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Abstract In order to understand heterogeneous behavior amongst agents, empirical
data from Learning-to-Forecast (LtF) experiments can be used to construct learning
models. This paper follows up on Assenza et al. (2013) by using a Genetic Algo-
rithms (GA) model to replicate the results from their LtF experiment. In this GA
model, individuals optimize an adaptive, a trend following and an anchor coefficient
in a population of general prediction heuristics. We replicate experimental treat-
ments in a New-Keynesian environment with increasing complexity and use Monte
Carlo simulations to investigate how well the model explains the experimental data.
We find that the evolutionary learning model is able to replicate the three different
types of behavior, i.e. convergence to steady state, stable oscillations and damp-
ened oscillations in the treatments using one GA model. Heterogeneous behavior can
thus be explained by an adaptive, anchor and trend extrapolating component and the
GA model can be used to explain heterogeneous behavior in LtF experiments with
different types of complexity.
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1 Introduction

In this paper, we study a simple New Keynesian economy, in which the individuals
optimize a forecasting heuristic with a genetic algorithms optimization procedure.We
show that this GA-model, taken almost directly from Anufriev et al. (2015), is able
to replicate well the main findings of an experimental study by Assenza et al. (2013).
The GA learning model therefore explains individual (micro) as well as aggregate
(macro) behavior of different laboratory economies.

In dynamic macroeconomic models, such as the standard New Keynesian model,
expectation feedback plays an important role in the shape and stability of economic
equilibria. Traditional literature (Muth 1961) would disregard the potential hetero-
geneity of forecasting behavior and focus instead on the model consistent Rational
Expectations. However, limitations on individual rationality are likely to prevail (e.g.
Cornea et al. 2017), especially when the individuals need time to learn the structure
of the economy (Sargent 1993). Once we allow for bounded rationality, a non-linear
price expectations feedback can lead to complicated and potentially volatile dynam-
ics and multiple equilibria (Anufriev et al. 2013a). On the other hand, there are many
different forecasting rules that individuals can use to form their expectations about
future prices. It is, therefore, important to study how such rules are selected in a
realistic learning environment, and how learning in the context of macroeconomics
relates to forecasting in other economic settings, including financial or commodity
markets.

In order to study the individual forecasting behavior in a controlled labora-
tory environment, Learning-to-Forecast (LtF) experiments have been introduced
(Marimon et al. 1993). The role of human subjects is to forecast prices, which are
then translated into realized prices through some market mechanism, such as a sim-
ple supply-driven cobweb economy in which the subjects are framed as advisers to
the commodity producers. The LtF experiments typically have a straightforward and
unique fundamental equilibrium, and hence can be directly used to assess individual
learning dynamics. In practice, they show that individuals indeed have heteroge-
neous expectations (Heemeijer et al. 2009; Hommes 2011; Anufriev and Hommes
2012), which greatly depend on the specific structure of the feedback market. More-
over, subjects can coordinate away from the fundamental equilibrium, or even on
oscillatory time paths (Hommes et al. 2005; Assenza et al. 2013).

In order to understand this heterogeneous behavior, the LtF experimental data
can be used to construct and assess learning models. A notable example is work by
Anufriev and Hommes (2012), who adapted the Brock-Hommes model (Brock and
Hommes 1997) into a Heuristic Switching Model (HSM) with four simple rules, and
apply it to explain the experiment of Hommes et al. (2005). Assenza et al. (2013)
use the same model to explain their experimental findings in a New Keynesian
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setting, while Anufriev et al. (2013b) fit a 2-type HSM to explain the difference
between aggregate behavior in positive versus negative feedback systems. In gen-
eral, HSM remains a versatile model that can approximate the individual learning of
forecasting behavior across different experiments.

A generalized, agent-based counterpart of HSM is the model of individual learn-
ing based on genetic algorithms (GA; Haupt and Haupt, 2004). GA is an optimization
method based on a population of arguments that compete on their function value and
can therefore be applied to a wide class of problems: they rely on an intelligent search
of a large but finite solution space using statistical methods and can deal with discrete
variables and noncontinuous cost functions (Haupt and Haupt 2004). Arifovic (1991)
has developed an augmented GA model, which was consequently applied in different
economic settings such as a cobweb model (Arifovic 1994; Hommes and Lux 2013)
and an overlapping generations model (Arifovic 1995). Following a more developed
version of the model by Hommes and Lux (2013), Anufriev et al. (2015) have shown
that a model in which individuals independently optimize their prediction rules using
GA is able to replicate experimental findings from three different LtF experiments,
based on commodity or financial markets. A great advantage of this approach is that
this model is a generalized version of the HSM without pre-specification of forecast-
ing rules, and hence can be used to motivate the parametrization of simple HSM’s
(Anufriev et al. 2015).

This paper follows up on Assenza et al. (2013) by using a GA model to replicate
the results from their LtF experiment based on a New Keynesian macro model. We
use the same GA model as Anufriev et al. (2015), i.e. we update heuristics with an
adaptive, an anchor an a trend extrapolation coefficient. In this way, we contribute to
understanding LtF experiments in a New Keynesian environment using GA. Unlike
Arifovic et al. (2012) who have investigated GA in a New Keynesian environment
as well, we explain the heterogeneous behavior with heuristics that depend only on
the realizations and previous predictions by the agent, similar to the heuristics used
by Heemeijer et al. (2009), Anufriev and Hommes (2012) and Assenza et al. (2013).
Moreover, we use experimental settings with different types of complexity and show
that LtF experiments with increasing complexities can be explained using the same
GA model. This shows that the GA model is versatile and can replicate varied exper-
imental economies, but also remains robust against the object of the forecasting task.
Our paper thus shows that the original GA model by Anufriev et al. (2015) explains
the individual learning to forecast not only in a univariate model of prices in a specific
market, but also a more complex macrosystem with two variables with expectations
feedback and two different groups of forecasters for inflation and output gap.

We replicate results for six different experimental treatments: three different treat-
ments with increasing complexity (1, 2 and 3), each subdivided into two treatments (a
and b) with more or less aggressive monetary policy. The results from the treatments
1, 2 and 3 in the experiment can be classified in three types of aggregate behavior,
respectively: converging, oscillatory and dampened oscillatory behavior. The main
goal of this paper is to show that all three types of behavior can be reproduced using
50-period ahead simulations of one GA model. We use Monte Carlo simulations as
in Anufriev et al. (2015) to investigate how well the model explains the experimental
data.



1136 C. Hommes et al.

The paper is organized as follows. Section 2 describes our model. We give
a description of the New Keynesian framework, the experimental treatments and
results, and elaborate on the GA model that we use to replicate the experiments.
The results are described in Section 3, where we graphically show the replications
of the experiment and compare the experiment to our replications using descriptive
statistics. In Section 4, we present our conclusions and recommendations.

2 Model

During the past decade the New Keynesian (NK) monetary model has been a widely
used framework for the analysis of monetary policy, in which inflation expecta-
tions play an important role. Branch and McGough (2009) and Massaro (2013)
have incorporated bounded rationality at the individual agent level and heteroge-
neous expectations in the NK model. Assenza et al. (2013) use this model to set
up a laboratory experiment.1 In order to study the individual expectations process,
subjects are asked to forecast the inflation rate under three different scenarios. This
section describes the NK model, the experimental setup and an explanation of the
experimental results, followed by a description of the GA model.

2.1 New Keynesian model

The New Keynesian model with heterogeneous expectations developed by Branch
and McGough (2009) is described by the following equations:

yt = ye
t+1 − ϕ(it − πe

t+1) + gt (1)

πt = λyt + ρπe
t+1 + ut (2)

it = π + φπ(πt − π) (3)

In this system, Eq. 1 describes the aggregate demand in which the output gap yt

depends on the average expected output gap ye
t+1 and on the real interest rate it −

πe
t+1. Equation 2 shows how the inflation rate depends on the output gap and on

average expected inflation. Finally, Eq. 3 is the monetary policy rule implemented by
the monetary authority in order to keep inflation at its target value π . In Eqs. 1 and
2, gt and ut are small normally distributed errors.2

The NK model requires agents to forecast both inflation and the output gap. These
forecasts are 2-period ahead forecasts, since, at the time the forecasts πe

t+1 and ye
t+1

are formed, the most recent observations are πt−1 and yt−1. Given that forecasting

1Pfajfar and Zakelj (2014) and Kryvtsov and Petersen (2013) also run laboratory experiment within a New
Keynesian framework.
2In the experiment the parameters are fixed at the calibration by Clarida et al. (2000): ρ = 0.99, ϕ = 1
and λ = 0.3. The inflation target is set to π = 2. Coefficient φπ measures the response of nominal interest
rate it to deviations of the inflation rate πt from its target π . Error terms gt and ut are both normally
distributed with μ = 0 and σ 2 = 0.01
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two variables simultaneously might be a too difficult task for subjects, the experiment
in Assenza et al. (2013) has been run using three different treatments.

2.2 Treatments

In the first treatment of the experiment, where only the inflation rate needs to be
forecast, the model reduces to a framework with a structure similar to the exper-
imental framework that was used by Anufriev et al. (2015). In this treatment, the
expectations on the output gap are fixed at the equilibrium value. In the second
treatment, subjects only forecast the inflation rate, and expectations on the output
gap are represented by naive expectations, i.e. the last observation. This results in
a two-dimensional structure with output-inflation dynamics that makes the macro
framework more complicated. The third treatment of the experiment represents an
economy driven by individual expectations on two different aggregate variables, with
two different groups of forecasters, predicting, respectively, inflation and the output
gap.

Moreover, all treatments are run under different monetary policy regimes, a regime
a in which φπ = 1 and a regime b in which φπ = 1.5, where φπ is a policy parameter
measuring how strongly the interest rate responds to deviations of inflation from its
target.

2.2.1 Treatment 1

In the first treatment, subjects forecast inflation, while the expectations on the output
gap are assumed to be given by the equilibrium predictor ye

t+1 = (1− ρ)πλ−1. The
initial set of equations can now be written as:

yt = (1 − ρ)πλ−1 − ϕ(it − πe
t+1) + gt (4)

πt = λyt + ρπe
t+1 + ut (5)

it = π + φπ(πt − π) (6)

in which πe
t+1 is the average prediction of the subjects in the experiment. Substituting

(6) into (4) results in:

yt = (1 − ρ)πλ−1 + ϕπ(φπ − 1) − ϕφππt + ϕπe
t+1 + gt (7)

πt = λyt + ρπe
t+1 + ut (8)

Solving this in terms of inflation πt gives:

πt = (1−ρ)−λϕ(φπ−1)
1+λϕφπ

π + λϕ+ρ
1+λϕφπ

πe
t+1 + λgt+ut

1+λϕφπ
(9)

Note that this is a linear relation between πt and πe
t+1, plus a small composite shock

as a third term.

2.2.2 Treatment 2

In the second treatment, subjects also forecast inflation, but now the expectations on
the output gap are assumed to be represented by naive expectations: ye

t+1 = yt−1. In
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this case, inflation and the output gap at time t can be written as follows:

yt = ϕπ(φπ − 1) − ϕφππt + ϕπe
t+1 + yt−1 + gt (10)

πt = λyt + ρπe
t+1 + ut (11)

in which πe
t+1 is the average prediction of the subjects in the experiment. In matrix

form, this system of equations becomes:

[
yt

πt

]
= 1

1+λϕφπ

⎛
⎜⎝

[
0 ϕ(1−φπρ)

0 λϕ+ρ

][
ye

t+1
πe

t+1

]
+

[
1 0
λ 0

][
yt−1
πt−1

]
+

[
1 −ϕφπ

λ 1

][
gt

ut

]⎞⎟⎠(12)

This treatment is more complicated than the first since the inflation does not only
depend on expected inflation but also on the lagged output gap as ye

t+1 = yt−1.

2.2.3 Treatment 3

In the third treatment, two groups participate in the same experimental economy,
where one group forecasts inflation and the other group forecasts the output gap. Sub-
stituting (3) into (1) and writing the equations in matrix form results in the following
system:

[
yt

πt

]
= 1

1 + λϕφπ

⎛
⎜⎝

[
1 ϕ(1 − φπρ)

λ λϕ + ρ

][
ye

t+1
πe

t+1

]
+

[
1 −ϕφπ

λ 1

][
gt

ut

]⎞
⎟⎠ (13)

In contrast to the first two treatments, treatment 3 represents an experimental econ-
omy the aggregate behavior of which is driven by individual expectations on two
different interacting aggregate variables.

2.2.4 Monetary policy regimes

Each of the three treatments was run under two different monetary policy regimes. In
sessions a, the coefficient φπ = 1, so that Eq. 3 reduces to it = πt . With this setting,
there is no attraction whatsoever to target inflation value π . In session b, coefficient
φπ is set to 1.5 so that the monetary policy responds to inflation aggressively. In
this scenario, π does not drop out of Eq. 3, so that the inflation rate has a tendency
towards target value π .

2.3 Experimental results

The experimental results can be classified into three different types of behavior. Six
experimental groups that clearly show these different types of behavior are presented
in Fig. 1a through f.

Convergence In treatment 1a, two groups converge to a non-fundamental steady
state equilibrium (see Fig. 1a). Because the monetary policy responds weakly to
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Fig. 1 Typical experimental results

inflation rate fluctuations, subjects coordinate on inflation rates other than the target
inflation rate. In treatment 1b, two out of three group also converge to a steady state.
In this case, however, the monetary policy responds aggressively to inflation, so that
subjects tend to coordinate on the target inflation (Fig. 1d).

Oscillations In the second treatment, a different type of aggregate behavior can be
observed. Subjects in group 2 of treatment 2a converge to an oscillatory pattern (see
Fig. 1b). The oscillations are principally above the target inflation rate, due to the
lack of an aggressive monetary policy. In treatment 2b, subjects are again forced
towards the target inflation rate. The experiment shows small oscillations around the
fundamental inflation rate (Fig. 1e).

Dampened oscillations The third type of aggregate behavior that this research aims
to reproduce is an oscillatory convergence towards a steady state. This behavior
occurs in the second session of treatment 3b (Fig. 1f), which starts out with oscilla-
tions around the target inflation rate. The oscillations slowly dampen such that there
is convergence to the fundamental steady state (which is in line with the monetary
policy settings of the b-treatment) near the end of the session.

2.4 The genetic algorithm model

We follow Arifovic’s augmented GA model, in which every individual starts with
a set of forecasting heuristics for either inflation rate or the output gap, which are
encoded in binary string. After initialization of the model, the heuristics undergo a
GA iteration. This iteration, an optimization procedure that uses four evolutionary
operators, is the core of the model.
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In the GA model, each individual possesses a population of 20 forecasting
heuristics, in which one or more parameters need to be optimized. Every heuristic,
therefore, entails a candidate vector of optimization parameters encoded in a binary
string. This binary string can be seen as a chromosome containing one or more genes
- the parameters in the vector. Parameter θn

h,i,t is the nth parameter in heuristic h of
individual i in period t , and is coded in a binary string of length l with binary values
g

n,k
h,i,t at the kth position in the string as follows:

θn
h,i,t = an + bn − an

2l−1

l∑
k=1

g
n,k
h,i,t2

k − 1 (14)

Since each gene has a finite length, the parameter values are limited to a finite inter-
val, with an and bn as lower and upper boundary, respectively, and to a finite number
of different values. The size of this interval, together with the length of the string,
determines the precision of the parameter.3

2.4.1 GA iteration

The encoded heuristic goes through four stages of updating: reproduction, mutation,
crossover and election. The operators in the GA iteration are inspired by the theory
of evolution, but also have an economic intuition.

The first operator in every GA iteration is the reproduction operator, which ran-
domly draws 20 heuristics for each individual. Every draw takes place according to
the heuristics’ probabilities to be chosen for reproduction, based on their performance
measure. The reproduction operator represents the phenomenon that more successful
strategies (in terms of utility) are more likely to be used in the future.

After reproduction there is a small probability that amutationwill occur in the new
strategy. In the binary string, each position has an equally small chance of changing
from a 0 to a 1 or vice versa. Depending on the position of the string in which the
mutation takes place, the effect of a single mutation can be significant or very small.

Combining two different strategies into new strategies is captured by the crossover
operator, whereas the mutation operator models small changes in strategies. All 20
heuristics that are picked in the reproduction stage are, after mutation, signed up
as random pairs and will interchange a part of the binary string that represents the
forecasting coefficients.4

In the crossover and mutation stage, two new heuristics are formed from the two
old heuristics for the new period. Because these two new heuristics do not always

3We take genes to consists of 20 bits. This means that interval [an bn] is subdivided into 220 ≈ 106

possible values. In an interval with length 1, say an interval [0 1], the precision in the GA model is then
approximately 10−6.
4In this research, the heuristic is a binary representation of multiple coefficients. The crossover is designed
such that a subset of these coefficients is interchanged, i.e. the string is not broken up within a coefficient,
which means that no new values for coefficients come into existence during the crossover stage. Hence,
mutation and crossover have strictly different functions.



Genetic algorithm learning in a New Keynesian macroeconomic setup 1141

perform better than its predecessors, an election operator tests the performance of the
two new and the two old heuristics. The performance of these strings will be based
on the difference of the inflation (or output gap) prediction with respect to the last
observed inflation (output gap). Out of these four strings, the best performing two
will be chosen for the next period.

After the GA iteration, every individual has an updated set of heuristics at his
disposal. From this new set of heuristics, every individual chooses one as his infla-
tion (or output gap) forecast. In order to make this choice, individuals make use of
a performance measure for every heuristic: heuristics that perform better, according
to this measure, have a higher probability of being chosen. The forecasts of all indi-
viduals together determine the first actual value for inflation or output gap according
to Eqs. 1, 2 and 3. Individuals now take their updated set of heuristics to the next
period, in which the next GA iteration starts. The complete iterative process in the
model is illustrated in Fig. 2. This process continues for a number of periods, in
which individuals should be able to make better predictions as time goes by, because
their heuristics update every iteration.

2.4.2 Forecasting heuristics

GA can be interpreted as a generalized version of the forecasting heuristics in the
heuristic switching model used by Assenza et al. (2013). Agents do not choose from
a set of predefined rules, but use Genetic Algorithms to optimize over a set of param-
eters in a simple class of linear prediction rules, based on the past inflation and/or
output gap, individual past prediction, the observed trend and the average of past
inflation and/or output gap.

Fig. 2 Schematisation of the GA model
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This general rule consists of an adaptive component (α), a trend extrapolating
component (β) and an anchor component (γ ). The linear forecast for period t + 1 is
given by

xe
i,t+1 = γ xav

t−1 + (1 − γ )(αxt−1 + (1 − α)xe
i,t ) + β(xt−1 − xt−2), (15)

where xt−1 is the last observation, xt−1 − xt−2 the last observed change (or trend),
xe
i,t the last forecast by subject i and xav

t−1 the observed sample average. This rule is in
line with the so-called ‘first order heuristic’, which is used by Heemeijer et al. (2009)
to explain the participants’ behavior in an experimental economy, and is also used in
the GA model by Anufriev et al. (2015). A condition of the first order heuristic is that
the coefficients for the anchor [γ ], the last observed value [(1 − γ )α] and the last
forecast [(1 − γ )(1 − α)] are non-negative and sum to one. This particular way of
formulating the forecasting heuristic ensures this for all values of α and γ between
0 and 1. Individuals optimize the three coefficients α, β and γ , encoded in a 60-bit
string (3 × 20 bits).

The forecasting heuristics described above are used for simulations of all three
different treatments. In treatments 1 and 2, only inflation π is predicted by the
participants, so that the forecasting heuristic simply becomes:

πe
i,t+1 = γi,h,tπ

av
t−1+(1−γi,h,t )(αi,h,tπt−1+(1−αi,h,t )π

e
i,t )+βi,h,t (πt−1−πt−2) (16)

where αi,h,t , βi,h,t and γi,h,t are the parameters of subject i, for rule h, in period t . In
treatment 3, however, there are six participants who predict inflation while six other
participants predict the output gap. Both variables are updated using the same general
rules. Superscripts π and y are added to coefficients α, β and γ to differentiate
between inflation and the output gap:

πe
i,t+1=γ π

i,h,tπ
av
t−1+(1−γ π

i,h,t)(α
π
i,h,tπt−1+(1−απ

i,h,t)π
e
i,t)+βπ

i,h,t (πt−1−πt−2) (17)

ye
i,t+1=γ

y
i,h,t y

av
t−1+(1−γ

y
i,h,t )(α

y
i,h,t yt−1+(1−α

y
i,h,t )y

e
i,t )+β

y
i,h,t (yt−1−yt−2). (18)

2.4.3 Performance measure

In this GA framework, every individual has a whole range of forecasting heuristics
at hand to forecast inflation (or the output gap) in every period. This choice is made
on the basis of the performance of the heuristics, determined by a fitness measure.
Hence, the type of performance measure used in the model is of key importance to
the simulation process. In the GA model, this performance measure is assumed to
be equal to the payoff function used by Assenza et al. (2013) in their experiment,
namely:

Ui,h,t = 100

1 + ||xe
i,h,t−1 − xt−1|| . (19)

The performance measure of each heuristic is used twice in every GA iteration: to
choose heuristics for reproduction, and to pick one heuristic as a forecast for the
next period. In both cases, the probability that a heuristic is chosen is obtained by
formalizing the logit-transformation of the utility measure and adding an intensity
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of choice parameter βs .5 This parameter measures the sensitivity of individuals to
differences in the performance of their heuristics. This is in line with the performance
measure that was used in the HSM by Assenza et al. (2013). The probability that a
heuristic is chosen then becomes:

�i,h,t = exp(βsUi,h,t−1)∑H
h=1 exp(βsUi,h,t−1)

. (20)

For all simulations in this research this normalized logit-transformation is used. We
choose βs = 1 in all simulations. The performance measure then simply becomes:

�i,h,t = exp(Ui,h,t−1)∑H
h=1 exp(Ui,h,t−1)

. (21)

2.5 Parametrization

Besides the GA operators, the forecasting heuristics and the performance measure,
the model requires the tuning of a few important model settings to replicate the
experimental economies. These aspects are discussed in this section.

2.5.1 Initialization of the model

Each session in the LtF experiment consists of 50 periods, which means that the GA
model should run for the same amount of time. Almost all GA-simulations below will
be 50-period ahead simulations. This means that no information from the experiment
is used except for the initial predictions by the subjects.6 There are two aspects of the
initialization of the GA-model: (1) what are the first two predictions in the first period
(when there are no past observations yet, and so the forecasting heuristics cannot
be used)?, and (2) in the second period (when the heuristics can be used), which
coefficients α, β, and γ do the GA agents use? The initialization is done as follows:
(1) the initial predictions for periods 1 and 2 are taken from the experimental data (the
two initial predictions of each of the six subjects), and (2) the initial parameters α, β,
and γ of the forecasting heuristics are randomly chosen (from uniform distributions
of the bits in the chromosomes). After this initialization, the model is run for 49 more
periods, following the scheme of the GA shown in Fig. 2.7

5Subscript s is added to this parameter to distinguish the intensity of choice parameter from the trend
extrapolation parameter in the heuristics.
6Recall that in the NK macroeconomic setup, subjects do not predict the present inflation, but the inflation
for the next period (i.e. two periods ahead forecasts). Therefore, predictions are needed not only for the
first but also for second period. In the second period, subjects observe the inflation in period 1, which they
can use in their prediction of the inflation in period 3.
7The first period of the iteration, however, differs from the following 48 periods, because subjects cannot
use trend extrapolation yet. In this period, there is only one observation of the inflation rate and output
gap. It is, therefore, assumed that the trend extrapolation coefficient equals zero in this period. After period
two, the GA updating continues in full form, where agents can forecast using both past inflation rate and
output gap and the past trend or change in the inflation rate and the output gap.
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2.5.2 Parameters GA model

As explained earlier, the parameters α, β and γ are restricted to a finite interval. For α
and γ the ranges are obvious: the conditions of the first order rule dictate that both α

and γ should be between 0 and 1. The ranges for trend extrapolation parameter β are,
however, not subject to any constraints. Furthermore, trend extrapolation parameters
can, in theory, be negative as well, indicating ‘contrarian’ behavior. Massaro (2012)
showed that subjects in the experiment indeed make use of trend extrapolation, but
that virtually all subjects use positive coefficients. The range of β is therefore set
to [0, 3] to allow for relatively weak (0 to 1) and relatively strong (1 to 3) trend
extrapolation.

Furthermore, the mutation and crossover operators are both subject to a certain
probability of occurrence. Throughout the simulations in this research, the mutation
rate is set to 0.01, so that during every GA iteration, every bit in every string has a
1% chance of mutating. Crossover does not always happen, either; the crossover rate
is set to 0.9, which means that each pair of strings has a 90% chance of interchanging
a part of the string.8

2.5.3 Monte Carlo simulations

In order to investigate how well the model explains the experimental data, Monte
Carlo simulations are carried out. For all six treatments, simulations of 1000 replica-
tions are run. In each run, we draw all initial heuristics (six agents with 20 heuristics
each) with parameters α, β and γ drawn randomly from a uniform distribution. The
initial conditions for the predicted inflation (output gap) by agents, πe

i,1 (ye
i,1) and

πe
i,2 (ye

i,2), are the same in every run and equal to the first two predictions by the par-
ticipants in the corresponding experiment. Shock terms gt and ut (see Eqs. 1 and 2)
are equal to the shocks used in the experiment and therefore also the same in each
run of the Monte Carlo simulations.

These Monte Carlo simulations of 1000 runs of the GA-model enable the compu-
tation of confidence intervals. We will compare the experimental results to the mean
and the 90% and 95% confidence intervals of the 50-period ahead Monte Carlo GA
simulations. Moreover, a confidence interval for some descriptive statistics will be
computed. For each treatment, this enables us to compare the mean and standard
deviation of 1000 runs of the GA-model to the experimental result.

3 Results

This section compares the experimental results to the mean and the 90% and
95% confidence intervals of the Monte Carlo simulations, illustrated graphically.
Additionally, confidence intervals of the mean and standard deviation are compared.

8We have performed robustness checks with different crossover rates 0.5 and 0.1 instead of 0.9 and
mutation rates 0.1 and 0.05 instead of 0.01 and obtained similar results of the GA simulations.
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Fig. 3 Monte Carlo results: treatment 1

3.1 Treatment 1

In treatment 1, the experiment shows how the subjects coordinate on a steady state
(see Fig. 1a and d). In treatment 1a, monetary policy is weak (φπ = 1), so that there
is no tendency towards the target inflation value, and coordination on a wide range of
inflation rates can occur. In treatment 1b, however, under aggressive monetary policy
rules (φπ = 1.5), the target inflation plays an important role in the system, so that
subjects coordinate on this value when this converging behavior takes place.

Figure 3 shows the mean and the 90% and 95% confidence intervals of the Monte
Carlo simulations together with the experimental data of treatment 1. The mean of the
treatment 1b simulation (Fig. 3b) moves around the target inflation, consistent with
and close to the experimental data. In contrast, in treatment 1a (Fig. 3a), the mean of
the GA-simulation stays below the target inflation consistent with the experimental
data.

In both treatments 1a and 1b, the confidence intervals of the GA-simulations
slowly increase and become wide towards the end of the experiment, after period 40.
These confidence intervals are wider in treatment 1a (Fig. 3a) than they are in treat-
ment 1b (Fig. 3b), showing that drifts of the inflation rate away from the target are
more likely to occur under weak monetary policy consistent with the experimental
results.

In both treatments 1a and 1b, drifts in inflation and even some oscillatory behavior
(in the confidence intervals) are visible, whereas this behavior is absent in the experi-
mental groups (Fig. 1a and d). The standard deviation of the Monte Carlo simulations
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Fig. 4 Monte Carlo results: treatment 2



1146 C. Hommes et al.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50

Experiment

Simulations

95% CI

90% CI

(a)

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50

Experiment

Simulations

95% CI

90% CI

(b)

Fig. 5 Monte Carlo results: treatment 3

increases at the end of the simulation period, indicating diverging behavior at least
in some GA simulations. The long run drift in inflation and some oscillatory behav-
ior in the GA-simulations is caused by coordination on trend-following behavior and
relatively high trend-coefficients β (see Fig. 6b below). Furthermore, unstable diver-
gence is still unlikely after 50 periods, as e.g. the 90% confidence interval remains
bounded after 50 periods.

3.2 Treatment 2

Figure 4 shows the mean and the 90% and 95% confidence intervals of the Monte
Carlo simulations together with the experimental data of treatment 2. The mean as
well as the confidence intervals of the GA-simulations capture the oscillations in
the experimental data of treatment 2. The amplitude of the oscillations in the exper-
imental data in treatment 2a, however, is much larger than in the 50-period ahead
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Fig. 6 Monte Carlo results: evolution of the chosen heuristic coefficients
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GA-simulations and the maxima and minima are outside the 95% confidence inter-
vals (Fig. 4a). Apparently, the long run (50-periods ahead) GA simulations do not
capture well the strong coordination on large amplitude oscillations in the experi-
ment, perhaps because the GA-model is too noisy, so that the long run coordination
is too weak.

In treatment 2b, the oscillatory pattern of the mean of the GA-simulations matches
the experimental results. Although the amplitude of the mean of the GA simulations
is somewhat smaller, the experimental data remain within the 95% confidence inter-
val of the GA simulations most of the time (Fig. 4b). Furthermore, as in treatment
1, the difference in monetary policy settings is captured well by the GA simulations.
With a weak monetary policy, as in treatment 2a, the magnitude of the confidence
intervals of the GA simulations remains more or less constant (with some oscilla-
tions). With more aggressive monetary policy, as in treatment 2b, inflation and the
output gap are more stable and converge to the target.9

3.3 Treatment 3

The experimental results of treatment 3a clearly show no attraction to the target
inflation (Fig. 5a). This is replicated well by the simulations. The mean of the GA
simulations remains almost constant, close to the experimental data. The simula-
tions of treatment 3b replicate the oscillatory behavior that occurs in the experiment
(Fig. 4b). Similar to treatment 2b in Fig. 5b, we see that the experimental inflation
data remain almost entirely within the 95% confidence interval, while the mean of
the Monte Carlo simulations oscillates and closely resembles the experiment. We also
see that the dampening of the inflation oscillations under more aggressive monetary
policy resembles the dampening in the experiment. Under weak monetary policy in
treatment 3a, the confidence intervals of the GA simulations remain wide and above
target, while under aggressive monetary policy in treatment 3b the confidence inter-
val initially shows oscillations but stabilizes around the target in the long run after 40
periods.

3.4 Heuristic parameters chosen by the agents

Because each treatment yields different dynamics, the coefficients α, β and γ of
the forecasting heuristic are optimized differently by the agents. Figure 6a through c
compare the time evolution of the mean α, β and γ in the six different treatments;
Appendix contains the confidence intervals for all parameters and all treatments over
1000 runs of Monte Carlo simulations. In general, we can say that, in each period in
the simulation, the adaptive parameter α, becomes more important, while the trend
extrapolation β and the anchor γ become less important. This goes for all treatments.
The trend coefficients remain positive and relatively large (≤ 0.65) in all treatments.

9Massaro (2012) presents three experimental groups in treatment 2b. We have focused here on group 3
(Figs. 1e and 4b) showing small amplitude fluctuations. Groups 1 and 2 of treatment 2b in Massaro (2012)
are in fact more stable and converge to the inflation target, within the 95% confidence intervals of the
GA-simulations.
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We do, however, see differences between the different treatments. In particular, for
each of the coefficients, treatment 1 differs from treatments 2 and 3. The steeper
curves of the optimization parameters in treatments 2 and 3 indicate that the model
incentivizes GA agents to update their coefficients faster in these treatments.

Figure 7 compares the average trend extrapolating coefficients of treatments 3a
and 3b. More aggressive monetary policy (3b) somewhat stabilizes the trend extrap-
olating coefficients in the short and medium run (the graphs cross at t=19), but not in
the long run, where treatment 3b has somewhat stronger trend extrapolation.

3.5 Descriptive statistics

In addition to the confidence intervals of the Monte Carlo simulations, we now com-
pare some simple statistics, the mean and the standard deviation of the experimental
data and the Monte Carlo GA simulations. We use the 1000 runs of the Monte Carlo
simulations to create a mean and a confidence interval for these three statistics.
Table 1 shows that the mean of the experimental inflation rate is close to the mean of
the simulated inflation rate. Moreover, in each of the six treatments, the mean experi-
mental inflation rate lies within the confidence interval of the simulations. The model
especially captures the difference between the a- and b-session of the treatments. In
the b-sessions, the mean is closer to target inflation rate due to a more aggressive
monetary policy. This also causes the smaller confidence intervals around or close to
the inflation target of 2% in treatments b.

Table 1 Mean of the simulated and experimental inflation rate averaged over 50 periods

Treatment 1a 1b 2a 2b 3a 3b

Experimental μ 1.3333 2.0719 2.7367 2.0882 3.3728 2.2939

Mean Simulated μ 1.7848 1.9042 2.2795 2.0682 3.5199 2.3500

0.9772 1.3516 1.6637 1.9468 2.1906 2.1426

95% confidence interval − − − − − −
2.7198 2.3093 2.9664 2.1411 4.8938 2.5496
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Table 2 Standard deviation of the simulated and experimental data averaged over 50 periods

Treatment 1a 1b 2a 2b 3a 3b

Experimental σ 0.1054 0.1094 1.8136 0.4402 2.3709 0.5978

Mean Simulated σ 1.1699 0.9098 0.4541 0.5036 0.7936 0.8242

0.1287 0.1116 0.1100 0.1512 0.1290 0.3739

95% confidence interval − − − − − −
5.1134 5.0176 3.0803 3.3741 4.2448 3.6851

Table 2 shows how the standard deviation of the experimental inflation rate is
replicated by the Monte Carlo simulations. We notice that the mean of the simu-
lated standard deviations differs from the standard deviations in the experiment and
that the confidence intervals of the Monte Carlo simulations are large. In treatment
1, the large confidence intervals are especially striking, since the experiments show
converging behavior with little variance. In treatments 2 and 3, the mean standard
deviation in the simulations is of same order of magnitude as the variance in the
experiment. We see that the model overestimates the standard deviation of the infla-
tion rate in the b-sessions, while it underestimates the variance in the a-sessions.
Furthermore, the 95% confidence intervals of the b-treatments are almost as large as
for the a-treatments, so that this measure does not capture the more stable behavior
under aggressive monetary policy in the experimental b-sessions.

Table 2 represents experimental and simulated standard deviations averaged over
50 periods. These results may be biased through an initial learning phase of the
experiments. To investigate the long run outcomes Table 3 shows the experimental
and simulated standard deviations, at the end of the experiment after 50 periods. For
treatment b, with a more aggressive monetary policy rule, the mean after 50 periods
is closer to the inflation target of 2% than in treatment a, consistent with experi-
mental data. Furthermore, for treatment b, the standard deviation of the simulations
is smaller than in treatment a. For the GA simulations treatment b, with a more
aggressive monetary policy rule, is thus more stable than treatment a, consistent with
experimental data.

3.6 One-period ahead forecasts

All GA-simulations presented so far have been long run 50-period ahead simulations.
These long run simulations do not use the most recent updated information from the

Table 3 Mean and standard deviation of the simulated and experimental data after t = 50 periods

Treatment 1a 1b 2a 2b 3a 3b

Experiment at t = 50 1.2191 1.9909 2.2050 2.3067 3.719510 1.9941

Mean simulations at t = 50 1.4014 1.6919 2.1981 1.9488 3.4677 2.0136

St. dev. simulations at t = 50 4.1789 3.2827 0.8036 0.5619 1.3317 0.6992

10In treatment 3a, the experimental inflation at t = 50 is very high at 19.6097, due to one extreme forecast.
Therefore, we report inflation for t = 49.
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experiment, but only use the initial predictions by the subjects for initialization of the
GA-model. The mean and confidence intervals of the 50-period ahead Monte Carlo
GA simulations capture most of the experimental results in different treatments fairly
well. However, one striking feature of the laboratory experiments not captured by the
50-period ahead simulations is the large amplitude fluctuations observed in treatment
2a, which are clearly outside the 95% confidence bands of the 50-period aheadMonte
Carlo simulations of the GA-model (see Fig. 4a).

In this subsection, we consider one-period ahead GA-simulations to explain the
large amplitude fluctuations in treatment 2a, group 2 (Fig. 1b). The one-period ahead
simulations use the most recently observed experimental data, and therefore are based
on the same information as available to the subjects in the experiment. Hence, in
period t , when forecasting inflation in period t + 1, one-period ahead GA simula-
tions use inflation up to period t − 1, consistent with observable information in the
experiment. Instead of long run prediction with a 50-period ahead simulation, the
one-period ahead simulation thus “follows” the most recently observed realizations
of inflation and other relevant observable macro variables.

Figure 8 shows a one-period ahead forecast simulation of the GA-model of treat-
ment 2a, group 2. The figure shows the mean and the 90% and 95% confidence
intervals of 1000 runs of the one-period ahead GA-simulations together with the
experimental data. The mean of the one-period ahead GA simulation is fairly close
to the experimental data and follows the large fluctuations most of the time. Hence,
the one-period ahead GA simulations are able to capture the coordination on large
amplitude fluctuations, as observed in the experiment. Only around the local maxima
and local minima do the experimental data move outside the 90 − 95% confidence
band and the GA one-period ahead simulations do not fully capture the most extreme
inflation realizations (e.g., around the global minimum around period 45).

4 Conclusions and recommendations

In this paper, we present a genetic algorithm model in which individuals optimize
an adaptive, a trend following and an anchor coefficient in a population of general
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prediction heuristics. With this model, based on Anufriev et al. (2015), we repli-
cate results of a Learning-to-Forecast experiment by Assenza et al. (2013). The
experiment investigates how individuals learn to forecast in a New Keynesian
macroeconomy with three different treatments, each of them with two different mon-
etary policy settings. The results of this experiment can be classified in three types of
aggregate behavior: converging, oscillatory and dampened oscillatory behavior.

We show that a single GA model with a simple set of rules can explain adap-
tive behavior of human subjects in a predictions feedback environment with varying
levels of complexity. As with Arifovic et al. (2012), this paper contributes to under-
standing learning behavior in a New-Keynesian environment. It furthermore shows
that heterogeneous behavior can be explained by an adaptive, anchor and trend
extrapolating component. We also contribute to the existing literature that GA can
be used to explain heterogeneous behavior in LtF experiments with different types
of complexity, but also for macro experiments with two or more aggregate variables,
next to more classical ones based on single commodity and financial asset markets.

The 50-period ahead simulations of the GA model are able to replicate these types
of behavior from the experimental results. In the first treatment, which typically
shows converging behavior, the model clearly captures the difference between the
two monetary policy settings. Furthermore, our model clearly replicates the oscil-
latory and dampened oscillatory behavior from treatment 2b and 3b respectively.
In particular, the GA model explains more stable behavior in treatments b, when
monetary policy is more aggressive.

The 50-period ahead GA simulations, however, are not able to capture the coordi-
nation on large amplitude fluctuations that we see in treatment 2a of the experiment.
Apparently, the long run simulations do not explain coordination on large amplitude
fluctuations, perhaps because the GA model is too noisy to explain such coordina-
tion in the long run. One-period ahead GA simulations, however, using the same
recently observed experimental data available to subjects in the experiment, well
explain coordination on these large amplitude fluctuations.

If we look at the aggregate outcomes of heuristic parameters α, β and γ , we see a
distinction between treatment 1, on the one hand, and treatments 2 and 3, on the other.
In both treatments 1a and 1b, there is fast coordination on an equilibrium, after which
choices for α, β and γ become almost irrelevant because the inflation and individual
predictions of the inflation only slightly fluctuate due to the composite shock term. In
treatments 2 and 3, however, we see that α increases and β and γ decrease over time.
Nevertheless, the trend coefficient β remains positive and relatively large (≥ 0.65),
showing that trend-following behavior remains important.

During the procedure of replicating the oscillatory and dampened oscillatory
behavior, we find that the model is sensitive to changes in the allowed ranges for
the trend extrapolation coefficient. We use a wider range for this parameter than
Anufriev et al. (2015). This underlines their finding that different feedback struc-
tures lead to different degrees of trend extrapolating behavior. As a result, further
work may be necessary to find a generalized version of this model that would cap-
ture this aspect of the individual behavior. We also note that the more complicated
experimental treatments require some adaptation of the GAmodel (c.f. Anufriev et al.
2015, who encountered a similar problem with the two-period ahead non-linear asset
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pricing economy). This shows that further research should focus on extensions and
refinements of this GA model.
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Appendix: Confidence intervals
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Fig. 9 GA model: confidence intervals for the α parameter
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