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Abstract Concerns over the long-term sustainability

of the food production system and the nutritional

content of food from mineral depleted soils have

encouraged a policy shift to sustainable agricultural

practices where soil health supports nutrition-sensitive

agriculture. Interventions at the micro scale have the

ability to affect the entire system, forcing an exam-

ination at the whole of systems level. Modelling plays

an important role in determining the outcomes of

policy intervention combinations, particularly when

systems are identified as being complex. This study

begins with a systems map tracing the nutrient cycling

process between natural ecosystem processes and farm

practices from the bottom-up within a top-down

framework. Soil is at the centre of this approach,

expanding links to other influences within the frame-

work in order to understand the relationships between

elements in an environmental–agricultural system.

Moving to a generic model from a broad conceptual

system map is problematic when crop types, plant

mineral absorption rates, soil and geographic differ-

ences are to be accommodated. Work has been done to

develop top-down framework models integrating

bottom-up component models, capable of being used

in different scenarios. Whether existing models are

used or new models are created, this study recom-

mends that an appropriate modelling response require

examination of systems and policy interventions both

holistically and in detail encompassing situational

specifics.

Keywords Complex systems � Nutrition cycle �
Agriculture � Modelling

Introduction and objectives

Food is a product of the environment, either harvested

from an aqua/agricultural system or directly from

nature. Further, food in a developed society is often

processed, packaged and presented to satisfy hunger,

taste and preference. It provides energy and essential

nutrients for healthy living. It can define culture,

lifestyle and status, and brings together community,

friendship and commerce. The growing of food is the

story of a complex process.

It is well documented that the long-term sustain-

ability of the food production system is threatened.

Some examples of the system in crisis include:

unsustainable water withdrawals for agriculture

(UN-Water 2009; FAO 2012) the loss of land

productivity following degradation from overgrazing

R. P. Burdock (&)

The Faculty of Agriculture and Environment, University

of Sydney, Sydney, NSW 2006, Australia

e-mail: rob.burdock@sydney.edu.au

J. W. Crawford

Rothamsted Research, West Common,

Harpenden, Hertfordshire AL5 2JQ, UK

e-mail: john.crawford@rothamsted.ac.uk

123

Nutr Cycl Agroecosyst (2015) 103:257–278

DOI 10.1007/s10705-015-9739-9

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/191342458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10705-015-9739-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10705-015-9739-9&amp;domain=pdf


of marginal land (Geist and Lambin 2004; Slimani

et al. 2010; Alemseged et al. 2011; Zhou et al. 2011);

decreasing fish yields as the globalised trade in aquatic

farming exacerbates the spread of disease from the

intensive farming of aquatic livestock (Stentiford et al.

2012); soil nutrient deficiency and the collective

damage to the environment of processes connected

with intensive mono-cropping (Watson et al. 2002;

Ball et al. 2005; Govaerts et al. 2007); and the loss of

free ecosystem services, for example from bees which

naturally help to pollinate crops (Kremen et al. 2002;

Brown and Paxton 2009). Land degradation alone is

predicted to reduce global yields by 30 % in the next

20–50 years (Pimentel 2006) during which time,

global demand will require yield increases of 40 %

(Beddington 2010).

The nutritional value within the agricultural

product before it enters the processing chain is also

approaching a crisis. Some examples include a loss

of soil fertility which impacts the nutritional quality

of plants grown (St Clair and Lynch 2010; Lai

2009); deteriorating animal nutrition derived from a

diet limited in variety in domesticated livestock

(Poulson et al. 2004; Villalba et al. 2010); the shift

to formulate animal feed to modify and accelerate

the growth of the produce (Adams 2006); and for

human food consumption, there is a reduction in

nutritional health where the menu of a once wide

variety of foods offered in nature is now limited to

the food choices commonly farmed (Hodgson et al.

1994; Tucker 2001; Michels and Wolk 2002;

Hughes and Dhiman 2002; Larsen 2003). It is

estimated that one third of humanity suffers from

the effects of poor nutrition and obesity. For

example, more than one third of preschool-age

children globally are Vitamin A deficient due to a

diet lacking in nutritionally active carotenoids (the

colorful organic pigments found in edible plants

such as fruit and vegetables) (World Health Organ-

isation 2004). More than 1.5 billion people are

considered overweight worldwide, of whom 500

million are obese (World Health Organisation 2012).

As developing countries consume more meat in

combination with high-sugar and high-fat foods,

they may find themselves having to deal with obesity

before they have overcome the limitations of a

nutritionally poor diet, leading to an increase in

spending on health that could otherwise be used to

alleviate poverty (Godfray et al. 2010).

Compounding the issue is that the human genome

has not had time to adjust over the last 10,000 years to

our new and narrower diet following the introduction

of agriculture and farm animal domestication (Cordain

et al. 2005). Today, the availability of convenient,

energy dense, ready-to-eat meals further disconnects

the hungry consumer from the source and preparation

of his/her food.

There is a distinction in roles and activities between

those who produce raw food and those who process it.

To produce sustainable food implicates a complex

system with cycles and interactions linking environ-

mental systems, agricultural systems and the systems

of commercial food preparation and delivery into a

complex web. The food system incorporates the entire

food supply industry, including branded processed

food products and the retail chains selling them.

Added to this is the off-farm treatment of raw food by

commercial food processing manufacturers and retail-

ers. Cultural preferences and the socio-economic cycle

also need to be considered (Campbell et al. 2009). The

production of raw food from the farm, or as is

harvested from nature, is one subsection of the food

system. The food system is shown in Fig. 1.

Research integrating agriculture and the environ-

ment (Kaine and Tozer 2005; Pfister et al. 2005) as

well as agriculture and nutrition (Fynn et al. 1989;

Dangour et al. 2012) has been useful for understanding

the relationships and predicting the outcomes of

interventions. The combination of a broader environ-

mental–agricultural–societal nexus to incorporate a

nutrition-sensitive food system and a balanced diet to

sustain human health does not appear to be compre-

hensibly modelled (Sobal et al. 1998; Cannon and

Leitzmann 2005; Allen et al. 2014). This has been

identified as necessary (Ingram 2011; Keding et al.

2013), including as a key conclusion from the 1st

International Global Food Security Conference in

2013 (Dogliotti et al. 2014). A predictive model of this

type and magnitude would be extremely complex and

challenging (Penders et al. 2009).

The examination in this paper is limited to the point

at which the food stock departs the influence of where

it is grown, harvested or slaughtered. The food

production system therefore refers to the agricultural

system and its relationship with the broader environ-

ment, and does not include food processing, supply

chains, food retail, or food preparation in the broader

food system. What is highlighted is the importance of
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the nutrition cycle, including the return of micronu-

trients from society back into agricultural-environ-

mental system. A sustainable food production system

is one that can inter-generationally, provide both

adequate nutrition and supply appropriate energy to

people in society, and enhance the natural environ-

ment in which it is produced.

Modelling plays an important role to explore the

outcomes of policy intervention combinations. The

purpose of this study is to suggest an appropriate

modelling response to identify food nutritional out-

comes from complex agricultural systems. Following

an understanding of the basics of complex systems

behaviour, a map is created, charting the influences

contributing to the micronutrient cycle from soil to

food within an environmental and agricultural system

relationship. The following discussion concerns the

suitability of either a top-down or bottom-up mod-

elling approach to incorporate nutrient cycling for

sustainable food production.

Systems

A systems approach

Identifying the type of system (simple, complicated,

complex) is an important first step in resolving

systems problems. While systems thinking does not

necessarily lead to better decision making, the type of

system being considered may be more relevant to

better decision making (Choi et al. 2001; Kurtz and

Snowden 2003; Maani and Maharaj 2004). When a

systems perspective is used, we are more inclined to

recognise and address the problem with system-wide

solutions, ensuring that all elements are considered

(Burdock and Crawford 2012). All these interactions

must be understood collectively so that the emerging

issues are appropriately addressed.

As simple systems become more complicated and

complex, the functions of the elements within the

system become subtler and less able to be understood.

The risk of function failure can be defined, quantified

and understood by modelling the system where the

states of the system constitute the essence of the

analysis (Haimes 2009).

It takes time for a system to be regarded as

sustainable (Rigby and Caceres 2001) as the impacts

of any interference in a system may not be immediate.

Thus the dimensions of both space and time are to be

incorporated in a suitable modelling approach. What

follows is a brief revision of simple, complicated and

complex systems to support appropriate system

responses.

Simple, complicated and complex systems

There are fundamental differences between simple,

complicated and complex systems, as there are with

the appropriate responses to address them. Simple

systems have an obvious linear cause and effect

relationship between system elements, encouraging a

‘‘best practice’’ response. This would be one in which

the problem solver would sense the problem, cate-

gorise it, then respond to it. This is demonstrated in

Fig. 2.

Complicated problems are less obvious. There may

be more elements interacting and while it is possible to

Fig. 1 The food system and the food supply chain. The food

system encompasses all elements of food from source, through

consumption to waste disposal. The food production system is a

sub-section of the entire system, and is limited to the agricultural

system and its broader environment

Fig. 2 A simple system. Cause and effect relationships are

linear and easily understood
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identify the role each element plays in the system, the

overall behaviour may result from a contribution of

many of the elements. Models can be introduced to aid

intuition. A complicated problem would be one in

which the problem solver would sense the problem,

analyse it, then respond to it, providing a ‘‘good

practice’’ response (Kurtz and Snowden 2003). To

make a complicated system simple will make it more

easily understood. This is demonstrated in Fig. 3.

Complex problems hold a non-linear relationship

between the elements in the system with many

feedback loops. This is demonstrated in Fig. 4.

In complex systems, cause and effect relationships

cannot necessarily be attributed to a single element.

Instead, system behaviour results from the collective

interactions between the elements whereby it is the

nature of the interactions that takes precedence. It will

be the loss of the function of an element and its

functional relationship with other elements that will

impact the resilience of a complex system (Allen et al.

2005; Deffuant and Gilbert 2011).

To simplify a complex problem by omitting these

interactions will most likely make it dysfunctional.

Complex system element relationships and interactions

are unique, as each complex system will behave

differently. A universally applied ‘‘best’’ practice will

not fit a unique system (Kurtz and Snowden 2003).

Studies in network topography and in drug pathways

that influence the cell cycle provide useful examples

for understanding the nature of complex systems

(Clyde et al. 2006; Faratian et al. 2009; Liu et al. 2011).

Complex systems theory, agriculture

and ecosystems

The multiple feedback loops give a complex system

strength providing resilience, efficiency in resource

preservation, and efficiency in functionality. With

increasing complexity, the self-organising nature of a

complex system will find a position between order

and disorder, which is resilient within boundaries to

shocks (Parrott 2010). For example, monoculture

farming is a human induced shock to an ecosystem

that creates a temporary order which, when aban-

doned will move to a more complex structure. The

greater the complexity of the system, the more likely

the system will be to survive. For example, a shock to

a single crop farming system such as a lack of water

from rainfall in an annual season is more likely to

result in a collapse of the system, than will be the same

shock to a complex rainforest on the same landscape

in the same period. The preservation of ecosystem

complexity and function can in many cases aid in

mitigating the effects of extremes in weather, enhanc-

ing vital services such as water retention. For

example, the correlation between vegetation func-

tionality and surface temperature variance suggests a

positive correlation between complex biodiversity

and dissipative capacity of incoming stress (Schnei-

der and Kay 1994; Norris et al. 2012). The threat of

system collapse is greater when the system is

subjected to coordinated shocks to particular nodes

without enough time for resilience to adjust to a new

efficiency (Butzer and Endfield 2012).

Mapping the environmental and agricultural

system relationships in order to trace nutrient

cycling

Mapping: the first step to designing an appropriate

model

To help understand the connectivity across the envi-

ronmental and agricultural system interface and to

trace nutrition flows, the web of relationships is

mapped as a first step to model this complexity and to

assess the shape of the network. This is limited to

terrestrial interactions.

Fig. 3 A complicated system. Cause and effect relationships

are linear and but to understand the overall functioning

behaviour of the system requires an analytical response

Fig. 4 A complex system. Cause and effect relationships are

non-linear with many relationship feedback loops
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Food must provide energy and promote health. In

the developed world, food production tends to focus on

crop yield and energy density at the expense of nutrition

(Morris and Sands 2006; Halweil 2007;), yet it is

encouraging that some research is being conducted into

enhancing the nutritional value of food grown (Bouis

2002; Welch and Graham 2004; White and Brown

2010). Additionally, there are moves to consider

biodiversity and environmental security in nutritional

guidelines whereby not just the nutritional content of

the food is examined, but also the methods by which it

is sourced. (Wahlqvist 2004; Byron et al. 2011).

To ensure that health remains central to the

sustainable food production system, this map begins

with nutrition. Nutrition is a story of vitamins and

minerals (Geissler and Powers 2005). It is from the soil

that plants derive water, minerals and when growing,

they develop vitamins pertinent to the plant, its fruit,

its leaves and its roots (Grusak and DellaPenna 1999;

Zhu 2009; White and Brown 2010). Soil then is the

starting point for a map of the whole model.

Soil nutrient cycle

The soil mineralisation cycle is made up of microor-

ganisms, which break down dead biomass and min-

eralise it into an organic store. Plants, fungi and other

life then absorb this to continue the cycle. A

schematic is shown in Fig. 5 (Marschner and Rengel

2007). The soil nutrient system cycle is at the heart of

this map. To highlight the importance of this cycle,

slightly thicker connections are used and the

connection labels remain for reference as the map is

developed.

Contributing to the cycles leading to soil health are

soil moisture content (H2O), carbon (C), nitrogen (N),

phosphate (P), and the acidic/alkaline (pH) balance as

well as the influence of existing micronutrients in the

soil. Other mineral elements required for plant growth

include macronutrients potassium (K), calcium (Ca),

magnesium (Mg), sulphur (S), and micronutrients

chlorine (Cl) boron (B), iron (Fe) manganese (Mn),

copper (Cu), zinc (Zn), nickel (Ni) and molybdenum

(Mo), referenced as Other Nutrients in the diagram in

Fig. 6 below. There is a detrimental effect on plant

growth if any one of these minerals is missing. Some

minerals such as N and P are required in larger

amounts while only trace elements are required of

minerals such as Fe and Zn. Thus, healthy soil

supports the growth of healthy plants (White and

Brown 2010). While not always necessary for growth,

plants will also take in other micronutrients if they are

in the soil such as selenium (Se), and iodine (I). When

plant matter dies or falls from the plant (leaf litter for

example), it contributes to the biomass store (Helfrich

et al. 2008; Nielsen et al. 2011). Soils rich in

mineralised inorganic mass provide the opportunity

for the uptake of these minerals into the plants (Gupta

et al. 2008). This cycle is shown in Fig. 6.

Natural ecosystem processes

Critical to the system are the dynamics of natural

ecosystem processes. Latitude, altitude, climate,

Fig. 5 Map of the soil system. Organic matter in the soil decomposes biomass, mineralising it for uptake and absorption by plants
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rainfall, topography, biodiversity as well as pests and

diseases influence these dynamics. Climate and

climate change will also influence a number of factors

across natural ecosystem processes (Lensing andWise

2006; Russell et al. 2012). Of particular relevance to

this model is the localised impact that changes in

surface temperature and precipitation variance due to

climate change will have over time on microbial

activity in soil, and the impact this will have on soil

health. (Porporato et al. 2004; Bardgett et al. 2008;

Gray et al. 2011; Wallenstein and Hall 2012).

Although this is not included in this model, of note

is the impact that climate change will have on the

oceans, which will also affect terrestrial life (Drinkwa-

ter et al. 2010; Doney et al. 2012). This relationship of

natural ecosystem processes is shown in Fig. 7.

Farm practices

Land stewardship decisions made by farmers play a

vital role in managing the quality of the soil in which

food is produced. Crop dynamics and livestock

dynamics interact with natural ecosystem processes

and the soil health cycle. It is clear that a farmer’s

output will depend upon how the farmer manages the

productive health of the land. This includes the cycle

of nutrients being returned to the soil either after

harvest as crop residue, after livestock has consumed

surface vegetation, and from the return of nutrient rich

biomass to the soil. Additionally, the choice to grow a

high yielding plant variety can be a trade off between

yield and crop nutrient content (Mayer 1997; Davis

et al. 2004; Davis 2009; Gooding et al. 2012). Other

variables will include a mixed and rotational approach

to cropping and animal production, intensive

Fig. 6 Map of the soil and nutrient system. Mineral nutrients in

soil are absorbed by plants. Plants develop vitamins and pass on

the minerals and vitamins to the animals (including humans)

who eat them. All dead matter on the soil surface is decomposed

to continue the cycle

Fig. 7 Map of the natural ecosystem processes. There is a

relationship between topography, geography, climate, biodiver-

sity and disease contributing to natural ecosystem processes
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agriculture, use of synthetic or organic soil fertiliser,

herbicide and pesticide use, tillage practices and water

application through irrigation (Bontkes and van Keu-

len 2003; Holland 2004; Vitousek et al. 2009; Sauer

et al. 2010; Mediene et al. 2011; Powlson et al. 2011).

These relationships are shown in Fig. 8.

Three pillars of human health

Pillars supporting human health involve a relationship

between nutrition, exercise and sleep (Harris et al.

2005; Resnick et al. 2006;). Eating nutritionally dense

food provides the body with the vitamins and minerals

required for maintenance and replacement of cells and

tissue (Mertz 1994). There are a total of 19 mineral

trace micronutrients needed for human health. In

addition to the 15 micronutrients listed above that are

required in the soil for plant growth, the minerals

iodine (I) selenium (Se) cobalt (Co), and chromium

(Cr) are required in trace form in the food of the human

diet. An absence of any of these and earlier mentioned

micronutrients will have long-term health conse-

quences (WHO 2004).

Data suggests a strong relationship between sleep

restriction, weight gain and the risk of diabetes,

connected with diet and exercise (Knutson et al. 2007).

Restful sleep provides the body with time to repair

damaged cells and improves brain function (Halson

2008; Mignot 2008). The energy in food supports

physical activity. A regular periodic increase in

physical activity is essential to good health, particu-

larly when modern living allows a relatively sedentary

life when compared with that experienced during our

evolution. Vigorous activity is able to mildly stress the

Fig. 8 Map of farm practices. Livestock and crop dynamics have a mutually complementary relationship with management practices

and farming methods
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body to encourage strength in all the organs as well as

to stimulate the supply of oxygen for cell regeneration

throughout the body (Tanji 2000; Penedo and Dahn

2005; Swain and Franklin 2006). These three ‘‘pillars’’

are shown in Fig. 9.

To complete the total food system, there are other

links into society from here with their own systems,

including the food processing industry and the

outcome of consumer food choices (Furst et al.

1996; Sobal et al. 1998). The United Kingdom’s

Foresight, Tackling Obesities: Future Choices Project

maps the connections between food choice, food

psychology and attitude to food consumption, exercise

opportunity and human physiology providing a good

example of integrated systems with a focus on obesity

outcomes (Butland et al. 2007a). These are recognised

as systems in their own right and while they contribute

to a greater awareness of human health, they are

beyond discussion here. What is relevant to recognise

is that feedback loops from these extended systems

will influence this system being mapped.

Recycling of organic waste

The distribution of nutrients has diminished since the

end of the Pleistocene, a time when megafauna is

thought to have supported nutrient dispersal across the

broader landscape (Doughty et al. 2013). This is

exacerbated with human concentration of N and P

nutrients into agricultural land and from society’s poor

recycling of organic waste. Food not eaten, scraps

discarded during the preparation of food, and human

waste is generally not cycled back into the system,

particularly from an urbanised society. Rather, organic

waste tends to be deposited into landfill or treated and

flushed into the oceans (Schultz and Romheld 1997;

Esrey 2001; Refsgaard and Magnussen 2009). It is

estimated that approximately one-third of all food

produced for human consumption in the world is lost

or wasted (FAO 2013). Not only is this wasted food

contributing needlessly to environmental degradation,

resource depletion and greenhouse gas pollution, but it

too is not recycled into agricultural land.

While it is recognised that there are many influ-

ences on this integrated system, which are not

captured here, a map such as this shows a loss of

micronutrients from the system. The box at the very

bottom of the map in Fig. 8 and in Fig. 10 titled

‘‘Dump (external to the system)’’ highlights a loss to

the system of organic waste. By removing the plants

and animals for consumption and not returning our

own ‘‘litter’’ to the soil, we break the feedback loop.

Without recycled nutrients, soil loses its micronutrient

fertility. Modern agriculture compensates with

Fig. 9 Map linking aspects of human health. Nutritional food works with physical activity and sound sleep to contribute to human

health

264 Nutr Cycl Agroecosyst (2015) 103:257–278

123



artificial interventions such as synthetic fertilisers

which, when coupled with herbicides and pesticides,

have dramatically increased the yield of crops and

pasture, but do not necessarily improve soil health.

The use of artificial interventions is a financial expense

for farmers and comes at a cost to the soil microbial

environment. For example, the fungal to bacterial

biomass ratio has been found to be consistently and

significantly higher in unfertilised than fertilised

grasslands (Bardgett and McAlister 1999). Cu fungi-

cides are particularly toxic to soil organisms. An

important indirect effect of N fertiliser use is soil

Fig. 10 Map integrating environmental, agricultural and nutritional systems. This map models the key relationships between various

elements in the environmental–agricultural relationship with a nutritional perspective
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acidification (Bunemann et al. 2006) with the conse-

quential result reducing microbial activity. A loss of

soil organic matter causes CO2 release, reduces soil

resilience and forces a greater dependence on the

increasingly expensive artificial stimulants required to

maintain current yields (Powlson et al. 2000), impact-

ing both the nutritional value of the soil and the ability

of the system to be self-sustaining (Hobbs and Norton

1996).

Linking the environment and agriculture to healthy

food

All the figures for this system are drawn together in

Fig. 10. Soil remains at the centre of this map, as it is

from soil that plants grow, creating the mineral and

vitamin supply process into food. At the top of the map

are the dynamics of natural ecosystem processes that

predominantly link with soil inputs and farming

practices at the bottom of the map. There are feedback

loops from farming practices that influence the health

of the soil. The outputs from soil lead to nutritional

density in plants and through plants to the animals we

eat.

Visualising the key interactions

This map can be overwhelming to read at first glance.

Social network analysis uses network and graph

theories to trace structures between actors in a

network. Ties between the actors are connected with

lines to show the network of connections giving a

visual representation of the relationships. Finegood

et al. (2010) used social network analysis (de Nooy

et al. 2005) to visualise the relative importance of the

interactions between key elements of the Foresight,

Tackling Obesities: Future Choices Project (Butland

et al. 2007a). This project sought to understand how

the food system contributes to obesity by mapping

system relationships. It scaled up system interactions

between the clusters of food supply, exercise and

movement, energy expenditure, human physiology,

and food psychology to achieve a conceptual system-

wide framework (Butland et al. 2007a). Using the

similar techniques, the integrated food systemmap can

be represented as shown in Fig. 11.

Connections between clusters in the reduced map

reflect the number of individual connections between

the variables in each cluster of the full map. The width

of the arrow is proportional to the number of

underlying connections. For example, the thickest

arrow links Natural Ecosystem Processes to Farm

Practice, reflecting 10 direct influences from the

Natural Ecosystem Processes to Farm Practice. The

thick border around Farm Practice reflects that there

are 31 interconnections among the variables in this

cluster, whereas the thin boarder around Society

reflects only two interconnections among the variables

in this cluster of the map. The predominant feedbacks

are clearly illustrated.

The complex map was deliberately written as a flow

of nutrition to society. There are other links with

different functions, which are not included here. For

example, the impact of the Natural Ecosystem Pro-

cesses will affect other aspects of Society, however for

food specifically, it will be via the soil cycle. Using

this simplified visual approach, what happens in the

natural environment can be clearly observed to be

highly influential to practices on the farm. So too it can

be easily observed that soil health is significantly

influenced by practices on the farm.

Using line and box thickness, the volume of

relationships is more easily noticed, however while

the line thickness might reflect the complexity, it does

not necessarily reflect the importance of the interact-

ing links in the system relationships. A single

connection may be critical to support a process, for

example, the recycling of human organic waste from

Society to the Farm Practice would contribute signif-

icantly to the maintenance of sustained soil nutrient

health and remineralisation of farming land. This

exercise is useful for identifying the volume of

interactions, but not necessarily the quality of func-

tional relationships, highlighting a risk for simplifying

complex problems. Structuring complex systems well

by using techniques such as multi criteria decision

analysis and social network analysis to weigh the

importance of the relationships in the system would be

a valuable contribution to a future development of this

map for further system understanding. Such an in-

depth study is beyond the scope of this paper.

Tracing the flow of soil nutrient cycling

Revisiting the complete map in Fig. 10, a cycle is

highlighted where the biomass in organic waste is

returned to the soil and a case where it is not. The

highlighted area on Fig. 12 shows that when the
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system allows for organic waste in the form of biomass

to be returned to the farmer, the nutrition taken from

the soil by society can be returned via the farmer to the

agricultural landscape to complete the cycle. In

contrast, the highlighted area on Fig. 13 shows that

when society allows biomass to be discharged from

the system, the opportunity to replenish nutrition to the

environment is diminished. In this case, the only

supply of nutrients to the soil is from that provided by

nature. As agriculture withdraws from this soil nutri-

ent bank without making any deposits, we can guess

that the bank of micronutrients will be depleted.

Modelling will help to estimate the impact.

An appropriate modelling response for nutritional

cycling outcomes

The interconnectedness of the relationship map

clearly reveals a complex system, identifying linear

causal chains and non-linear feedback loops. The

nature of the interactions is at least as important as

the individual elements themselves. The map is

deliberately generic and makes no attempt to mea-

sure spatial or temporal scales. However, any mod-

elling response will require multi-scale boundaries to

be defined to assess changes to any intervention

strategies implemented.

The move from a map to a model is a move from an

understanding of the connectedness of functional

activities to the interacting dynamics of all the

relationships. In mapping the system, the focus on

nutrition flows has addressed the question of what we

are trying to understand. How to model this complex

system could be asked in either of two ways.

1. Should the model of a system be written to

incorporate these relationships from the bottom-

up?

or

2. Should the model of a system be written to

incorporate these relationships from the top-

down?

Modelling unique systems from the bottom-up

If it is implied that system control mechanisms are at

the lowest levels and responsibilities for function are

at the system element level (Hutchinson 2002; Crespi

et al. 2008), then one modelling response is to describe

the relationships on a specific landscape in order to

determine system behaviour. The system map

Fig. 11 Cluster simplification map: environmental, agricultural and nutritional systems. This simplified mapmodels the key clusters in

the environmental–agricultural relationship with a nutritional output perspective
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developed in ‘‘Mapping the environmental and agri-

cultural system relationships in order to trace nutrient

cycling’’ section above linked a conceptual agricul-

tural and environmental system landscape, focussing

on the capture of the micro-nutrient cycle. This

recognises a relationship between biology, environ-

ment and social science as an opportunity to link

human health to environmental health (Beauman et al.

2005; Cannon and Leitzmann 2005). Once system

behaviour is understood, ex-ante assessment of

Fig. 12 Map integrating environmental, agricultural and nutritional systems, highlighting the nutrition cycle. This map highlights the

key relationship flows between various elements in the environmental–agricultural relationship with a nutritional perspective
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policies and interventions can be tested within the

modelling framework. To build such a model, activity

between components of the system are connected and

extended as new components are recognised and

incorporated. Because it is a complex system, it will be

unique and arguably, site and scenario specific. It will

Fig. 13 Map integrating environmental, agricultural and nutri-

tional systems, highlighting a break in the nutrition cycle. This

map highlights the key relationship flows between various

elements in the environmental–agricultural relationship with a

nutritional perspective, but that there is a loss in the cycle of

nutrients when organic waste and biomass is not recycled

through the agricultural system
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be difficult to predict system outcomes until the

integrated model is created. As this system expands

and the model is made operational, emergent proper-

ties of how the system behaves will be observed.

How to model a system from the bottom-up will

depend on the dynamics of the system and type of

interventions to be applied. Where a pathway can be

identified, a system dynamics model will follow a flow

of activity between elements in the system. The

system map, such as that produced in ‘‘Mapping the

environmental and agricultural system relationships in

order to trace nutrient cycling’’ section above, helps to

determine the boundaries of a system and the

relationships between its elements.

A system dynamics modelling approach

A system dynamics model uses the language of

‘‘stocks and flows’’. The process begins with what

should be included or excluded, how the elements to

be included are represented (stocks), and how the

relationships between the elements should be repre-

sented (flows) (Richmond 2004). A system dynamics

modelling method naturally follows from a map of the

system when the dynamic relationships are captured.

A simple system dynamics model is replicated in

Fig. 14. In this case, the farmer fortifies soil with

iodine within the soil system with the expectation that

plants will absorb the iodine in order to improve the

micro-nutrition of the crop.

To introduce or adjust for an element within a

system, a system dynamics model will be an

appropriate response. Other examples include bio-

logical controls when the introduction of a specialist

herbivore is simulated to manage invasive plants

(Rughu et al. 2007), or accurate system dynamics

modelling applied to agriculture to determine the

impact of climate-driven production variability to

balance production rates with farm capacity (Alcock

2006).

An agent based modelling approach

Another alternative modelling application is agent

based modelling (ABM). ABM simulates the beha-

viour of complex systems over time, featuring inter-

actions between agents leading to emergent outcomes

from the explicit representation of dynamic behaviour

of heterogeneous agents (Heckbert et al. 2010).

Behavioural instructions are coded to agents which

then act and react with each other independently.

These interactions can be observed at the micro/

individual level, however at the macro-scale/system

scale, patterns emerge.While each run of an ABMwill

be different, repetitions of certain patterns are

expected to appear. When aggregated, a normal

distribution of results can be captured. ABM allows

the simulation to be probed with variation, such as a

policy intervention. The re-run model allows for an

emergent behaviour to appear. For complex systems in

ecology and the nature-farming interface, ABM

allows for the testing and observation of virtual policy

interventions ex-ante of actual funding and imple-

mentation. For example, ABM has been used to

simulate the effect of earthworms on soil structure

(Blanchart et al. 2009) and earthworm responses to

pesticide applications (Johnston et al. 2014). In these

two examples, the behaviour of the earthworms

interact with their environment according to a set of

rules, which apply themselves to earth structure in the

first example, or as in the second example, a reaction

to an intervention. They are both bottom-up

approaches that allow description of a system at a

micro-level in order to observe simulations and results

at a macro-level.

A top-down modelling approach

and the integration of existing system models

In order to capture the important interactions of

complex systems holistically, a top-down modelling

Fig. 14 Schematic of system dynamics modelling. A farmer adds iodine (I) to the soil as a micronutrient fortification process with the

intent that plants will absorb the iodine to improve the nutrition of the crop
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framework is considered. This is particularly suited to

conditions where the whole-of-systems specifications

can be defined globally and are assumed to remain

stable. Design is developed principally within a

stable systems framework with the relationship

between subcomponents of the system clearly

described (Crespi et al. 2008). Clusters form naturally,

and links between clusters and elements in those

clusters are made. At the very least, top down whole-

of-systems design helps to frame themes within a

system before the detailed relationships are explored.

When bottom-up models are developed, by detail-

ing the base elements of the system, these are often

linked together to form larger subsystems at another

scale for example, within a top-down framework. The

approach to map the nutrient cycling system in

‘‘Mapping the environmental and agricultural system

relationships in order to trace nutrient cycling’’ section

was initially conceived as a top-down system design.

The soil nutrient flow from nature, to agriculture, to

society formed the basis of cluster construction. The

assumption of a stable relationship between these

clusters from a top-down approach helped to map, at a

smaller scale, the activity occurring in the soil. A

bottom-up approach then sought to identify connec-

tions within and between the clusters to map the

complexity of the relationships.

Rather than building a model, existing legacy

system models may be utilised against which data is

applied to determine outcomes. Examples of legacy

system models can be found from global environ-

mental impact prediction through to farm-scale

agricultural management. For environmental man-

agement, examples include General Circulation

Models (Randal 2000) for climate change adjustment

and models such as GARP (Anderson et al. 2003) for

evaluating, predicting and optimising species distri-

bution, and BIOCLIM (Beaumont et al. 2005) used

for predicting species distributions against climatic

parameters. At the farm scale, examples include the

CENTURY Model for soil nutrient cycling, the Roth

C biogeochemical cycling model for soil, the SIRIUS

wheat growing simulation model, the GRASIM

(Mohtar et al. 2000a) livestock grazing model, and

FarmDESIGN (Groot et al. 2012a) for on farm multi-

objective relationship optimisation. These models

request specific parameters against which data is

married to determine a response for a policy

recommendation.

Standard nutritional systems models are not so

easily synthesised due to the range of physiological

differences, dietary choices and opportunities among

individuals. Nevertheless, examples include the Geo-

metric Framework on macro-nutritional target intake,

balancing proteins, fats and carbohydrates (Simpson

and Raubenheimer 2012a) and for micro-nutrition,

various national food and nutrition guidelines will

suggest dietary intake for minerals, such as the

recommended intake of 150 lg of iodine per person

per day (WHO 1996; Food and Agriculture Organi-

sation 2002). A further example can be found with the

Foresight, Tackling Obesities: Future Choices Project

as mentioned earlier, which sought to achieve a

conceptual food system-wide framework to under-

stand contributors to obesity (Butland et al. 2007a).

Integrating existing top-down system models to

create one large model incorporating the food pro-

duction system is a conceptual possibility, however for

data from one model to be synthesised and included as

a data input to another, algorithms need to be written to

link these models. Conceptually, and with some

examples from above of the many system models

available, this may look like the diagram in Fig. 15.

A modelling response incorporating both a top-

down and bottom-up approach

Separate scenario specific models such as some of

those pieced together in Fig. 15 have been criticised

for their lack of flexibility and inability to integrate

with other models (Bezlepkina et al. 2014), their

failure to deliver to both the farm-scale and the sector

scale (Dalgaard et al. 2003), their lack of ability to give

cross disciplinary meaning, their limitation to be case

specific, and their inability to be used beyond the

environment for which they were designed (Van

Ittersum et al. 2008a). To address these shortfalls,

work has been done within the European Union to

create models of systems which can give both a macro

and micro perspective on system behaviour and

incorporate spatial and temporal impacts to allow for

ex-ante assessment of policies and interventions

(Podhora et al. 2013; Bezlepkina et al. 2014).

The ambitious SEAMLESS (System for Environ-

mental and Agricultural Modelling; Linking European

Science and Society) project brought together over

100 scientists from broad disciplines across 15 coun-

tries to deliver an integrated framework to support the
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assessment of agricultural systems at multiple scales

(from field, farm, region to EU and global). The model

created a component-based system where each sub-

model can be used either as stand alone modules or

integrated into a broader model for new problems. The

software infrastructure supports the re-use and the

linkage of the components across different landscapes

and scenarios. The model capabilities provide for

environmental, economic, social and institutional

aspects of agricultural systems (Van Ittersum et al.

2008a).

Similarly the SENSOR (a Sustainability Impact

Assessment Tool) and the DPSIR (Drivers, Pressures,

State, Impacts, Response) models provide for a top-

down framework seeking to resolve the conflicts and

outcomes from competing land use policies by

answering three questions: 1. What kind of land use

changes are to be expected as a consequence of policy

intervention? 2. Where will the expected changes take

place and what environmental, social and economic

effects would they induce? 3.Will the expected effects

matter in terms of regional sustainable development?

(Helming et al. 2011a, b).

A third example is the LIAISE (Linking Impact

Assessment Instruments to Sustainable Expertise)

network which supports the impact assessment pro-

cess with the final goal being to support future

sustainable policies and design (LIAISE 2014). This

has been successfully applied to agricultural develop-

ment in rural Greece (Bournaris et al. 2014).

These systems and the methods used have devel-

oped a successful framework addressing issues from a

holistic perspective. The LUPIS project (Land Use

Policies and Sustainable Development in Developing

Countries) engaged researchers from different coun-

tries, cultures and backgrounds to collaborate on the

development of a common methodological frame-

work, with modelling and assessment tools to address

issues of land use problems in case studies across

seven developing countries (Brazil, India, China,

Indonesia, Kenya, Mali and Tunisia). The project

built a knowledge bridge in the process between the

two complimentary projects and methodologies of

both SEAMLESS and SENSOR (Reidsma et al.

2011a; Bezlepkina et al. 2014).

Provided a realistic system of governance is

incorporated (McNiell et al. 2014), projects such as

SEAMLESS, SENSOR and LIAISE have demon-

strated the feasibility of linking model components for

use in integrated assessment in an attempt to bring

together a top-down and bottom-up approach to

agricultural land management. The system map

developed in ‘‘Mapping the environmental and agri-

cultural system relationships in order to trace nutrient

cycling’’ section above was built from the bottom-up,

starting with soil, but the parameters of the larger

systems of environment and agriculture were con-

ceived within top-down boundaries, building in clus-

ters around environmental processes and farming

practices with nutrition as the currency.

Fig. 15 Conceptual system of amalgamated models. Some

relationships are linear and some have a mutual feedback system

between two models. The feedback mechanisms would make

such an arrangement extremely difficult to create as different

models use different non-compatible data sets
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As systems become complex in character, policy

interventions cannot be understood at only the macro

or micro level. Cross-scale consideration from one

hierarchical level to another is essential as complexity

increases (Dalgaard et al. 2003; van Ittersum et al.

2008). Within a top-down approach to understand an

existing system, required is a framework describing

both the problem and a definition of the scenario, a

modelling phase that assesses the impacts of policies

on multiple indicators, and a post-modelling phase

assessing policy options. As part of the framework, a

bottom-up modelling process allows the properties of

system dynamics to emerge, enabling integration with

other systems. Knowing that interventions at the micro

scale have the ability to affect the entire system, the

appropriate modelling approach for complex systems

is to take account of both macro and micro scales.

Conclusion

A sustainable food production system is one in which

activity supports a system that can inter-generationally

provide adequate nutrition and energy to people, and

enhance the natural environment in which it is

produced. If the goal is to source nutritionally dense

food using farmingmethods that regenerate the natural

environment, then the implications of policy inter-

ventions need to be understood before they are

implemented.

Complex systems are unique. Modelling of com-

plex systems begins with the functionality of system

elements. This paper has mapped the nutrient cycling

process from the bottom-up, beginning with soil,

expanding links to other influences to create a picture

within a top-down framework to understand the

interacting relationships between elements in an

environmental–agricultural system. The map clearly

demonstrated the complexity of the interrelated ele-

ments between farm practices and the complexity of

natural ecosystem processes.

Moving from a broad conceptual system map to a

generic model provides its own challenges. In com-

plex systems nutrition-sensitive agriculture, interven-

tions at the micro scale have the ability to affect the

entire system. To be considered for bottom-up mod-

elling, are both physical relationships; such as plant

mineral absorption rates, different soil types and

different geographies; and modelling structures, such

as whether to model using system dynamics or ABM.

Yet a whole-of-systems approach is required to

capture all the detail. To address this, projects such

as SEAMLESS and SENSOR are evidence of efforts

to create land use policy models within a top-down

framework integrating component bottom-up models,

capable of being used in different scenarios. These

models offer the potential to examine systems and

policy interventions holistically and in detail.

Whether existing models or new scenario and site-

specific models are used, it follows that in order to

achieve broad system objectives and understand the

details of system interactions, the appropriate mod-

elling approach must take account of both macro top-

down and micro bottom-up scales.
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