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Abstract

We prove partial regularity for local minimisers of certain strictly quasiconvex
integral functionals, over a class of Sobolev mappings into a compact Riemannian
manifold, to which such mappings are said to be holonomically constrained. Our
approach uses the lifting of Sobolev mappings to the universal covering space, the
connectedness of the covering space, an application of Ekeland’s variational prin-
ciple and a certain tangential A-harmonic approximation lemma obtained directly
via a Lipschitz approximation argument. This allows regularity to be established
directly on the level of the gradient. Several applications to variational problems in
condensed matter physics with broken symmetries are also discussed, in particular
those concerning the superfluidity of liquid helium-3 and nematic liquid crystals.

1. Introduction and Statement of Main Result

Let M be a compact submanifold of RN without boundary and � ⊂ R
n be a

Lipschitz domain. We define the Sobolev space of mappings intoM by

Ws,p(�,M) = {u ∈ Ws,p(�,RN ) : u(x) ∈ M almost everywhere x ∈ �} (1)

for s � 1 and 1 � p � ∞. Note that the definition is independent of isometric
embedding (cf. [50, Lem. 1.4.3]) and the set Ws,p(�,M) inherits strong and
weak topologies fromWs,p(�,RN ). The local spaceWs,p

loc (�,M) consist of maps
belonging toWs,p(�′,M) for all�′ ⊂⊂ � (that is for all�′ compactly embedded
in �).

Given an integral functional of the form

F(v;�) =
ˆ
�

f (x, v, Dv) dx,

where v : � ⊂ R
n → R

N with n, N � 2, we say:
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Definition 1.1. A map u ∈ W 1,p
loc (�,M) is an holonomically constrained local

minimiser of F, or simply an holonomic F-minimiser, if

F(u;�′) � F(v;�′)

for all v ∈ (u + W 1,p
0 (�′,RN )) ∩ W 1,p(�′,M) and all open �′ ⊂⊂ �.1

Note that the competitor v to the minimiser u must fulfil the manifold con-
strained condition as well as agreeing with the trace of u on the boundary—in the
sense that v−u ∈ W 1,p

0 (�,RN ), whereW 1,p
0 (�,RN ) is the closure of the smooth

compactly supported functions C∞
c (�,RN ) in the ‖ · ‖W 1,p -norm.

In this paper we shall consider an integrand f : � × R
N × R

Nn → R, for
p � 2, which satisfies the following structural assumptions, namely:

(h0) The function ξ 	→ f (x, u, ξ) is C2 and (x, u, ξ) 	→ D2
ξξ f (x, u, ξ) is jointly

continuous.
(h1) f satisfies the p-growth condition

| f (x, u, ξ)| � �(1 + |ξ |p)

for some constant � > 0 and all (x, u, ξ).
(h2) f satisfies Morrey’s quasiconvexity condition in the following strong form

γ

ˆ
�′
(1 + |ξ |2 + |Dφ(y)|2) p−2

2 |Dφ(y)|2 dy �
ˆ
�′

( f (x, u, ξ + Dφ(y))

− f (x, u, ξ)) dy

for some constant γ > 0, every (x, u, ξ), every bounded open �′ ⊂ R
n and

every φ ∈ C∞
c (�′,RN ).

(h3) f satisfies

| f (x, u, ξ) − f (y, v, ξ)| � � ωμ(|x − y| + |u − v|)(1 + |ξ |p),

where ωμ(t) = min(1, tμ) for a given 0 < μ � 1.
(h4) There exists a continuous ψ : RNn → R satisfying

f (x, u, ξ) � ψ(ξ) and
ˆ
�

ψ(Dϕ) �
ˆ
�

ψ(0) + γ |Dϕ|p

for every ϕ ∈ C∞
c (�,RN ).

1 Following the terminology introduced byHertz [51, p. 91], subsidiary conditions of this
type are referred to as holonomic constraints (from Óloj, holos—whole, entire, complete in
all its parts; nÒmoj, nomos—law 〈taken tomean ‘integrable’ via the Latin integer—complete,
whole, entire, intact〉).
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We remark that (h4) is obviously satisfied if f (x, u, ξ) � |ξ |p but also allows
for integrands with varying sign. It is easy to show that the growth condition (h1)
together with the quasiconvexity of (h2) is enough (in fact f need only to be rank-
one convex) for the derivative Dξ f to satisfy the growth condition

|Dξ f (x, u, ξ)| � c(1 + |ξ |p−1) (2)

and
| f (x, u, ξ + η) − f (x, u, ξ)| � c(1 + |ξ |p−1 + |η|p−1)|η|. (3)

As remarked in [3], there is no growth condition placed on the second order deriv-
atives of ξ 	→ f (x, u, ξ). We merely have, for any given �′ ⊂⊂ � and any given
� > 0, the existence of a finite K� such that

sup
x∈�̄′

sup
|u|,|ξ |��

|D2
ξξ f (x, u, ξ)| � K�. (4)

There are also no global uniform continuity assumptions imposed on D2
ξξ f (x, u, ξ)

either. One only has (u, ξ) 	→ D2
ξξ f (x, u, ξ) uniformly continuous on compact

subsets. In fact, associated to� > 0, a min-max construction implies the existence
of a non-decreasing concave modulus of continuity ω : [0,+∞) → [0, 1], with
limt↘0 ω(t) = 0 and ω(t) = 1 for all t � 1, such that

|D2
ξξ f (x, u1, ξ1) − D2

ξξ f (x, u2, ξ2)| � cω(|u1 − u2| + |ξ1 − ξ2|) (5)

for any |ui |, |ξi | � � + 1 and x ∈ �̄′.
In considering the above geometric and analytic aspects, we seek to prove the

following main result:

Theorem 1.2. Let M be a connected compact C3-Riemannian manifold without
boundary and π : ˜M → M be its universal covering. Suppose the fundamental
group π1(M) is finite, ˜M is -connected for some integer 1 �  � n − 2, and the
integrand f satisfies (h0), (h1), (h2), (h3) and (h4) for 2 � p <  + 2. Then for

any holonomic F-minimiser u ∈ W 1,p
loc (�,M) there is a relatively closed subset

Sing u ⊂ � of Lebesgue measure zero such that

u ∈ C1,β
loc (�\Sing u,M)

for some 0 < β < 1.

Note that a topological space X is said to be -connected if its first  homotopy
groups vanish identically, that is

π0(X) = π1(X) = · · · = π−1(X) = π(X) = 0. (6)

A non-empty space X is 0-connected if and only if it is pathwise connected. A
space X is 1-connected if and only if it is simply connected.

Recall also that (1) every connected manifold admits a universal covering by
a simply connected manifold; (2) a connected compact manifold has a compact
universal cover if and only if the fundamental group of the base space is finite;
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and that (3), the homotopy groups of the covering space of order higher than 2
are equal to the homotopy groups of the base space (cf. [49,52]). In our proof, the
compactness and connectedness of covering space is needed in Section 4 for the
construction of suitable comparison maps.

Example 1.3. If k � 2 is an integer we have:

M π0 π1 UC 

Sk 0 0 Sk k − 1 k-sphere
RPk 0 Z2 Sk k − 1 Real projective space
SO(k + 1) 0 Z2 Spin(k + 1) 2 Special orthogonal group
U (k) 0 Z R × SU (k) 2 Unitary group

When the manifold M is a connected compact Lie group G, and g is the Lie
algebra of G, the simply connected covering group splits (cf. [57, Theor. 6.6]) into
˜M = R

λ × G1 × · · · × Gν , where λ = dimR c of the centre c of g. As the simply
connected simple compact Lie groups Gμ are 2-connected we have 2 � p < 4.2

Remark 1.4. From the above theorem and its proof onewould expect theHausdorff
dimension of Sing u to be strictly smaller than n when u is additionally assumed
to be Lipschitz continuous (cf. [59] for unconstrained Lipschizian minimisers of
strictly quasiconvex integral functionals with p-growth).

The canonical holonomically constrained variational problem is that of har-
monic maps between Riemannian manifolds which minimise the Dirichlet energy.
The question of regularity for minimisers of the Dirichlet energy in this constrained
context was first obtained by Morrey [70] in connection with his analysis of
Plateau’s problem. By working with absolutely continuous representatives Morrey
showed minimisers to be locally Hölder continuous when n = 2. The harmonic
map regularity result was extended to the case n > 2 by the seminal work of
Schoen and Uhlenbeck [79]. By working with the class (1) they showed energy
minimising maps with a compact image to be locally smooth away from a closed
(singular) subset that is discrete if n = 3 and has Hausdorff dimension at most n−3
when n � 4. A refined treatment of this partial regularity result, as well as further
analysis on the rectifiability of the singular set, can be found in the book of Simon
[78]. Similar results for the case in which the image lies in a single coordinate chart
were obtained by Giaquinta and Giusti [40,41] (and by [54,58] when the image
of the map is contained in a convex ball ofM). In the p-harmonic case,Hardt and
Lin [56] showed p-energy minimisers, for p > 1, to be C1,α

loc for some 0 < α < 1
except possibly on a closed set of Hausdorff dimension at most n − p� − 1. Fur-
ther partial regularity results in the p-harmonic case for maps into a compact target
manifold can be found in [28,64]. The question of minimising in an appropriate
homotopy class has also been studied by White [83,84].

Partial regularity results for a more general class of convex functionals have
been obtained byLuckhaus [63]with appropriatelywell-behaved blow-ups. In this

2 Note that π2(G) = 0 for any connected compact Lie group G (cf. [14, p. 225]) and that
π3(G) = Z for any simply connected simple compact Lie group G (cf. [8]).
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direction, results for convex functionals with p-growth can also be found in [53,56].
In particular, [56] obtained reverse Hölder inequalities under the assumptionM is
(p� − 1)-connected via a retraction of RN\X ontoM for some polyhedron X in
R

N\M. This kind of retraction was previously used in (the domain) by [83] for
the existence of finite energy extensions of Lipschitz maps. In fact the idea of using
such a continuous retraction with analytic estimates goes back to the proof in [37]
of isoperimetric inequalities.

To prove the existence of (unconstrained) minimisers of general integral func-
tionals subject to given boundary data,Morrey [71] introduced a notion of quasi-
convexity which isolated a property of the integrand that, under appropriate growth
conditions, is necessary and sufficient for the weak sequential lower semicontinu-
ity of the functional. A result of Acerbi and Fusco [2] shows that a non-negative
Carathéodory integrand with p-growth is weakly sequentially lower semicontinu-
ous on theW 1,p-Sobolev space if and only if the integrand is quasiconvex. Regular-
ity considerations for such quasiconvex functionals in the unconstrained case were
initiated by Evans [32], who showed a slightly strengthened version of quasicon-
vexity (that is the so-called uniformly strict quasiconvex condition) forces partial
regularity. That is to say, if u minimises a functional of the form

´
�

f (Du) dx ,
where f is a strictly quasiconvex C2-function with p-growth, p � 2, that satis-
fies an additional bound on the second derivatives D2 f , then the gradient Du is
locally Hölder continuous outside a set of Lebesgue measure zero. This result was
subsequently generalised to integrals with x- and u-dependences in [39,46] and
the bound for D2 f was removed in [3]. An extension to the subquadratic case
1 < p < 2 has also been obtained in [17]. A partial regularity result for a class of
strong local minimisers of quasiconvex functionals can be found in [60]. Further
details on other aspects in the unconstrained case [including boundary regularity,
degenerate cases, conditions for everywhere regularity, ω-minima, (p, q)-growth
conditions and counterexamples to full regularity] can be found in the survey article
[69].

In order to obtain partial regularity, a linearisation strategy is often used to
transfer the ‘good’ regularity properties of the linearised elliptic system to the non-
linear problem. The technique of harmonic-type approximations, in particular, has
proved both a popular and elemental way of obtaining partial regularity for solu-
tions to non-linear elliptic systems and minimisers of certain integral functionals
(cf. [29]). The underlying premise of this method goes back to ideas introduced by
De Giorgi [22] in his treatment of minimal surfaces. Specifically, he establishes
‘some properties of regular surfaces approximating minimal surfaces; these proper-
ties will be obtained by a comparison argument with the graph of suitable harmonic
functions’ [23, p. 244]. In the context of regularity for elliptic systems the technique
was utilised by Simon [78, §1.6] to provide a neat and elementary proof of partial
regularity. For quasiconvex integrals this method was initiated in [24]. The proof
of harmonic-type approximation results is typically achieved through an indirect
compactness argument, nonetheless a version using ‘a direct approach based on
the Lipschitz truncation technique which requires no contradiction argument’ has
recently been proved in [27,30].
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For minimisers of quasiconvex functionals in the manifold constrained case,
the only know result to date (aside from the results in [53,56,63] for holonomic
minimiser of convex functionals) is that of the Evans and Gariepy paper [34]. By
appealing to the blow-up technique introduced in [33], Evans and Gariepy consider
a functional of the form

´
�

f (Du) dx under the structural hypothesis that f is a
strictly quasiconvex C2-function for p = 2 which satisfies an additional bound on
the second derivatives D2 f . Comparison maps satisfying the non-linear manifold
constraints in the indirect blow-up proof are obtained from a particular extension
lemma of Luckhaus (cf. [63,64] and also [48,55,78]), however this construct only
works in the blow-up case due to the order in which limits are taken (cf. [34, p. 87]).

Remark 1.5. (Idea of proof and applicability of Luckhaus’ lemma) Given f1 ∈
W 1,p(M,N ) and f2 ∈ W 1,p(M,O) for p � 2, whereMm ⊂ R

 is a Riemannian
manifold without boundary andN ⊂ R

k is a closed subset of positive reach with a
neighbourhoodO, the so-called Luckhaus lemma seeks to construct a function f ∈
W 1,p(M × (0, λ),Rk) for 0 < λ < 1, with f (·, 0) = f1 and f (·, λ) = f2, such
that one has L p-control of the dist( f,N )—so that it can be made to be sufficiently
small. Normally in the unconstrained setting f would be constructed simply as a
convex combination of f1 and f2, however to gain the extra control on dist( f,N ) a
triangulation of the domainM is employed so as to restrict the Sobolev mappings
to lower-dimensional skeletons. For such skeletons of dimension d � p − 1� one
can use a convex combination and a Morrey-type embedding to construct and gain
the desired pointwise control, that is if u, v ∈ W 1,1(B) on a ball B ⊂ R

d of radius r ,

|u(x) − v(x)| � C

(

r p−d
ˆ
B

|Du − Dv|p +
∣

∣

∣

u − v

r

∣

∣

∣

p
) 1

p

(

1− 1
2p

)

×
(

r−d
ˆ
B

|u − v|p
) 1

p
1
2p

almost everywhere (B) for p > d+ 1
2 . Then for skeletons of dimension d > p−1�,

where the embeddings no longer hold, a homogeneous degree 0 extension is used
to inductively extend the lower-dimensional construction. The result of this con-
struction on the triangulated domain yields an f ∈ W 1,p(M × (0, λ),Rk) such
that

´
M×(0,λ) |∇ f |p � CλA and

ess sup
M×(0,λ)

dist( f,N ) � cλ1−
2m+1
2p A

1
p (1− 1

2p )‖ f1 − f2‖
1
2p
p ,

where A = ´
M |Df1|p + |Df2|p + | f1− f2

λ
|p. Now in the application of Luckhaus’

lemma to regularity proofs, the need for the distance to be uniformly small is directly
juxtaposewith the control of dist( f,N )beingderived fromSobolev embeddings (as
outlined in the above). For the Dirichlet energy the conflict between these require-
ments is resolved by appealing to a monotonicity formula (cf. [78]). Indeed, for the
class of convex integrands considered in [63] amonotonicity formula is also needed.
In the f (x, u, Du)-situation considered here, higher integrability is required in
order to carry out Ekeland’s variational principle (note that the indirect approach of
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[34] no longer works with the u-dependence). In this regard the approach of [56],
using connectedness assumptions on the target manifold, dispenses with the need
for a monotonicity formula and allows for the application of Gehring’s lemma.

The above Theorem 1.2 considers holonomic minimisers of quasiconvex inte-
grals which also have x- and u-dependences. Here we focus on the case p < n (for
if p � n the Sobolev embeddings imply the regularity argument would follow the
single coordinate chart case). Our proof of Theorem 1.2 is direct via an application
of Ekeland’s variational principle; a certain tangential A-harmonic approximate
lemma; Caccioppoli inequalities using only minimality, the p-growth of (h1) and
the strong quasiconvexity of (h2); the Sobolev lifting result of Theorem 4.1 below;
and an extension-type result using the -connectedness of the compact covering
space ˜M. The resulting estimates allow a sufficient decay of the excess functions
E given by

E(r) = E(x, r) =
( 

Br (x)
|V (Du − (Du)x,r )|2

) 1
2

,

where V (·) is given by (9) below.3 Regularity follows via Campanato’s integral
characterisation of Hölder continuity [16, teor. I.2] with the singular set charac-
terised by

Sing u =
{

x ∈ � : lim sup
r↘0

|(u)x,r | = +∞ or lim sup
r↘0

|(Du)x,r | = +∞

or lim inf
r↘0

E(x, r) > 0

}

.

Remark 1.6. If we take a point x ∈ �\Sing u it follows that lim sup |(u)x,r | <

+∞, lim sup |(Du)x,r | < +∞ and lim inf E(x, r) = 0 by definition. Then there
exists � > 0 and 0 < R < dist(x, ∂�) such that |(u)x,r | < � and |(Du)x,r | < �

for all 0 < r < R. Similarly, for every ε > 0 there exists 0 < R < dist(x, ∂�)

such that E(x, R) < ε. Now if for every � > 0 we can find ε = ε(�) > 0 and
0 < R = R(�) < dist(x, ∂�) both sufficiently small such that

E(x, R) < ε, (7)

then x ∈ ��,ε,R = {y ∈ � : dist(y, ∂�) > R, E(y, R) < ε, |(Du)y,R | <

�, |(u)y,R | < �}. The set��,ε,R is open (since for fixed 0 < r � 1 themaps x 	→
|(u)x,r |, x 	→ |(Du)x,r | and x 	→ E(x, r) are continuous on {x ∈ � : dist(x, ∂�) >

r}). Thus we need to show, for some 0 < β < 1 and every x ∈ ��,ε,R , that

E(x, r) � Krβ, 0 < r < R, (8)

3 We denote the average (h)� = ffl
� h = 1

|�|
´
� h for any h ∈ L1(�,RN ), where |�|

denotes the Lebesgue measure of any � ⊂ R
n , and use the abbreviation (h)x,r , or simply

(h)r , for the mean value of h on an open ball Br (x) ⊂ R
n of radius r centred at x .
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for some K = K (β, ε,�, R) > 0, in order to conclude Du ∈ C0,β
loc (��,ε,R,R

Nn)

by Campanato’s integral characterisation of Hölder continuity. Consequently Du
is C0,β

loc -continuous on

Reg u =
⋃

�>0

{x ∈ � : dist(x, ∂�) > R(�),

E(x, R) < ε(�), |(Du)x,R | < �, |(u)x,R | < �},
of which Sing u is the complement in�, provided one has (7) and can establish the
excess-decay (8).

In the upcoming analysis we make use of the following auxiliary function
V : Rk → R

k defined by

V (ξ) = (1 + |ξ |2) p−2
4 ξ (9)

for every ξ ∈ R
k . Note thatR+ � t 	→ |V (t)| is convex and |ξ |2, |ξ |p � |V (ξ)|2 �

c(p)(|ξ |2 + |ξ |p) when p � 2. Also from the proof in [25, §4] we have, for any
v ∈ W 1,p(BR,R

N ), the Sobolev-Poincaré-type inequality

 
BR

∣

∣

∣V
(

v−(v)R
R

)∣

∣

∣

2
� c

( 
BR

|V (Dv)|2∗
)2/2∗

(10)

for some constant c = c(n, N , p) > 0, where BR ⊂ R
n , n � 2 and 2∗ = 2n

n+2 < 2.
The following properties of (9) will also be called upon.

Lemma 1.7. ([17, p. 143], [6, p. 800]). Let p � 2 and V : Rk → R
k be as in (9).

Then for any ξ, η ∈ R
k and t > 0 there holds:

max{|ξ |, |ξ | p
2 } � |V (ξ)| � 2

p−2
4 max{|ξ |, |ξ | p

2 } (11a)

|V (tξ)| � max{t, t p
2 }|V (ξ)| (11b)

|V (ξ + η)| � c(p)(|V (ξ)| + |V (η)|) (11c)

c(p)|ξ − η| � |V (ξ) − V (η)|
(1 + |ξ |2 + |η|2) p−2

4

� C(k, p)|ξ − η| (11d)

|V (ξ) − V (η)| � c(k, p,�)|V (ξ − η)|, whenever |η| � � (11e)

|V (ξ − η)| � c(p)|V (ξ) − V (η)|. (11f)

1.1. Applications to Problems in Condensed Matter Physics

The manifold constrained regularity problem has several applications to prob-
lems in condensed matter physics. For such applications the (unconstrained) map-
ping is a tensor order parameter T = (Tαβ) : � ⊂ R

n → R
N with an integral

functional of the form ˆ
�

( fgrad(T,∇T ) + fB(T )) dx .
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The integrand is taken to be invariant under a given symmetry group G and is
typically expanded as power series with respect to this symmetry group. Critical
points of the bulk energy fB form an orbit of solutions corresponding to a subgroup
H ⊂ G of residual symmetries. The resulting manifold of internal states M =
G/H describes the ‘broken symmetries’ of the system; such T taking values in this
group orbit (for which the bulk energy fB remains constant) form the corresponding
constrained mapping case.

Example 1.8. (Nematic liquid crystals) In the Landau-deGennes theory for nematic
liquid crystals the state of alignment is characterised by a tensor order parameter
Q as a traceless symmetric 3 × 3 real matrix, that is Q = (Qi j ) : � ⊂ R

3 →
Sym2

0(R
3) ≡ R

5. In a general nematic phase the order parameter has five degrees
of freedom (two specifying the degree order with the other three for the principal
directions). The symmetry group is G = SO(3) with the group action � defined by
conjugation

R � Qi j = Rik R jQk

for any R ∈ SO(3). The Landau-de Gennes free-energy functional (cf. [20]), taking
into consideration spatial variations of the local order parameter, is of the form

F(Q;�) =
ˆ
�

( fgrad(Q,∇Q) + fB(Q)) dx .

The bulk free energy fB is invariant under the SO(3)-action by conjugation on the
five-dimensional space of Q-tensors; its expansion to fourth order takes the form

fB(Q) = − a2
2 tr Q

2 − b2
3 tr Q

3 + c2
4 (tr Q2)2,

where a, b and c are material and temperature dependent constants (cf. [66]).
The expansion of the free energy fgrad in SO(3)-invariant powers of Qi j , and
its derivatives up to the order Q Q ∇Q ∇Q, contains twenty-two terms and four
surface relations (cf. [11,65,81]). For instance the lowest order terms of the form
∇Q ∇Q are

Qi j,k Qi j,k Qi j, j Qik,k Qi j,k Qik, j

with the corresponding surface relation

∂i (Qi j Q jk,k − Q jkQi j,k) = Qi j, j Qik,k − Qi j,k Qik, j .
4

Note that there are only five possible contractions of a symmetric 2-tensor in
the form ∇Q ∇Q; the other remaining two terms Qkk, j Qii, j and Qii, j Q jk,k are
excluded since the matrix is traceless. Critical points of the bulk energy form an
orbit of solutions in the five-dimensional space of Q-tensors. Such Q taking values
in a group orbit have constant eigenvalues and constant bulk energy. We refer to
this situation as the constrained theory of nematic liquid crystals. In the constrained

4 Here we denote Qi j,k = ∂k Qi j . As usual, summation over repeated indices is assumed.
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uniaxial case (that is when the Q-tensor has two equal non-zero eigenvalues) the
manifold of internal states is equal to SO(3)/D∞ = RP2, using infinite dihedral
group D∞, which can be identified with the homogeneous space SO(3)/O(2)
(cf. [43, ex. 2.45]); whereas the corresponding space of constrained biaxial Q-
tensors (that is Q-tensors having three distinct eigenvalues) is equal to SO(3)/D4 =
S3/H, where D4 denotes the dihedral group consisting of the identity together with
π -rotations about three mutually perpendicular axes and H denotes the quaternion
group (cf. [73]).

Example 1.9. (Superfluidity of liquid helium-3) There are two stable isotopes of the
chemical element helium, namely 3He and 4He. At 1 atm helium-3 boils at 3.19 K
compared with helium-4 at 4.23 K. Below these temperatures one finds helium
liquids, unlike all other known liquids, do not solidify unless a pressure of around
30 bar is applied—under less pressure the small atomic mass and the weakness
of the attractive interactions prevents the formation of a crystalline solid with a
rigid lattice structure. This is the first indication of the remarkable macroscopic
quantum effects in these systems. Quantum effects are also responsible for the
strikingly different behaviours of 3He (obeying Fermi–Dirac statistics) and 4He
(obeying Bose–Einstein statistics) at lower temperatures: the superfluid transition
temperature of helium-4 is 2.17 K at 1 atm, whereas for helium-3 it is below 3 mK
and in fact forms several superfluid phases.5 In the case of superfluid helium-3,
the order parameter A = (Aμj ) is a 3 × 3 complex valued matrix, that is A : � ⊂
R
3 → C

3 ⊗ C
3 ≡ R

18, with spin index μ and orbital index j . The associated
symmetry group G = SO(3) × SO(3) ×U (1) with the group action � defined by

(R(1), R(2), φ) � Aμj = eiφR(1)
μν R

(2)
jk Aνk

for a phase φ with rotation matrices R(1) and R(2) in the respective spin space S
and orbital space L. In regions near the critical temperate Tc (that is the Ginzburg–
Landau regime) the bulk free energy fB can be obtained from Aμj by contracting all
indices in second and fourth order terms that are SO(3)×SO(3)×U (1)-invariant.
The resulting expansion yields

fB = −α Aμj
∗Aμj + β1 Aμj

∗Aμj
∗AνAν + β2 Aμj

∗Aμj Aν
∗Aν

+ β3 Aμj
∗Aν j

∗AμAν + β4 Aμj
∗Aν j Aν

∗Aμ + β5 Aμj
∗Aν j AνAμ

∗,

where the coefficients α and βi depend on external parameters like temperature
and pressure (cf. [74]). When allowing for spatial variations in the order parameter,
the gradient energy of an anisotropic superfluid in the Ginzburg–Landau regime
has leading SO(3)×SO(3)×U (1)-invariant terms quadratic in the gradient of the
form

fgrad = γ1 ∂ j Aμ∂ j Aμ
∗ + γ2 ∂ j Aμ∂Aμj

∗ + γ3 ∂ j Aμj∂Aμ
∗,

5 When the superfluid phases of 3He were finally discovered [75,76] at temperatures of
2.6 and 1.8 mK respectively—in an experiment actually designed to observe a magnetic
phase transition in solid 3He—the results came as a great surprise.
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Table 1. Themanifold of broken symmetriesM and universal cover (UC) of some examples
of ordered media

M π1 UC

S1 Z R Planar spins/superfluid 4He
S1 × S1 Z + Z R

2 Dipole-locked 3He-A in weak magnetic field
S2 0 S2 Ordinary spins/ferromagnet
RP2

Z2 S2 Uniaxial nematics
S3/H H S3 Biaxial nematics
RP3 = SO(3) Z2 S3 Dipole-locked 3He-A
S1 × SO(3) Z + Z2 R × S3 3He-B
(S1 × SO(3))/Z2 Z + Z4 R × S3 Dipole-free 3He-A in strong magnetic field
(S2 × SO(3))/Z2 Z4 S2 × S3 Dipole-free 3He-A
Further information on broken symmetries with regards to gradient, dipole and magnetic
interactions can be found in [67,80,82]

where γi are given constants (cf. [1,21]). Note that the terms are dependent in the
sense that the second term can be written in terms of the third plus a divergence
terms which vanishes under appropriate boundary conditions. The unusually large
number of internal degrees of freedom allow for a rich array of superfluid phases
of liquid 3He. Fortunately it is possible to formulate a systematic approach to the
investigation of all possible symmetry breakings; the classification of all continuous
and discrete subgroups of SO(3)×SO(3)×U (1) can be found in [15]. It turns out
that the continuous subgroup with the highest remaining symmetry corresponds to
the so-called B-phase of [76] that is stable down to the lowest temperatures attained
so far. In this phase the order parameter is invariant under joint rotations of L and
S represented by the subgroup SO(3)L+S. The corresponding broken symmetries
are MB = SO(3)L×SO(3)S

SO(3)L+S
× U (1)φ = SO(3)L,S × S1φ. On the other hand, if one

is confined to a finite temperature range and is above a critical pressure of about
21 bar, one enters a different phases: the so-called A-phase of [76]. In this dipole-
free A-phase the subgroup of residual symmetries is U (1)Lz−φ × U (1)Sz × Z2.
The corresponding space of broken symmetries is the five dimensional manifold

MA =
(

SO(3)S
U (1)Lz

× SO(3)L×U (1)φ
U (1)Lz−φ

)

/Z2 = (S2S ×SO(3)L,φ)/Z2.Other manifolds of

broken symmetries can be considered if an externalmagnetic field is also considered
(cf. Table 1). For a review of the theory of anisotropic superfluid phases of helium-3
see [62].

2. Submanifolds, Projections and the Distance Function

2.1. Tubular Neigbourhoods

For an embedded submanifoldM inRN without boundary, and its normal bun-
dle π : (TM)⊥ → M, define the ‘endpoint map’ E : (TM)⊥ → R

N by sending
(x, v) 	→ x + v. A tubular neighbourhood of M is an open neighbourhood O of
M in RN that is the diffeomorphic image under the map E of an open neighbour-
hood O ⊂ (TM)⊥ of the zero section 0 : M → (TM)⊥. As the differential E∗
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is surjective along this zero section, E is a local diffeomorphism by the inverse
function theorem. One then has the following existence result:

Theorem 2.1. Let M be a compact submanifold of RN without boundary, then
there exists a tubular neighbourhood O of M in RN .

By identifyingM with its image in RN we say that a neighbourhood O ofM
has the unique nearest point property if for every x ∈ O there is a unique point
�(x) ∈ M such that dist(x,M) = |x − �(x)|. The map

� : O → M (12)

is called the retraction ontoM.

Lemma 2.2. Let M be a compact Cr -submanifold of RN without boundary for
r � 2. Then there exists a neighbourhood O of M with the unique nearest point
property and the retraction � : O → M is Cr−1.

Proof. The existence of O follows from Theorem 2.1. As the normal bundle
π : (TM)⊥ → M is Cr−1 it follows that E is a Cr−1-diffeomorphism. Hence
the map � = π ◦ E−1 is Cr−1. ��

A focal point y at x ∈ M with multiplicity ν occurs if y = E(x, v), where v is
normal toM at x , and the differential E∗|(x,v) is a critical point with nullity ν > 0;
they are points where nearby normals intersect. By [68, Lem. 6.3] these focal points
are precisely of the form x + κ−1

i v, where κi are the principal curvatures of M at
x in the unit normal direction v.

Remark 2.3. As Wr−1,∞
loc (O,RN ) = Cr−2,1(O,RN ) are the locally Lipschitz

functions, it follows for each compact set K ⊂ O there exists C = C(K ) > 0 such
that

|∇( j)�(x) − ∇( j)�(y)| � C |x − y|

for all x, y ∈ K where j = 0, . . . , r − 2 (cf. [35, §4.2.3]). For instance, one
could take K to be the closure of the tubular neighbourhood {x + v : x ∈ M, v ∈
(TxM)⊥, |v| < ε}, for ε > 0 sufficiently small, so as to remain ‘strictly away
from focal points’. Furthermore, each∇( j)� are uniformly bounded and uniformly
continuous on compact sets for j = 0, . . . , r − 1.

Note that the boundary of a manifold cannot have a tubular neighbourhood
strictly in the above sense. However, there is a retraction of an open neighbour-
hood onto ∂M. This is obviously possible locally, and two local retractions into
coordinate domains can be glued together with a bump function.
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2.2. Sets of Positive Reach and the Regularity of the Squared Distance Function

For a subset A ⊂ R
N let the distance function δ : RN → R be defined by

δ(x) = dist(x, A) = inf{|x − y| : y ∈ A}.
Furthermore, let Unp(A) be the set of all points x ∈ R

N for which there exists
a unique point of A nearest to x and, like in the previous section, let the map
� : Unp(A) → A associate to x ∈ Unp(A) the unique a ∈ A such that δ(x) =
|x − a|.

If a ∈ A then reach(A, a) is the supremum of the set of all numbers r for which
{x : |x −a| < r} ⊂ Unp(A). We then define reach(A) = inf{reach(A, a) : a ∈ A}.
If reach(A) > 0 then it is said that A has positive reach. A well known charac-
terisation of convexity (going back to independent results by Bunt, Kritikos and
Motzkin, cf. [19]) states that a subset A ⊂ R

N has reach(A) = +∞ if and only
if A is closed and convex.

By introducing the squared distance function η(x) = 1
2δ(x)

2 we have:

Theorem 2.4. [36, 4.8] For every nonempty closed subset A of RN the following
statements hold with U = Unp(A):

1. |δ(x) − δ(y)| � |x − y| for all x, y ∈ R
N .

2. If x ∈ R
N\A and δ is differentiable at x, then x ∈ U and ∇δ(x) = x−�(x)

δ(x) .

3. � is continuous.
4. δ is continuously differentiable on Int(U\A) andη is continuously differentiable

on Int(U ) with ∇η(x) = x − �(x) for x ∈ Int(U ).
5. If for 0 < r < s < ∞ and x, y ∈ U we have δ(x) � r , δ(y) � r and

reach(A,�(x)) � s, reach(A,�(y)) � s, then |�(x)−�(y)| � s
s−r |x − y|.

6. If 0 < q < r < reach(A) then ∇δ is Lipschitzian on {x : q � δ(x) � r} and
∇η is Lipschitzian on {x : δ(x) � r}.
For a compact Cr -submanifold M ⊂ R

N without a boundary, the distance
function δ is Cr−1 near M (since it is continuous and can be written in terms of
directions normal toM); in fact the squared distance function η ∈ Cr (U ) for r � 2
(cf. [38], [47, p. 354]). Furthermore, by approximating M locally at a point x as
the graph of a quadratic polynomial given by the second fundamental form, one
can show for any z ∈ R

N with 0 < |z| � 1 sufficiently small, using the elementary
geometry of the normal line at �(x + z) through x + z and the normal line at x
along the projection of z onto (TxM)⊥, that

η(x + z) = 1

2
|Qz|2 + O(|z|3),

where the matrix Q represents the orthogonal projection onto the normal space
of M at the point x . On the other hand, the Taylor series of η is η(x + z) =
1
2 (∇2η)(x)(z, z) + O(|z|3), since η(x) = 0 and ∇η(x) = 0 due to the projection
�(x) = x . Therefore ∇2η represents the orthogonal projection onto the normal
space of M and P = I − ∇2η is the projection operator onto the tangent space.
Moreover, by taking a further derivative of (4) in Theorem 2.4 we conclude:
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Corollary 2.5. The symmetric 2-tensor P(x) = ∇�(x) projects vectors at a point
x ∈ M onto the corresponding tangential subspace TxM.

Example 2.6. For the n-sphere Sn ⊂ R
n+1 the retraction � : x 	→ x

|x | for x �= 0.
Thus one finds that P(u) = ∇�(u) = I − u ⊗ u at points u ∈ Sn , where I is the
identity matrix.

3. Constrained Stationary Variations

Consider the functional

F(v;�) =
ˆ
�

F(Dv) dx,

where v : � ⊂ R
n → R

N . For a compact C3-Riemannian submanifold M ⊂
R

N without boundary, we derive the Euler–Lagrange equations for holonomically
constrained minimisers, using the retraction (12), as follows:

Lemma 3.1. [34, p. 78]. Suppose the integrand F : RNn → R is a C1-function
that for p > 1 satisfies

|DF(ξ)| � C(1 + |ξ |p−1)

for some constant C > 0 and all ξ ∈ R
Nn. Then for any holonomic F-minimiser

u ∈ W 1,p
loc (�,M) we have

ˆ
�

DF(Du)D(∇�(u)φ) dx = 0

for all φ ∈ W 1,p
0 (�,RN ) ∩ L∞(�,RN ).

Example 3.2. When considering theDirichlet energy
´
�

|Du|2 dx the above lemma
implies holonomically constrained minimisers satisfy

ˆ
�

〈Du,∇�(u)Dφ + ∇2�(u)Du · φ〉 dx = 0.

One then concludes

�u + A(u)(Du, Du) = 0 (13)

weakly, where A is the second fundamental form of the embedding of M in R
N

(cf. [50, Lem. 1.2.4]). Such solutions to (13) are said to be weakly harmonic maps.
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4. A Construction of Suitable Comparison Maps

In seeking to prove the regularity of vector-valued maps which minimise an
integral functional subject to a family of smooth nonlinear (manifold) constraints,
a major technical difficulty resides in finding comparison maps which satisfy the
manifold constraints (particularly since one cannot localise the problem in the
image for n > 2). In the case of harmonic maps into compact manifolds, one can
construct comparison maps via a lemma of Luckhaus originally proved in [63,
Lem. 1] and revised in [64, Lem. 3] (which develops an earlier extension lemma
of [79, Lem. 4.3]). Using this and a monotonicity formula for harmonic maps it
is possible to prove Caccioppoli inequalities near points with small scale energy
(cf. [78, §2.8]). However, without such a monotonicity formula available in general
one needs to construct comparison maps absent of any need for initial ‘smallness
assumptions’. Our approach here is to combine the lifting of Sobolev maps to the
universal covering together with an extension result using the connectedness of the
covering space.

4.1. The Lifting of Sobolev Mappings

For a given connected compact Riemannian manifoldMwithout boundary and
an open simply connected subset� ⊂ R

n we ask if any mapping u ∈ Ws,p(�,M)

factors through the universal covering π : ˜M → M as regular as u permits, that
is if

˜M
π

��

�

ϕ
���

�
�

�
u

�� M

can be completed to a commutative diagram with ϕ ∈ Ws,p(�, ˜M). Of course if
M is simply connected then ˜M = M and π is the identity map. Hence we are
concerned with the non-trivial case π1(M) �= 0.

For such a problem we have the following affirmative result when 2 � p � ∞
and s = 1.

Theorem 4.1. [9] Let� ⊂ R
n be an open simply connected subset,M be a smooth

connected compact Riemannian manifold without boundary and π : ˜M → M be
its universal covering. For every 2 � p � ∞ and any u ∈ W 1,p(�,M) there
exists ϕ ∈ W 1,p(�, ˜M) such that u = π ◦ϕ. Moreover, ϕ is unique up to the action
of an element of π1(M) and satisfies |Du| = |Dϕ| for almost everywhere x ∈ �.

4.2. A Locally Lipschitz Retraction

We recall some basic notions pertaining to the triangulation of a manifold.
Firstly,we say a cell� is a bounded subset ofRm consisting of all points x satisfying
a system of finite linear inequalities i (x) = ∑

ai j x j � bi ; it is a compact convex
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subset of Rm . The dimension of � is the dimension of the smallest dimensional
plane containing �. If � is an m-cell, ∂� (the boundary of �) is the union of a
finite number of (m − 1)-cells, each the intersection of an (m − 1)-plane with �.
Each of the (m − 1)-cells �i into which ∂� is decomposed is called a face of �;
each of the (m − 2)-faces of �i is called an (m − 2)-face of �. As � is given by a
system of linear inequalities, replacing an inequality by equality determines a face
of � and conversely.

Definition 4.2. A cell complex K is a collection of cells such that each face of
a cell in K is also in K , the intersection of two cells in K is either empty or a
common face, and each point of the polyhedron (as the union of all cells of K ) has
a neighbourhood intersecting finitely many cells of K . The dimension of K is the
maximal dimension of the cells in K .

A subcomplex K ′ is a subset of K which itself is a complex; to verify a subcomplex
is indeed a complex it is clear that one only needs to check that faces of each cell in
K ′ are in K . In particular, the k-skeleton K k is the subcomplex of K consisting of
all cells of dimension at most k. In the case when the cell is a cube inRm centred at
the origin with faces parallel to the coordinate axes, the dual skeleton of dimension
j is the set of points in the cube which have at least m − j components equal to
zero. By using an isometry, the dual skeleton of a cube in R

m of dimension m
can be defined in a general position. Thus the j-dimensional dual skeleton L j of
a complex K of cubes is simply the union of the dual skeletons of dimension j of
each cube in the complex (cf. [12, §2.1]).

A Lipschitz triangulation f : K → M of a given manifold M can be such
that the complex K (given by Definition 4.2) consists of cubes each of which is
isometric to the standard cube [−1, 1]m ⊂ R

m (that is K is a ‘cubication’ ofM).6 A
result byWhitehead [85, Theor. 7] states that any compact C1-manifold without
boundary has a triangulation in the C1-class. This was extended byMunkres [72,
Chap. 2] to include Cr -manifolds with boundary for 1 � r � ∞. In particular:

Theorem 4.3. Every compact Cr -manifold without boundary has a Cr -triangula-
tion. If M is a manifold having boundary, any Cr -triangulation of the boundary
may be extended to a Cr -triangulation of M.

Lemma 4.4. [83, p. 130]Let K be a cell complex of dimension n consisting of cubes
each of which is isometric to the standard cube. Let Ln−−1 be the (n −  − 1)-
dimensional dual skeleton of K for some integer 0 �  � n − 1. Then there exists
a locally Lipschitz continuous function

ψ : Kn\Ln−−1 → K 

6 Such a cubication is always possible: for if we consider the k-simplex � =
{(x1, . . . , xk+1) : ∑

xi = 1, xi � 0} in R
k+1, the map x 	→ x

max |xi | projects � out

onto faces of [0, 1]k+1 containing (1, . . . , 1) and so divides it into (k + 1)-cubes. Hence if
M has already been triangulated, one can connect the centroid of each triangle to the mid-
points of its sides forming three ‘squares’. Then by connecting the centroid of each 3-simplex
to the centroids of each of its four faces we divide the 3-simplex into four 3-dimensional
cubes, etc. (cf. [83, p. 129]).



Partial Regularity for Holonomic Minimisers 107

from the complement of the dual skeleton Ln−−1 onto the skeleton K  such that

|Dψ(x)| � C

dist(x, Ln−−1)

for some constant C > 0 depending on n,  and K .

Proof. For a cube [−1, 1]n define the function | · | : [−1, 1]n → R by

|x | = min
S⊂{1,...,n}
|S|=+1

max
i∈S |xi |.

If Ln−−1 denotes the (n −  − 1)-dual skeleton of [−1, 1]n we have x ∈ Ln−−1

if and only if |x | = 0. Moreover, the mapping [−1, 1]n � x 	→ |x | is Lipschitz
continuous with Lipschitz constant 1. Using this we can define the mapping

φ : [−1, 1]n\Ln−−1 → K 

by φ(x) = (y1, . . . , yn), where yi = sgn xi if |xi | � |x | and yi = xi/|x | if
|xi | < |x |. Observe also that |Dφ(x)| � C/|x |. Given this, the same construction
can be performed for every cube in K . If two cubes have a non-empty intersection
the corresponding maps φ,1 and φ,2 coincide on the common face. Hence we can
glue together the locally Lipschitz continuous maps obtained for each of the cubes
in the complex K so as to obtain a global map ψ with the desired properties. ��

Lemma 4.5. Let M ⊂ R
k , k � 3, be a compact -connected submanifold, for

some integer 1 �  � k − 2, contained in a k-dimensional cube Q. Then there
exists a closed (k −  − 2)-dimensional Lipschitz polyhedron X ⊂ Q\M and a
locally Lipschitz retraction � : Q\X → M such that for any x ∈ Q\X,

|D�(x)| � C

dist(x, X)

for some constant C > 0 depending on k,  and M.

This result was first proved in [56, Lem. 6.1] using several results from homo-
topy theory (see also [13, Lem. 2.2]). Our proof below is based on the elementary
result, for a Riemannian manifold Y , that

Proposition 4.6. πn(Y, y0) = 0 for all y0 ∈ Y if and only if every Lipschitz map
Sn → Y admits a Lipschitz extension Bn+1 → Y .

This extension result follows from the fact that continuousmappings and homo-
topies can be approximated by smooth ones (cf. [61, Theor. 6.26]), however if the
smooth manifold Y is replaced by a metric space the result no longer holds (cf. [26,
§4]).
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M

Fig. 1. An extension of a triangulation of a manifoldM ⊂ Q to a triangulation of the cube
Q. Simplexes intersecting withM are shown in bluewhereas ones that are not are in yellow
(color figure online)

Proof of Lemma 4.5. Let f : T → M be a Lipschitz triangulation of the m-
dimensional manifold M. As M is contained in a k-dimensional cube Q, we
can extend the triangulation T of M to a Lipschitz triangulation F : K → Q of
the cube Q.

Now consider all edges�1 of the triangulation K that meet the complex Tm of
M at one or both vertices such that the edge is not contained in Tm (cf. Fig. 1). If
we send the vertex not in Tm of any such�1 to any point inM, we have a mapping
φ0 : S0 → M. Since π0(M) = 0 there exists �0 : B1 → M that extends φ0 by
Proposition 4.6. Hence there is a Lipschitz map �1 → M for all edges �1 of the
triangulation K that meet the complex Tm ofM at one or both vertices but do not
lie in Tm .

For faces �2 of the triangulation K with at least one edge or vertex contained
in the complex Tm of M such that the face does not lie in Tm , we can use the
previous step: by noting the edges of such a face �2 can be mapped intoM using
π0(M) = 0, and as ∂�2 � S1 in a bi-Lipschitz fashion, we have a Lipschitz
mapping φ1 : S1 → M. Since π1(M) = 0 there exists a Lipschitz extension
�1 : B2 → M by Proposition 4.6. Hence we can map �2 → M for all faces �2

of the triangulation K with at least one edge or vertex contained in the complex
Tm . Furthermore, for faces �2 that not meet Tm at all, we can extend ∂�2 → M
into the interior by ‘edge extensions’, that is if the M-values along one edge, or
two edges, are known then it is possible to extend the edge values to the interior
of the face by lines of constant value.7 As faces with common edges will share
the same values we have a Lipschitz map K 2 ∪ Tm → M for the 2-dimensional
skeleton K 2.

Proceeding inductively, suppose we now have a Lipschitz map K j ∪ Tm →
M for the j-dimensional skeleton K j with integer 2 � j � . Then for any
( j + 1)-simplex � j+1 with at least one j-dimensional face or lower contained in

7 For instance if one considers a face �2 in the 2-plane with vertices (−1, 0), (1, 0) and
(0, 1) such that a map φ : E1 ∪ E2 → M is given along the edges E1 = 〈(−1, 0), (0, 1)〉
and E2 = 〈(1, 0), (0, 1)〉, we can extend φ by ‘edge extension’ alone the lines L = {(x, y) :
0 � y � 1− sgn(x)x}, −1 � x � 1, to a map�2 � (x, y) 	→ φ(x, 1− sgn(x)x) that takes
the values along the given edges.
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the complex Tm ofM such that the simplex is not contained in Tm , we can use the
induction hypothesis, ∂� j+1 � S j and the fact that π0(M) = · · · = π j−1(M) =
0 to obtain a Lipschitz map φ j : S j → M. As π j (M) = 0 it follows that

S j

φ j
����

��
��

��
�� B j+1

� j

��
�
�
�

M
can be completed to a commutative diagram by Proposition 4.6. Hence we can
map � j+1 → M for all ( j + 1)-simplexes � j+1 that meet Tm with at least one
j-dimensional face or lower contained in Tm . Then as before, for any ( j + 1)-
simplexes � j+1 that do not meet Tm at all, we can extend ∂� j+1 → M into the
interior by ‘ j-face extensions’. Hence we have a Lipschitz map K j+1 ∪ Tm → M
for the ( j + 1)-dimensional complex K j+1.

As the obstruction of π+1(M) �= 0, we then have a Lipschitz retraction

φ : K +1 ∪ Tm → M
by the above construction. Furthermore, by taking a ‘cubication’ subcomplex K ′
of K if necessary, Lemma 4.4 yields a locally Lipschitz retraction

ψ : (Kk\Lk−−2) ∪ Tm → K +1 ∪ Tm

such that |Dψ(x)| � C/dist(x, Lk−−2) for every x ∈ (Kk\Lk−−2) ∪ Tm . The
desired conclusion now follows by setting X = F(Lk−−2\Tm) with the locally
Lipschitz retraction � = φ ◦ ψ ◦ F−1. ��

4.3. An Extension Result for Sobolev Mappings

From the trace map R : W 1,p(�,RN ) → W 1− 1
p ,p(∂�,RN ) on a Lipschitz

domain � ⊂ R
n , any map in W 1,p(�,M) has a trace in W 1− 1

p ,p(∂�,M)

by Gagliardo’s theorem. We ask: under what conditions can any given map in

W 1− 1
p ,p(∂�,M) be the trace of a map in W 1,p(�,M)? When 1 < p < n the

condition πp�−1(M) = 0 is necessary for Sobolev extensions to exist by a result
of [10, Theor. 4]. A recent paper of [7] has shown the condition of -connectedness
of M for 1 < p <  + 2 (with p < n) is both necessary and sufficient for the
Sobolev extension problem. For the purposes here we appeal to a construction in
[53, Lem. A.1] (when the target manifold is S2), and the generalisation given in
[56, Lem. 6.2], to prove the following:

Lemma 4.7. [56] Let � ⊂ R
n be a Lipschitz domain and ˜M ⊂ R

k , k � 3,
be a compact -connected submanifold for some integer 1 �  � k − 2. Let
φ ∈ (W 1,p ∩ L∞)(�,Rk) for 1 < p <  + 2 be such that the trace Rφ ∈
W 1− 1

p ,p(∂�, ˜M). Then there exists ψ ∈ (φ + W 1,p
0 (�,Rk))∩ W 1,p(�, ˜M) and

a constant C = C(n, p, k, , ˜M) > 0 such thatˆ
�

|Dψ |p � C
ˆ
�

|Dφ|p,
ˆ
�

|V (Dψ)|2 � C
ˆ
�

|V (Dφ)|2
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and
ˆ
�

|x − y|1−n|Dψ(y)| dy � C
ˆ
�

|x − y|1−n|Dφ(y)| dy

for almost everywhere x ∈ �.

Proof. Let U = {ξ ∈ R
k : dist(ξ, ˜M) < ρ}, for some 0 < ρ < reach( ˜M), be

a neighbourhood with the unique nearest point property. By Theorem 2.4 the map
� : Ū → ˜M, associating to each ξ ∈ Ū the unique ξ0 ∈ ˜M such that dist(ξ, ˜M) =
|ξ−ξ0|, is Lipschitz continuous.Weobserve that Ū and ˜M are homotopy equivalent
spaces, since there exists a strong deformation retraction ht (ξ) = (1− t)ξ + t �(ξ)

for ξ ∈ Ū and 0 � t � 1. Hence we have π j (Ū ) = π j ( ˜M) = 0 for j = 0, . . . , 
(cf. [49, Prop. 1.17]).

As ˜M is compact and φ ∈ L∞ there exists a k-dimensional cube Q such
that ˜M ⊂ Ū ⊂ Q and dist(φ, ˜M) � 1

2dist(
˜M, ∂Q) almost everywhere. By

Lemma 4.5 there is a locally Lipschitz retraction � : Q\X → Ū for some (k −
 − 2)-dimensional Lipschitz polyhedron X ⊂ Q\Ū (note that the construction
assures X is strictly away from ˜M). Thus we have a mapping

P = � ◦ � : Q\X → ˜M

which, by Lemma 4.5, has

|∇P(ξ)| � C

dist(ξ, X)
. (14)

Also, by a change of variables and the definition of the dual skeleton, there exists
a positive constant C = C(p, k, , ˜M) such that

ˆ
Q

dξ

dist(ξ, X)p
� C < +∞, (15)

since dim X � k −  − 2 and 1 < p <  + 2.
Now for a sufficiently small 0 < σ < min{ρ2 , 1

2dist(
˜M, ∂Q)} and a point

a ∈ Bk
σ = {ξ ∈ R

k : |ξ | < σ }, denote the translations Qa = {ξ + a : ξ ∈ Q}
and Xa = {ξ + a : ξ ∈ X} so that one has the retraction Pa : Qa\Xa → ˜M
given by Pa(ξ) = P(ξ − a). Then by Fubini’s theorem and (15) there exists some
C = C(p, k, ) > 0 such that

ˆ
Bk
σ

ˆ
�

|D(Pa ◦ φ)(x)|p dx da �
ˆ
�

|Dφ(x)|p
(ˆ

Bk
σ

|∇P(φ(x) − a)|pda
)

dx

�
ˆ
�

|Dφ(x)|p
(ˆ

Q
|∇P(ξ)|pdξ

)

dx

� C
ˆ
�

|Dφ|p
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and as |ξ |2, |ξ |p � |V (ξ)|2 � c(|ξ |2 + |ξ |p), since p � 2, we also have
ˆ
Bk
σ

ˆ
�

|V (D(Pa ◦ φ))|2 � C
ˆ
Bk
σ

ˆ
�

(|∇Pa(φ)|2|Dφ|2 + |∇Pa(φ)|p|Dφ|p)

�
ˆ
�

|V (Dφ(x))|2
(ˆ

Q
(|∇P(ξ)|2 + |∇P(ξ)|p)dξ

)

dx

� C
ˆ
�

|V (Dφ)|2,

and likewiseˆ
Bk
σ

ˆ
�

|x − y|1−n|D(Pa ◦ φ)(y)| dy da

�
ˆ
�

|x − y|1−n|Dφ(y)|
(ˆ

Bk
σ

|∇P(φ(y) − a)|da
)

dy

�
ˆ
�

|x − y|1−n|Dφ(y)|
(ˆ

Q
|∇P(ξ)|dξ

)

dy

� C
ˆ
�

|x − y|1−n|Dφ(y)| dy

for almost everywhere x ∈ �. Furthermore, for some K > 0 we have
ˆ
�

|D(Pa ◦ φ)|p dx � K

|Bk
σ |

ˆ
Bk
σ

ˆ
�

|D(Pb ◦ φ)|p dx db
ˆ
�

|V (D(Pa ◦ φ))|2 dx � K

|Bk
σ |

ˆ
Bk
σ

ˆ
�

|V (D(Pb ◦ φ))|2 dx db

andˆ
�

|x − y|1−n|D(Pa ◦ φ)(y)| dy � K

|Bk
σ |

ˆ
Bk
σ

ˆ
�

|x − y|1−n|D(Pb ◦ φ)(y)| dy db

for a ‘good set’ of a ∈ Bk
σ (if not then Markov’s inequality implies the inequalities

fails with an exceptional set less than or equal to K−1|Bk
σ |). Therefore there exists

an a0 with |a0| � σ such that
ˆ
�

|D(Pa0 ◦ φ)|p � C

σ n

ˆ
�

|Dφ|p,
ˆ
�

|V (D(Pa0 ◦ φ))|2 � C

σ n

ˆ
�

|V (Dφ)|2

and ˆ
�

|x − y|1−n|D(Pa0 ◦ φ)(y)| dy � C

σ n

ˆ
�

|x − y|1−n|Dφ(y)| dy.

for almost everywhere x ∈ �.
By the chain rule and (14) we have Lip(Pa | ˜M) � C , for some C > 0 indepen-

dent of a, provided σ is sufficiently small. Furthermore, as the dimensions of the
domain and codomain for Pa | ˜M are equal and P|

˜M is equal to the identity map
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on ˜M, the inverse function theorem implies that supa∈Bk
σ
Lip(Pa | ˜M)−1 is finite for

sufficiently small σ . By setting

ψ = (Pa0 | ˜M)−1 ◦ Pa0 ◦ φ ∈ W 1,p(�, ˜M)

the desired conclusion follows. ��
Remark 4.8. One can consider themodel case for the above construction by setting
˜M = Sk−1 with k > 2 [note that (k − 1)-sphere is (k − 2)-connected]. In this
spherical target case the above construction can in fact be explicitly carried out as
follows (cf. [53]). Firstly, let Pa : Rk\{a} → Sk−1 send ξ 	→ ξ−a

|ξ−a| . As the gradient
D(Pa ◦φ)(x) = (I − φ−a

|φ−a| ⊗ φ−a
|φ−a| )

Dφ
|φ−a| we have |D(Pa ◦φ)| � C |φ−a|−1|Dφ|

for some C = C(k) > 0. By Fubini’s theorem

ˆ
B 1
2
(0)

ˆ
�

|D(Pa ◦ φ)|p dx da � C
ˆ
�

ˆ
B 1
2
(0)

|φ − a|−p|Dφ|pda dx

� C
ˆ
�

|Dφ|p,

since there exists some C = C(k, p) > 0 such that

ˆ
B 1
2
(0)

|φ − a|−pda � C < +∞,

provided 1 < p < k. Therefore, by Markov’s inequality there exists an a0 with
|a0| � 1

2 such that

ˆ
�

|D(Pa0 ◦ φ)|p � C
ˆ
�

|Dφ|p.

Now consider the map (Pa |Sk−1)−1 : Sk−1 → Sk−1, for any |a| � 1
2 , which sends

η 	→ a +
[

−a · η + ((a · η)2 + 1 − |a|2) 1
2

]

η.

Since |D(Pa |Sk−1)−1(η)| � C uniformly independent of a, the desired conclusion
follows by setting ψ = (Pa0 |Sk−1)−1 ◦ Pa0 ◦ φ ∈ W 1,p(�, Sk−1).

4.4. A Hole-Filling Comparison Map Construction

We can construct the following suitable comparison maps by appealing to the
lifting result of Theorem 4.1 together with the extension result of Lemma 4.7. Note
that the connectedness assumption on the covering space is deemed canonical as a
covering space is a universal covering space if it is simply connected.



Partial Regularity for Holonomic Minimisers 113

Lemma 4.9. LetM ⊂ R
N be a connected compact submanifold without boundary

and π : ˜M → M be its universal cover such that ˜M is compact and -connected
for some integer  � 1. If u ∈ W 1,p(�,M) for 2 � p <  + 2 on a Lipschitz

domain� ⊂ R
n, then on any ball Bs ⊂⊂ � there exists v ∈ (u+W 1,p

0 (Bs,R
N ))∩

W 1,p(Bs,M) and a constant C = C(n, N , p, k, ) > 0 such that for any 0 < r <

s,

ˆ
Bs

|Dv|p � C
ˆ
Bs\Br

|Du|p + C
ˆ
Bs

∣

∣

∣

∣

ϕ − (ϕ)Bs

s − r

∣

∣

∣

∣

p

ˆ
Bs

|V (Dv)|2 � C
ˆ
Bs\Br

|V (Du)|2 + C
ˆ
Bs

∣

∣

∣V
(

ϕ−(ϕ)Bs
s−r

)∣

∣

∣

2

and for almost everywhere x ∈ Bs,

|u(x) − v(x)| � C
ˆ
Bs

|x − y|1−n
(

|Du(y)| +
∣

∣

∣

∣

ϕ(y) − (ϕ)Bs

s − r

∣

∣

∣

∣

)

dy

where ϕ ∈ W 1,p(Bs, ˜M) is such that u = π ◦ ϕ.

Proof. Suppose ˜M ⊂ R
k for some k � 3 without loss of generality. For any

u ∈ W 1,p(�,M), p � 2, there exists ϕ ∈ W 1,p(�, ˜M) such that u = π ◦ ϕ

and |Du| = |Dϕ| almost everywhere by Theorem 4.1. For any Bs ⊂⊂ � and
0 < r < s let η ∈ C∞

c (�) be a cut-off function such that η = 1 on Br , η = 0 on
�\Bs , 0 � η � 1 and |Dη| � C/(s − r). By setting

φ = (1 − η)ϕ + η(ϕ)Bs

we have φ ∈ (W 1,p ∩ L∞)(Bs,R
k) with Rφ = Rϕ ∈ W 1− 1

p ,p(∂Bs, ˜M). So by
Lemma 4.7 there exists ψ ∈ (ϕ + W 1,p

0 (Bs,R
k)) ∩ W 1,p(Bs, ˜M) such that

ˆ
Bs

|Dψ |p � C
ˆ
Bs

|(1 − η)Dϕ − Dη ⊗ (ϕ − (ϕ)Bs )|p,

and, by (11c), we also have that

ˆ
Bs

|V (Dψ)|2 � C
ˆ
Bs\Br

|V (Dϕ)|2 + C
ˆ
Bs

|V (Dη ⊗ (ϕ − (ϕ)Bs ))|2.

Then by defining v = π ◦ψ we haveR v = π ◦Rϕ = R u. The desired result now
follows since |Dv| = |Dψ | almost everywhere and by standard potential estimates
(cf. [47, (7.37)])

|u(x) − v(x)| � C
ˆ
Bs

|x − y|1−n|Du(y) − Dv(y)| dy.

��
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5. Higher Integrability

Given the results of Section 4 we obtain Caccioppoli inequalities of the first
kind using only the growth (h1), (3) and the coercivity (h4). An application of
Gehring’s lemma then implies local higher integrability for the gradient Du.

Lemma 5.1. Let M be a connected compact manifold without boundary and
π : ˜M → M be its universal cover such that ˜M is compact and -connected
for some integer  � 1. Suppose the integrand f satisfies (h1), (h4) and (3) for
2 � p < + 2. Then for any holonomic F-minimiser u ∈ W 1,p

loc (�,M) there exist
C > 0 and q > p independent of u such that Du ∈ Lq

loc(�,RNn) and for any
BR(x0) ⊂⊂ �,

( 
BR/2(x0)

|Du|q
)1/q

� C

(  
BR(x0)

1 + |Du|p
)1/p

.

Proof. For BR(x0) ⊂⊂ � let R
2 � r < s � R and choose a cut-off function

η ∈ C∞
c (�) such that η = 1 on Br (x0), η = 0 on �\Bs(x0), 0 � η � 1 and

|Dη| � C/(s − r). Define φ1 = η(u − (u)x0,R) and φ2 = (1 − η)(u − (u)x0,R).
Using (h4) we get

ˆ
Bs

γ |Dφ1|p + ψ(0) �
ˆ
Bs

ψ(Dφ1) �
ˆ
Bs

f (x, u, Dφ1)

=
ˆ
Bs

f (x, u, Du − Dφ2). (16)

From (3) we estimateˆ
Bs

f (x, u, Du − Dφ2) − f (x, u, Du)�C
ˆ
Bs
(1 + |Du|p−1 + |Dφ2|p−1)|Dφ2|

� C
ˆ
Bs\Br

1 + |Du|p +
∣

∣

∣

∣

u − (u)R
s − r

∣

∣

∣

∣

p

,

since Dφ2 = (1−η)Du− (u− (u)R)⊗ Dη. Also, by the minimality of u we have
ˆ
Bs

f (x, u, Du) �
ˆ
Bs

f (x, v, Dv)

for any v ∈ (u + W 1,p
0 (Bs,R

N )) ∩ W 1,p(Bs,M). Now by the lifting result of
Theorem 4.1 there exists ϕ ∈ W 1,p(Bs, ˜M) such that u = π ◦ ϕ with |Dϕ| =
|Du| almost everywhere. Then by Lemma 4.9 one has a suitable competitor v ∈
(u + W 1,p(Bs,R

N )) ∩ W 1,p(Bs,M) such that
ˆ
Bs

|Dv|p � C
ˆ
Bs\Br

|Du|p + C
ˆ
Bs

∣

∣

∣

∣

ϕ − (ϕ)R

s − r

∣

∣

∣

∣

p

� C
ˆ
Bs\Br

|Du|p + C
Rn+p

(s − r)p

(  
BR

|Du|p∗
)p/p∗
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by the Sobelov–Poincaré inequality with p∗ = np
n+p . Then by (16) and (h1) we

obtain ˆ
Br

|Du|p �
ˆ
Bs

|Dφ1|p � 1

γ

ˆ
Bs
( f (x, u, Du − Dφ2) + |ψ(0)|)

� CRn + C
ˆ
Bs\Br

|Du|p

+ C
Rn+p

(s − r)p

(  
BR

|Du|p∗
)p/p∗

.

So by Widman’s hole filling trick we have

ˆ
Br

|Du|p � χ

ˆ
Bs

|Du|p + Rn + Rn+p

(s − r)p

( 
BR

|Du|p∗
)p/p∗

,

where χ = C
1+C < 1. Then by the standard iteration of [40, Lem. 1.1] we conclude

 
BR/2(x0)

|Du|p � C + C

(  
BR(x0)

|Du|p∗
)p/p∗

(17)

for all BR(x0) ⊂ �. In which case by Gehring’s lemma (cf. [45, Prop. 5.1]) there
exists q > p such that

(  
BR/2

|Du|q
)1/q

� C

(  
BR

1 + |Du|p
)1/p

for all BR ⊂⊂ �. In particular, Du ∈ Lq
loc(�,RNn). ��

We can also get higher integrability up to the boundary by adapting the proof of
the previous lemma using standard up to the boundary arguments (cf. [5, Lem. 3.5],
[42, p. 152]) together with a suitable up to the boundary version of Lemma 4.9.

Lemma 5.2. Let M be a connected compact manifold without boundary and
π : ˜M → M be its universal cover such that ˜M is compact and -connected
for some integer  � 1. Suppose the integrand f satisfies (h1), (h4) and (3) for
2 � p <  + 2. Fix (x0, u0) ∈ � × R

N and on a given ball B ⊂ � assume

u ∈ W 1,q0(B,M) for some q0 > p. If û ∈ (u + W 1,p
0 (B,RN )) ∩ W 1,p(B,M)

satisfies ˆ
B
f (x0, u0, Dû) �

ˆ
B
f (x0, u0, Dv) (18)

for all v ∈ (u+W 1,p
0 (B,RN ))∩W 1,p(B,M), then there exists C > 0, q ∈ (p, q0]

such that û ∈ W 1,q(B,M) and

(  
B

|Dû|q
)1/q

� C

(  
B

|Dû|p
)1/p

+ C

(  
B
1 + |Du|q0

)1/q0

.



116 Christopher P. Hopper

6. An Application of Ekeland’s Variational Principle

In this section we use the following lemma of Ekeland together with ideas from
Acerbi and Fusco [3] to show an holonomic F-minimiser almost minimises the
so-called frozen problem. This result is then subsequently utilised in Section 8 to
show approximate tangential harmonicity via a linearisation strategy applied to the
frozen integrand.

Lemma 6.1. [31] Let (X, d) be a complete metric space and J : X → R∪ {+∞}
be a lower semicontinuous functional that is bounded from below but not identically
+∞. For ε > 0 and a point u ∈ X such that

J (u) < ε + inf J
there exists some point v ∈ X such that d(u, v) � 1 and

J (v) � J (w) + ε d(v,w)

for every w ∈ X.

To satisfy the lower semicontinuity requirement we recall the following:

Lemma 6.2. [3, IV.6] Let the integrand f satisfy (h1) and (h2). If BR ⊂ � is a
ball, (x0, u0) ∈ � × R

N and u ∈ W 1,p(BR,M) the functional

w 	→
ˆ
BR

f (x0, u0, Dw)

is sequentiallyweakly lower semicontinuouson (u+W 1,p
0 (BR,R

N ))∩W 1,p(BR,M)

and satisfiesˆ
BR

f (x0, u0, Dw) � γ

ˆ
BR

|Dw|p − c
ˆ
BR

(1 + |Du|p). (19)

Now for a given u ∈ W 1,p
loc (�,M) and a fixed ball B2R(x0) ⊂⊂ � with

0 < R < 1, suppose û ∈ (u + W 1,p
0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M) is a

minimiser of the the corresponding frozen problem:ˆ
BR(x0)

f (x0, (u)x0,R, Dû) �
ˆ
BR(x0)

f (x0, (u)x0,R, Dw) (20)

for allw ∈ (u+W 1,p
0 (BR(x0),RN ))∩W 1,p(BR(x0),M).Note that the existenceof

û is obtained by direct methods whereby the Rellich–Kondrachov theorem assures
the limit û of the minimising subsequence satisfies the condition û ∈ M almost
everywhere.

By defining

J (w) =
 
BR(x0)

f (x0, (u)x0,R, Dw) dx,

we see (following the proof of [3, Lem. IV.7] together with Lemmas 5.1, 5.2, (h3)
and the minimality of û) that any holonomic F-minimiser u of the ‘full problem’
is an almost minimiser of the ‘frozen problem’ in the following sense:
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Proposition 6.3. If for every K > 0, under the assumptions of Lemmas 5.1 and 5.2
for an integrand f satisfying (h1), (h2), (h3) and (h4), the map u ∈ W 1,p

loc (�,M)

is an holonomic F-minimiser with

( 
B2R(x0)

|Du|p
)1/p

� K

on some fixed B2R(x0) ⊂⊂ �, then there exists c1 = c1(K ) > 0 such that

J (u) � J (̂u) + c1R
μ

(

1− p
q

)

,

where û ∈ (u + W 1,p
0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M) is a minimiser of (20).

By endowing the space (u + W 1,p
0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M) with

the metric

d(v1, v2) = c1(K )−1R−β

(  
BR(x0)

|Dv1 − Dv2|p
)1/p

,

with β = μ
2 (1 − p

q ), the functional J is lower semicontinuous (cf. Lemma 6.2)
and clearly

inf J = J (̂u)

by definition. So by Lemma 6.1 and the result of Proposition 6.3 there exists v ∈
(u + W 1,p

0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M) satisfying

(  
BR(x0)

|Dv − Du|p
)1/p

� c1(K )Rβ (21)

which is also a minimiser in the sense that

J (v) � J (w) + Rβ

(  
BR(x0)

|Dv − Dw|p
)1/p

(22)

among all w ∈ (u + W 1,p
0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M). Moreover, by fol-

lowing the proof of Lemma 3.1 we also obtain the following:

Corollary 6.4. If v ∈ (u+W 1,p
0 (BR(x0),RN ))∩W 1,p(BR(x0),M) is aminimiser

of (22) we have

∣

∣

∣

∣

 
BR(x0)

Dξ f (x0, (u)x0,R, Dv)D(∇�(v)φ)

∣

∣

∣

∣

� Rβ

( 
BR(x0)

|D(∇�(v)φ)|p
)1/p

for all φ ∈ W 1,p
0 (BR(x0),RN ) ∩ L∞(BR(x0),RN ), where � is a retraction from

a tubular neighbourhood onto M, provided the integrand f satisfies (h1).
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7. The Tangential A-Harmonic Approximation Lemma

A symmetric bilinear form A on RNn is said to be strongly elliptic in the sense
of Legendre-Hadamard, or simply elliptic, if for all η ∈ R

N and ξ ∈ R
n there holds

A(η ⊗ ξ, η ⊗ ξ) � |η|2|ξ |2

for some  > 0. We call  an ellipticity constant associated to A. Note that A is
bounded [in the sense that A(ζ1, ζ2) � L|ζ1||ζ2| for all ζ1, ζ2 ∈ R

Nn] for free (by
finite dimensionality). A classical result shows this condition to be equivalent to
the strong ellipticity condition

ˆ
�

A(Dφ, Dφ) � 

ˆ
�

|Dφ|2 (23)

for all φ ∈ W 1,2
0 (�,RN ).

Looking to the notion of harmonicity used in the limit of indirect blow-up proof
of [34, pp. 83-5] we say:

Definition 7.1. A map h ∈ W 1,2(�,RN ) is a tangential A-harmonic map about a
given point θ ∈ M if A satisfies the strong ellipticity condition (23) and

ˆ
�

A(Dh, Dφ) = 0

for all φ ∈ C∞
c (�,RN ) such that ∇�(θ)Dφ = Dφ and ∇�(θ)Dh = Dh almost

everywhere (�).

Here� is the retraction given by (12) and∇�(θ) is a projection onto the tangent
space TθM (cf. Corollary 2.5). Hence the condition∇�(θ)Dh = Dh is equivalent
to requiring Dih ∈ TθM for i = 1, . . . , n. Furthermore, we also introduce the map
Cθ : RN → θ + TθM that sends

Cθ : v 	→ θ + ∇�(θ)(v − θ).

Definition 7.2. A map u ∈ W 1,p(BR,M) is a δ-approximate tangential A-
harmonicmap about a given point θ ∈ Mwith exponents p � 2,α > 1, 0 < β � 1
if A satisfies the strong ellipticity condition (23) and for some δ > 0 we have

 
BR

|V (Du − ∇�(θ)Du)|2 � δ2R + δ2(1−
1
α
)

(  
BR

|V (Du − (Du)R)|2α
)

1
α

and

∣

∣

∣

∣

 
BR

A(Du,∇�(θ)Dφ)

∣

∣

∣

∣

� δ

(

Rβ +
 
BR

|V (Du − (Du)R)|2
)

1
2

‖Dφ‖∞

for all φ ∈ C∞
c (BR,R

N ).
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The following a priori estimates for tangential A-harmonic maps are obtained
by a change of orthonormal basis. This reduces the problem to an unconstrained
elliptic system from which the result can be obtained.

Lemma 7.3. (Weyl-type) Let h ∈ W 1,1(�,RN ) be such that

ˆ
�

A(Dh, Dφ) = 0

for any φ ∈ C1
c (�,RN ) with ∇�(θ)Dφ = Dφ and ∇�(θ)Dh = Dh almost

everywhere about a given point θ ∈ M, where A is strongly elliptic with elliptic
constant  and upper bound L. Then h ∈ C∞

loc(�,RN ) and for any BR ⊂⊂ � we
have

sup
BR/2

|Dkh| � C

Rk−1

 
BR

|Dh|

for some C = C(n, N , k, L

) > 0 and any integer k � 1.

Proof. As ∇�(θ) is a projection onto the tangent space TθM (cf. Corollary 2.5)
there exists an N × N orthogonal matrix R such that

R∇�(θ)RT = Im ⊕ 0N−m (24)

where m = dimM. If S denotes the N × N matrix on the right-hand side of (24)
we find that D(Rh) = SD(Rh) and D(Rφ) = SD(Rφ), since ∇�(θ)Dh = Dh
and ∇�(θ)Dφ = Dφ almost everywhere. Thus (Rφ)ai = (Rh)ai = 0 for a =
m + 1, . . . , N and i = 1, . . . , n. With this one finds that

0 =
ˆ
�

(Dih)
T · Ai j · (Djφ) =

ˆ
�

(Di (Rh))
T · ST RAi j R

T S · Dj (Rφ)

=
ˆ
�

(Di (Rh))
T · Bi j · (Dj (Rφ)),

where Bi j denote the upper left m × m submatrix of ST RAi j RT S. Likewise,

ˆ
�

(Di (Rφ))
T · Bi j · (Dj (Rφ)) � 

ˆ
�

|Dφ|2 = 

ˆ
�

(Di (Rφ))
T · Di (Rφ).

Thus H = ((Rh)1, . . . , (Rh)m) is B-harmonic in the sense that

div B(DH) = 0

weaklywith
´
�
B(Dϕ, Dϕ) � 

´
�

|Dϕ|2 for allϕ ∈ C1
c (�,Rm). Inwhich case H

is a solution to an (unconstrained) linear elliptic system with constant coefficients
satisfying the strong ellipticity condition (23). Hence H ∈ C∞

loc with the desired
interior estimate obtained from [17, pp. 150–1]. ��
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Remark 7.4. As |Dh− (Dh)r | � 2r supBr |D2h| on Br , the above lemma implies
|Dh − (Dh)r | � C

ffl
B2R

| rR Dh| for 0 < r < R. Since |V (·)|2 is a convex function
for p � 2 it follows that 

Br
|V (Dh − (Dh)r )|2 � C

( r

R

)2
 
B2R

|V (Dh − (Dh)2R)|2.
By appealing to the same change of variables argument used in Lemma 7.3 and

the L p-estimates of Campanato and Stampacchia (cf. [18], [44, §7.1.1]) we also
obtain the following:

Lemma 7.5. Let F ∈ L p(�,RNn) such that∇�(θ)F = F almost everywhere for
a given point θ ∈ M and p > 1. If v ∈ W 1,p

0 (�,RN ) is a solution toˆ
�

A(Dv, Dφ) =
ˆ
�

F · Dφ

for any φ ∈ C∞
c (�,RN ) such that∇�(θ)Dφ = Dφ and∇�(θ)Dv = Dv almost

everywhere, where A is strongly elliptic bilinear form of constant coefficients, then
Dv ∈ L p(�,RNn) and

‖Dv‖L p(�,RNn) � c‖F‖L p(�,RNn)

for some c > 0 independent of v and F, provided � ⊂ R
n is a smooth bounded

domain.

Let us also recall the following standard pointwise approximation of Sobolev
functions that goes back to a result by [4].

Lemma 7.6. Let v ∈ W 1,p
0 (�) for p � 1 and� ⊂ R

n. Then for every λ > 0 there

exists vλ ∈ W 1,∞
0 (�) with ‖vλ‖1,∞;� � λ and

‖vλ‖1,p;� � c‖v‖1,p;�
|{vλ �= v}| � cλ−p

ˆ
�

|v|p + |Dv|p

for some c = c(n, p) > 0.

Wecannowgive a (direct) proof of the following tangentialA-harmonic approx-
imation lemma based on the the general Sobolev–Orlicz space proof of [27,30].

Lemma 7.7. For every 0 < ε < 1 there exists δ = δ(ε, n, N , p, α, , L) > 0 such
that if u ∈ W 1,p(BR,M), for p � 2 with 0 < R < 1, is any δ-approximate
tangential A-harmonic map about a point θ ∈ M with exponents α > 1 and
0 < β � 1, where A is a strongly elliptic bilinear form with ellipticity constant 
and an upper bound L, then the unique tangential A-harmonic map h ∈ Cθ (u) +
W 1,p

0 (BR,R
N ) about θ satisfies

 
BR

|V (Du − Dh)|2 � ε

[

Rβ +
( 

BR

|V (Du − (Du)R)|2α
)

1
α

+
 
BR

|V (Du − (Du)R)|2 +
( 

BR

|V (Du − (Du)R)|2
)

p
2
]

.
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Note that the existence and uniqueness of the tangential A-harmonic map fol-
lows from the standard linear theory.

Proof. First, using (11a) and (11c), we bound

 
BR

|V (Du − Dh)|2 � c0

 
BR

|V (∇�(θ)Du − Dh)|2 + |V (Du − ∇�(θ)Du)|2

� c0

 
BR

|∇�(θ)Du − Dh|p + |∇�(θ)Du − Dh|2

+ c0

 
BR

|V (Du − ∇�(θ)Du)|2 (25)

for some positive c0 = c0(n, N , p).
Set U = Cθ (u) − h ∈ W 1,p

0 (BR,R
N ) and H = |DU |p−1 DU

|DU | ∈
Lq(BR,R

Nn), where q = p
p−1 , so that ∇�(θ)H = H almost everywhere. Let

v ∈ W 1,q
0 (BR,R

N ) be a solution to

ˆ
BR

A(Dv, Dϕ) =
ˆ
BR

H · Dϕ (26)

for any ϕ ∈ W 1,p
0 (BR,R

N ) such that ∇�(θ)Dϕ = Dϕ and ∇�(θ)Dv = Dv

almost everywhere. By Lemma 7.5 we have

ˆ
BR

|Dv|q � C0

q

ˆ
BR

|H |q

for some C0 = C0(n, N , q, , L). From this Lq -estimate, Equation (26) and the
fact that U ∈ W 1,p

0 (BR,R
N ) satisfies ∇�(θ)DU = DU almost everywhere we

have

1

p

ˆ
BR

|DU |p =
ˆ
BR

A(Dv, DU ) − 1

q
|H |q �

ˆ
BR

A(Dv, DU )− 1

C0
|Dv|q

=
ˆ
BR

A(Dv,∇�(θ)Du)− 1

C0
|Dv|q ,

since h is a tangential A-harmonic map about θ . Similarly, the strong ellipticity
condition (23) also implies

1

2

 
BR

|DU |2 � 1



 
BR

A(DU,∇�(θ)Du) − 1

2

 
BR

|DU |2,

since h is a tangential A-harmonic map about θ with U ∈ W 1,2
0 (BR,R

N ) also.
Now set A = (Du)R and denote�q = ffl

BR
|Dv|q . By Lemma 7.6 there exists a

Lipschitz approximation vλ ∈ W 1,∞
0 (BR,R

N ) of the above v with λ ∈ (k�, kq�)

for some integer k > 1. In which case we can write
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BR

A(∇�(θ)Du, Dv) =
 
BR

A(Du − A,∇�(θ)(Dv − Dvλ))

+
 
BR

A(Du,∇�(θ)Dvλ)

+
 
BR

A(∇�(θ)Du − Du, Dv) = I + I I + I I I.

Using Lemma 7.6 and α > 1 we bound the first term

I � L
 
BR

|Du − A||∇�(θ)(Dv − Dvλ)|1{v �=vλ}

� c1

 
BR

|Du − A|p1{v �=vλ} + 1

3C0

 
BR

|Dv|q

� c1

(  
BR

|Du − A|αp
)

1
α
( |{v �= vλ}|

|BR |
)1− 1

α

+ 1

3C0

 
BR

|Dv|q

for some positive c1 = c1(n, N , p, , L). Again, using the estimates from
Lemma 7.6 we also bound

|{vλ �= v}|
|BR | � c2k

−q

for some positive c2 = c2(n, N , p). Thus for every 0 < ε < 1 we may choose
k = k(ε, α, n, N , p, , L) > 0 sufficiently large so that

I � ε

2

(  
BR

|V (Du − A)|2α
)

1
α

+ 1

3C0

 
BR

|Dv|q .

As u is a δ-approximate tangentialA-harmonicmap about θ , Definition 7.2 implies,
together with the bound ‖Dvλ‖∞ � λ � kq�, Young’s inequality and p � 2, that
the second term

I I � δ

(

Rβ +
 
BR

|V (Du − A)|2
)

1
2

‖Dvλ‖∞

� 2
p−2
2 δkq

(

Rβ +
( 

BR

|V (Du − A)|2
)

p
2

+
 
BR

|Dv|q
)

.

Furthermore, we also have

I I I � L
 
BR

|∇�(θ)Du − Du||Dv|

� c3

 
BR

|V (∇�(θ)Du − Du)|2 + 1

3C0

 
BR

|Dv|q

for some positive c3 = c3(n, N , p, , L), where by Definition 7.2 we have

 
BR

|V (∇�(θ)Du − Du)|2 � δ2R + δ2(1−
1
α
)

( 
BR

|V (Du − A)|2α
)

1
α

. (27)
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By choosing sufficiently small δ = O(ε2+
1

α−1 ), that is a δ satisfying

δ � K ε2+
1

α−1 (28)

for some K = K (n, N , p, α, , L) > 0, we can bound 2
p−2
2 δkq � min{ ε2 , 1

3C0
},

c3δ2(1−
1
α
) � ε

2 and, since ε < 1, also c3δ2 � ε
2 to conclude

 
BR

A(∇�(θ)Du, Dv) − 1

C0
|Dv|q

� ε

[

Rβ +
(  

BR

|V (Du − A)|2
)

p
2

+
(  

BR

|V (Du − A)|2α
)

1
α
]

.

If we denote !2 = ffl
BR

|DU |2, recalling U ∈ W 1,2
0 (BR,R

N ) from the above,

then by Lemma 7.6 there exists a Lipschitz approximation Uμ ∈ W 1,∞
0 (BR,R

N )

toU with μ ∈ ( j!, j2!) for some integer j > 1. As the δ-approximate tangential
A-harmonic condition about θ yields

 
BR

A(Du,∇�(θ)DUμ) � δ

(

Rβ +
 
BR

|V (Du − A)|2
)

1
2

‖DUμ‖∞

� δ j2
(

Rβ +
 
BR

|V (Du − A)|2 +
 
BR

|DU |2
)

we can, like in the above estimates, choose an integer j = j (ε, α) > 0 sufficiently

large and δ = O(ε2+
1

α−1 ) sufficiently small such that

1



 
BR

A(∇�(θ)Du, DU ) − 1

2

 
BR

|DU |2

� ε

[

Rβ +
 
BR

|V (Du − A)|2 +
( 

BR

|V (Du − A)|2α
)

1
α
]

.

The desired result now follows by combining the initial estimate (25) with both the

L2 and L p-estimates and (27) for δ = O(ε2+
1

α−1 ). ��

8. Approximate Tangential Harmonicity

In this section we establish the approximate harmonicity of holonomic F-mini-
misers u ∈ W 1,p

loc (�,M) as per Definition 7.2. To do so we first note that the strong
quasiconvexity of (h2) implies

ε
��������ˆ
BR

D f 0(A)(Dϕ) + ε2
ˆ
BR

ˆ 1

0
(1 − t)D2 f 0(A + tεDϕ)(Dϕ, Dϕ) dt

=
ˆ
BR

f 0(A + εDϕ) − f 0(A) � γ ε2
ˆ
BR

|Dϕ|2
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for any matrix A ∈ R
Nn , any ϕ ∈ C∞

c (BR,R
N ) and fixed (x0, u0) ∈ � × R

N ,
where f 0(ξ) = f (x0, u0, ξ). By sending ε → 0 the latter inequality becomes

ˆ
BR

D2 f 0(A)(Dϕ, Dϕ) � 2γ
ˆ
BR

|Dϕ|2. (29)

So if, for any given � > 0, we have |(u)x0,R | � � and |(Du)x0,R | � � on some
BR(x0) ⊂⊂ �, the bilinear form

A = D2
ξξ f (x0, (u)x0,R, (Du)x0,R) (30)

is then both bounded, with an upper bound L = K� from (4), and strongly elliptic
in the sense of (23) with an ellipticity constant  = 2γ .

Given this one can use a linearisation strategy to prove the below approximate
harmonicity result of Proposition 8.3 via Ekeland’s variational principle and higher
integrability. The linearisation strategy is applied first to the frozen problemyielding
the following:

Lemma 8.1. Let u ∈ W 1,p
loc (�,M), p � 2, and suppose the integrand f satisfies

(h0), (h1), (h2). If v ∈ (u + W 1,p
0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M), on a fixed

BR(x0) ⊂⊂ � with 0 < R < 1, satisfies
 
BR(x0)

f (x0, (u)x0,R, Dv) �
 
BR(x0)

f (x0, (u)x0,R, Dw)

+ Rβ

( 
BR(x0)

|Dv − Dw|p
)1/p

for all w ∈ (u + W 1,p
0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M) and some 0 < β < 1,

then for every � > 0 there exists C = C(n, N , p,�, K�) > 0 such that

∣

∣

∣

∣

 
BR(x0)

D2
ξξ f (x0, (u)x0,R, (Dv)x0,R)(Dv,∇�(�((v)x0,R))Dφ)

∣

∣

∣

∣

� C

(

E(R; v)2 + ω(E(R; v)) 1
2 E(R; v) + Rβ(1 + E(R; v)2) 1

p

)

‖Dφ‖∞

for all φ ∈ C∞
c (BR(x0),RN ), whenever |(u)x0,R | � �, |(v)x0,R | � �,

|(Dv)x0,R | � � and �((v)x0,R) is well defined.
8

Proof. Put A = (Dv)x0,R , θ = �((v)x0,R) and f 0(ξ) = f (x0, (u)x0,R, ξ). Then
write

 
BR

D2 f 0(A)(Dv,∇�(θ)Dφ) = I + I I + I I I

8 Here E(R; v) = ( ffl
BR

|V (Dv − (Dv)R)|2
) 1
2 denotes the excess with respect to v.
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into the parts

I =
 
BR

D f 0(Dv)D(∇�(v)φ), I I =
 
BR

D f 0(Dv)(∇�(θ)Dφ−D(∇�(v)φ))

and

I I I =
 
BR

D2 f 0(A)(Dv − A,∇�(θ)Dφ) + (

Df 0(A) − Df 0(Dv)
)

(∇�(θ)Dφ)

(31)

=
 
BR

ˆ 1

0
[D2 f 0(A) − D2 f 0(A + t (Dv − A))](Dv − A,∇�(θ)Dφ) dt

=
 
BR

1{|Dv−A|�1}G + 1{|Dv−A|>1}G (32)

where

G =
ˆ 1

0
[D2 f 0(A) − D2 f 0(A + t (Dv − A))](Dv − A,∇�(θ)Dφ) dt.

Now on BR ∩ {|Dv − A| > 1} equations (2) and (4), via (31), imply

|G| � K�|Dv − A||Dφ| + c(1 + |Dv − A|p−1)|Dφ| � c|Dv − A|p|Dφ|.
Moreover, on BR ∩ {|Dv − A| � 1} Equation (32) and the modulus of continuity
(5) imply |G| � cω(|Dv − A|)|Dv − A||Dφ|. Hence by (11a) and (11f) we have

∣

∣

∣

∣

 
BR

1{|Dv−A|�1}G
∣

∣

∣

∣

� c

(

1

|BR |
ˆ
BR∩{|Dv−A|�1}

ω(|Dv−A|)2
)

1
2

E(R; v)‖Dφ‖∞

� c

[

ω

(

1

|BR |
ˆ
BR∩{|Dv−A|�1}

|Dv−A|
)]

1
2

E(R; v)‖Dφ‖∞

� cω(E(R; v)) 1
2 E(R; v)‖Dφ‖∞,

where the second last inequality follows by the fact that ω is concave and at most
1 and the last inequality follows by Cauchy–Schwarz and the fact that ω is non-
decreasing.

Expanding I I yields

I I =
 
BR

D f 0(Dv)(∇�(θ)Dφ − ∇�(v)Dφ − ∇2�(v)Dv · φ).

By the growth of (2), the bound ‖φ‖∞ � cR‖Dφ‖∞ and the Lipschitz properties
of the retraction � (cf. Remark 2.3) we bound

|I I | � c‖Dφ‖∞
 
BR

(1 + |Dv|p−1)|v − (v)R | + cR‖Dφ‖∞
 
BR

|Dv| + |Dv|p

� cR‖Dφ‖∞
 
BR

1 + |Dv|p

� cR‖Dφ‖∞(1 + E(R; v)2).
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Finally, by Corollary 6.4 and the bound ‖φ‖∞ � cR‖Dφ‖∞ we get

|I | � Rβ

(  
BR

|D(∇�(v)φ)|p
)

1
p

� cRβ‖Dφ‖∞
(

1 + Rp
 
BR

|Dv|p
)

1
p

� cRβ‖Dφ‖∞(1 + E(R; v)2) 1
p .

��
Lemma 8.2. Let u ∈ W 1,p(BR,M), p � 2, with 0 < R < 1. Then for every
� > 0 and α > 1 there exists c = c(n, N , p, α,�) > 0 such that 

BR

|V (∇�(�((u)R))Du − Du)|2 � cR2
 
BR

1 + |Du|p

+ c

(

R2
 
BR

1 + |Du|p
)1− 1

α

×
( 

BR

|V (Du − (Du)R)|2α
)

1
α

,

provided |(Du)R | � � and �((u)R) is well defined.

Proof. With A = (Du)R and θ = �((u)R) we note that

∇�(θ)Du − ∇�(u)Du = (∇�(θ) − ∇�(u))(Du − A) + (∇�(θ) − ∇�(u))A,

since Du = D(�(u)) = ∇�(u)Du. For any α > 1 we can, using (10), (11a),
(11c) and the Lipschitz properties of the retraction � (cf. Remark 2.3), bound 

BR

|V (∇�(θ)Du − Du)|2

� c
 
BR

(|u − θ |2|Du − A|2 + |u − θ |p|Du − A|p) + cR2
 
BR

|V ( u−θ
R )|2

� c

(  
BR

‖u‖
2

α−1∞ |u − (u)R |2 + ‖u‖
p

α−1∞ |u − (u)R |p
)

α−1
α

×
( 

BR

|V (Du − A)|2α
)

1
α

+ cR2
 
BR

|V (Du)|2

� c

(

R2
 
BR

1 + |Du|p
)1− 1

α
(  

BR

|V (Du − A)|2α
)

1
α

+ cR2
 
BR

1 + |Du|p,

since u ∈ L∞ (as M is compact). ��
Now for v − u ∈ W 1,p

0 (BR(x0),RN ) we have (Du)x0,R = (Dv)x0,R by the
divergence theorem. So by (11a) and (11e) we find

E(R; v)2 � E(R; u)2 + c
 
BR(x0)

|Du − Dv|2 + |Du − Dv|p, (33)
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whenever |(Du)x0,R | � �. Given this we can, using the fact that the minimiser v
of the frozen problem is close to the holonomic F-minimiser u in the sense of (21)
via Ekeland’s variational principle, establish the following approximate tangential
harmonicity result.

Proposition 8.3. If for every � > 0, under the assumptions of Theorem 1.2, the
map u ∈ W 1,p

loc (�,M) is an holonomic F-minimiser with

|(u)x0,2R | � �, |(Du)x0,2R | � �,

( 
B2R(x0)

|Du|p
)

1
p

� � + 1

on some B2R(x0) ⊂⊂ � with R = R(n, N , p,�) sufficiently small, then for any
α > 1 there exists C = C(n, N , p,�, K�, α) > 0 such that

 
BR(x0)

|V (Du − ∇�(�((u)x0,R))Du)|2

� Ce2R + Ce2(1−
1
α
)

(  
BR(x0)

|V (Du − (Du)x0,R)|2α
)

1
α

and
∣

∣

∣

∣

 
BR(x0)

D2
ξξ f (x0, (u)x0,R, (Du)x0,R)(Du,∇�(�((u)x0,R))Dφ)

∣

∣

∣

∣

� Ce(e + ω(e)
1
2 )‖Dφ‖∞

for all φ ∈ C∞
c (BR(x0),RN ), where e = (Rβ + E(R; u)2) 1

2 for some 0 < β < 1.

Proof. Using the initial assumptions, the result of Section 6 yields a minimiser
v ∈ (u + W 1,p

0 (BR(x0),RN )) ∩ W 1,p(BR(x0),M) of (22) which also satisfies
(21). Furthermore, from (21) and the initial assumptions, the Poincaré inequality
implies

dist((u)R,M) �
(  

BR

|u − (u)R |p
)

1
p

� cR(1 + �)

dist((v)R,M) �
(  

BR

|v − (v)R |p
)

1
p

� cR(1 + �p)
1
p ,

in which case the expressions�((u)R) and�((v)R) are well defined for 0 < R <

c−1(1 + �p)
− 1

p ρ, where ρ = reach(M) > 0 denote the positive reach of M
(cf. Section 2.2). Similarly, we have |(v)R | � c(1 + �), |(Dv)R | � c(1 + �)

by (21), the Poincaré inequality and the initial assumptions. With θu = �((u)R),
θv = �((v)R) and f 0(ξ) = f (x0, (u)x0,R, ξ)we observe, using (Du)R = (Dv)R ,
that  

BR

D2 f 0((Du)R)(Du,∇�(θu)Dφ)
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=
 
BR

D2 f 0((Dv)R)(Dv,∇�(θv)Dφ)

+
 
BR

D2 f 0((Du)R)(Dv, (∇�(θu) − ∇�(θv))Dφ)

+
 
BR

D2 f 0((Du)R)(Du − Dv,∇�(θu)Dφ).

Then using (4), (5) and the Lipschitz properties of the retraction� (cf. Remark 2.3)
we bound

∣

∣

∣

∣

 
BR

D2 f 0((Du)R)(Du,∇�(θu)Dφ)

∣

∣

∣

∣

�
∣

∣

∣

∣

 
BR

D2 f 0((Dv)R)(Dv,∇�(θv)Dφ)

∣

∣

∣

∣

+ C

(  
BR

|Dv|
)(  

BR

|u − v|
)

‖Dφ‖∞

+ C

(  
BR

|Du − Dv|p
)

1
p

‖Dφ‖∞.

The result now follows from Lemmas 8.1, 8.2 and the Poincaré inequality, since
E(R; v)2 � E(R; u)2 + CRβ by (33) together with (21). ��

9. Reverse Hölder-Type Inequalities

We establish reverse Hölder-type inequalities following a Caccioppoli inequal-
ity of the second kind argument using strict quasiconvexity and minimality via the
comparison map construction from Section 4.

Lemma 9.1. Let M be a connected compact manifold without boundary and
π : ˜M → M be its universal cover such that ˜M is compact and -connected
for some integer  � 1. Suppose the integrand f satisfies (h0), (h1), (h2), (h3) for

2 � p < +2 and u ∈ W 1,p
loc (�,M) is an holonomic F-minimiser. Then for every

� > 0 there exists C = C(n, N , p, γ, �,�, K�+1) > 0 and R1 = R1(n, N , p,�)

such that
 
BR/2(x0)

|V (Du − A)|2 � C

(  
BR(x0)

|V (Du − A)|2∗
)2/2∗

+ CR2
 
BR(x0)

(1 + |Du|p)

+ C
 
BR(x0)

|V (∇�(u)A − A)|2

+ C
 
BR(x0)

ωμ(R + |u − u0| + �1(Du))(1 + |Du|p)
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for any BR(x0) ⊂⊂ � with 0 < R < R1, any u0 ∈ R
N with |u0| � �+ 1 and any

A ∈ R
Nn with |A| � �.

Remark 9.2. Here we define the operator �α on L1(BR(x0)) for 0 < α < n by
the Riesz potential

�α f (x) = 1

cn(α)

ˆ
BR(x0)

|x − y|α−n| f (y)| dy,

where cn(α) = 2απ
n
2 �(α2 )/�( n−α

2 ). We note that �α is well defined and maps
L1(BR(x0)) into itself and has the following semi-group property

�α(�β( f )) = �α+β( f )

for α, β > 0 with α + β < n (cf. [77, §7]).

Proof. Let R
2 � r < s � R and choose a cut-off function η ∈ C∞

c (�) such
that η = 1 on Br (x0), η = 0 on �\Bs(x0), 0 � η � 1 and |Dη| � C/(s − r).
Define φ1 = ηū and φ2 = (1− η)ū, where ū(x) = u(x) − (u)x0,R − A · (x − x0),
so that Dφ1 + Dφ2 = Du − A. By setting f 0(ξ) = f (x0, u0, ξ) and using the
quasiconvexity of (h2) we obtain

γ

ˆ
Bs
(1 + |A|2 + |Dφ1|2) p−2

2 |Dφ1|2 �
ˆ
Bs

f 0(Du − Dφ2) − f 0(Du)

+
ˆ
Bs

f 0(Du) − f 0(A + Dφ2)

+
ˆ
Bs

f 0(A + Dφ2) − f 0(A)

= I + I I + I I I. (34)

By introducing the auxiliary functional Fs,A(w) = ´
Bs
F(Dw) dx, with integrand

F(ξ) = f 0(ξ + A) − f 0(A) − Df 0(A)(ξ), we note that

I I =
ˆ
Bs

f 0(Du) − f 0(A) − Df 0(A)(Dφ1 + Dφ2)

+
ˆ
Bs

ˆ 1

0
(Df 0(A) − Df 0(A + λDφ2)) · Dφ2 dλ = Fs,A(ū) + I I ′

since φ1 = 0 on ∂Bs . Now as

I + I I I =
ˆ
Bs

ˆ 1

0
(Df 0(A + λDφ2) − Df 0(Du − λDφ2)) · Dφ2 dλ,

it follows that I + I I + I I I = Fs,A(ū) + I I I ′, where

I I I ′ =
ˆ
Bs

ˆ 1

0
(Df 0(A) − Df 0(Du − λDφ2)) · Dφ2 dλ.
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Looking to the auxiliary functional we have, by the minimality of u,

Fs,A(ū) =
ˆ
Bs

f 0(Du) − f 0(A) − Df 0(A)(Du − A)

�
ˆ
Bs

f 0(Dv) − f 0(A) − Df 0(A)(Dv − A)

+
ˆ
Bs

f 0(Du) − f (x, u, Du) +
ˆ
Bs

f (x, v, Dv) − f 0(Dv)

for any v ∈ (u + W 1,p
0 (Bs,R

N )) ∩ W 1,p(Bs,M). Furthermore, using (11a) one
easily bounds F(ξ) � C |V (ξ)|2 (since for |ξ | > 1, F(ξ) � C |ξ |p by (2) and for
|ξ | � 1 write F(ξ) = ´ 1

0 (1−λ)D2 f 0(A+λξ)(ξ, ξ)dλ so that |F(ξ)| � K�+1|ξ |2
by (4) since |u0| � � + 1 also). It then follows by (h3) that

Fs,A(ū) � C
ˆ
Bs

|V (Dv − A)|2 + C
ˆ
Bs

ωμ(|x − x0| + |u − u0|)(1 + |Du|p)

+ C
ˆ
Bs

ωμ(|x − x0| + |v − u0|)(1 + |Dv|p).

To estimate I I I ′ we note that the integrand on Bs ∩ {|Du − A| + |Dφ2| > 1} can
be bounded, using (2) and the fact that |A| � �, by

|Df 0(A) − Df 0(Du − λDφ2)||Dφ2| � C(|Du − A| + |Dφ2|)p−1|Dφ2|.
On Bs ∩ {|Du − A| + |Dφ2| � 1} we use (4), noting that |Du − λDφ2| � � + 1
and |u0| � � + 1, to obtain

|Df 0(A) − Df 0(Du − λDφ2)||Dφ2| � K�+1(|Du − A| + |Dφ2|)|Dφ2|.
Now as Dφ2 = (1 − η)(Du − A) − ū ⊗ Dη we have |V (Dφ2)| � C(|V (Du −
A)| + |V ( ū

s−r )|) by (11c). This together with the fact that Dφ2 = 0 on Br implies

I I I ′ � C
ˆ
Bs\Br

|V (Du − A)|2 +
∣

∣

∣V
(

ū
s−r

)∣

∣

∣

2
.

Furthermore, we bound the left-hand side of (34) on Br from below, using (11d)
and (11f), by

γ (1 + |A|2 + |Dφ1|2) p−2
2 |Dφ1|2 � C(1 + |A|2 + |Du|2) p−2

2 |Du − A|2
� C |V (Du) − V (A)|2
� C |V (Du − A)|2,

where C = C(n, N , p, γ,�). In which case, by (h3) we concludeˆ
Br

|V (Du − A)|2�C
ˆ
Bs\Br

|V (Du−A)|2+C
ˆ
Bs

|V (Dv − A)|2+
∣

∣

∣V
(

ū
s−r

)∣

∣

∣

2

+ C
ˆ
Bs

ωμ(|x − x0| + |u − u0|)(1 + |Du|p)

+ C
ˆ
Bs

ωμ(|x − x0| + |v − u0|)(1 + |Dv|p) (35)
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for any v ∈ (u + W 1,p
0 (Bs,R

N )) ∩ W 1,p(Bs,M).
Now if we let a : Rn → R

N denote the linear map

x 	→ A · (x − x0)

on BR , then dist(u − a,M) � ‖a‖∞ � �R since |A| � �. In which case, using
the retraction � from a tubular neighbourhood onto M, the expression

û = �(u − a)

is well defined for 0 < R < �−1ρ, where ρ > 0 denote the positive reach of M.
From the lifting of Theorem 4.1 we have û = π ◦ ϕ̂ for some ϕ̂ ∈ W 1,p(Bs, ˜M).
Then by Lemma 4.9, (10) and (11b) there exists v̂ ∈ (̂u + W 1,p

0 (Bs,R
N )) ∩

W 1,p(Bs,M) such that

ˆ
Bs

|V (Dv̂)|2 � C
ˆ
Bs\Br

|V (Dû)|2 + C
Rn+p

(s − r)p

(  
BR

|V (Dû)|2∗
)2/2∗

with

|̂v(x) − û(x)| � C
ˆ
Bs

|x − y|1−n
(

|Dû(y)| + |ϕ̂(y) − (ϕ̂)Bs |
s − r

)

dy (36)

for almost everywhere x ∈ Bs .
As dist(u − û + v̂,M) � |u − û| � Lip� ‖a‖∞ by Lipschitz properties of

the retraction �, the competitor v ∈ (u + W 1,p
0 (Bs,R

N )) ∩ W 1,p(Bs,M) to the
minimiser u can be defined by setting

v = �(u − û + v̂)

for all 0 < R < (Lip�)−1�−1ρ = R1. In particular, as v̂ = û on ∂Bs by
construction we have v − u ∈ W 1,p

0 (Bs,R
N ). By writing

Dv − A = ∇�(u − û + v̂)[(∇�(u) − ∇�(u − a)
)

Du

+ (∇�(u − a) − ∇�(u))A + ∇�(u)A − A]
+[∇�(u−û + v̂)−∇�(u)]A + ∇�(u)A − A + ∇�(u − û + v̂)Dv̂

we can bound

|Dv − A| � c‖a‖∞(� + |Du|) + c�|̂u − v̂| + c|∇�(u)A − A| + c|Dv̂| (37)

by Remark 2.3. So by the Poincaré inequality, (11b) and (11c) we have

ˆ
Bs

|V (Dv − A)|2 � C
ˆ
Bs
(|V (Dv̂)|2 + |V (∇�(u)A − A)|2 + R2(1 + |Du|p))
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for some positive C = C(n, N , p,�). To estimate the final term in (35), we first
note that |v − u0| � |u − u0| + |v − u| � |u − u0| + c|̂u − v̂| by the Lipschitz
properties of �. Then by (36) and [47, Lem. 7.16] we have

|̂v(x) − û(x)| � C
ˆ
Bs

|x − y|1−n|Dû(y)| dy

+ C

s − r

ˆ
Bs

|x − y|1−n
( ˆ

Bs
|y − z|1−n|Dû(z)|dz

)

dy

� C(R + �1(Du)) + C

s − r
(R2 + �1(�1(Du)))

for almost everywhere x ∈ Bs , since |Dϕ̂| = |Dû| � c|Du − A|. More-
over, by Remark 9.2 we note, for n > 2, that �1 ◦ �1 = �2 and �2(Du) �
Cdiam(BR)�1(Du) almost everywhere by the definition, whereas for n = 2 we

have �1/2 ◦ �1 = �3/2 so that �1 ◦ �1(Du) � Cdiam(BR)
1
2�1/2 ◦ �1(Du)

and �3/2(Du) � Cdiam(BR)
1
2�1(Du) almost everywhere. Thus we obtain the

pointwise bound

|̂v − û| � C
R

s − r
(R + �1(Du)). (38)

In which case we find, as ωμ(t) = min(1, tμ) with 0 < μ � 1 and p � 2, that
ˆ
Bs

ωμ(|x − x0| + |v − u0|)(1 + |Dv|p)

� C
ˆ
Bs

|V (Dv̂)|2 + C
ˆ
Bs

ωμ(|x − x0| + |v − u0|)(1 + |Du|p),

since |Dv − A| � c(1 + |Du|) + c|Dv̂| by (37) together with the fact that M is
compact. Furthermore, from (38) we boundˆ

Bs
ωμ(|x − x0| + |v − u0|)(1 + |Du|p)

� C

(

R

s − r

)μ ˆ
Bs

ωμ(R + |u − u0| + �1(Du))(1 + |Du|p).

Finally, by combining these estimates together with (35), and using (10), we
obtain
ˆ
Br

|V (Du − A)|2 � C
ˆ
Bs\Br

|V (Du − A)|2 + C
Rn+p

(s − r)p

( 
BR

|V (Du − A)|2∗
)2/2∗

+ C

(

R

s − r

)μ ˆ
Bs

ωμ(R+|u − u0|+�1(Du))(1 + |Du|p)

+ C
ˆ
BR

|V (∇�(u)A − A)|2 + R2(1 + |Du|p)

for some positive C = C(n, N , p, γ, �,�, K�+1). The result now follows by
Widman’s hole filling trick and an application of the standard iteration lemma
(cf. [40, Lem. 1.1]). ��
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Given the above result one can apply Gehring’s lemma to obtain the following:

Corollary 9.3. Let M be a connected compact manifold without boundary and
π : ˜M → M be its universal cover such that ˜M is compact and -connected for
some integer  � 1. Suppose the integrand f satisfy (h0), (h1), (h2) and (h3) for

2 � p < 2 + . If for every � > 0 the map u ∈ W 1,p
loc (�,M) is an holonomic

F-minimiser with

|(u)x0,2R | � �, |(Du)x0,2R | � �,

( 
B2R(x0)

|Du|p
)

1
p

� � + 1

on some B2R(x0) ⊂⊂ � for R = R(n, N , p,�) sufficiently small, then there exists
q = q(n, N , p, γ, �,�, K�+1) > p and C = C(n, N , p, γ, �,�, K�+1) such
that

( 
B R

2
(x0)

|V (Du − (Du)x0, R2
)| 4q

p+q

)

p+q
2q

� CR
μ
2 (1− p

q )

+ C
 
BR(x0)

|V (Du − (Du)x0,R)|2.

Proof. For every! > 0 there existsC > 0 and0 < R1 � 1 such that the inequality
of Lemma 9.1 holds on all balls BR(x0) ⊂⊂ �with 0 < R < R1 and any u0 ∈ R

N ,
A ∈ R

Nn such that |u0| � ! + 1, |A| � !. Then by applying Gehring’s lemma
(cf. [45, Prop. 5.1]), there exists α0 = α0(n, N , p, γ, �,!, K!+1) > 1 such that
for any 1 < α � α0, any u0 ∈ R

N with |u0| � ! + 1 and any A ∈ R
Nn with

|A| � !, we have

(  
BR/2

|V (Du − A)|2α
)

1
2α

� C

(  
BR

|V (Du − A)|2
)

1
2

+ CR

(  
BR

1 + |Du|αp
)

1
2α

+ C

(  
BR

ωμ(R + |u − u0|

+ �1(Du))α(1 + |Du|αp)
)

1
2α

+ C

(  
BR

|V (∇�(u)A − A)|2α
)

1
2α

(39)

on a ball BR = BR(x0) ⊂⊂ � with 0 < R � 1 sufficiently small. Note that the
integrands of Lemma 9.1 on the right-hand side which are dependent on R can be
handled by ‘freezing R’ for a moment (as they are monotonically increasing in R)
before applying Gehring’s lemma on increasing supports (cf. [46, p. 200]).
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Now from the local higher integrability of Lemma 5.1 there exists q > p such
that Du ∈ Lq

loc with

 
BR

|Du|q � c

(  
B2R

1 + |Du|p
)

q
p

.

Thus we can set α0 = q/p without loss of generality. Also by setting u0 = (u)x0,R
and A = (Du)x0,R/2 the initial assumptions imply |A| � 4n

ffl
B2R

|Du| � 4n(1+�)

and |u0| � |(u)2R |+ffl
BR

|u−(u)2R | � c(1+�) by the Poincaré inequality. Hence
it suffices to take ! = c(1 + �) for some c > 4n . Then for any 1 < α < α0 we
estimate 

BR

ωμ(R + |u − u0| + �1(Du))α(1 + |Du|αp)

� R−μ
αp
q ωμ

(  
BR

R + |u − u0| + �1(Du)

)

+ Rμ(1− αp
q )

 
BR

1 + |Du|q ,
(40)

sinceωμ is concave and nogreater than 1. Furthermorewefind thePoincaré inequal-
ity, standard potential estimates (cf. [47, Lem. 7.12]) and higher integrability imply

 
BR

R + |u − u0| + �1(Du) � cR

(  
BR

1 + |Du|p
)

1
p

.

Then from (40) we bound
 
BR

ωμ(R + |u − u0| + �1(Du))α(1 + |Du|αp)

� cRμ(1− αp
q )

ωμ

((  
B2R

1 + |Du|p
)

1
p
)

+ cRμ(1− αp
q )

(  
B2R

1 + |Du|p
)

q
p

.

In particular, if we set α = 2q/(p + q) the relation 1 < α < q/p is satisfied with

( 
BR

ωμ(R + |u − u0| + �1(Du))α(1 + |Du|αp)
)

1
2α

� cR
μ
4 (1− p

q )ωμ

((  
B2R

1 + |Du|p
)

1
p
)

p+q
4q

+ cR
μ
4 (1− p

q )

(  
B2R

1 + |Du|p
)

p+q
4p

.

Finally, we note that the expression �((u)R/2) is well defined for 0 < R � 1
sufficiently small, since the Poincaré inequality implies

dist((u)R/2,M) � cR

(  
B2R

|Du|p
)

1
p

� cR(1 + �)
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by the initial assumption. In which case, using the Lipschitz properties of the
retraction (cf. Remark 2.3) and p � 2, we bound

|∇�(u)A − A| � |∇�(u)(Du) R
2

− ∇�(�((u) R
2
))(Du) R

2
|

+ |∇�(�((u) R
2
))(Du) R

2
− (Du) R

2
|

� c|u − (u) R
2
| +

 
B R

2

|∇�(�((u) R
2
))Du − ∇�(u)Du|

� c|u − (u) R
2
| + c

(  
B R

2

|u − (u) R
2
| p
p−1

)1− 1
p
(  

B R
2

|Du|p
)

1
p

� c|u − (u) R
2
| + cR

(  
B2R

|Du|p
)

2
p

.

Then by (10), (11b) and (11c) together with the fact that |V (ξ)|2α � c(1 + |ξ |q),
as 1 < α < q/p, we conclude

( 
BR

|V (∇�(u)A−A)|2α
)

1
2α

� cR

(  
B2R

1+|Du|p
)

q
2αp + cR

(  
B2R

1+|Du|p
)

q
αp

.

The desired result now follows from (39) together with the initial assumption
bounds. ��

10. Excess-Improvement and Iteration

We now look to prove Theorem 1.2 via the the following excess-improvement
result:

Proposition 10.1. If for every � > 0 and for every 0 < ε < 1, under the assump-
tions of Theorem 1.2, the map u ∈ W 1,p

loc (�,M) is an holonomic F-minimiser such
that the smallness conditions

|(u)x0,R | � �, |(Du)x0,R | � �, E(x0, R) � ε

hold for some BR(x0) ⊂⊂ � with R = R(n, N , p,�) sufficiently small, then for
every 0 < τ � 1

8 we have

E(x0, τ R)2 � C(τ 2 + τ−nω̃(Rβ + ε))E(x0, R)2 + Cτ−nω̃(Rβ + ε)Rβ

for some C = C(n, N , p, γ, �,�, K�+1) > 0, some β ∈ (0, 1) and a modulus of
continuity ω̃ independent of τ , R and ε.

Proof. Firstly, from Lemma 5.1 there exists q = q(n, N , p, γ, �) > p such that
Du ∈ Lq

loc. Now for fixed � > 0 and 0 < ε < 1 assume the initial smallness
conditions |(u)x0,4R | � �, |(Du)x0,4R | � � and E(x0, 4R) � ε hold for some
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B4R(x0) ⊂⊂ �. Then by (4) and (29) the bilinear formA given by (30) is bounded
and strongly elliptic in the sense of (23). With α = 2q

p+q ∈ (1, q
p ) let

ω̃(t) = (ω(t
1
2 )

1
2 + t

1
2 )

α−1
2α−1 ,

where ω is the modulus of continuity given by (5). So for ε0 = ω̃(ε + Rβ), with
0 < R � 1 sufficiently small and some 0 < β < 1, the approximate tangential
harmonicity of Proposition 8.3 shows the holonomic F-minimiser u to be a δ-
approximate tangential A-harmonic map about θ = �((u)x0,R) with δ = δ(ε0) =
O(ε0

2+ 1
α−1 ), since we require δ � C(ω(e)

1
2 + e) where e = (Rβ + E(R)2) 1

2 .
Then by Lemma 7.7 there exists a unique tangentialA-harmonic map h ∈ Cθ (u)+
W 1,p

0 (BR,R
N ) about θ that satisfies

 
BR

|V (Du − Dh)|2 � ε0

[

Rβ + E(R)2 + E(R)p

+
(  

BR

|V (Du − (Du)R)|2α
)

1
α
]

.

Now for any 0 < τ � 1
2 and any matrix A ∈ R

Nn we have

E(x0, τ R)2 � c
 
Bτ R

|V (Du − A)|2 � c
 
Bτ R

|V (Dh − A)|2 + |V (Du − Dh)|2.

Thus by setting A = (Dh)τ R the interior estimates of Remark 7.4 imply
 
Bτ R

|V (Dh − (Dh)x0,τ R)|2 � Cτ 2
ˆ
BR

|V (Dh − (Dh)x0,R)|2

� Cτ 2
ˆ
BR

|V (Du − (Du)x0,R)|2,

since (Dh)R = ∇�(θ)(Du)R by the divergence theorem and Lemma 7.5 we have
‖Dh − ˜A‖p � C‖∇�(θ)Du − ˜A‖p for any ˜A ∈ R

Nn with ∇�(θ)˜A = ˜A almost
everywhere. Moreover, the conclusion of Lemma 7.7 together with Corollary 9.3
implies
 
Bτ R

|V (Du − Dh)|2 � τ−n
 
BR

|V (Du − Dh)|2

� τ−nε0

[

Rβ + E(R)2 + E(R)p

+
( 

BR

|V (Du − (Du)R)|2α
)

1
α
]

� Cτ−nε0(R
β + E(x0, R)2 + E(x0, R)p + E(x0, 2R)2).

Thus E(τ R)2 � C(τ 2 + τ−nε0)E(2R)2 +Cτ−nε0Rβ for every 0 < τ � 1/2. ��
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Given Proposition 10.1 one can judiciously choose the parameter τ such that
both

Cτ 2 � 1

2
τβ/2 and Cτ−nω̃(Rβ + ε) � 1

2
τβ/2

hold. As the first inequality is equivalent to choosing 0 < τ � (2C)−1/(2−β/2) = τ0
we must also require 0 < ω̃(Rβ + ε) � 1

2C τ n+2. Then for such (fixed) τ we can
decrease ε and R even further, if necessary, to obtain:

Corollary 10.2. For every � > 0 there exists τ = τ(�) and ε = ε(�) such that if
the smallness conditions

|(u)x0,R | � �, |(Du)x0,R | � �, E(x0, R) � ε

hold on some BR(x0) ⊂⊂ � with 0 < R � 1 sufficiently small, then

E(x0, τ R)2 � τβ/2E(x0, R)2 + Rβ.

By iterating this result we get:

Claim 10.3. For every � > 0 there exists ε = ε(� + 1) such that for integers
j � 1 we have

E(x0, τ j R)2 � τ jβ/2E(x0, R)2 + Rβ τ jβ/2 − τ jβ

τβ/2 − τβ
,

whenever |(u)x0,R | � �, |(Du)x0,R | � �, E(x0, R) � ε holds on some
BR(x0) ⊂⊂ � with 0 < R � 1 sufficiently small.

Now if r ∈ [τ R, R) then E(x0, r)2 � τ−nE(x0, R)2; whereas if r ∈ (0, τ R]
there exists an integer j � 1 such that τ j+1R � r � τ j R from which Claim 10.3
implies

E(x0, r)2 � τ−nE(x0, τ j R)2 �
(

r

R

)β/2

τ−n−β/2
[

E(x0, R)2 + Rβ

τβ/2 − τβ

]

.

Thus for every x0 ∈ Reg u there exists � > 0, an ε > 0 sufficiently small and an
0 < R < dist(x0, ∂�) sufficiently small such that

E(x0, r)2 �
(

r

R

)β/2

τ−n−β/2
[

ε2 + Rβ

τβ/2 − τβ

]

, 0 < r < R, (41)

whenever |(u)x0,R | � �, |(Du)x0,R | � � and E(x0, R) � ε hold (which by
Remark 1.6 is what one seeks to demonstrate).
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