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Abstract The motion planning problem for nonholo-
nomic robotic systems is studied using the continua-
tion method and the optimization paradigms. A new
Jacobian motion planning algorithm is derived, based
on a solution of the Lagrange-type optimization prob-
lem addressed in the linear approximation of the sys-
tem. Performance of the new algorithm is illustrated
by numeric computations performed for the unicycle
robot kinematics.

Keywords Nonholonomic system · Motion plan-
ning · Jacobian algorithm · Optimization

1 Introduction

The kinematics of a nonholonomic robotic system sub-
ject to Pfaffian phase constraints can be represented in
the form of a driftless control system with outputs. The
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motion planning problem becomes then equivalent to
inverting the end point map of this system. An applica-
tion of the continuation method provides a systematic
way of deriving Jacobian motion planning algorithms.
In the context of robotics, the continuation method was
introduced by Sussmann [16] and then used success-
fully in the motion planning of mobile robots [6,7],
mobile manipulators [17] and rolling bodies [1,3],
extended to systems with dynamics [10,13,19], as well
as developed theoretically towards proving complete-
ness (convergence for any initial controls) of Jaco-
bian motion planning algorithms [4,5,15,18], incor-
porating state and control bounds [9], adopting them
to the multiple-task motion planning [11,13], as well
as improving their computational properties [12]. The
Jacobian of a nonholonomic system is defined as the
end point map in the linear approximation to the orig-
inal system. An inverse Jacobian is computed as a
solution of a constrained optimization problem for-
mulated in this linear approximation. Then, an essen-
tial ingredient of the motion planning algorithm is a
functional differential equation involving an inverse of
the Jacobian. In the cited works, the Jacobian inverse
has usually come from the minimization of the control
squared norm (energy), resulting in either the Jacobian
pseudoinverse (a Moore–Penrose generalized inverse
in aHilbert space [2]) or aweighted Jacobian pseudoin-
verse.

In this note, using the continuation method, we
introduce a new Jacobian inverse for the nonholo-
nomic kinematics. The new inverse is referred to as
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the Lagrangian Jacobian inverse, as it relies on a con-
strained minimization of the Lagrange-type objective
function. Our main result consists in deriving this new
inverse and providing a correspondingmotion planning
algorithm. Differently to the Jacobian pseudoinverse,
the Lagrangian Jacobian inverse incorporates at every
step not only the minimization of the control varia-
tion, but a jointminimization of both the system control
and the system trajectory variations. The computations
underlying the algorithm are equivalent to solving a set
of differential-algebraic equations. Computability and
performance of the Lagrangian Jacobian motion plan-
ning algorithm are demonstrated by solving a motion
planning problems for the unicycle-type mobile robot.
Thepresented case study suggests that thismotionplan-
ning algorithm can be designed in such a way that,
besides solving the motion planning problem itself, it
allows for shaping the system trajectories in order to
foster a desired way of motion, e.g. avoiding obstacles.

The remaining part of this note is composed in the
following way. Sect. 2 presents the basic concepts,
including basics of the continuation method and the
concept of the Jacobian pseudoinverse for nonholo-
nomic systems. Section 3 contains our main result, i.e.
the Lagrangian Jacobian inverse. The corresponding
motionplanning algorithm is described inSect. 4.Com-
putational aspects of the new algorithm are discussed
in Sect. 5 in the context of the unicycle robot. Sec-
tion 6 contains conclusions. Proofs of the main results
are given in “Appendix”.

2 Basic concepts

We shall study the kinematics of a nonholonomic
robotic system, represented as a driftless control system
with outputs

{
q̇ = G(q)u = ∑m

i=1 gi (q)ui ,
y = k(q),

(1)

whereq = (q1, q2, . . . , qn)T ∈ Rn is the state variable,
u = (u1, u2, . . . , um)T ∈ Rm denotes the control, and
y = (y1, y2, . . . , yr )T ∈ Rr stands for the output vari-
able. All the vector fields and functions appearing in (1)
will be assumed smooth (of C∞ class). The admissible
control functions u(·) ∈ U ⊂ L2

m[0, T ], where T is a
fixed control horizon, belong to a subset of the space of
Lebesgue square integrable functions on [0, T ], with

inner product inherited from the ambient space. It is
assumed that for admissible control functions the state
trajectory q(t) = ϕq0,t (u(·)) exists for every t ∈ [0, T ]
and every initial state q0 ∈ Rn . Given a state trajectory,
the end point map Kq0,T : U −→ Rr of the system (1)
is defined as

Kq0,T (u(·)) = k(ϕq0,T (u(·))). (2)

It is well known that the end pointmap of the system (1)
is continuously differentiable [14]. Its derivativewill be
referred to as the system’s Jacobian,

Jq0,T (u(·))v(·) = D Kq0,T (u(·))v(·)
= C(T )D ϕq0,T (u(·))v(·) = η(T ) = η, (3)

for u(·), v(·) ∈ U , and η(t) denote the output trajectory
of the linear approximation to (1) along (u(t), q(t)).
Letting

ξ(t) = D ϕq0,t (u(·))v(·), (4)

we get [17]

{
ξ̇ = A(t)ξ + B(t)v,

η(t) = C(t)ξ,
(5)

where A(t) = ∂G(q(t))u(t)
∂q , B(t) = G(q(t)), and

C(t) = ∂k(q(t))
∂q . Then, after solving (5) for ξ(0) = 0,

the Jacobian (3) can be expressed as

Jq0,T (u(·))v(·) = C(T )

∫ T

0
Φ(T, t)B(t)v(t)dt, (6)

with the transition matrix Φ(t, s) satisfying the evolu-
tion equation

∂Φ(t, s)

∂t
= A(t)Φ(t, s), (7)

along with Φ(s, s) = In , the identity matrix.
Using the kinematics representation (1), we shall

study the following motion planning problem of a
nonholonomic robotic system: given an initial state
q0 ∈ Rn and a terminal point yd ∈ Rr , find a con-
trol function u(·) ∈ U such that

Kq0,T (u(·)) = yd . (8)
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This motion planning problem can be solved by means
of a Jacobian algorithm whose derivation goes along
the following lines. We begin with an arbitrary con-
trol function u0(·) ∈ U . If it solves the problem, we
are done. Otherwise, we introduce a deformation of
u0(·) into a smooth curve uθ (·) ∈ U , θ ∈ R, such
that uθ=0(·) = u0(·), and compute the motion plan-
ning error e(θ) = Kq0,T (uθ (·)) − yd along this curve.
Requesting that the error decreases exponentially,

de(θ)

dθ
= −γ e(θ), γ > 0, (9)

we arrive at Ważewski–Davidenko equation

Jq0,T (uθ (·))duθ (·)
dθ

= −γ (Kq0,T (uθ (·)) − yd), (10)

involving the Jacobian (3). This equation can be made
explicit after employing a right inverse J #q0,T (u(·)) :
Rr −→ U of the Jacobian, so that

duθ (·)
dθ

= −γ J #q0,T (uθ (·))(Kq0,T (uθ (·)) − yd). (11)

By design, the control function driving the system (1)
in the initial state q0 to y(T ) = yd ∈ Rr is computed
as the limit

u(t) = lim
θ→+∞ uθ (t).

The right Jacobian inverse is usually obtained by solv-
ing for v(·) ∈ U a Jacobian equation

Jq0,T (u(·))v(·) = η. (12)

Specifically, the Jacobian equation may be attached as
an equality constraint to the energy minimization prob-
lem in the linearization (5),

min
v(·)

∫ T

0
vT (t)v(t)dt, (13)

on condition that

Jq0,T (u(·))v(·) = C(T )ξ(T ) = η,

that results in the Jacobian pseudoinverse [17](
J P#
q0,T (u(·))η

)
(t) = v(t)

= BT (t)ΦT (T, t)CT (T )G−1
q0,T

η, (14)

where

Gq0,T = C(T )

(∫ T

0
Φ(T, t)B(t)BT (t)ΦT (T, t)dt

)

×CT (T ) (15)

is the output controllability Gramian of the system
(5). In the mobile robotics context, this Gramian is
referred to as the mobility matrix [19]. It follows that
the Gramian matrix can be computed by solving the
Lyapunov differential equation

Ṁ(t) = B(t)BT (t) + A(t)M(t) + M(t)AT (t), (16)

for zero initial conditionM(0) = 0 and settingGq0,T =
C(T )M(T )CT (T ). If the Gramian (15) is full rank, a
straightforward computation shows that the minimal
value of the objective function (13) equals ηTG−1

q0,T
η.

3 Lagrangian Jacobian inverse

As has been said above, a right inverse of the Jacobian
(6) can be obtained by solving a constrained optimiza-
tion problem for the linearization (5) of the original
system (1). A natural generalization of the objective
function considered in (13) is an objective function in
the Lagrange form that leads to the Lagrange-type opti-
mization problem in (5)

min
v(·)

∫ T

0

(
ξ T (t)Q(t)ξ(t) + vT (t)R(t)v(t)

)
dt, (17)

along with

Jq0,T (u(·))v(·) = C(T )ξ(T ) = η,

where the matrices Q(t) = QT (t) ≥ 0 and R(t) =
RT (t) > 0. The resulting Jacobian inverse will
be referred to as the Lagrangian Jacobian inverse
J L#
q0,T

(u(·)). The following theorem establishes the
explicit form of the Lagrangian Jacobian inverse. Its
proof can be found in Proof of Theorem 1 in “Appen-
dix”.

Theorem 1 The Lagrangian Jacobian inverse

(
J L#
q0,T (u(·))η

)
(t)=v(t)=−R−1(t)BT (t)L(T, t, η),

(18)
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where

L(T, t, η) = −ψ22(t)
(
ψ22(T ) + CT (T )

M−1
q0,T

C(T )ψ32(T )
)−1

CT (T )M−1
q0,T

η, (19)

and the block matrix function Ψ (t) = [ψi j (t)], i, j =
1, 2, 3 solves the linear differential equation

Ψ̇ (t) =
⎡
⎣ ψ̇11(t) ψ̇12(t) ψ̇13(t)

ψ̇21(t) ψ̇22(t) ψ̇23(t)
ψ̇31(t) ψ̇32(t) ψ̇33(t)

⎤
⎦

=
⎡
⎣ A(t) −B(t)R−1(t)BT (t) 0

−Q(t) −AT (t) 0
D(t)Q(t) 0 A(t)

⎤
⎦ Ψ (t),

(20)

with initial condition ψi j (0) = δi j In, δi j denoting the
Kronecker delta. The matrix D(t) is a solution of the
Lyapunov equation

Ḋ(t) = B(t)R−1(t)BT (t) + A(t)D(t) + D(t)AT (t),

(21)

with zero initial condition D(0) = 0, and the mobility
matrix

Mq0,T = C(T )D(T )CT (T ). (22)

The mobility matrix will be assumed to have full rank
r . It is easily shown that, after setting Q(t) = 0 and
R(t) = Im , the Lagrangian Jacobian inverse and the
Jacobian pseudoinverse coincide. This is stated as

Corollary 1 If Q(t) = 0 and R(t) = Im, then
J L#
q0,T

(u(·)) = J P#
q0,T

(u(·)).
This corollary will be demonstrated in Proof of Corol-
lary 1 in “Appendix”. By inspection of the differential
equation (20), we obtain the next

Corollary 2 In the blockmatrixΨ (t), the termsψ13(t)
and ψ23(t) are zero.

Suppose that the output function of (1) is the identity
function k(q) = q. Then, we have the following

Corollary 3

L(T, t, η) = ψ22(t)ψ
−1
12 (T )η. (23)

Proof of this Corollary can be found in Proof of Corol-
lary 3 in ”Appendix”.

4 Motion planning

The Lagrangian Jacobian inverse gives rise to a
Lagrangian Jacobian motion planning algorithm based
on the scheme (11) with J #q0,T (u(·)) replaced by

J L#
q0,T

(u(·)), see (18). The computations involved in this
algorithm are tantamount to solving for uθ (t) the fol-
lowing set of differential-algebraic equations.

Algorithm 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇θ (t) = G(qθ (t))uθ (t),
Ḋθ (t) = Bθ (t)R−1(t)BT

θ (t) + Aθ (t)Dθ (t) + Dθ (t)AT
θ (t),

Ψ̇θ (t) =
⎡
⎣ Aθ (t) −Bθ (t)R−1(t)BT

θ (t) 0
−Q(t) −AT

θ (t) 0
Dθ (t)Q(t) 0 Aθ (t)

⎤
⎦ Ψθ (t),

duθ (t)
dθ

= −γ R−1(t)BT
θ (t)ψθ22(t)(

ψθ22(T ) + CT
θ (T )M−1

q0,T
(θ)

Cθ (T )ψθ32(T ))−1 CT
θ (T )M−1

q0,T
(θ)e(θ),

(†)

Aθ (t) = ∂(G(qθ (t))uθ (t))
∂q , Bθ (t) = G(qθ (t)), Cθ (t)

= ∂k(qθ (t))
∂q ,

Mq0,T (θ) = Cθ (T )Dθ (T )CT
θ (T ),

e(θ) = yθ (T ) − yd = k(qθ (T )) − yd ,

with initial conditions qθ (0) = q0, Dθ (0) = 0,
ψθ i j (0) = δi j In and a given initial control function
u0(t).

As explained in Sect. 2, the solution of themotion plan-
ning problem is obtained as the limit

u(t) = lim
θ→+∞ uθ (t).

5 Computer simulations

An advantage of the Lagrangian Jacobian motion plan-
ning algorithm is that by a suitable choice of matrices
Q(t) and R(t) defining the Lagrange objective func-
tion (17), besides solving the motion planning problem
itself, it also enables shaping the state trajectory of the
system (1).

For a given θ , suppose that vθ (·) is the solution of
the Jacobian equation

Jq0,T (uθ (·))vθ (·) = Kq0,T (uθ (·)) − yd (24)

obtained by means of the Lagrangian Jacobian inverse.
By (11) and (18) with a substitution η = e(θ), this
means that

duθ (t)

dθ
= −γ vθ (t). (25)
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Furthermore, let qθ (t) = ϕq0,t (uθ (·)) be the state tra-
jectory of the control system (1) steered by uθ (t). Then,
the identity (4) combined with (25) yields

dqθ (t)

dθ
= Dϕq0,t (uθ (·))duθ (·)

dθ
= −γDϕq0,t (uθ (·))vθ (·) = −γ ξθ (t). (26)

The functions vθ (·) and ξθ (·) can be interpreted as
directions of motion in the control and trajectory
spaces.

For a curve cθ (t) in the state space of system (1),
let Vθ (t) denote a vector field along cθ (t). The matrix
Q(t) can be made θ dependent, so we set

Qθ (t) = Vθ (t)V
T
θ (t).

Then, for a fixed θ , the Lagrange objective function
(17) becomes equal to

∫ T

0

((
ξ Tθ (t)Vθ (t)

)2 + vTθ (t)Rθ (t)vθ (t)

)
dt, (27)

where we have also allowed for the matrix R(t) to
depend on θ . With a suitable choice of the vector field
Vθ (t) and the matrix Rθ (t), the minimization of this
objective function will make the direction of motion
ξθ (·) orthogonal to Vθ (·) at each t . It might be expected
that, by an appropriate choice of the matrices Q(t) and
R(t), it could be possible to shape the solution of the
motion planning problem, e.g. in order to enable avoid-
ing obstacles in the state space of the system (1).

In the remaining part of this section, we shall verify
this expectation by numerically solving a motion plan-
ning problem for the unicycle-type mobile robot. The
robot is shown schematically in Fig. 1.

Under assumption that the wheel is not permitted to
slip laterally, its kinematics are represented by a drift-
less control system

q1

q2

q3

X

Y

Fig. 1 The unicycle

⎧⎪⎪⎨
⎪⎪⎩
q̇ =

⎡
⎣ cos q3 0
sin q3 0
0 1

⎤
⎦(

u1
u2

)
,

y = k(q) = q,

with the state variable q = (q1, q2, q3)T ∈ R3 denot-
ing thewheel’s position and orientation (see the figure),
a pair of controls u1, u2 denoting the linear and the
angular velocity of the wheel and the identity output
function. Suppose that the unicycle placed at a given
initial state q0 shouldmove to a desired point yd , simul-
taneously avoiding state space point–obstacles

O = {o1, . . . , op} = {(q11 , q12 , q13 ), . . . , (q p
1 , q p

2 , q p
3 )}.

Let for a certain θ the trajectory of the unicycle beqθ (t).
Along this trajectory, we define a vector field

Vθ (t) =
p∑

i=1

Viθ (t),

where

Viθ (t) = CR(Z , π/2)
oi − qθ (t)

||oi − qθ (t)|| .
The fractional term in the above expression is a direc-
tion pointing from the trajectory towards the obsta-
cle number i , while R(Z , π/2) denotes the rotation
matrix around the Z axis by the angle π/2. In order
to deal only with position obstacles, the matrix is set

to C =
[
I2 0
0 0

]
. For a vector field so defined, the min-

imization of the Lagrange objective function (27) will
result inmaking ξθ (t) orthogonal to Vθ (t), i.e. repelling
the trajectory qθ (t) from the obstacles.

This ideawill be illustratedwith solving numerically
a motion planning problem for the unicycle, character-
ized by the initial state q0 = (0, 0, 0), the desired point
yd = qd = (1, 1, 0), and the set of three obstacles
(p = 3) to be specified later on. The control horizon
is set to T = 2, and the decay rate in the Algorithm 1
is chosen as γ = 3. The computations run until the
error norm ||e(θ)|| drops below 10−4. The initial con-
trol function is chosen as u0 = (0.5, sin(2π t/T )).
In order to effectively visualize the algorithm per-
formance, the obstacles will be added progressively.
Firstly, we solve the motion planning problem with-
out any obstacles setting Qθ (t) = 102 I3. Next, we
will place the first obstacle o1 directly on the trajectory
obtained form the previous simulation, so we obtain
the matrix Qθ (t) = 102V1θ (t)V T

1θ (t). After that, we
will add a second obstacle o2 which will be placed
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Fig. 2 Path in (y1, y2)-plane

Fig. 3 Control u1(t)

exactly on the trajectory resulting from the former com-
putation, Qθ (t) = 102

(
V1θ (t)V T

1θ (t) + V2θ (t)V T
2θ (t)

)
.

Finally, having added the last obstacle o3, we solve
the motion planning problem with three obstacles
O = {(0.25, 0.18, ∗), (0.8, 0.35, ∗), (1.25, 0.84, ∗)},
such that Qθ (t) = 102Vθ (t)V T

θ (t), where ∗means that
the orientation coordinate is not important.

Results of the computer simulation are displayed in
Figs. 2, 3, 4 and 5.

In Figs. 2, 3, 4, the dotted line corresponds to the
computation without the obstacles, the thick solid line
is the final solution for all obstacles, and the thin
solid lines represent the intermediate solutions. Figure
2 reveals how the consecutive addition of the obsta-
cles affects the solutions. Figures 3, 4 show the control
function for each solution. The algorithm convergence
is depicted in Fig. 5, and it can be seen that the pre-
assumed decay rate γ = 3 has been maintained.

Algorithm 1 can be run either in a parametric or
in a nonparametric mode [11]. In the former case, a
finite-dimensional representation of the control func-

Fig. 4 Control u2(t)

Fig. 5 Algorithm convergence

tions is used, i.e. by truncated trigonometric series.
The computations accomplished in this note follow
the nonparametric mode and employ a built-in MAT-
LAB variable step, higher-order ODE solver. Such an
approach provides a very high accuracy of computa-
tions at the expense of the computation time. In the
presented example, in every step of themotion planning
algorithm, solving the differential equation (†) for all t
and a single value of θ takes about 0.5 s on a 3.2GHz
PC. In order to solve the whole motion planning prob-
lem, it is necessary to perform about 100 steps that
requires a total computation time around 1min.As long
aswe are solving amotion planning problem, this is tol-
erable because the computations can be done offline.
These computations might be accelerated by relaxing
accordingly the accuracy requirement and passing to
the parametric mode. For real-time control, e. g. for
the tracking of a trajectory planned offline, the predic-
tive control algorithmmaybe recommended, supported
with the computational tools of ACADO [8].

123



Lagrangian Jacobian inverse for nonholonomic robotic systems 1929

6 Conclusion

A contribution of this note is the Lagrangian Jacobian
inverse, and the corresponding motion planning algo-
rithm for nonholonomic robotic systems, based on the
continuation method and the optimization paradigm.
This inverse has been designed by a joint minimization
of variations of the system control and the system tra-
jectory. Computability of the new algorithm has been
shown on a simple example of unicycle. The outcomes
of computations suggest that employing the Lagrange
objective function in the definition of the Jacobian
inverse offers new possibilities of shaping the result-
ing plan of motion, e.g. in order to avoid obstacles.
A systematic examination of these possibilities will
be a subject of our future work. Another open area
for future research is the problem of existence (singu-
larities) and completeness (global convergence) of the
Lagrangian Jacobian motion planning algorithm, both
in the formpresented in this note aswell as in a singular-
ity robust version. As in the case of the classical inverse
(Q(t) = 0), a version of the Algorithm 1 respecting
control and configuration constraints can be derived.
Last but not least, an important issue will be con-
cerned with the organization of computations support-
ing Algorithm 1 that would balance the accuracy and
the efficiency. Although designed basically for driftless
control systems representing the nonholonomic robot
kinematics, the Lagrangian Jacobian motion planning
algorithm can be extended in a natural way to nonholo-
nomic robotic systems with dynamics, represented by
control affine systems.

Acknowledgments The authors are indebted to anonymous
reviewers for their remarks concerned with the contents of this
note as well as for their suggestions aimed at improving its read-
ability.

Open Access This article is distributed under the terms of
the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Appendix

Proof of Theorem 1

In order to solve the optimization problem (17), we
shall use the method of the calculus of variations. First,
we define the Lagrange function associated with the
problem

L(v(·), λ) =
∫ T

0

(
ξ T (t)Q(t)ξ(t) + vT (t)R(t)v(t)

)
dt

+ λT C(T )

∫ T

0
Φ(T, t)B(t)v(t)dt, (28)

where ξ(t) = ∫ t
0 Φ(t, s)B(s)v(s)ds. The derivative of

the Lagrange function for w(·) ∈ U is computed as
follows

DL(v(·), λ)w(·) = d

dα
|α=0L(v(·) + αw(·), λ)

= 2
∫ T

0

(∫ t

0
ξ T (t)Q(t)Φ(t, s)B(s)w(s)ds

+ vT (t)R(t)w(t)+ 1

2
λTC(T )Φ(T, t)B(t)w(t)

)
dt,

(29)

whereλ ∈ Rr denotes a vector of Lagrangemultipliers.
Using the identity∫ T

0

∫ t

0
f (s, t)dsdt =

∫ T

0

∫ T

s
f (s, t)dtds,

we transform (29) to

DL(v(·), λ)w(·)
= 2

∫ T

0

(∫ T

s
ξ T (t)Q(t)Φ(t, s)B(s)dt+vT (s)R(s)

+ 1

2
λTC(T )Φ(T, s)B(s)

)
w(s)ds. (30)

The necessary optimality condition, requesting that for
every w(·) the derivative DL(v(·), λ)w(·) = 0, yields

v(t) = −R−1(t)BT (t)

×
(
F(T, t) + 1

2
ΦT (T, t)CT (T )λ

)
, (31)

where
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F(t, s) =
∫ t

s
ΦT (z, s)Q(z)ξ(z)dz. (32)

Now, a substitution of (31) to the Jacobian equation
(12) allows one to compute λ as

λ = −2M−1
q0,T

(η + C(T )P(T )),

where

Mq0,T = C(T )

∫ T

0
Φ(T, t)B(t)R−1(t)BT (t)

ΦT (T, t)dtCT (T ) (33)

and

P(t) =
∫ t

0
Φ(t, s)B(s)R−1(s)BT (s)F(t, s)ds. (34)

After the elimination of λ from (31), we obtain a pre-
liminary form of the Lagrangian Jacobian inverse(
J L#
q0,T (u(·))η

)
(t) = v(t) = −R−1(t)BT (t)(F(T, t)

−ΦT (T, t)CT (T )M−1
q0,T

(u(·))(η + C(T )P(T ))).

Let us denote the term in brackets on the right-hand
side of the above expression as

L(T, t, η) = F(T, t) − ΦT (T, t)CT (T )

×M−1
q0,T

(η + C(T )P(T )), (35)

so that

(
J L#
q0,T (u(·))η

)
(t) = −R−1(t)BT (t)L(T, t, η). (36)

This means that (18) holds. On account of

∂ΦT (T, t)

∂t
= −AT (t)ΦT (T, t), Φ(T, T ) = In,

[see (7)], a time differentiation of (35) yields

∂L(T, t, η)

∂t
= ∂F(T, t)

∂t
+ AT (t)F(T, t)

−AT (t)L(T, t, η).

But from (32), we find

∂F(T, t)

∂t
= −Q(t)ξ(t) − AT (t)F(T, t),

and conclude that

∂L(T,t,η)
∂t = −AT (t)L(T, t, η) − Q(t)ξ(t),

L(T, T, η) = −CT (T )M−1
q0,T

(η + C(T )P(T )).

(37)

Eventually, taking into account the formula (34), and
the fact that F(t, t) = 0, we compute

Ṗ(t) = A(t)P(t) + D(t)Q(t)ξ(t), P(0) = 0, (38)

where

D(t) =
∫ t

0
Φ(t, s)B(s)R−1(s)BT (s)ΦT (t, s)ds.

It is easily checked that D(t) solves a Lyapunov equa-
tion

Ḋ(t) = B(t)R−1(t)BT (t) + A(t)D(t) + D(t)AT (t),

(39)

with D(0) = 0, i. e. the Equation (21) is true. Obvi-
ously, themobilitymatrixMq0,T =C(T )D(T )CT (T ),
and hence, also the identity (22) has been proved.

Taking into account the form of (36) as well as (5),
(37) and (38), one can observe that in order to compute
the Lagrangian Jacobian inverse one needs to solve a
set of linear, time-dependent differential equations⎛
⎝ ξ̇ (t)

L̇(t)
Ṗ(t)

⎞
⎠ =

⎡
⎣ A(t) −B(t)R−1(t)BT (t) 0

−Q(t) −AT (t) 0
D(t)Q(t) 0 A(t)

⎤
⎦

×
⎛
⎝ ξ(t)

L(t)
P(t)

⎞
⎠ , (40)

where, to simplify notations, we let L(T, t, η) = L(t),
and ∂L(T,t,η)

∂t = L̇(t).
The system (40) is subject to mixed initial and

terminal conditions ξ(0) = 0, P(0) = 0, and
L(T ) = −CT (T )M−1

q0,T
(u(·))(η + C(T )P(T )). Let

Ψ (t) denote the fundamental matrix Φ̃(t, 0) of (40).
The matrix Ψ (t) = [ψi j (t)] satisfies the evolution
equation

Ψ̇ (t) =
⎡
⎣ ψ̇11(t) ψ̇12(t) ψ̇13(t)

ψ̇21(t) ψ̇22(t) ψ̇23(t)
ψ̇31(t) ψ̇32(t) ψ̇33(t)

⎤
⎦

=
⎡
⎣ A(t) −B(t)R−1(t)BT (t) 0

−Q(t) −AT (t) 0
D(t)Q(t) 0 A(t)

⎤
⎦Ψ (t),

(41)

with initial condition ψi j (0) = δi j In , that is exactly
(20). From the equation (41), we deduce

L(t) = ψ21(t)ξ(0) + ψ22(t)L(0) + ψ23(t)P(0)

= ψ22(t)L(0), (42)
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and in particular,

L(T ) = ψ21(T )ξ(0) + ψ22(T )L(0) + ψ23(T )P(0)

= ψ22(T )L(0).

Furthermore, invoking (37), we get

ψ22(T )L(0)=−CT (T )M−1
q0,T

(u(·))(η+C(T )P(T )).

Using again (41), one finds

P(T ) = ψ31(T )ξ(0) + ψ32(T )L(0) + ψ33(T )P(0)

= ψ32(T )L(0),

therefore

L(0) = −
(
ψ22(T ) + CT (T )M−1

q0,T
C(T )ψ32(T )

)−1

×CT (T )M−1
q0,T

(u(·))η.

Combining the above with (42), we deduce (19). This
concludes the proof.

Proof of Corollary 1

Indeed, if Q(t) = 0, then (20) implies that

ψ̇22(t) = −AT (t)ψ22(t), ψ22(0) = In .

Now, because of

∂ΦT (0, t)

∂t
= −AT (t)ΦT (0, t), Φ(0, 0) = In,

it follows that ψ22(t) = ΦT (0, t). Also ψ̇32(t) =
A(t)ψ32(t), ψ32(0) = 0, so ψ32(t) = 0. Taking this
into account, and using (19), we deduce that

L(T, t, η) = −ΦT (T, t)CT (T )M−1
q0,T

η.

But, since R(t) = Im , the definition (15) yields the
identity Mq0,T = Gq0,T .

Proof of Corollary 3

Since the output matrix C(T ) = In , the term inverted
in (19) becomes

ψ22(T ) + CT (T )M−1
q0,T

C(T )ψ32(T )

= ψ22(T ) + D−1(T )ψ32(T ).

Consider a matrix

X (t) = D(t)ψ22(t) + ψ32(t),

and compute its time derivative

Ẋ(t) = Ḋ(t)ψ22(t) + D(t)ψ̇22(t) + ψ̇32(t).

Now, it follows from (20) that

ψ̇22 = −Q(t)ψ12(t) − AT (t)ψ22(t)

and

ψ̇32(t) = D(t)Q(t)ψ12(t) + A(t)ψ32(t).

Taking these into account, and after invoking (21), we
arrive at a differential equation

Ẋ(t) = B(t)R−1(t)BT (t)ψ22(t) + A(t)X (t),

with the initial condition X (0) = 0. But, simultane-
ously, (20) yields

ψ̇12(t) = −B(t)R−1(t)BT (t)ψ22(t) + A(t)ψ12(t)

with the same initial condition ψ12(0) = 0. We con-
clude that X (t) = −ψ12(t), so

ψ22(T ) + D−1(T )ψ32(T ) = D−1(T )X (T )

= −D−1(T )ψ12(T ).

Finally, a substitution of the above to (19) results in
(23).
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