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Abstract Let K be an algebraically closed field of characteristic zero. We show that
if the automorphisms group of a quasi-affine variety X over K is infinite, then X is
uniruled.

Mathematics Subject Classification 14 R 10

1 Introduction

Automorphism groups of open varieties have always attracted a lot of attention, but the
nature of these groups is still notwell-known. For example the group of automorphisms
of K

n is understood only in the case n = 2 (and n = 1, of course). Let Y be an open
variety. It is natural to ask when the group Aut(Y ) of automorphisms of Y is finite. A
partial answer to this question is given in our papers [7–9] and [10]. In [6], Iitaka proved
that Aut(Y ) is finite if Y has a maximal logarithmic Kodaira dimension. Here we focus
on the group of automorphisms of an affine or, more generally, quasi-affine variety
over an algebraically closed field of characteristic zero. Let us recall that a quasi-affine
variety is an open subvariety of some affine variety. We prove the following:

Theorem 1.1 Let X be a quasi-affine (in particular affine) variety over an alge-
braically closed field of characteristic zero. If the automorphism group Aut(X) is
infinite, then X is uniruled, i.e., X is covered by rational curves.
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570 Z. Jelonek

This generalizes our old results from [9] and [10]. Our proof uses in a significant
way a recent progress in the Minimal Model Program (see [1,2,14]) and is based on
our old ideas from [7–9] and [10].

In particular, if X is a quasi-affine non-uniruled variety, then the automorphism
group Aut(X) of X is finite. We show (cf. Proposition 7.2) that conversely, for every
k ≥ 1 and every finite group G there is a k-dimensional affine (smooth) non-uniruled
variety Xk

G such that Aut(Xk
G) = G. Hence in this version our result is optimal.

If a variety X is uniruled it may happened that the group Aut(X) is infinite and
discrete. Indeed, M. H, El-Huti [3] showed the following interesting fact:

Example 1.2 Take the cubic surface Hc ⊂ C
3 defined by x2+ y2+ z2−xyz = c, c ∈

C. Then the groupAut(Hc) is generated by a subgroupG isomorphic toZ/2�Z/2�Z/2
and a finite subgroup V induced by affine linear mappings that preserves Hc. In fact

Aut(Hc) = (Z/2 � Z/2 � Z/2) � S4,

where S4 is the permutation group in 4 elements, see [11]. ��
However, it is possible that if Aut(X) is non-discrete, we can obtain a more precise

information on X than merely non-uniruledness. In particular Hanspeter Kraft and
Mikhail Zaidenberg proposed the following:

Kraft-Zaidenberg Conjecture. Assume that X is a quasi-affine variety with non-
discrete group of automorphisms. Than on X acts effectively either the group Ga =
{K, 0,+} or the group Gm = {K∗, 1, ·}.

2 Terminology

We assume that the ground field K is algebraically closed of characteristic zero. For
an algebraic variety X (variety is here always irreducible) we denote by Aut(X) the
group of all regular automorphisms of X and by Bir(X) the group of all birational
transformations of X . By Aut1(X) we mean the group of all birational transformation
which are regular in codimension one, i.e., which are regular isomorphisms outside
subsets of codimension at least two. If X ⊂ P

n(K) then we put Lin(X) = { f ∈
Aut(X) : f = resXT, T ∈ Aut(Pn(K))}. Of course, the group Lin(X) is always an
affine group.

Let f : X− → Y be a rational mapping between projective normal varieties. Then
f is determined outside some (minimal) closed subset F of codimension at least two.
If S ⊂ X and S 	⊂ F then by f (S) we mean the set f (S\F). Similarly for R ⊂ Y we
will denote the set {x ∈ X \F : f (x) ∈ R} by f −1(R).

If f : X− → Y is a birational mapping and the mapping f −1 does not contract
any divisor, we say that f is a birational contraction.

An algebraic variety X of dimension n > 0 is called uniruled if there exists a variety
W of dimension n − 1 and a rational dominant mapping φ : W × P

1(K) − → X .
Equivalently, an algebraic variety X is uniruled if and only if for every point x ∈ X ,
there exists a rational curve �x in X through this point.
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On the group of automorphisms of a quasi-affine variety 571

We say that a divisor D is Q-Cartier if for some non-zero integerm ∈ Z the divisor
mD is Cartier. If every divisor on X is Q-Cartier, then we say that X is Q-factorial.

In this paper we treat a hypersurface H = ⋃r
i=1 Hi ⊂ X as a reduced divisor∑r

i=1 Hi , and conversly a reduced divisor will be treated as a hyperserface.

3 Weil divisors on a normal variety

In this section we recall (with suitable modifications) some basic results about divisors
on a normal variety (see e.g., [5]).

Definition 3.1 Let X be a normal complete variety. We will denote by Div(X) the
group of all Weil divisors on X . For D ∈ Div(X) the set of all effective Weil divisors
linearly equivalent to D is called a complete linear system given by D and denoted by
|D|. Moreover, we set L(D) := { f ∈ K(X) : f = 0 or D + ( f ) ≥ 0}.

We have the following (e.g., [5], 2.16, p.126)

Proposition 3.2 If D is an effective divisor on a normal complete variety X, then
L(D) is a finite-dimensional vector space (over K).

Remark 3.3 The set |D| (if non-empty) has a natural structure of projective space of
dimension dim L(D) − 1. By a basis of |D| we mean any subset {D0, ..., Dn} ⊂ |D|
such that Di = D + (φi ) and {φ0, ..., φn} is a basis of L(D).

Let us recall the next

Definition 3.4 If D is an effective Weil divisor on a normal complete variety X, then
by a canonical mapping given by |D| and a basis φ we mean the mapping i(D,φ) =
(φ0 : ... : φn) : X → P

n(K), where φ = {φ0, ..., φn} ⊂ L(D) is a basis of L(D).

Let X be a normal variety and Z a closed subvariety of X . Put X ′ = X \ Z . We
would like to compare the groups Div(X) and Div(X ′). It can be easily checked that
the following proposition is true (compare [4], 6.5., p. 133):

Proposition 3.5 Let jX ′ : Div(X) � ∑r
i=1 ni Di → ∑r

i=1 ni (Di ∩ X ′) ∈ Div(X ′).
Then jX ′ is an epimorphism that preserves linear equivalence. If additionally
codim Z ≥ 2, then jX ′ is an isomorphism.

Nowwe define the pull-back of a divisor under a rational map f : X− → Y . Recall
that a Cartier divisor can be given by a system {Uα, φα}, where {Uα} is some open
covering of X , φα ∈ O(Uα) and φα/φβ ∈ O∗(Uα ∩Uβ).

Definition 3.6 Let f : X → Y be a dominant morphism between complete varieties.
Let D be a Cartier divisor on Y given by a system {Uα, φα}. By the pullback of the
divisor D by f wemean the divisor f ∗D given by the system { f −1(Uα), φα◦ f }.More
generally if X,Y are complete and let f be a rational map. If X f denotes the domain
of f,we put f ∗(D) := ( jX f )

−1(resX f f )
∗D. Finally let f be as above and let D be an

arbitraryWeil divisor on Y . Let us assume additionally that codim f −1(Sing(Y )) ≥ 2.
Then we have a regular map f : X f \W → Yreg (where W := f −1(Sing(Y )) and we
put f ∗D := ( jX f\W )−1 f ∗( jYreg(D)).
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572 Z. Jelonek

By a simple verification we have:

Proposition 3.7 Let f : X− → Y be a dominant rational mapping between complete
normal varieties, such that f −1(Sing(Y )) has codimension at least two. Then f ∗ :
Div(Y ) � D → f ∗D ∈ Div(X) is a well-defined homomorphism preserving linear
equivalence. Moreover, Supp( f ∗(D)) coincides with the dim X −1-dimensional part
of the set f −1(Supp(D)). In particular if D is an effective Cartier divisor, we have
Supp( f ∗(D)) = f −1(Supp(D)).

Proof Let W := f −1(Sing(Y )). By the assumption we have codim W ≥ 2. Take
X ′ := X f \W . Since X and X ′ differ by subsets of codimension at least two it is
enough to prove our statement for regular mapping f ′ : X ′ → Y and for Weil divisors
with support outside Sing(Y ), i.e., for Cartier divisors on a smooth variety. But now
the statement is obvious. ��
Corollary 3.8 Let f be as in Proposition 3.7. Let us assume additionally that f is an
isomorphism in codimension one. Then f ∗ : Div(Y ) → Div(X) is an isomorphism
preserving linear equivalence. ��

Finally we have the following important result:

Proposition 3.9 Let X be a normal complete variety and f ∈ Aut1(X). Let D be
an effective divisor on X and f ∗D′ = D. Then dim|D| = dim |D′| := n and there
exists a unique automorphism T ( f ) ∈ Aut(Pn(K)) such that the folowing diagram
commutes

Proof First of all let us note that T ( f ), if it exists, is unique. Further, by Corollary 3.8,
we have f ∗(|D′|) = |D| and f ∗ transforms any basis of |D′| onto a basis of |D|. Let
φ and ψ be suitable bases such that iD = i(D,φ) and iD′ = i(D′,ψ).

We have iD′ ◦ f = (ψ0, ..., ψn) ◦ f . But f ∗(D′ + (ψi )) = f ∗(D′) + f ∗(ψi ) =
D + (ψi ◦ f ). It means that rational functions (ψi ◦ f ), i = 0, ..., n form a basis of
L(D). Hence there exists a non-singular matrix [ai j ] such that ψi ◦ f = ∑n

j=0 ai jφ j .
Now it is clear that it is enough to take as T ( f ) the projective automorphism of P

n(K)

given by the matrix [ai j ]. ��
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On the group of automorphisms of a quasi-affine variety 573

Corollary 3.10 Let G be a subgroup of Aut1(X) such that G∗D = D for some
effective divisor D. Let us denote iD(X) = X ′ ⊂ P

n(K), n = dim |D|. Then there
is a natural homomorphism T : G → Lin(X ′). Moreover, if D is very big (i.e., the
mapping iD is a birational embedding), then T is a monomorphism.

Proof It is enough to take above D′ = D and φ = ψ . The last statement is obvious.
��

Remark 3.11 In our application we deal only with normal Q−factorial varieties.
Hence we could restrict our attention only to Q-Cartier divisors. However, the author
thinks that the language of Weil divisors is more natural here.

4 Varieties with good covers

We begin this section by recalling the definition of a big divisor ( see [12], p. 67):

Definition 4.1 Let X be a projective n-dimensional variety and D a Cartier divisor
on X . The divisor D is called big if dim H0(X,OX (kD)) > ckn for some c > 0 and
k >> 1.

If f : X → Y is a birational morphisms and D is a big (Cartier) divisor, then its
pullback f ∗(D) is also big. Indeed, the line bundleOX (m f ∗(D)) = f ∗OY (mD) has
at least as many sections as the bundle OY (mD). We show later that it is also true for
suitable birational mappings (see Lemma 4.5). We have the following characterization
of big divisors (see [12], Lemma 2.60, p. 67):

Proposition 4.2 Let X be a projective n-dimensional variety and D a Cartier divisor
on X. Then the following are equivalent:

1. D is big,
2. for some m ≥ 1 we have mD ∼ A + E, where A is ample and E is effective

Cartier divisor,
3. for m >> 0 the rational map ιmD associated with the system |mD| is a birational

embedding,
4. the image of ιmD has dimension n for m >> 0.

In the sequel we need the following observation:

Lemma 4.3 Let X be a smooth projective variety and let D = ∑r
i=1 ai Di be a big

divisor on X. Then Supp(D) = ∑r
i=1 Di is also a big divisor on X.

Proof Let a = maxi=1,...,r {ai } and bi = a − ai . The divisor E = ∑r
i=1 bi Di is

effective. By condition 2) of Proposition 4.2 the divisor D + E = aSupp(D) is also
big. Hence we conclude by 3) of Proposition 4.2. ��
Definition 4.4 Let X be a normal projective variety and let D be a Weil divisor on X .
We say that D is very big if the rational map ιD associated with the system |D| is a
birational embedding. We say that D is big if for some m ≥ 1 the divisor mD is very
big.
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574 Z. Jelonek

It is easy to see that for Cartier divisors this definition coincide with the previous
one. We have the following simple lemma:

Lemma 4.5 Let X,Y be normal projective varieties and let φ : X− → Y be a
birational mapping such that codim φ−1(Sing(Y )) ≥ 2. If D is an effective big divisor
on Y , then the divisor φ∗(D) on X is also big.

Proof It is enough to assume that D is very big and prove that then φ∗(D) is also
very big. Take f0 = 1 and let divisors {D + ( f0), D + ( f1), ..., D + ( fs)}, where the
fi ∈ K(Y ), form a basis of the system |D|. By the assumption, the regular mapping
	 : Y\Supp(D) � x �→ ( f1(x), ..., fs(x)) ∈ K

s is a birational morphism. The system
|φ∗(D)| contains divisors {φ∗(D), φ∗(D) + ( f1 ◦ φ), ..., φ∗(D) + ( fs ◦ φ)}. Since
the collection of rational functions 1, f1 ◦ φ, ..., fs ◦ φ is linearly independent, we
can extend it to some basis B of L(φ∗(D)). Let 	 ′ : X \|Supp(φ∗(D))| → K

N be
a mapping given by a system |φ∗(D)| and the basis B. The mapping 	 ′ composed
with a suitable projection K

N → K
s is equal to 	 ◦ φ. Since the latter mapping is

birational, the mapping 	 ′ is also birational. ��
We shall use:

Definition 4.6 Let X be an (open) variety. We say that X has a good cover Y , if
there exists a completion X of X and a smooth projective variety Y with a birational
morphism g : Y → X such that:

1. D := g−1(X \X) is a big hypersurface in Y ,
2. Aut(X) ⊂ Aut(Y \D), i.e., every automorphism of X can be lifted to an automor-

phism of Y \D.

Our next aim is to show that quasi-affine varieties have good covers.

Proposition 4.7 Any quasi-affine variety X has a good cover.

Proof By the assumption, there is an affine variety X1 such that X ⊂ X1 is an open
dense subset. Since X1 is affine, we can assume that it is a closed subvariety of some
K

N . Denote by X the projective closure of X1 in P
N . Let π∞ be the hyperplane at

infinity in P
N and V := X . π∞ be a divisor at infinity on X . Of course V is a big

(even very ample) Cartier divisor.
Let h : Y → X be a canonical desingularization of X ( see e.g., [13,16]).

Then h|h−1(X) : h−1(X) → X is a canonical desingularization of X . In par-
ticular every automorphism of X has a lift to an automorphism of h−1(X), i.e.,
Aut(X) ⊂ Aut(h−1(X)) = Aut(Y \ h−1(V )). Since V is a big divisor, so is its
pullback h∗(V ).

Note that Z := Y\h−1(X) is a closed subvariety of Y . Let JZ be the ideal sheaf of Z
and let f : Y ′ → Y be a canonical principalization of JZ ( see e.g., [13,16]). Thus D :=
f −1(Z) is a hypersurface, which contains a big hypersurface V ′ = Supp( f ∗h∗(V )).
Since D = V ′ + E , where E is an effective divisor, the hypersurface D is also big by
Proposition 4.2.

Finally if we take g = f ◦ h : Y ′ → X , then conditions 1) and 2) of Definition 4.6
are satisfied. ��
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On the group of automorphisms of a quasi-affine variety 575

5 The Quasi minimal model

In this section, following [14], we introduce the notion of quasi-minimal models (for
details see [14]). This is a weaker analog of the usual notion of minimal model, which
has an advantage that to prove its existence we do not need the full strength of the
Minimal Model Program.

Definition 5.1 (See [14]) An effective Q-divisor M on a variety X is said to be Q-
movable if for somen > 0 the divisornM is integral andgenerates a linear systemwith-
out fixed components. Let X be a projective variety withQ-factorial terminal singular-
ities. We say that X is a quasi-minimal model if there exists a sequence of Q-movable
Q-divisors Mj whose limit in the Neron-Severi space NSWQ(X) = NSW (X) ⊗ Q

is KX .

By the recent progress in the minimal model program ( see [1,2,14]), every non-
uniruled smooth variety has a quasi-minimal model. In fact, if we ran MMP on X
and we do all possible divisorial contractions (and all necessary flips) we achieve a
quasi-minimal model Y , together with a mapping φ : X− → Y that is a composition
of divisorial contractions and flips. In particular φ is a birational contraction, i.e., the
mapping φ−1 does not contract any divisor (cf. [14], section 4, Corollary 4.5). Thus
we get:

Theorem 5.2 Let X be a smooth projective non-uniruled variety. Then there is a
quasi-minimal model Y and a birational contraction φ : X− → Y . ��

Quasi minimal models have the following very important property (cf. [14], sec-
tion 4, Proposition 4.6):

Theorem 5.3 Let X be a quasi-minimal model. Then Bir(X) = Aut1(X). ��

6 Main result

Now we can start our proof. The first step is

Proposition 6.1 Let X be a normal complete non-uniruled variety and let H be a big
hypersurface in X. Then the group StabX (H) = { f ∈ Aut1(X) : f ∗H = H} is finite.
Proof For some m ∈ N the divisor mH is very big. We have StabX (H) = { f ∈
Aut1(X) : f ∗H = H} = StabX (mH) = { f ∈ Aut1(X) : f ∗(mH) = mH}. By
the assumption, the variety X ′ = imH (X) is birationally equivalent to X . In view
of Corollary 3.10 it is enough to prove that the group Lin(X ′) is finite. Since X is
non-uniruled, the variety X ′ is non-uniruled too. But the group Lin(X ′) is an affine
group and if it is infinite, then by Rosenlicht Theorem (see [15]), we have that X ′ is
ruled - which is impossible. ��

Now we can prove our main result:

Theorem 6.2 Let X be an open variety with a good cover. If the group Aut(X) is
infinite, then X is uniruled.
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576 Z. Jelonek

Proof Assume that Aut(X) is infinite. Let f : Y → X be a good cover of X and take
Y = f −1(X). Then Aut(Y ) is also infinite. We have to prove that X is uniruled. To
do this it suffices to prove that Y is uniruled.

Assume that Y is not uniruled. By Theorem 5.3 there exists a quasi-minimal model
Z and a birational contraction φ : Y− → Z . Take ψ = φ−1. The mapping ψ is a
regular mapping outside some closed subset F of codimension ≥ 2. By the Zariski
Main Theorem the mapping ψ restricted to Z \F is an embedding.

Take a mapping G ∈ Aut(Y ), in fact G ∈ Bir(Y ). The mapping G induces a
birational mapping g ∈ Bir(Z). Since Bir(Z) = Aut1(Z) we have g ∈ Aut1(Z).
The mapping g is a morphisms outside a closed subset R of codimension ≥ 2. Since
the mapping g is an automorphism in codimension one we have codim g−1(F) ≥ 2.
Denote V := Z \ (F ∪ g−1(F) ∪ R) and U = g(V ). The mapping g restricted to
V is an embedding by the Zariski Main theorem. In particular the set U is open and
g : V → U is an isomorphism. The mapping ψ embeds sets V and U into Y . Denote
V ′ := ψ(V ) and U ′ = ψ(U ). Under this identification, the mapping g : V → U
corresponds to the mapping G : V ′ → U ′. Let D = Y \Y be a big hypersurface,
as in the definition of a good cover. The hypersurface D′ := ψ∗(D) is also big ( see
Lemma 4.5) and D′ ∩ V corresponds to D ∩ V ′. Since G(V ′ \D) = U ′ \D, we have
that g transforms irreducible components of D′ ∩ V onto irreducible components of
D′ ∩U . In particular g∗(D′) = D′. This means that Aut(Y ) ⊂ StabZ (D′) ⊂ Aut1(Z).
By Proposition 6.1 this contradicts our assumption. ��
Corollary 6.3 Let X be a quasi-affine (in particular affine) variety. If the group
Aut(X) is infinite, then X is uniruled.

7 Automorphisms of affine non-uniruled varieties

As we know, if X is a quasi-affine non-uniruled variety, then it has a finite auto-
morphism group. We show now that conversely, for every k ≥ 1 and every finite
group G, there is a k-dimensional affine (smooth) non-uniruled variety Xk

G such that
Aut(Xk

G) = G. We start with:

Lemma 7.1 Let �1, ..., �k be affine curves with 0 < g(�1) < g(�2) < . . . g(�k)

(here g(X) denotes the genus of a curve X). Then

Aut

(
k∏

i=1

�i

)

=
k∏

i=1

Aut(�i ).

Proof We proceed by induction. The case k = 1 is trivial. Assume k > 1. Let
� ∈ Aut(

∏k
i=1 �i ). For a point a ∈ ∏k

i=2 �i let �a := �1×{a} and let �′
a := �(�a).

Since the curve�a cannot dominate any curve�i for i > 1wehave that�′
a = �1×φ(a)

where φ(a) ∈ H := ∏k
i=2 �i . Hence � : �1 × H � (x, a) �→ (ψ(x, a), φ(a)) ∈

�1 × H . For a fixed a ∈ H, the mapping ψ(x, a) : �1 � x �→ ψ(x, a) ∈ �1 is
an automorphism of �1. Since the group Aut(�1) is finite, we have that ψ(x, H)

consists of one point, i.e., the mapping ψ does not depend on a ∈ H . In particular,
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On the group of automorphisms of a quasi-affine variety 577

ψ ∈ Aut(�1). The mapping φ : H → H is an automorphism and we conclude the
proof by induction. ��

Now we prove:

Proposition 7.2 For every k ≥ 1 and every finite group G, there is a k-dimensional
affine (smooth) non-uniruled variety Xk

G such that Aut(Xk
G) = G.

Proof Firstwe assume k = 1 andwe construct a non-rational curve�1 withAut(�1) =
G. Since G is a finite group there is a number n such that G is a subgroup of the
permutation group Sn . Consider a mapping

F : K
n � x �→ (s1(x), . . . , sn(x)) ∈ K

n,

where s1, . . . , sn are all elementary symmetric polynomials of n variables. The group
Sn acts effectively on general fibers of F . By (a variant of) the Bertini Theorem the
inverse image of a general hyperplane is again a smooth irreducible hypersurface (we
are in characteristic zero!). If we repeat this argument several times we see that the
inverse image F−1(H) of a general plane H ⊂ K

n is a smooth irreducible surface.
Now let � be a general curve on H of fixed degree d > 2. Again by the Bertini
Theorem the inverse image � of � is a smooth irreducible curve. Of course � is
non-rational, in particular it has finite automorphism group and by the construction
Sn ⊂ Aut(�). Let x ∈ � be a general point such that #Aut(�).x = #Aut(�). Put
�1 = �\G.x . It is easy to see that Aut(�1) = G and we take X1

G := �1. If k > 1,
then we choose curves �2, . . . , �k such that:

1. Aut(�i ) = {identi t y},
2. g(�1) < g(�2) < · · · < g(�k). Now put Xk

G := ∏k
i=1 �i and apply Lemma 7.1.

��
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