Many of the top recipients are also developing countries, and, again, many of them are centres of origin or diversity of crops or forages that they have requested, underscoring the fact that even diversity-rich countries are not self-sufficient in terms of their PGRFA needs. As an example, the difference in the amount of germplasm flowing in and out of India, compared to other countries, stands out as very significant. India has provided and received massive quantities of germplasm. Interestingly, a significant percentage of the materials originally collected in, or obtained from, India ends up going back to Indian recipients (59 % of the samples and over 70 % of the accessions), which makes it the largest recipient of CGIAR-hosted materials originally obtained from within its own borders. A high percentage of 'reabsorption' of their own materials through CGIAR-mediated flows are also recorded for Tunisia and Morocco (48 and 42 % respectively), the Philippines (37 %), Iran and Jordan (30 and 25 %) and others to lesser extents. These observations highlight the additional benefit of germplasm deposited in international collections since it provides long-term secure conservation and availability of quality material (and often value-added characterization and evaluation data) originating from one's own territory, in addition to access to diversity from hundreds of other countries. The latter benefit is particularly relevant for those countries with limited capacity to establish and maintain national conservation programmes for their own local materials.

Differences exist not only in the amount, but also in the type of materials provided by developed and developing countries. While developed countries provide an overall lower quantity of materials compared to developing countries, they contribute a proportionally higher share of materials for which some formal research, pre-breeding or other form of improvement has been conducted. In total, 27 % of the samples 'distributed' by our seven CGIAR genebanks from developed countries were research materials and improved/elite lines (with the United States supplying as much as 80 % of this category); only 14 % of the samples distributed from developing and transition countries belonged to these categories. On the recipient side, the share of germplasm that carried some degree of research and improvement flowing into developing countries and transition economies is 30 % of the overall incoming samples, while it is 14 % for developed countries.

In both developed and developing nations, public institutions (including the National Agricultural Research System (NARS), universities and genebanks) are by far the predominant recipients of CGIAR materials (Table 5; Fig. 3). These public sector recipients are located in developing countries in over 75 % of the cases. The share of samples sent to commercial companies is only around 3 % of the total, and the recipients are primarily (77 %) in developing countries.

These findings are also consistent with those of Smale and Day Rubenstein (2002) who found that most recipients of germplasm from the US NPGS, another important worldwide facilitator of PGRFA for research and breeding, were in the public sector. The volume and diversity of the PGRFA flows described in this study, albeit only a small sample of worldwide exchanges, demonstrate the extent of countries' interdependence on PGRFA for crop improvement and, ultimately, food security. While acknowledging the limits of our dataset, we believe that the conclusions regarding the extent of international interdependence would likely have been even stronger had the data from important genebanks such as those at CIMMYT, CIAT and IITA been included. The emerging picture confirms an established description of modern agriculture as an interdependent network of seed and germplasm sources, in which very few countries or farming systems in the world do not

-

Recipient type	Samples received	Percentage	Accessions received	Percentage
NARS	573,456	57.39	374,714	61.87
University	297,034	29.73	161,845	26.72
Genebank	53,198	5.32	33,967	5.61
Commercial company	32,020	3.20	10,985	1.81
Other	24,739	2.48	13,650	2.25
Non-governmental organization	14,821	1.48	7905	1.31
Regional organization	2727	0.27	2054	0.34
Farmer	1255	0.13	528	0.09

Table 5 Type of recipients, samples and accessions and percentages over the total

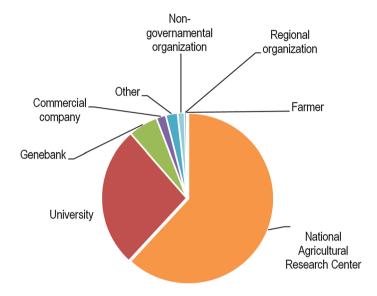


Fig. 3 Share of accessions received by different recipient categories (1985–2009)

rely to some degree on the international system that moves crop germplasm, breeding lines and improved varieties across international borders (Duvick 1984).

Analyses by other authors confirm these patterns, describing how crop improvement has benefited from access to a wide range of materials with different origins. Fowler, Smale and Gaiji (2001) undertook an analysis of CGIAR data focusing on a different time frame and different measures than those presented here. Smale et al. (2002) used the case of spring bread wheat released by national programmes in developing countries. Warburton et al. (2006) and Dreisigacker et al. (2005) looked at synthetic hexaploids to illustrate the significance of access to wild relatives from centres of diversity in wheat improvement. Voysest et al. (2003) took the case of beans in Latin America (Fowler et al. 2001; Smale et al. 2002; Voysest et al. 2003; Dreisigacker et al. 2005; Warburton et al. 2006). Additional studies have focused on those countries that are the centres of crop diversity. Rejesus et al. (1996) reported that 45.6 % of the germplasm used by wheat breeders in Western Asia, the Vavilov centre for the species, comes from international sources. Evenson and Gollin (1997) documented the dependence of Asian countries, including the Vavilovcentre countries such as India, Burma, Bangladesh, Nepal and Vietnam, on IRRI for rice germplasm of different provenance (65.0 % in India and 98.1 % in Vietnam) (Rejesus et al. 1996; Evenson and Gollin 1997). All of this evidence points to the 'international public good' nature of the materials held and made available by the CGIAR as well as by other actors who make such materials available. It highlights the importance of supporting the continuation and enhancement of conservation as well as the internationally facilitated sharing of germplasm within the framework of the ITPGRFA.

Conclusions

It is clear that access to globally pooled genetic resources is a fundamentally important benefit that all countries have historically exploited when systems were set up to facilitate such access. Any effort to improve the MLS must be guided by the necessity of supporting and improving countries' ability to further capitalize on this benefit. This is particularly true considering the contemporary challenges associated with climate change (Fujisaka et al. 2011), population growth and the harmonization of diets across the world (Khoury et al. 2014). While acknowledging the importance of improving the monetary benefit-sharing mechanisms, we believe that one should not lose sight of the need to maintain the non-monetary benefit-sharing mechanisms when evaluating the effectiveness of the MLS and considering options for its reform. Significant knowledge and opportunities for crop improvement accompany the materials distributed by the CGIAR genebanks, so focusing exclusively on the monetary benefits that can potentially result from germplasm flows represent too narrow a view of its overall impact. Indeed, it has been argued that non-monetary benefits from the MLS (as outlined in Articles 13.1 and 13.2(a)–(c) of the ITPGRFA) can generate much greater economic return than developing countries would ever gain through the BSF.

With respect to monetary benefit sharing, it is important to underscore the fact that the primary users of germplasm from the CGIAR and the MLS have been public sector organizations (in developing countries) rather than private sector entities. Indeed, it has been pointed out that a crucial factor that determines the demand for genetic resources in the seed and crop protection industries is the effort required to turn them into usable materials. Genetic resources that widen a company's gene pool, but without the identified properties of interest, are typically considered to have little commercial value since they require considerable investment and the return on investment is often risky (Smolders 2005). Although new technology can assist in the search for a specific trait, the expense of doing so is generally prohibitive, particularly for smaller companies (Laird and Wynberg 2006). Larger companies that would most likely trigger the mandatory financial benefit-sharing provisions associated with the MLS tend to opt out of receiving materials from the system (Halewood and Nnadozie 2008). These kinds of reasons likely underlie the failure of efforts to 'privatize' monetary benefit sharing through the adoption of mechanisms for mandatory payments from companies based on sales of products that incorporate materials from the MLS.

We believe that some other approach to monetary benefit sharing, linked to the operation of the MLS, is necessary. Such an approach should more closely reflect the public goods nature of PGRFA as well as the historical development of the international and national collections that host most of the materials that do, and will, constitute the MLS. It should also be as simple as possible, and less administratively burdensome on both the providers and users of PGRFA, to encourage, rather than discourage, participation. In particular, it could be useful not to link the collection of financial benefits to the privatization of products incorporating materials from the MLS. Rather, it could be governments or public authorities which devise means to assume the costs of the MLS' proper functioning, in a more familiar form of state assumed responsibility on publically valuable assets. Governments could then decide if and how they would need to recoup some of those costs; one option, which was actually discussed in early Treaty days, could be some sort of contribution from the commercial sector based on their annual seed sales. This approach would also be in line with the way public organizations have historically supported the collections.

Of course, there are other ways to improve and enhance the functioning of the MLS and to acknowledge countries' increasing interdependence on PGRFA, beyond adopting a new approach to monetary benefit sharing. No matter how well the system is designed or reformulated, there are practical, institutional and capacity limitations for all countries and all potential beneficiaries (from farmers to breeders and researchers) to take advantage of the MLS, even once their legal ability to do so has been established. This may be particularly true in some developing countries. Capacities and strong partnerships need to be established among the broadest possible range of stakeholders, enabling them to recognize specific traitbased needs, identify where the potentially useful materials could be within the MLS, and request, receive and use the materials concerned. A more proactive and widespread participation would contribute to a greater willingness to voluntarily introduce materials into the MLS, increasing the diversity available to agricultural research and development and giving rise to additional monetary and non-monetary benefits to be shared.

It has been argued that capacity building, technology transfer and information exchange in the context of the MLS should take place in close relation to other ITPGRFA objectives, particularly the recognition and protection of farmers' rights (Article 9). Indeed, a number of countries have flagged their concern about the MLS having too narrow a focus to the detriment of issues that are more closely related to farmers and their role in on-farm conservation (López Noriega et al. 2013b). After all, most of the ex situ materials that are being, or will be, circulated globally thanks to the MLS are landraces or naturally adapted resources developed and conserved by small farmers, often from developing countries. Their role today is ever more crucial for allowing the continued conservation, evolution and development of genetic resources with the potential to adapt to changing climates. Greater synergy between the architecture of the MLS and the implementation of farmers' rights would also contribute to moving the ITPGRFA forward as a package of integrated measures, building confidence among a wider range of key stakeholders and truly reflecting global interdependence.

Acknowledgments The authors are grateful to Ruaraidh Sackville Hamilton (IRRI), Daniel Debouck (CIAT), Evert Thomas (Bioversity International), Colin Khoury (CIAT) and Anne Bjorkman (Wageningen University), for their valuable suggestions and analytical inputs. They also wish to thank those CGIAR genebank curators, David Ellis (CIP), Ruaraidh Sackville Hamilton (IRRI), Jean Hansen (ILRI), Marie-Noelle Ndjiondjop (Africa Rice), and Ines Van Denhouwe (Bioversity International), who validated the data presented in the paper or corrected it by sharing internal data.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

See Tables 6, 7, 8 and 9.

Table 6 Current numbers ofaccessions of plant germplasm	Centre	Number of accessions held
held by the genebanks of the CGIAR system Data from Gene-	Africa Rice	26,098
sys, http://www.genesys-pgr.org	Bioversity International	1516
(accessed on 20 November 2014)	CIAT	64,721
	CIMMYT	164,320
	CIP	16,061
	ICARDA	147,076
	ICRAF	2005
	ICRISAT	119,524
	IITA	27,232
	ILRI	20,229
	IRRI	124,052

Table 7 Plant genera represented in the genebank collections of all CGIAR centres (genera represented by less than 50 accessions are grouped as "other"; numbers of accessions refer to those received and reported by centres over time and may overestimate the current living material available for distribution in each genebank) Data from Genesys, http://www. genesys-pgr.org (accessed on 20 November 2014)

Collection	Genus	Number of accessions
Africa Rice	Oryza	131,840
	Other	22
Bioversity	Musa	1525
	Ensete	4
CIAT	Phaseolus	36,124
	Manihot	5458
	Stylosanthes	4276
	Desmodium	3561
	Centrosema	2874
	Aeschynomene	1209
	Macroptilium	1052
	Vigna	1050
	Zornia	967
	Brachiaria	601
	Panicum	563
	Galactia	561
	Calopogonium	553
	Rhynchosia	389
	Teramnus	372
	Chamaecrista	339
	Desmanthus	325
	Crotalaria	274
	Alysicarpus	259
	Pueraria	255
	Canavalia	215
	Dioclea	199
	Leucaena	198
	Indigofera	184

Table 7 continued

nued	Collection	Genus	Number of accessions
		Flemingia	179
		Uraria	176
		Arachis	171
		Clitoria	157
		Lablab	155
		Paspalum	155
		Tephrosia	153
		Phyllodium	139
		Cajanus	135
		Tadehagi	108
		Andropogon	93
		Pseudarthria	72
		Neonotonia	68
		Dendrolobium	62
		Sesbania	62
		Cratylia	52
		Other	926
	CIMMYT	Triticum	103,780
		Zea	27,279
		Triticosecale	16,004
		Hordeum	14,221
		Aegilops	1316
		X Triticoaegilops	991
		Secale	438
		Tripsacum	156
		X Aegilotriticum	128
		Other	7
	CIP	Ipomoea	7783
		Solanum	7112
		Oxalis	520
		Ullucus	435
		Tropaeolum	54
		Other	157
	ICARDA	Triticum	37,214
		Hordeum	31,619
		Vicia	16,151
		Cicer	14,906
		Lens	12,463
		Medicago	9418
		Pisum	6110
		Trifolium	5010
		Aegilops	4257
		Lathyrus	4237

Table 7 continued	Collection	Genus	Number of accessions
		Astragalus	956
		Onobrychis	733
		Avena	593
		Scorpiurus	500
		Hippocrepis	319
		Trigonella	280
		Coronilla	251
		Lotus	246
		Hymenocarpos	223
		Melilotus	219
		Lupinus	134
		Elymus	81
		Hedysarum	81
		Brachypodium	78
		Secale	73
		Other	977
	ICRAF	Prosopis	929
	loiuu	Calycophyllum	390
		Guazuma	390
		Leucaena	80
		Gliricidia	55
		Desmodium	52
		Other	109
	ICRISAT	Sorghum	37,901
	Tortubilli	Pennisetum	22,200
		Cicer	20,140
		Arachis	15,440
		Cajanus	13,289
		Eleusine	5957
		Setaria	1542
		Panicum	1306
		Echinochloa	749
		Paspalum	665
		Rhynchosia	290
		Other	45
	IITA	Vigna	18,237
	ша	Dioscorea	3169
		Manihot	2984
		Glycine	1749
		Zea	798
		Zea Musa	150
		Sphenostylis	145
		Other	0
		Ouler	U

Table 7 continued

Collection	Genus	Number of accession
ILRI	Trifolium	1649
	Vigna	1161
	Stylosanthes	1160
	Leucaena	801
	Sesbania	674
	Indigofera	669
	Brachiaria	663
	Alysicarpus	516
	Neonotonia	508
	Rhynchosia	501
	X Triticale	459
	Macroptilium	431
	Panicum	423
	Tephrosia	395
	Lablab	374
	Centrosema	323
	Teramnus	322
	Cenchrus	294
	Zornia	283
	Phaseolus	282
	Vicia	258
	Digitaria	255
	Medicago	252
	Acacia	248
	Pennisetum	245
	Crotalaria	237
	Paspalum	223
	Cytisus	220
	Chloris	194
	Glycine	192
	Galactia	188
	Desmodium	177
	Lathyrus	166
	Cajanus	164
	Urochloa	162
	Chamaecrista	160
	Aeschynomene	158
	Calopogonium	152
	Avena	147
	Gliricidia	141
	Eragrostis	136
	Cynodon	130
	Lotononis	130

7 continued	Collection	Genus	Number of accessions
		Setaria	130
		Pisum	126
		Clitoria	122
		Andropogon	109
		Desmanthus	107
		Echinochloa	93
		Pseudarthria	93
		Bothriochloa	89
		Senna	89
		Uraria	89
		Pueraria	76
		Lolium	75
		Sorghum	72
		Cassia	71
		Hordeum	71
		Festuca	64
		Argyrolobium	57
		Erythrina	57
		Lupinus	53
		Amaranthus	51
		Cymbopogon	51
		Hyparrhenia	51
		Dolichos	50
		Other	2160
	IRRI	Oryza	124,052
		Other	22

 Table 8
 Countries
 from
 which
 accessions
 held
 by
 CGIAR
 genebanks
 were
 originally
 collected
 or

 improved
 Data
 from
 Genesys, http://www.genesys-pgr.org (accessed on 20 November 2014)

Country code in Genesys	Country	Number of accessions in the CGIAR genebanks
AFG	Afghanistan	4962
ALB	Albania	75
DZA	Algeria	3828
AGO	Angola	110
ATG	Antigua and Barbuda	116
ANT	Antilles	9
ARG	Argentina	3991
ARM	Armenia	1304
AUT	Austria	564
AZE	Azerbaijan	1723
BHS	Bahamas	4

Country code in Genesys	Country	Number of accessions in the CGIAR genebanks		
BHR	Bahrain	2		
BRN	Baker Island	215		
BGD	Bangladesh	8009		
BRB	Barbados	57		
BLR	Belarus	324		
BEL	Belgium	347		
BLZ	Belize	376		
BEN	Benin	1455		
BTN	Bhutan	507		
BOL	Bolivia	3289		
BIH	Bosnia and Herzegovina	59		
BWA	Botswana	1078		
BRA	Brazil	14,765		
IOT	British Indian Ocean Territory	1		
VGB	British Virgin Islands	55		
BGR	Bulgaria	1570		
BFA	Burkina Faso	2995		
MMR	Burma	3550		
BDI	Burundi	867		
KHM	Cambodia	4885		
CMR	Cameroon	5320		
CAN	Canada	914		
CPV	Cape Verde	22		
CAF	Central African Republic	849		
TCD	Chad	909		
CHL	Chile	2431		
CHN	China	15,294		
COL	Colombia	12,829		
COM	Comoros	8		
COG	Congo	334		
COD	Congo (Democratic Republic of)	687		
СОК	Cook Islands	7		
AUS	Coral Sea Islands	2172		
CRI	Costa Rica	1543		
CIV	Cote d'Ivoire	10,018		
HRV	Croatia	63		
CUB	Cuba	980		
СҮР	Cyprus	1103		
CZE	Czech Republic	556		
DNK	Denmark	206		
DJI	Djibouti	6		
DOM	Dominican Republic	497		
ECU	Ecuador	3934		

Country code in Genesys	Country	Number of accessions in the CGIAR genebanks		
EGY	Egypt			
SLV	El Salvador	562		
GNQ	Equatorial Guinea	28		
ERI	Eritrea	97		
EST	Estonia	10		
ETH	Ethiopia	22,113		
FLK	Falkland Islands (Islas Malvinas)	2		
FSM	Federated States of Micronesia	7		
FJI	Fiji	53		
FIN	Finland	91		
YUG	Former Yugoslavia	222		
FRA	France	1136		
GUF	French Guiana	20		
PYF	French Polynesia	2		
GAB	Gabon	100		
GMB	Gambia	695		
PSE	Gaza Strip	129		
GEO	Georgia	1230		
DEU	Germany	2357		
GHA	Ghana	2006		
GRC	Greece	3921		
GRD	Grenada	50		
GLP	Guadeloupe	62		
GUM	Guam	9		
GTM	Guatemala	4447		
GIN	Guinea	1678		
GNB	Guinea-Bissau	151		
GUY	Guyana	156		
HTI	Haiti	233		
HND	Honduras	1476		
HKG	Hong Kong	21		
HUN	Hungary	1625		
IND	India	44,216		
IDN	Indonesia	12,087		
IRN	Iran	21,347		
IRQ	Iraq	1652		
IRL	Ireland	3		
ISR	Israel	1663		
ITA	Italy	2720		
JAM	Jamaica	189		
JPN	Japan	2555		
JOR	Jordan	5023		
KAZ	Kazakhstan	613		

Table	8	continued
Lanc	v	commucu

Country code in Genesys	Country	Number of accessions in the CGIAR genebanks	
KEN	Kenya	4048	
KIR	Kiribati	1	
KGZ	Kyrgyzstan	226	
LAO	Laos	15,642	
LVA	Latvia	32	
LBN	Lebanon	2208	
LSO	Lesotho	587	
LBR	Liberia	3616	
LBY	Libya	762	
LTU	Lithuania	38	
MAC	Macau	1	
MKD	Macedonia	766	
MDG	Madagascar	4296	
MWI	Malawi	3214	
MYS	Malaysia	4832	
MDV	Maldives	23	
MLI	Mali	4850	
MLT	Malta	35	
MTQ	Martinique	17	
MRT	Mauritania	162	
MUS	Mauritius	31	
MEX	Mexico	77,448	
MDA	Moldova	94	
MNG	Mongolia	232	
MNE	Montenegro	43	
MSR	Montserrat	11	
MAR	Morocco	4989	
MOZ	Mozambique	413	
BUR	Myanmar	323	
NAM	Namibia	1546	
NPL	Nepal	5858	
NLD	Netherlands	780	
NCL	New Caledonia	11	
NZL	New Zealand	117	
NIC	Nicaragua	646	
NER	Niger	4983	
NGA	Nigeria	14,636	
NIU	Niue	4	
PRK	North Korea	2592	
NOR	Norway	29	
OMN	Oman	324	
РАК	Pakistan	5604	
PLW	Palau	2	

Country code in Genesys	Country	Number of accessions in the CGIAR genebanks		
VUT	Palestine	3		
PAN	Panama	1000		
PNG	Papua New Guinea	991		
PRY	Paraguay	1375		
PER	Peru	14,412		
PHL	Philippines	9224		
POL	Poland	426		
PRT	Portugal	2381		
PRI	Puerto Rico	364		
REU	Reunion	1		
ROU	Romania	572		
RUS	Russia	3529		
SUN	Russia	1259		
RWA	Rwanda	874		
KNA	Saint Kitts and Nevis	33		
LCA	Saint Lucia	37		
VCT	Saint Vincent and the Grenadines	54		
WSM	Samoa	2		
SMR	San Marino	3		
SAU	Saudi Arabia	84		
SEN	Senegal	3540		
SRB	Serbia	99		
SYC	Seychelles	3		
SLE	Sierra Leone	1997		
SGP	Singapore	6		
SVK	Slovakia	105		
SVN	Slovenia	8		
SLB	Solomon Islands	56		
SOM	Somalia	562		
ZAF	South Africa	2138		
KOR	South Korea	2153		
ESP	Spain	3567		
LKA	Sri Lanka	2740		
SDN	Sudan	3528		
SUR	Suriname	188		
SWZ	Swaziland	276		
SWE	Sweden	554		
CHE	Switzerland	1102		
SYR	Syria	10,776		
TWN	Taiwan	3075		
ТЈК	Tajikistan	2275		
TZA	Tanzania	4094		
THA	Thailand	7870		

Table	8	continued
-------	---	-----------

Table	8	continued
-------	---	-----------

Country code in Genesys	Country	Number of accessions in the CGIAR genebanks
TGO	Togo	2817
TON	Tonga	15
ТТО	Trinidad and Tobago	201
TUN	Tunisia	4382
TUR	Turkey	16,775
ТКМ	Turkmenistan	587
TUV	Tuvalu	1
UGA	Uganda	3532
UKR	Ukraine	1610
ARE	United Arab Emirates	4
GBR	United Kingdom	801
USA	United States	12,969
UNK	Unknown	6870
URY	Uruguay	1229
UZB	Uzbekistan	987
VEN	Venezuela	4075
VNM	Vietnam	3787
VIR	Virgin Islands	17
YEM	Yemen	2816
ZMB	Zambia	2733
ZWE	Zimbabwe	5717

Table 9 Top 50 most popular accessions of our distribution dataset (based on how many samples of each accession have been distributed), with information on the distributing centre, genus, frequency of distribution, number of recipient countries, biological status and country of origin. Data elaborated from SINGER

Accession number	Centre	Genus	Frequency of distribution	Number of recipients	Biological status	Country of origin
328	IRRI	Oryza	321	42	Landrace	Philippines
CIP 985003	CIP	Solanum	312	76	Improved	Peru
10865	ILRI	Sesbania	268	66	Weedy/ wild	Unknown
104	ILRI	Desmodium	253	51	Improved	Australia
CIP 720088	CIP	Solanum	252	101	Improved	Argentina
4	ILRI	Stylosanthes	247	53	Improved	Colombia
69	ILRI	Macroptilium	247	59	Improved	Unknown
4918	ICRISAT	Cicer	246	13	Improved	India
5159	IRRI	Oryza	246	21	Landrace	Philippines
30333	IRRI	Oryza	245	23	Landrace	Philippines
6765	ILRI	Desmodium	240	50	Improved	Unknown
140	ILRI	Stylosanthes	232	49	Improved	Brazil

Accession number	Centre	Genus	Frequency of distribution	Number of recipients	Biological status	Country of origin
CIP 379706.27	CIP	Solanum	220	88	Improved	Peru
70	ILRI	Leucaena	219	55	Improved	Unknown
30416	IRRI	Oryza	213	41	Improved	Philippines
ITC0249	Bioversity	Musa	213	50	Weedy/ wild	Unknown
75	ILRI	Stylosanthes	212	50	Improved	Venezuela
ITC0504	Bioversity	Musa	212	77	Improved	Unknown
ITC1123	Bioversity	Musa	212	67	Landrace	Unknown
599	IRRI	Oryza	210	18	Breeding/ research	Philippines
CIP 378017.2	CIP	Solanum	210	88	Breeding/ research	Peru
CIP 720087	CIP	Solanum	209	91	Improved	Argentina
6756	ILRI	Macrotyloma	208	51	Improved	Unknown
7035	ICRISAT	Cajanus	207	16	Improved	India
CIP 374080.5	CIP	Solanum	203	67	Improved	Peru
CIP 800827	CIP	Solanum	199	70	Improved	United States
CIP 978001	CIP	Solanum	195	54	Breeding/ research	Peru
4973	ICRISAT	Cicer	194	14	Improved	India
6984	ILRI	Medicago	179	37	Improved	Unknown
10320	IRRI	Oryza	178	30	Improved	Philippines
12048	IRRI	Oryza	178	38	Other	Guinea
ITC0506	Bioversity	Musa	178	74	Improved	Unknown
27748	IRRI	Oryza	177	29	Landrace	Thailand
71	ILRI	Leucaena	176	43	Improved	Unknown
CIP 978004	CIP	Solanum	176	64	Breeding/ research	Peru
66970	IRRI	Oryza	175	38	Improved	Philippines
CIP 984001	CIP	Solanum	174	60	Breeding/ research	Peru
167	ILRI	Stylosanthes	173	51	Weedy/ wild	Venezuela
147	ILRI	Lablab	169	42	Improved	Unknown
17159	ICRISAT	Cicer	169	7	Weedy/ wild	Turkey
5003	ICRISAT	Cicer	169	12	Improved	India
15036	ILRI	Sesbania	167	54	Improved	Uganda
6633	ILRI	Chloris	167	40	Improved	Unknown
11575	ILRI	Cajanus	163	50	Weedy/ wild	Unknown
15019	ILRI	Sesbania	163	53	Weedy/ wild	DR Congo

Table 9	continued
---------	-----------

Accession number	Centre	Genus	Frequency of distribution	Number of recipients	Biological status	Country of origin
23364	IRRI	Oryza	163	29	Landrace	Philippines
ITC0505	Bioversity	Musa	163	68	Improved	Unknown
CIP 980003	CIP	Solanum	159	54	Breeding/ research	Peru
15632	ICRISAT	Cajanus	158	5	Weedy/ wild	India
312	ILRI	Desmanthus	157	42	Weedy/ wild	Belize

Table 9 continued

References

- Bretting PK (2007) The U.S. National Plant Germplasm System in an Era of Shifting International Norms for Germplasm Exchange. In: Acta horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 55–60
- Burke MB, Lobell DB, Guarino L (2009) Shifts in African crop climates by 2050 and the implications for crop improvement and genetic resources conservation. Glob Environ Chang 19:317–325
- Centre for Genetic Resources (2008) Collections. http://www.cgn.wur.nl/UK/CGN+Plant+Genetic+ Resources/Approach/Safety+duplicates/. Accessed 1 Aug 2015
- CGKB (2014) Procedures for in-country seed plant material distribution
- Crosby A (1972) The Columbian exchange: biological and cultural consequences of 1492. Greenwood Publishing, Westport
- Crosby A (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge
- Da Silva Mariante A, Amstalden Sampaio MJ, Valadares Inglis MC (2009) State of the Brazil's plant genetic resources. Second rep, Brazilia, DF
- Diamond J (1997) Guns, germs and steel: the fate of human societies. Norton & Co., New York
- Dreisigacker S, Zhang P, Warburton ML et al (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661
- Duvick DN (1984) Genetic diversity in major farm crops on the farm and in reserve. Econ Bot 38:161–178
- Evenson RE, Gollin D (1997) Genetic resources, international organisations, and improvement in rice varieties. Econ Dev Cult Change 45:471–500
- FAO (2009) Russia: country report to the FAO International Technical Conference on Plant Genetic Resources. Moscow, Russian Federation
- FAO (2010) Report on the state of the world's plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome
- Fowler C, Hodgkin T (2004) Plant genetic resources for food and agriculture: assessing global availability. Annu Rev Environ Resour 29:10.1–10.37
- Fowler C, Smale M, Gaiji S (2001) Unequal exchange? Recent transfers of agricultural resources and their implications for developing countries. Dev Policy Rev 19:181–204
- Fujisaka S, Halewood M, Williams D (2011) Background study paper no. 48

Genesys (2014) A gateway to genetic resources. www.genesys-pgr.org. Accessed 17 Nov 2014

- Halewood M, Nnadozie K (2008) Giving priority to the commons: the international treaty on plant genetic resources for food and agriculture. In: Tansey G, Rojotte T (eds) The future control of food: a guide to international negotiations and rules on intellectual property, biodiversity and food security. Earthscan, London
- Halewood M, López Noriega I, Louafi S (2013) Crop genetic resources as a global commons: challenges in international governance and law. Routledge, Abingdon
- Halewood M, Baidu-Forson JJ, Clancy E, Vodouhe RS (2014) Cooperating to make the best use of plant genetic resources in West and Central Africa: a regional imperative. Rome, Italy and Dakar, Senegal

- Heisey P, Day Rubenstein K (2015) Using crop genetic resources to help agriculture adapt to climate change: economics and policy. U.S. Department of Agriculture, Economic Research Service, Washington
- ICGR (2015) Utilization of Plant Genetic Resources in China. http://icgr.caas.net.cn/China/chinesutilization. htm. Accessed 12 Aug 2015
- Jarvis A, Upadhyaya H, Gowda CLL, et al (2010) Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security. In: Second state of the world plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy, p 26
- Khoury CK, Bjorkman AD, Dempewolf H et al (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci USA 111:4001–4006. doi:10.1073/pnas. 1313490111
- Koo DB, Pardey PG, Wrigh B (2004) Saving seeds: the economics of conserving crop genetic resources ex situ. Wallingford, UK and Cambridge, MA, USA
- Laird SA, Wynberg R (2006) The commercial use of biodiversity: an update on current trends in demand for access to genetic resources and benefit-sharing, and industry perspectives on ABS policy and implementation. Montreal, Canada
- Lane A, Jarvis A (2007) Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation
- López Noriega I, Halewood M, Galluzzi G et al (2013a) How policies affect the use of plant genetic resources: the experience of the CGIAR. Resources 2:231–269
- López Noriega I, Wambugu P, Mejías A (2013b) Assessment of progress to make the multilateral system functional: incentives and challenges at the country level. Crop genetic resources as a global commons: challenges in international governance and law. Routledge, Abingdon, pp 199–225
- Mann CC (2011) 1493: uncovering the new world Columbus created. Knopf, New York
- R Development Core Team (2011) R: A language and environment for statistical computing
- Ramirez-Villegas J, Jarvis A, Fujisaka S et al (2013) Crop and forage genetic resources: international interdependence in the face of climate change. In: Halewood M, López Noriega I, Louafi S (eds) Crop genetic resources as a global commons: challenges in international law and governance. Earthscan, London, pp 78–98
- Rejesus RM, Smale M, Van Ginkel M (1996) Wheat breeders' perspectives on genetic diversity and germplasm use: findings from an international survey. Plant Var Seeds 9:129–147
- SGRP (2011) CGIAR Centers' Experience with the Implementation of Their Agreements with the Treaty's Governing Body, with Particular Reference to the Use of the SMTA for Annex 1 and Non-Annex 1 Materials
- Smale M, Day Rubenstein K (2002) The demand for crop genetic resources: international use of the US national plant germplasm system. World Dev 30:1639–1655
- Smale M, Reynolds MP, Wharburton M et al (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Sci 42:1766–1779
- Smolders W (2005) Commercial practice in the use of plant genetic resources for food and agriculture. Background study paper prepared for the Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organisation of the United Nations, Rome, Italy, 18 pp
- Ullrich SE (2011) Barley: Production, improvement, and uses. Wiley-Blackwell, Chichester
- UN (2012) Statistical annex Data sources, country classifications and aggregation methodology. In: World Economic Situation and Prospects. United Nations, p 9
- Voysest O, Johnson N, Pachico D (2003) The distribution of benefits from public international germplasm banks: the case of beans in Latin America. Agric Econ 29:277–286
- Warburton ML, Crossa J, Franco J et al (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301