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Abstract We present cointegration analysis as a method to infer the network struc-
ture of a linearly phase coupled oscillating system. By defining a class of oscillating
systems with interacting phases, we derive a data generating process where we can
specify the coupling structure of a network that resembles biological processes. In
particular we study a network of Winfree oscillators, for which we present a statistical
analysis of various simulated networks, where we conclude on the coupling structure:
the direction of feedback in the phase processes and proportional coupling strength
between individual components of the system. We show that we can correctly classify
the network structure for such a system by cointegration analysis, for various types of
coupling, including uni-/bi-directional and all-to-all coupling. Finally, we analyze a
set of EEG recordings and discuss the current applicability of cointegration analysis
in the field of neuroscience.
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1 Introduction

Since the first scientific discovery of two pendulums synchronizing by Christiaan
Huygens in the seventeenth century, this naturally occurring phenomenon has now
been observed in diverse areas such as fireflies synchronizing their flashing behavior,
a theatre audience applauding after a showand also in chemical and biological systems,
such as the brain and the heart beats of amother and her fetus,where coupled oscillators
appear, see also Pikovsky et al. (2001). Due to it’s pervasive presence, understanding
synchronization is of key interest for researchers to understand biological networks,
such as the connectivity of the nervous system, circadian rhythms or the cardiovascular
system. To a statistician this presents a fascinating challenge of modelling complex
behavior in large scale systems and how to infer the data-generating mechanisms. To
this day, synchronization is not fully understood, but has been the centre of research
for decades as evident in Ermentrout (1985), Kuramoto (1984), Strogatz (1987, 2000),
Taylor and Holmes (1998), Winfree (1967), even the phenomenon of synchronizing
pendulums as observed by Huygens, still attracts attention today, see Martens et al.
(2013), Oliveira and Melo (2015). Many innovative ideas have been presented since
Winfree (1967) began amathematical treatment of the subject.WhenKuramoto (1984)
first presented his model of coupled oscillators, this made a huge impact in the field
and spawned a new generation of research on synchronization. Kuramotos model
is still considered among one of the most significant advancements in the study of
synchronization in oscillating systems as acknowledged by Strogatz (2000), and the
study of coupled oscillators still attracts a fair interest from researchers Ashwin et al.
(2016), Burton et al. (2012), Fernandez and Tsimring (2014), Ly (2014), Ly and
Ermentrout (2011).

A long standing problem in neuroscience is to recover the network structure in
a coupled system. This could for example be to infer the functional connectivity
between units in a network of neurons from multiple extracellularly recorded spike
trains, or how traces of EEG signals from different locations on the scalp affect each
other, which we will treat in this paper. To the authors knowledge, this challenge
is still lacking a sound statistical framework to model and test for interaction in a
system, as well as impose statistical hypotheses on the network structure. For this task,
cointegration analysis offers a refined statistical toolbox, where detailed information
on the connections can be inferred, such as the direction and proportional strength of
the coupling. The theory of cointegration was originally conceived by Granger (1981),
and has since then also been the subject of intense research, most notably within the
field of econometrics. In the monograph by Johansen (1996), the full likelihood theory
for linear cointegration models with Gaussian i.i.d. errors is derived, and a framework
for estimation and inference on parameters using the quotient test is presented. This
well acknowledged framework is popularly termed the Johansen procedure. Even
though cointegration analysis has developed from within the field of econometrics, it
may potentially be used for different models outside economics, such as biological
models in continuous time as we explore here. It has also been applied in climate
analysis, see Schmith et al. (2012).

In this paper, we demonstrate how to apply cointegration analysis to a system of
linearly phase coupled oscillating processes. To display the applicability of themethod,
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Oscillating systems with cointegrated phase processes 847

we present a simulation experiment, where we present a statistical analysis of phase
coupled systems with varying network structures, including uni-/ bi-directional and
all-to-all couplings. We show that we can identify the proportional coupling strengths
and directions given by the estimated cointegration matrix parameter. Our work is
inspired by Dahlhaus and Neddermeyer (2012), which also introduces cointegration
analysis as a statistical toolbox to neuroscientists and new challenges for researchers
in cointegration theory. However, in contrast to Dahlhaus and Neddermeyer (2012),
we incorporate the fact that we are dealing with continuous systems and also ensure
that the cointegration property of the system is well posed as a linear structure. This
approach assures that the conclusion on the interaction in the data is accurate in terms
of cointegration.

The paper is composed as follows. In Sect. 2 we define a class of phase coupled
oscillators, in Sect. 3 we highlight some cointegration theory for the analysis including
an extension to discretely observed, continuous time models. In Sect. 4 we present
a statistical analysis of linearly phase coupled oscillating systems and in Sect. 5 we
analyze EEG recordings from an epileptic subject experiencing a seizure, previously
analyzedbyShoeb (2009).Wediscuss themodel andfindings, conclude on the research
and give an outlook of the future direction of the research in Sect. 6. Technical details
are presented in the appendix.

Throughout we use the following notation and conventions: unless explicitly stated
otherwise, time t ∈ [0,∞) is assumed continuous, and the process (xt , yt )′ is assumed
observed with corresponding polar coordinates (φt , γt )

′. Here ′ denotes transposition.
For a p × r matrix M , with r ≤ p, we denote the orthogonal complement M⊥, a
p × (p − r) matrix such that M ′⊥M = 0 (zero matrix). Also denote by sp(A) the
subspace spanned by the columns of a matrix A, and let rank(A) denote the rank of
the matrix, i.e., the dimension of sp(A).

2 Oscillating systems

Studying biological rhythms corresponds to studying systems of periodical processes.
Intuitively we define a single oscillator as a continuous time bi-variate process zt =
(xt , yt )′ ∈ R

2, t ∈ [0,∞), such that zt revolve around some arbitrary center. Such a
process can be derived from an equivalent process in polar coordinates (φt , γt )

′, where
φt ∈ R is the phase process and γt ∈ R is the amplitude process, such that

xt = γt cos(φt )

yt = γt sin(φt ).
(1)

We then define the process zt to be an oscillator if the phase process has a monotonic
trend.

2.1 Defining a class of coupled oscillators

Definition (1) naturally extends to a system of coupled stochastic oscillators, where
we observe p oscillators that interact, i.e., zt ∈ R

2p. Define a class of oscillators
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with phase (φt ∈ R
p) and amplitude (γt ∈ R

p) processes given by the multivariate
stochastic differential equations (SDE)

dφt = f (φt , γt )dt + ΣφdW
φ
t (2)

dγt = g(φt , γt )dt + Σγ dW
γ
t , (3)

where f, g : R
2p → R

p are real valued vector functions, possibly depending on
both φt , γt or constant, dW

φ
t , dW γ

t are multivariate standard Wiener processes and
Σφ,Σγ ∈ R

p×p such that ΣiΣ
′
i is a positive semi-definite covariance matrix for

i = φ, γ . Assume the properties of (2) and (3) are such that

γt ∈ R
p
+ for t ∈ [0,∞) (4)

and

E[φkt ] is monotonically increasing as a function of t for each k = 1, . . . , p, (5)

where E[·] denotes the mean. Since γt = (γ1t , . . . , γpt )
′ are interpreted as the ampli-

tudes of the individual oscillators, Eq. (4) is a natural assumption and Eq. (5) ensures
that the individual oscillators actually revolve (anti-clockwise) around the center and
that they are not ”stuck” in some part of the phase space, i.e., their angular velocities
are positive. Note that we have defined the phase-trend as positive, corresponding
to counter-clockwise rotation in accordance with the standard interpretation of the
phase. However, for a negative trending process, one can either look at −φt or simply
interpret rotations as clockwise.

To emphasize the implication of inducing interaction in a system, for the data gen-
erating process (DGP) in the xy-plane, we derive a DGP from (2)–(3), see “Appendix
1”. Assuming that Σφ = diag(σφ

1 , . . . , σ
φ
p ) and Σγ = diag(σ γ

1 , . . . , σ
γ
p ) we find that

d

(
xkt
ykt

)
=

⎛
⎜⎝− 1

2

(
σ

φ
k

)2 − fk(φt , γt )

fk(φt , γt ) − 1
2

(
σ

φ
k

)2
⎞
⎟⎠

(
xkt
ykt

)
dt +

(
0 −σ

φ
k

σ
φ
k 0

) (
xkt
ykt

)
dWφ

kt

+ gk(φt , γt ) + σ
γ

k σ
φ
k√

x2kt + y2kt

(
xkt
ykt

)
dt + σ

γ

k√
x2kt + y2kt

(
xkt
ykt

)
dW γ

kt . (6)

Hence, with the definitions (2)–(5) we have introduced a general class of coupled
oscillators, where the specifications of f and g define the properties of the system, such
as interaction. This broad definition of oscillating systems covers among others the
Kuramoto model, see example (Sect. 2.5) below and other standard oscillators such as
the FitzHugh–Nagumo and the Duffing oscillator. In this paper we will analyze phase
coupled oscillators, and therefore we assume that gk(φt , γt ) = gk(γkt ), such that there
is no feedback from the phase process φt into the amplitude and the k’th amplitude is
not dependent on the rest. Hence, interaction in the system is solely through f (φt , γt ),
such that the phase processes are attracted by some interdependent relation.
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2.2 Linear coupling

The arbitrary function f enables us to choose any transformation of the variables to
obtain a coupled system, including unidirectional coupling between phases or periodic
forcingof the system ifweextend f to dependon t aswell, intermittent synchronization
dependent on a threshold in process differences, etc.

Studying the general case where f (φt , γt ) is nonlinear in φt and γt is a complex
exercise. In this paper we restrict ourselves to models where f is composed of a linear
mapping of φt and a function of γt , with components,

fk(φt , γt ) =
p∑

j=1

Πk j (φ j t − ω j ) + h(γkt ), for k = 1, . . . , p (7)

for a real matrix Π ∈ R
p×p and constant vector ω = (ω1, . . . , ωp)

′ ∈ R
p. With

this restriction, the interaction between oscillators is linear in the phase, and the k’th
oscillator is only dependent on the intrinsic amplitude γkt through h(γkt ). We will
refer to such a system as linearly phase coupled.

Although we impose the linear restrictionΠ on the interaction between phases, we
can still model a broad set of coupling structures as we show with examples below.
Since the interaction is given byΠφt , we note that the coupling strength in the system
is given as the absolute values of the entries of Π and that row k of Π define how
oscillator k depends on the rest. Note also that ω defines the attracting state for the
phase relations, see example (Sect. 2.3) below. Normally h(γkt ) is restricted to a
constant, but in Sect. 4 we will relax this and investigate systems where h(γkt ) is only
approximately linear and has a sufficiently low variance. This implies a misspecified
model, but as we will show, we can still identify the coupling structure, although
inference on h(γkt ) itself is less meaningful.

2.3 Example: Linearly phase coupled system with a degenerate γt process

Let f be defined as in (7) and assume that γt is a constant (positive) process such that
h(γkt ) = μk > 0. Then f is of the form

f (φt ) = Π(φt − ω) + μ, (8)

whereω,μ ∈ R
p are constant vectors. For reduced rankmatricesΠ (2) is a continuous

time cointegrated process (see Sect. 3) and f admits a linearly phase coupled system
with intrinsic rotating frequencies μ. Note that if Π = 0 then there is no interaction
in the system, and the individual oscillators will rotate according to their own μk > 0,
and we refer to the system as independent.

The linear specification Π(φt − ω) implies that at most one attracting point can
exist. As an illustration of this, assume a system composed of two coupled oscillators,
with
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Π(φt − ω) =
(−α1 α1

α2 −α2

)(
φ1t − ω1
φ2t − ω2

)
=

(−α1
α2

) (
(φ1t − φ2t ) − (ω1 − ω2)

)
.

where 0 < α1 + α2 < 2. Since ω∗ = ω1 − ω2 define an attracting state of the phase
difference φ1t −φ2t , then with ω∗ = 0 the system is attracted towards being in-phase,
whereas ω∗ = π would imply that the system is attracted towards being in anti-phase.
Considering that neither α1, α2 or ω∗ depend on time, the system cannot switch to a
different attracting regime.

To illustrate possible coupling structures, consider again the system of two oscil-
lators and assume that ω = 0. Then with α2 = 0 and α1 	= 0 the coupling between
φ1t , φ2t is uni-directional φ2t → φ1t where the arrow→ denote the direction of inter-
action. Likewise, if α1 = 0 and α2 	= 0 then φ1t → φ2t . However, if both α1, α2 	= 0
then φ2t ↔ φ1t and the coupling is bi-directional. In general, if φkt appears in the
expression fl(φt ) for oscillator l 	= k, then φkt → φlt . If the opposite is true, then
φlt → φkt and if both directions exist, then φlt ↔ φkt . For fk(φt ) = 0 oscillator k is
(oneway) independent from the rest, but it can still possibly influence others.

For systems where γt is a degenerate process, then Σγ = 0 and g(φt , γt ) = 0.

With σ
φ
k = σk then (6) simplifies to

d

(
xkt
ykt

)
=

(− 1
2σ

2
k − fk(φt )

fk(φt ) − 1
2σ

2
k

) (
xkt
ykt

)
dt +

(
0 −σk
σk 0

) (
xkt
ykt

)
dWk, (9)

where fk(φt ) = ∑
j Πk jφ j t + μk . Note that if Π = 0 then (8) is simply a constant

trend and hence (9) is a rotating process. One can show that the eigenvalues of the
deterministic drift matrix in (9) in this case are complex conjugates, −σ 2

2 ± iμ, where
i = √−1, implying that the solutions to (9) oscillate for μ 	= 0. The oscillations are
damped by the negative real part, but sustained by the noise term.

When γt is a constant vector process the properties of the system are fully identified
by (2). Furthermore, if the noise level of the phases Σφ is sufficiently small, we can
use the Hilbert transform1 to derive the phase process φt from observations of either
xt or yt . This is a commonly used technique in signal processing and has been applied
to oscillating systems as well, see Dahlhaus and Neddermeyer (2012), Pikovsky et al.
(2001). For systems where φt is very noisy, this method is less applicable.

2.4 Example: Winfree oscillator

Let gk(φ, γ ) = (κk − γk)γ
2
k for a vector κ ∈ R

p
+ and fk(φ, γ ) = ∑p

j=1 Πk jφ j + γk

for Π ∈ R
p×p such that

dγkt = (κk − γkt )γ
2
kt dt + σ

γ

k dW
γ

kt

1 The Hilbert transform of a signal xt is defined as H(xt ) = π−1p.v.
∫ ∞
−∞

xτ
t−τ dτ =

−π−1 limε→0
∫ ∞
ε

xt+τ −xt−τ
τ dτ , where p.v.

∫ ∞
−∞ denotes the principal value integral.

123



Oscillating systems with cointegrated phase processes 851

dφkt =
( p∑
j=1

Πk jφ j + γkt

)
dt + σ

φ
k dW

φ
kt .

With these definitions (6) becomes

d

(
xkt
ykt

)
=

⎛
⎜⎝(κk−γkt )γkt +γ −1

kt σ
γ
k σ

φ
k − 1

2

(
σ

φ
k

)2 −
(∑p

j=1 Πk jφ j +γkt

)
(∑p

j=1 Πk jφ j +γkt

)
(κk−γkt )γkt +γ −1

kt σ
γ
k σ

φ
k − 1

2

(
σ

φ
k

)2
⎞
⎟⎠

(
xkt
ykt

)
dt

+
(

0 −σ
φ
k

σ
φ
k 0

)(
xkt
ykt

)
dWφ

kt +
(

γ −1
kt σ

γ
k 0

0 γ −1
kt σ

γ
k

)(
xkt
ykt

)
dWγ

kt . (10)

This example is taken from Winfree (2001) and extended with noise and phase inter-
action, and therefore we will refer to (10) as the (noisy) Winfree oscillator. Note that
the formulation of dγkt implies that the amplitude fluctuates around κk . Due to this, we
can for sufficiently small noise Σγ insist that γkt ≈ κk for k = 1, . . . , p and therefore
analyze the Winfree oscillator using the cointegration toolbox, assuming a constant γt
in dφt . In Sect. 4 we analyze the range of noise, Σγ , where the cointegration analysis
still performs well.

2.5 Example: Kuramoto model

Choose f (φt , γt ) such that

fk(φt , γt ) = fk(φt ) = 1

p

p∑
j=1

Kkj sin(φ j t − φkt ) + μi , k = 1, . . . , p, (11)

then (2) is the Kuramoto model extended with a stochastic noise term, for phase
coupled oscillators, where Kkj denotes the coupling strength between the k’th and j’th
oscillators. In the classic version, Kkj = K ∀k, j , such that for a certain threshold Kc,
then with K > Kc the oscillators exhibit synchronization. For an arbitrary γt process
we cannot simplify (6), but with a degenerate γt we obtain the same expression as in
(9) with fk(φt ) as in (11).

For theKuramotomodel f is a nonlinear function, hence it is not directly applicable
to a standard cointegration analysis where f is assumed linear. To emphasize this fact,
consider the special case p = 2, where the Kuramoto model is particularly simple and
(11) can be written explicitly as,

f (φt ) = 1

2

(
α1 sin(φ2t − φ1t )

α2 sin(φ1t − φ2t )

)
+ μ = 1

2

(−α1
α2

)
sin(φ1t − φ2t ) + μ

= 1

2

(−α1
α2

)
sin(β ′φt ) + μ.

where β ′ = (1,−1) and (α1, α2) = (K12, K21). If φ1t ≈ φ2t at t = 0 and the values
of α1, α2 are large enough, then φ1t ≈ φ2t ∀t , such that β ′φt ≈ 0 and we can write a
crude linear approximation of the sine function: sin(β ′φt ) ≈ β ′φt , such that
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f (φt ) ≈ 1

2

(−α1
α2

)
β ′φt + μ = 1

2

(−α1 α1
α2 −α2

)
φt + μ. (12)

This is a coarse, but linear, approximation of theKuramotomodel andwe can perform a
cointegration analysis assuming this approximation is satisfactory. However, one must
be cautious with this approximation. Consider sin(β ′φt ), when β ′φt = φ1t −φ2t ≈ π .
In this case sin(β ′φt ) ≈ π − β ′φt , and hence

f (φt ) ≈ 1

2

(−α1
α2

)
(π − β ′φt ) + μ = 1

2

(
α1 −α1

−α2 α2

)
φt + μ +

(−α1
α2

)
π,

(13)

and we see that not only do we add a termwith π , but the interaction also reverses sign.
Recall that 0 < α1 + α2 < 2 which implies a stationary relation in the system in (12),
see Sect. 3.2. In (13) this condition is reversed, in the sense that −2 < α1 + α2 < 0
will imply stationarity. If 0 < α1 + α2 < 2, (13) leads to an explosive system, which
is not covered in this paper. Therefore, an essential requirement for an approximation
of the Kuramoto model is a regime switching ability of (2). For a model with this
property, we propose that cointegration analysis on a piecewise linear approximation
of the Kuramoto model does make sense and can lead to correct conclusions regarding
the network structure. In this paper we will not deal with non-linear cointegration of
oscillating systems, but leave this direction open for future research. For a statistical
analysis of nonlinear cointegrated systems of the formαtβ

′, i.e. time varying, or regime
switching α coefficients, see Bec and Rahbek (2004) and Kristensen and Rahbek
(2013).

Note that with a general coupling constant Kkj = K , then the simple linear approx-
imation to the Kuramoto model around φ j t − φkt ≈ 0 is

K

p

p∑
j=1

⎛
⎜⎝
sin(φ j t − φ1t )

...

sin(φ j t − φpt )

⎞
⎟⎠ ≈ K

p

⎛
⎜⎝

−(p − 1) . . . 1
...

. . .
...

1 . . . −(p − 1)

⎞
⎟⎠ φt . (14)

3 Cointegration

Cointegration theory was originally developed for discrete time processes, however
the ubiquitous use of continuous time models has inspired development of continuous
time cointegration theory, see Kessler and Rahbek (2004, 2001). In order to present
cointegration analysis as a framework for phase-processes, we therefore review some
background on discrete time processes before entering into continuous time cointe-
grated models. The first part of this section is based on Johansen (1996) and Ltkepohl
(2005).
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3.1 Integrated process

Assume that φn is a discrete time vector autoregressive process,

φn = Aφn−1 + μ + εn, (15)

where A ∈ R
p×p, εn is a Gaussian white noise and μ ∈ R

p is a deterministic term.
The characteristic polynomial for (15) is the determinant of Ip − Aζ for ζ ∈ C, where
Ip is the p-dimensional identity matrix. If the roots of the characteristic polynomial
are all outside the unit circle, then the initial values of φn can be given a distribution
such that φn is stationary, see Johansen (1996).

If the characteristic polynomial of (15) contains one or more roots at ζ = 1, then
there is no stationary solution of φn , and we say that the process is integrated. In
particular, see Johansen (1996), P = A − Ip will have reduced rank r < p and can
be written as P = ab′ with a, b (p × r) matrices of rank r . Moreover, the process
φn is integrated of order one, I (1) with r cointegrating relations b′φn under regularity
conditions presented in Sect. 3.2. Note that the order of integration is a stochastic
property and hence including deterministic terms in a model does not change the
order of integration.

In this paper we will only deal with I (1) processes, so when we refer to φn as
integrated, we implicitly mean that φn is integrated of order 1.

3.2 Cointegrated process

Let φn = (
φ1n, . . . , φpn

)′ ∈ Rp and rewrite (15) with P = A − Ip as

Δφn = Pφn−1 + μ + εn . (16)

As already noted if det(I − Aζ ) = 0 implies |ζ | > 1 then φn has a stationary
representation (as an I (0) process). In particular, P has full rank p and all linear
combinations of φn are stationary. If the (p × p)-dimensional matrix P has reduced
rank r < p then P = ab′ with a, b, p× r dimensional matrices of rank r . Moreover,
the process φn is integrated of order one, I (1)with r cointegrating stationary relations
b′φn provided ρ(Ir + b′a) < 1 with ρ (·) denoting the spectral radius. This we refer
to as the I (1) conditions in the following.

Note that if r = 0 the process φn is I (1) with no cointegration, while if r = p
(and ρ(A) < 1) then φn is I (0), or p stationary linear combinations exist. Under the
reduced rank r , the system is written as,

Δφn = ab′φn−1 + μ + ε,

with b containing the r cointegration vectors and a the loadings or adjustment coef-
ficients. Note that the entries of a and b are not uniquely identified, since we can
use any non-singular transformation to obtain similar results. Rather we identify the
subspaces sp(a), sp(b) ∈ R

r , that is, the subspaces spanned by the columns of a, b,
where we use the normalization
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b∗ = b(c′b)−1, with c = (Ir , 0p−r×r )
′

of b in order to identify parameters uniquely. Furthermore, let m⊥ denote the matrix
such that sp(m⊥) is orthogonal to sp(m), then a necessary condition for an I (1) process
is that |a′⊥b⊥| 	= 0. For more on estimation and inference in cointegration models, see
“Appendix 2”.

3.3 Continuous time cointegrated models

Kessler and Rahbek (2001, 2004) derive a cointegration theory for continuous time
models, and conclude that for a discretely observed process, using conventional meth-
ods for discrete time generally apply to inference on continuous time parameters.
Consider (2) with f as in (8) and for simplicity ω = 0. This is a p-dimensional
Ornstein–Uhlenbeck process. The exact solution is

φt = exp(tΠ)
[
φ0 +

∫ t

0
exp(−sΠ)μds +

∫ t

0
exp(−sΠ)ΣdWs

]
. (17)

Note that for the solution (17) to be stationary, then Π must be a full rank matrix, and
all eigenvalues must have a strictly negative real part. This implies that if Π is not of
full rank, then φt is necessarily not stationary.

Assuming discrete observations of (17) at equidistant timepoints t1 = 0 < t2 <

· · · < tN = T with timestep δ = tn − tn−1, the corresponding vector autoregressive
process is

φtn = exp(δΠ)φtn−1 + δμ + εtn , (18)

such that the difference process can be written as

Δφtn = φtn − φtn−1 = δPφtn−1 + δμ + εtn ,

where ε ∼ N (0,Ω) and

P = δ−1(exp(δΠ) − Ip)

Ω =
∫ δ

0
exp(sΠ)ΣΣ ′ exp(sΠ ′)ds.

(19)

Results (18) and (19) hold in general for multivariate processes. Thus, to obtain an
estimate for the continuous time matrix, Π̂ , from the discrete time estimate P̂ , a
logarithmic transformation involving P̂ is required

Π̂ = δ−1 log
(
δ P̂ + Ip

)
. (20)

For a univariate process (20) is unique, however this is not the case for a multivariate
process, due to the non-uniqueness of the multivariate logarithm. Because of this, we
cannot uniquely identify Π̂ , even though we have a unique estimate P̂ .
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For a continuous time process φt , however, Kessler and Rahbek (2001, 2004)
conclude that this is cointegrated if and only if the discretely observed process (18) is
cointegrated. In this case P is of reduced rank, and can be decomposed P = ab′ with
a, b ∈ R

p×r of full rank r ≤ p. However, it also holds that

P = ab′ = αξβ ′ (21)

for a non-singular matrix ξ = (β ′α)−1
(
exp(δβ ′α) − Ir

)
∈ R

r×r and matrices α, β ∈
R

p×r , such that given weak conditions on the sampling timestep δ (see below), the
following relations hold

rank(P) = rank(Π) = r

sp(α) = sp(a)

sp(β) = sp(b),

see Kessler and Rahbek (2001, 2004). Hence, for continuous time cointegrated pro-
cesses, we can infer on the number of cointegration relations (rank(Π) = r ) from
discrete time observations, and also identify the subspaces spanned by the columns
of α and β. Note however that due to the unidentified scaling ξ , we can only identify
the subspaces, but not the parameters α, β themselves. They are only unique up to a
scaling (ξ ), even though we have imposed the normalization (23) and thus uniquely
identified a and b.

In the numerical part, we will refer to estimates of α and β, implicitly referring to
the discrete time estimates. In terms of subspaces, there is no difference between the
discrete and continuous time, but in order to interpret the continuous time Π matrix,
one must translate the discrete estimate to a continuous estimate using (19).

It is important to note that when working with continuous timemodels, one must be
careful with regard to the relation (19) between discrete and continuous time and the
sampling timestep δ. Kessler and Rahbek (2004) refer to this issue as the embedding
problem, and to ensure that the continuous time model is appropriate, one must check
for exp(δΠ) in (18) that it is non-singular, i.e., | exp(δΠ)| 	= 0, and that it has no neg-
ative eigenvalues. If this is the case and the underlying process is in fact cointegrated,
the results above hold.

3.4 Likelihood ratio test for rank(Π) = r

Consider discrete observations (φt1 , . . . , φtN ) from the continuous process (17) and
denote by Hr the hypothesis Hr : rank(Π) ≤ r for r = 0, . . . , p. Then the set of
hypotheses H0, . . . , Hr is nested,

H0 ⊆ H1 ⊆ · · · ⊆ Hp,

and Hp correspond to the unrestricted model. The likelihood ratio test (LRT) that
compare Hr and Hp is applied sequentially for r = 0, 1, . . . , p − 1 and continued
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until Hr against Hp cannot be rejected, and thus determine the number of cointegrating
relations for φt . The LRT statistic is given by

−2 log Q(Hr |Hp) =
p∑

i=r+1

λ̂i , (22)

where λ̂i are the solutions to the eigenvalue problem (49), see “Appendix 2”. The
asymptotic distribution of (22) is non-standard and therefore it must be simulated.
Here, to also improve on small-sample performance we perform bootstrap simulations
as presented by Cavaliere et al. (2012), in order to determine critical values. Specifi-
cally, given the data {φtn }Nn=1 bootstrap sequences {φ∗(m)

tn }Nn=1 for m = 1, . . . , M are
simulated and for each sequence the LRT statistic LRT∗(m) is re-computed. The empir-
ical quantiles of {LRT∗(m)}Mm=1 are then used for testing. With r determined, β̂ is given
by the r eigenvectors corresponding to λ̂i , i = 1, . . . , r and the parameter estimates
α̂, μ̂, Σ̂ follow by ordinary least squares estimation as outlined in “Appendix 2”.

3.5 Inference for α and β

Since we identify subspaces for α and β, then a normalization is necessary to identify
the parameters uniquely. If β̂ is known, then α̂ follows by OLS. Hence, if we impose
a normalization on β̂, we can identify all parameters. A common normalization, see
Johansen (1996), is

β̂ = β̃(c′β̃)−1,

where c = (Ir , 0p−r×r )
′ is a p × r matrix and β̃ is any version of the r eigenvectors

corresponding to the r largest eigenvalues. This ensures that

β̂ =
(

Ir
β̃p−r,r

)
. (23)

Extending the idea of normalization to restrictions for α, β, we can impose such
under the hypothesis Hr . Assume that rank(Π) = r and that the parameters
α ∈ R

p×r , β ∈ R
p×r , μ ∈ R

p and Σ ∈ R
p×p are all unrestricted within their

corresponding subspaces, except for normalization (23). Possible hypotheses for α, β

are linear restrictions as given by

Hα : α = Aψ

Hβ : β = Bξ,

where A ∈ R
p×m , ψ ∈ R

m×r , B ∈ R
p×s , ξ ∈ R

s×r . The known matrices A and B
represent the linear hypotheses and ψ and ξ are parameters to be estimated. It is also
possible to combine the hypotheses for α and β and we denote this Hα,β .
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As an example, assume a system of 3 oscillators φt = (φ1t , φ2t , φ3t )
′ with r = 1.

If we believe that φ3t is independent of φ1t and φ2t , we can specify the hypothesis

Hα : A =
⎛
⎝1 0
0 1
0 0

⎞
⎠ , (24)

such that

ΠA = αAβ ′ =
⎛
⎝ψ1

ψ2
0

⎞
⎠ (β1, β2, β3) =

⎛
⎝ψ1β1 ψ1β2 ψ1β3

ψ2β1 ψ2β2 ψ2β3
0 0 0

⎞
⎠ .

This restriction imply that φ1t and φ2t do not contribute to the dynamics of φ3t , and
hence that the latter is independent.

If we want to investigate a possible 1:1 coupling between φ1t and φ2t , we can
specify

Hβ : B =
⎛
⎝ 1

−1
0

⎞
⎠ , (25)

and obtain

ΠB = αβ ′
B =

⎛
⎝α1

α2
α3

⎞
⎠ (η,−η, 0) =

⎛
⎝α1η −α1η 0

α2η −α2η 0
α3η −α3η 0

⎞
⎠ .

Note however, that under Hβ the interaction between φ1t and φ2t also influence φ3t if
α3 	= 0. Hence, the system admits the relations φ1t ↔ φ2t , φ1t → φ3t and φ2t → φ3t ,
where the restriction β3 = 0 implies that the last two relations are uni-directional.

If we believe that φ1t and φ2t are bi-directionally coupled, φ1t ↔ φ2t , but φ3t is
independent and does not contribute to eitherφ1t norφ2t , we can phrase this hypothesis
as a combination of (24) and (25). This leads to the restricted matrix

ΠA,B = αAβ ′
B =

⎛
⎝ψ1

ψ2
0

⎞
⎠ (η,−η, 0) =

⎛
⎝ψ1η −ψ1η 0

ψ2η −ψ2η 0
0 0 0

⎞
⎠ .

Other hypotheses, such as equal or proportional coupling strength or l : n coupling,
can be specified by appropriately designing thematrices A and B. Thus, a broad variety
of linear hypotheses on the parameter Π = αβ ′ can be investigated, notably infer-
ence on the coupling directions and the effect of system disequilibrium on individual
oscillators.

Evaluation of the hypotheses Hα, Hβ , and Hα,β all lead to similar likelihood ratio
tests. To calculate the test statistic, solve again the eigenvalue problem (49) for the
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unrestricted model, and dependent on the restrictions A and/or B obtain eigenvalues
λ∗
i for the restricted model. The LRT statistic is then given by

−2 log Q
(
H0|Hr

) = T
r∑

i=1

log

(
1 − λ∗

i

1 − λ̂i

)
, (26)

where H0 is a generic substitute for any of Hα, Hβ, Hα,β . Each of these statistics has
an asymptotic χ2 distribution with varying degrees of freedom (df),

−2 log Q
(
Hα|H(p)

)
has r(p − m) df

−2 log Q
(
Hβ |H(p)

)
has r(p − s) df

−2 log Q
(
Hα,β |H(p)

)
has r(p − m) + r(p − s) df,

where m and s are the column dimensions of the matrices A and B, respectively. This
shows that once rank(Π) is determined, statistical inference for α and β can be carried
out, relatively straightforward. As for the rank determination, an alternative to the χ2

approximation for inference on α and β is to perform bootstrapping for the test (26),
see Boswijk et al. (2016).

4 Numerical simulations

4.1 General setup

We perform a series of experiments with a system of p = 3 linearly coupled Winfree
oscillators such that zt ∈ R

6 and f (φt ) = αβ ′φt . Hence, for i = 1, 2, 3, we have a
DGP with

g(zt )i = f (φt )i = (αβ ′φt )i = αi

3∑
j=1

β jφ j t . (27)

Since we examine simulations from the Winfree oscillator, our cointegration model
will be misspecified since the amplitude is not deterministic and linear, but rather
stochastic and fluctuating. However, since the amplitude of the Winfree oscillator
has a relatively steady level (of course this also depends on the noise level), due to
the squared multiplicative term in the amplitude process, we can approximate it as a
constant. Hencewewill do so in terms of analyzing the phase process as a cointegrating
system. This also implies in terms of parameter estimation for the phase process, the
estimate of the constant μ is a pseudo estimate of the κ parameter for the amplitude
process, and hence we will compare the estimates to the true value of κ .

For each experiment we simulate 1.000.000 iterations of the oscillator (10) using
the Euler–Maruyama scheme with timestep Δ̃t = 0.0002 and then subsample for
Δt = 0.1, thus obtaining N = 2000 (equidistant and discrete) observations of zt for
t ∈ [0, 200). Subsampling every 5000th values diminishes the discretization error of
the simulation scheme.
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We use the same initial conditions,

z0 = (1, 0, 0, 1,−1, 0)′,

and parameters

κ = (0.75, 1, 1)′

Σφ = diag(1, 1, 1)

Σγ = diag(0.1, 0.1, 0.1)

(28)

for all the experiments so that the only varying parameter is the coupling structure.
Note that the κ parameter for φ2t is set equal to φ3t to obtain similar simulated

outcomes for some experiments to investigate whether we can distinguish between
interaction and independence between these two. We set the cointegration parameters
for each experiment individually to impose different coupling structures, and will
refer to the relevant model by it’sΠk, k = 0, 1, 2, 3 matrix, where k defines the model
structure (see Fig. 1).

The discrete time model fitted to the data is specified as

Δφn = Pφn−1 − μ + εn, (29)

where the estimate P̂ is used to obtain Π̂ through (20). The reported estimate for μ̂

is scaled by the timestep Δt . Note that μ is not time-dependent and hence this model
will fit a constant parameter μ to a varying quantity γt and thus it is misspecified as
mentioned above. Model (29) is estimated for all 4 systems of three oscillators and we
report the parameters Π̂ and μ̂ for each system. The latter is compared to κ , which is
the level parameter of the γt process.

In addition to a cointegration analysis we apply themean phase coherence measure,
see Mormann et al. (2000), bilaterally to the wrapped phases (i.e., φi t ∈ [0, 2π) for
i = 1, 2, 3)

R(φi t , φ j t ) =
∣∣∣∣ 1N

N∑
n=1

ei(φi,tn−φ j,tn )

∣∣∣∣, (30)

as an initialmeasure of synchronization between the phases in the system. If R ≈ 1 this
implies synchronization (R = 1 means that oscillators are perfectly phase locked). On
the contrary, R ≈ 0 implies that the distribution of phase differences is approximately
uniformly distributed on the unit circle. Note that themean phase coherencemeasure is
symmetrical, like correlation, and therefore it cannot reveal uni-directional coupling.
In order to determine the significance of the R measures, we bootstrapped critical
values for the hypothesis R = 0. Hence, these values are the same for all experiments
and presented along with the measured R values. We compare the resulting value of
R to the conclusion of the cointegration analysis.

We use the same seed for all experiments so that the outcomes are fully comparable
in terms of stochastic noise dW . First we run a simulationwith uncoupled oscillators as
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Π3 :

Fig. 1 Graphical representation of the four systems, represented by the Πi , i = 0, 1, 2, 3 matrix. The
arrows define the direction of interaction, hence φ2t → φ1t implies that φ2t is influencing φ1t (uni-
directional coupling), and φ2t ↔ φ1t denotes bi-directional coupling, i.e. φ1t , φ2t influence eachother
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Fig. 2 50 observations (x-coordinates only) from numerical simulation of the Winfree oscillator: the Π0
column displays the independent model (31), the Π1 column displays the uni-directional coupled model
(32), the Π2 column displays the bi-directional coupled model (33) and the Π3 column displays the fully
coupled model (34)

a benchmark, and then continue with coupled systems as presented in Fig. 1. Figure 2
display the x-coordinates for t ∈ [100, 150] from a simulation of these four systems.

The data analysis is carried out using the free software package R (R Core Team
2015). The source code for simulation and bootstrapping procedures arewritten inC++
to decrease the runtime, utilizing the interface package Rcpp for R and linear algebra
package RcppArmadillo for C++. The source code is available in the package
cods as supplementary material.
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t

φt

φ1t φ2t φ3t

Fig. 3 Unwrapped phase processes from numerical simulation of the Winfree oscillator: Π0 displays
the independent model (31), Π1 displays the uni-directional coupled model (32), Π2 displays the bi-
directional coupled model (33) and Π3 displays the fully coupled model (34). The dotted lines represent
the corresponding phases from the independent model in Π0

4.2 Independent oscillators

This experiment is used as a reference example. We set

Π0 =
⎛
⎝0 0 0
0 0 0
0 0 0

⎞
⎠ , (31)

so rank(Π0) = 0 and there is no interaction in the system.
Simulating the model and unwrapping the phases, we obtain the top-left plot of

Fig. 3.
Visual inspection of the plot could lead to the conclusion that φ2t and φ3t are

coupled, however the mean phase coherence measure R for the phases indicates that
this is not the case.

R(φ1t , φ2t ) = 0.025 (0.170)

R(φ1t , φ3t ) = 0.073 (0.168)

R(φ2t , φ3t ) = 0.078 (0.176).
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Table 1 Rank tests for models
Πi , i = 0, 1, 2, 3 with the
selected models indicated in
bold

Model Hr Test values p value

Π0 r = 0 16.47 0.663

r ≤ 1 3.94 0.753

r ≤ 2 0.05 0.812

Π1 r = 0 118.39 0.000

r ≤ 1 4.30 0.568

r ≤ 2 0.00 0.958

Π2 r = 0 104.48 0.000

r ≤ 1 3.84 0.707

r ≤ 2 0.03 0.843

Π3 r = 0 157.81 0.000

r ≤ 1 63.82 0.000

r ≤ 2 0.00 0.947

The test values are given by Eq.
(22) and p values are
determined by bootstrapping

The distribution of the mean phase coherence measure is unknown, but can be approx-
imated by bootstrapping for H0 : R = 0, that is for no synchronization present. 1000
bootstrap samples yield the reported 5% critical values in parentheses above ≈0.17,
thus the mean phase coherence measure suggest no synchronization present, which is
the case.

Performing now a rank test for the rank of Π0 in the system, we obtain the first part
of Table 1.

The test does not reject the hypothesis Hr : r = 0, thus suggesting that there is
no cointegration present in the system. This in turn implies that the oscillators are
independent in terms of synchronization, in accordance with the DGP for Π0, and
with the mean phase coherence measure.

4.3 Uni-directional coupling

In this experiment we analyze a system with a uni-directional coupling. Let

α = (−0.5, 0, 0)′

β = (1,−1, 0)′
(32)

such that rank(Π1) = rank(αβ ′) = 1, and we have the stationary relation φ1t −
φ2t . Since α2 = α3 = 0, then φ2t and φ3t are acting independently, whereas φ1t is
influenced by φ2t . Hence, the only coupling is φ2t → φ1t .

The unwrapped phases for the simulation of model Π1 are seen in the top-right of
Fig. 3. The dashed lines indicate the independent phases from the top-left of Fig. 3,
and we see that phases φ2t , φ3t are equal to their independent versions, whereas we
now clearly find that φ1t is attracted towards φ2t due to the coupling structure in the
system.
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Table 2 Fitted model Π1

Parameter True value Unrestricted estimates Restricted α and β

Estimate SE p value Estimate SE p value

α1 −0.5 −0.527 0.049 <0.001 −0.514 0.048 <0.001

α2 0 −0.050 0.049 0.307 0

α3 0 0.059 0.048 0.223 0

β1 1 1 1

β2 −1 −0.981 −1

β3 0 −0.016 0

κ1 0.75 0.765 0.076 <0.001 0.638 0.081 <0.001

κ2 1 1.035 0.075 <0.001 1.063 0.080 <0.001

κ3 1 1.119 0.074 <0.001 1.086 0.080 <0.001

Examining the mean phase coherence in Eq. (30) for the system (note that
R(φ2t , φ3t ) is equal to the value in the previous section),

R(φ1t , φ2t ) = 0.321 (0.170)

R(φ1t , φ3t ) = 0.049 (0.168)

R(φ2t , φ3t ) = 0.078 (0.176),

we find indications of some synchronization between the phases φ1t and φ2t in the
system compared to R(φ1t , φ2t ) in the independent model. The value is significant
on a 5% level as seen by the reported critical values, whereas for R(φ1t , φ3t ) and
R(φ2t , φ3t ) the reported values are not. However, the mean phase coherence measure
does not recognize the uni-directional coupling as is the case here. Thus, it cannot
distinguish between φ1t → φ2t , φ1t ← φ2t and φ1t ↔ φ2t .

Results from the rank test are in the second part of Table 1. Here we see that
r = rank(Π1) = 0 is clearly rejected, whereas r = 1 cannot be rejected with a
p value of 0.568. This indicates the presence of a single cointegration relation, in
accordance with the construction of the model.

Fitting the model with r = 1, we obtain the unrestricted MLE regression estimates
in Table 2. The cointegration relations are close to their true values (approximately
within 1 standard error), and both α2 and α3 are statistically insignificant. Moreover,
the estimates of β suggests a 1:1 coupling between φ1 and φ2.

Therefore, we perform a likelihood test for reducing the unrestricted model, with
restrictions for both α and β

Hα,β : α = Aψ, with A = (1, 0, 0)′

β = Bξ, with B = (1,−1, 0)′,

so that A fix α2 = α3 = 0 and B restricts to a 1:1 coupling. This yields the test statistic
3.617 which is χ2 distributed with 4 degrees of freedom and hence implies a p value
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of 0.460. Thus, we recover the true uni-directional coupling structure of the simulated
phases. The fitted model is presented in the right of Table 2.

The conclusion is that we have successfully identified the coupling structure of
uni-directional coupled phases in a three dimensional system, with two independent
phases, and one dependent. Since φ3t is completely independent of φ1t and φ2t and
r = 1 we can discard φ3t when interpreting the cointegration in the system. Then
we can interpret the cointegration parameter α as the coupling strength and β as the
coupling scheme, here 1:1. If we had analyzed different data, with a β estimate close
to β̂ = (1,−n, 0)′, we could then identify a n:1 coupling between φ1t and φ2t . This
can be seen from the fact that in this case αk(φ1t −nφ2t )would be a stationary relation,
and thus φ2t would rotate ≈n times slower than φ1t .

4.4 A bi-directional coupling with one independent oscillator

We now look at a system with

α = (−0.5, 0.5, 0)′

β = (1,−1, 0)′.
(33)

Hence, rank(Π2) = 1 and again we have 1 stationary relation φ1t −φ2t , but now with
only φ3t independent, and a bidirectional coupling φ1t ↔ φ2t .

Simulating theΠ2-model we obtain the bottom-left of Fig. 3. We have included the
dashed lines again, as references for the independent system. If we contrast the bottom-
left of Fig. 3 with the top-right of Fig. 3, we now find that φ1t and φ2t are attracting
each other, and hence they are both different from their independent versions. Since
|α1| = |α2|, their coupling strength is equal, and the coupled phases lies roughly in
the middle between the independent ones. If we look at the mean phase coherence
measure for the pairwise interactions,

R(φ1t , φ2t ) = 0.590 (0.170)

R(φ1t , φ3t ) = 0.144 (0.168)

R(φ2t , φ3t ) = 0.126 (0.176),

we find relatively strong evidence of a coupling between the phases φ1t and φ2t , the
value is higher than in the uni-directional case and it is (again) significant given the
bootstrapped critical values. However, again we cannot distinguish between types of
coupling structures.

Performing a rank test for cointegration in the system with Π2, we see in the third
part of Table 1 that Hr : r = 0 is clearly rejected, and we find that the rank of Π2 is
estimated to 1 with a p value of 0.707. Hence, we recover the correct dimension of
the column space of β, and fitting a model with r = 1 yields the parameters in the left
of Table 3.
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The only insignificant parameter for the model is α3, which is in accordance with
the construction of the Π2 model. Specifying the hypothesis

Hα,β : α = Aψ, with A =
⎛
⎝1 0
0 1
0 0

⎞
⎠

β = Bξ, with B = (1,−1, 0)′,

and performing a likelihood ratio test for the reduction yields a test statistic of 3.340,
which follows a χ2 with 3 degrees of freedom, and result in a p value of 0.342. The
fitted model is given in the middle of Table 3. If we instead of Hα,β specify

H∗
α,β : α = Aψ, with A = (1,−1, 0)′

β = Bξ, with B = (1,−1, 0)′,

implying that α1 = −α2, we obtain a test statistic of 3.880, with 4 degrees of freedom,
and a p value of 0.423. Thus, we can also restrict the model to one where the coupling
strengths are equal in magnitude. The fitted model is presented in the right part of
Table 3.

Summing up, in a system of bi-directional coupled oscillators plus one indepen-
dent, we can identify the correct coupling between them, including identifying the
proportionally equal coupling strength between the coupled phases. Again we iden-
tify r = 1, and hence we can interpret the cointegration parameters as before, hence
α is the coupling strength, and β the interaction, again 1:1 coupling.

4.5 Fully coupled system

We specify a system with full interaction between all phases.

α =
⎛
⎝−0.50 0.25

0.25 −0.50
0.25 0.25

⎞
⎠

β =
⎛
⎝ 1 0

0 1
−1 −1

⎞
⎠ .

(34)

The α and β matrix are chosen, such that

Π3 = αβ ′ =
⎛
⎝−0.50 0.25 0.25

0.25 −0.50 0.25
0.25 0.25 −0.50

⎞
⎠

inspired by the simplistic linearization of the Kuramoto model, as presented in Eq.
(14). Note that rank(Π3) = 2.
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Table 4 Fitted model Π3

Parameter True value Unrestricted estimates Restricted α and β

Estimate SE p value Estimate SE p value

α11 −0.50 −0.584 0.075 <0.001 −0.569 0.075 <0.001

α21 0.25 0.232 0.073 <0.001 0.241 0.072 <0.001

α31 0.25 0.326 0.072 <0.001 0.328 0.072 <0.001

α12 0.25 0.223 0.067 <0.001 0.224 0.067 <0.001

α22 −0.50 −0.423 0.064 <0.001 −0.423 0.064 <0.001

α32 0.25 0.201 0.064 <0.001 0.199 0.064 <0.001

β11 1 1 1

β21 0 0 0

β31 −1 −0.997 −1

β12 0 0 0

β22 1 1 1

β32 −1 −0.999 −1

κ1 0.75 0.712 0.076 <0.001 0.607 0.083 <0.001

κ2 1 1.054 0.074 <0.001 1.061 0.080 <0.001

κ2 1 1.023 0.073 <0.001 1.130 0.080 <0.001

The simulated phases are shown in the bottom-right of Fig. 3. Comparing to the
dashed (independent) versions,wenowfind that all phases are different from their inde-
pendent versions. It appears as if φ2t , φ3t dominate the system, since φ1t is attracted
closer to their independent versions than otherwise, but it is also a two-against one
(κ2 = κ3 	= κ1) scheme, and we roughly observe that φ1t is attracted 2/3 towards
φ2t , φ3t , whereas φ2t , φ3t are attracted 1/3 towards φ1t . So by the construction of the
system, this behavior seems natural. We find that the mean phase coherence measure

R(φ1t , φ2t ) = 0.487 (0.170)

R(φ1t , φ3t ) = 0.574 (0.168)

R(φ2t , φ3t ) = 0.488 (0.176),

indicates bilateral synchronization for all phases, and all values are significant. The
rank test also gives clear evidence of cointegration and we identify r = 2, as seen in
the bottom part of Table 1, where both the hypotheses r = 0 and r = 1 are rejected.
Fitting a model with r = 2 yields the left half of Table 4.

The estimated κ’s are close to their respective values, whereas some of the α param-
eters deviate (more than 1 standard error) from their true values. If we inspect the
estimated Π̂3

Π̂3 =
⎛
⎝−0.611 0.231 0.378

0.241 −0.437 0.196
0.343 0.207 −0.549

⎞
⎠
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and compare with the true Π3 it looks better. The row sums are close to zero as
they should be, and the signs are correct. The proportional coupling strengths are off
though, especially between φ1t , φ3t , but it seems that Π3 is relatively well estimated
considering the identification issues. Recall that we can determine the subspaces sp(α)

and sp(β) for continuous time cointegration models, see Kessler and Rahbek (2004),
but that we have problems regarding the scaling of Π (see Sect. 3.3).

Inspired by the fitted values, we restrict both matrices α and β

Hα,β : α = Aψ, with A =
⎛
⎝−0.50 0.25

0.25 −0.50
0.25 0.25

⎞
⎠

β = Bξ, with B =
⎛
⎝ 1 0

0 1
−1 −1

⎞
⎠

we find that the test statistic is 1.73, χ2 distributed with 4 degrees of freedom, and
thus a p value of 0.785. Hence, we can reduce the model to one with restrictions that
generates the true structure of Π . The estimated model parameters are presented in
Table 4, and the corresponding Π̂ is

Π̂∗
3 =

⎛
⎝−0.595 0.232 0.363

0.250 −0.438 0.188
0.345 0.205 −0.550

⎞
⎠ .

Concluding on the fully coupled system, we find that we can correctly identify the
dimension of the cointegration relations. We can also determine the coupling structure
as given by the parameters α and β. However, interpretation in this experiment is
more informative in terms of Π̂ , since with r ≥ 2, the interpretation of cointegration
parameters is not as intuitive as in the case of r = 1. We obtain a Π estimate that is
reminiscent of the true matrix, with the true directions of the coupling, and strengths
somewhat close to the actual values. Thus, we can interpret the system as fully coupled,
in a simplistic (linear) Kuramoto type model.

4.6 Strength of coupling and identification of interaction

In this section, we compare the mean phase coherence measure to the cointegration
analysis with respect to interactions in the system. More specifically, we look at how
strong the coupling constants in Π must be in order for the two methods to conclude
correctly on interaction in the system. We reuse the parameter settings (34) from the
fully coupled experiment, but use a scaled Π matrix Π → εΠ , for ε ∈ [0, 1], where
ε controls the coupling strength. The higher ε is, the stronger the coupling, and hence
the attraction between phases. Note that ε = 0 corresponds to the modelΠ0 and ε = 1
corresponds to Π3. The p values are calculated using bootstrapping as presented by
Cavaliere et al. (2012) to obtain an estimate of the asymptotic distribution of the trace
test statistics.
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Fig. 4 Identification of interaction for varying coupling strengths ε for the model εΠ3. Top row are
hypotheses Hr : r = 0, 1, 2 using the trace test. The orange bounds indicates empirical quantiles ranging
from 2.5 to 97.5% and the blue lines represents the median. The bottom row are mean phase coherence
measures again with empirical quantiles illustrated. Dashed lines in the top row show the 5% confidence
levels. Dashed lines in the bottom row show the 95% quantile for H0 : R(i, j) = 0 at ε = 0, found by
bootstrapping (color figure online)

The aim is to investigate the rank test for varying ε compared to identification of
interaction in the system using themean phase coherencemeasure. Since low values of
ε implies weak interaction, the expectation is that both methods will produce doubtful
results in a low value regime. From the previous experiment on the fully coupled
oscillators, the mean phase coherence measure produced low values on identifying
the interaction of the system, hence we expect that the rank test will outperform for
low values of ε.

The experimental setup is 100 repetitions for each value of ε, and in each repetition
perform 500 bootstrap samples to estimate the p value for the hypotheses Hr : r =
0, 1, 2. Figure 4 presents the median p values for the rank test and median mean
phase coherence measures against ε. The top row of the figure shows the p values for
Hr : r = 0, 1, 2 respectively, and the bottom row shows the mean phase coherence
(R) measures for pairs of φ1t , φ2t and φ3t . The dotted lines indicate the p = 0.05
value, under which we reject the hypothesis. For the mean phase coherence measure,
the 95% significance level for the hypothesis R = 0 has been determined numerically
using bootstrapping and is indicated by the dotted lines. If the R-measure falls below
this line, independence cannot be rejected.
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Table 5 Percentage of conclusions on rank(Π), at a 5% significance level for a sample size of 2000

Model r = 0 r ≤ 1 r ≤ 2 r ≤ 3

Independent (%) 96.2 2.2 1.3 0.3

Uni-directional (%) 1.7 76.8 19.0 2.5

Bi-directional (%) 2.4 69.8 24.7 3.1

Fully coupled (%) 0.0 1.3 85.5 13.2

Note that the conclusion r ≤ 3 means that Π is of full rank and therefore invertible, hence β = I3. Correct
conclusions in bold

Seen in the top row of Fig. 4, at least half the simulations reject Hr : r = 0 for
ε > 0.12, and at least half the simulations reject Hr : r = 1 for ε > 0.11. The test
does not reject Hr : r = 2 for around 88% of the simulated samples for any values of
ε. Thus, for ε > 0.11, we can conclude that there is interaction present in the system,
and in most of the simulations we also recognize the true rank(Π) = 2.

If we turn to the bottom rowof Fig. 4, where themean phase coherencemeasures are
shown, we find that half the simulations does not reject the hypothesis R = 0 for ε <

0.34, 0.36 and 0.35, respectively, for R(φ1t , φ2t ),R(φ1t , φ3t ) and R(φ2t , φ3t ), thus
clearly indicating an inferior detection of interaction for small values of ε equivalent
to weak couplings.

Concluding on this experiment, we find that the rank test detects interaction in the
system already at relatively weak coupling strengths. In contrast to this, the coupling
must be significantly stronger for a sound conclusion on interaction in the system
when using mean phase coherence as a measure of interaction. Furthermore, when
detecting interaction in the system, the rank test is also very capable of identifying
the true rank of the system, despite a misspecified model. Higher sample sizes will of
course improve the inference results.

4.7 Consistency of the rank estimation

To investigate the consistency of the cointegration algorithm, we performed an exper-
iment with 1000 repetitions of simulations for Winfree oscillators, the uni-directional
coupling, the bi-directional and the fully coupled systems, respectively, and evaluating
the rank test, using the same setup as in Sect. 4.1. Table 5 present the percentages of
conclusions regarding hypotheses Hr : r = 0, r ≤ 1, 2, 3, for each model. Compar-
ing with critical values at a 5% level, obtained by bootstrapping, see Cavaliere et al.
(2012), we find that comparing the percentage of simulations where the test correctly
identifies the cointegration rank of 1 for uni- and bi-directional coupling are 76.8
and 69.8%, respectively, at a 5% significance level. For the fully coupled system the
percentage is 85.5%, and for an independent system the percentage is 96.2%.

These results show that identification of interaction in a system of coupled oscilla-
tors is quite precise, and the rank is underestimated in ≤2.5% of the simulations for
any model. In the case of independent or full interaction, the method is very good,
whereas for systems with directed interaction, or interaction among some oscillators
the frequency of overestimating the rank is ≈20–25%. This discrepancy seems intu-
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Table 6 Percentage of conclusions on interaction indicated by the rank test and the mean phase coherence
measures, at a 5% significance level for a sample size of 2000

Model Rank test R(φ1t , φ2t ) R(φ1t , φ3t ) R(φ2t , φ3t )

Independent (%) 3.8 4.7 4.4 5.7

Uni-directional (%) 98.3 99.8 5.6 4.4

Bi-directional (%) 97.6 100.0 7.2 7.0

Fully coupled (%) 100 100.0 100 100.0

itively correct, since for the latter systems the true model is a subset of the model of
higher rank. As before higher sample sizeswill of course improve the inference results.

InTable 6we compare, in percentages, the conclusions on interaction in the systems,
for each model. The values for the rank test presented here, are the summed values
from Table 5 for r 	= 0. We find that both methods are very adept in identifying
interaction in these systems. The results, however, should be held against the previous
section, where the rank test outperformed the mean phase coherence measure for
weak coupling strength. Also noting the fact, that the mean phase coherence measure
cannot account for uni-directional coupling, our overall conclusion is that in terms
of identifying interaction in the system, the methods seem to perform equally well
for stronger coupling, whereas in explaining the system architecture, a cointegration
analysis leaves us with more information on how the network is constructed.

5 Analysis of EEG data

Electroencephalography (EEG) signals are recordings from electrodes distributed on
the scalp of subjects. The recorded brainwave patterns are, among others, used for
diagnosing sleep disorders, coma or epilepsy. A study on 22 subjects experiencing
epileptic seizures from the Children’s Hospital Boston is presented by Shoeb (2009)
with the aim of detecting seizures based on multiple hours of recordings for each
individual. Figure 5 displays an EEG recording of a single subject during a period
that include a seizure identified by Shoeb (2009) between 2996 and 3036 s. The
seizure is marked by two red dashed lines in Fig. 5. The labels for the signals refer
to the individual electrodes on the scalp. We analyze the four signals FP1-F7, FP1-
F3, FP2-F4 and FP2-F8, where FP refer to the frontal lobes and F refer to a row of
electrodes placed behind these. Even numbered electrodes are on the right side and
odd numbered electrodes are on the left side. Smaller (larger) numberings imply that
the electrode is placed closer to (further from) the center of the scalp. Hence FP1-F7,
FP1-F3 are measurements from the left side, with F3 placed closer to the center than
F7, and likewise for right side signals FP2-F4 and FP2-F8. The electrodes for these
four signals mirror each other on the left/right side of the scalp.We analyze the seizure
period of 40 s and the 40 s leading up to the seizure, i.e. we analyze the two intervals
[2956; 2996] and [2996; 3036] respectively, and refer to these as prior to seizure and
during seizure. With a sample frequency of 256 measurements each second there are
a total of 10,240 measurements for each of the four signals during the 40 s intervals.
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Fig. 5 EEG recording leading op to a seizure and afterwards for a 11 year old female subject. The interval
[2996;3036] s, as indicated by the vertical red dashed lines, is defined by Shoeb (2009) as a seizure. We
analyze the four blue signals, FP1-F7, FP1-F3, FP2-F4 and FP2-F8 (color figure online)

For more details on the data, see Shoeb (2009). The objective is to compare two fitted
cointegration models with interaction as in Eq. (8) for each period:

dφt = αβ ′

⎛
⎜⎜⎝

φt,FP1-F3
φt,FP1-F7
φt,FP2-F4
φt,FP2-F8

⎞
⎟⎟⎠ dt + μdt + ΣdWt ,

discretely observed for t = 1, . . . , 10,240 in each of the two intervals.
The phase processes of the four signals are estimated using the Hilbert transform

(see Sect. 2.3). Figure 6 shows the four signals in the two periods and their corre-
sponding estimated unwrapped phase processes. Hence the offsets are in [0, 2π) for
the individual phase processes in each period. If we had not split the measurements at
2996 s, the phases in the bottom right of Fig. 6 would be continuations of the phases
in the bottom left. A visual inspection of Fig. 6 shows that when transitioning to the
seizure period, the phases change to a slower pace (the slopes decrease). Also, prior
to the seizure all four phases are closer with no clear distinction between right side
and left side phases. During the seizure, the phases split in two groups: right and left
side respectively.
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Fig. 6 FP1-F7, FP1-F3, FP2-F4EEGsignals and estimated phase processes for a 11 year old female subject.
Top left EEG signals prior to a seizure. Top right EEG signals during a seizure. Bottom left estimated phase
processes prior to a seizure. Bottom right estimated phase processes during a seizure

Table 7 Mean phase coherence
measures for EEG phases prior
to and during the seizure

Prior to seizure During seizure

R(FP1-F3; FP2-F4) 0.480 0.542

R(FP1-F3; FP1-F7) 0.535 0.644

R(FP1-F3; FP2-F8) 0.295 0.184

R(FP2-F4; FP1-F7) 0.321 0.350

R(FP2-F4; FP2-F8) 0.486 0.342

R(FP1-F7; FP2-F8) 0.525 0.379

Average 0.440 0.407

This indicates that the model regime changes when transitioning into the seizure
period. Table 7 shows the mean phase coherence measures bilaterally for the 4 phase
processes and the average of these. Comparing the columns we find no clear indication
of a change in the phase regime when transitioning into the seizure period based on
this measure, the average change is only 7.5%. However, the measure does indicate
interaction in the system among all phases.

Table 8 displays the results of a rank test procedure for the system of the four EEG
phase processes.

In accordance with the indications from the mean phase coherence measure, the
conclusion is a clear presence of cointegration during both periods. Prior to the seizure
the rank test of r ≤ 2 is close to the usual 5% significance level, hence the p value
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Table 8 Rank tests for EEG phases in the bottom of Fig. 6

Hr Prior to seizure During seizure

Test values p value Test values p value

r = 0 105.87 0.000 1132.64 0.000

r ≤ 1 42.82 0.000 41.68 0.008

r ≤ 2 9.98 0.053 7.19 0.618

r ≤ 3 0.46 0.439 0.72 0.786

The rank is determined to r = 2 in both periods, although the conclusion is far stronger during the seizure.
The significance of the statistics are found using 5000 bootstrap samples prior to the seizure due the border
limit case of around 5%, during the seizure the p value is determined from 2000 bootstrap samples

here is determined using 5000 bootstrap samples, in contrast to the 2000 bootstrap
samples used in the other interval, as the conclusion here is quite clear with a p value
≈0.62. In both cases we choose the rank r = 2 for the system.

The fitted models are presented in Table 9 with the model fit prior to the seizure on
the left side and the fit during the seizure on the right side. If we first note the estimated
μi ’s, these are larger during the seizure and significantly so for FP1-F3 and FP2-F4,
implying that these phase processes exhibit significantly higher intrinsic linear trends
during the seizure.On the other hand, directly interpreting the cointegration parameters
is not clear. Recall that these parameters specify subspaces, in this case withinR4. We
therefore look at the estimated Π̂ matrices in Table 10 to compare the models for each
period.

Here we can determine an all-to-all coupling during both periods and the estimated
cointegrationmatrices show a clear difference for the two intervals. Prior to the seizure
the right side signals FP2-F4 and FP2-F8 are much less influenced by the feedback
in the system, whereas during the seizure both experience a much larger feedback
from the left side signals FP1-F3 and FP1-F7 respectively. Surprisingly, the FP2-F8
signal does not seem to impose a large influence in the system in either interval. It
is also interesting to note the changing signs in the two matrices. The two left side
signals exhibit a positive feedback on themselves prior to the seizure, whereas during
the seizure they impose a negative feedback both on themselves and the right side
signals. This could possibly be part of an explanation of the slight kink seen in the
phases around 3015–3020 s halfway through the seizure.

Concluding on this analysis we find, not surprisingly, a fully coupled 4 dimensional
system with a clear change in the trends prior to and during the seizure. We find
that during the seizure the interaction in the system is much stronger, suggesting the
more distinctive phases shown in this interval. Including this temporal effect into
a single cointegration model covering the full period by utilizing regime switching
cointegration models, would be an interesting pursuit for future work.

6 Discussion

In this paper we have investigated the use of cointegration analysis to determine cou-
pling structures in linearly phase coupled systems. Using these techniques we can with
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Table 9 Fitted model for EEG phases F7-T7, T7-P7 and FP1-F7

Parameter Prior to seizure During seizure

Estimate SE p value Estimate SE p value

αFP1-F3,1 −0.100 0.018 <0.001 −0.462 0.028 <0.001

αFP1-F7,1 −0.002 0.019 0.930 −0.308 0.032 <0.001

αFP2-F4,1 −0.035 0.017 0.044 −0.722 0.035 <0.001

αFP2-F8,1 −0.115 0.030 <0.001 −0.648 0.042 <0.001

αFP1-F3,2 −0.117 0.016 <0.001 0.041 0.033 0.212

αFP1-F7,2 −0.024 0.016 0.147 0.071 0.037 0.057

αFP2-F4,2 −0.026 0.015 0.084 0.173 0.041 <0.001

αFP2-F8,2 −0.049 0.026 0.063 0.468 0.049 <0.001

βFP1-F3,1 1 1

βFP1-F7,1 0 0

βFP2-F4,1 −3.424 −0.036

βFP2-F8,1 2.610 −0.573

βFP1-F3,2 0 0

βFP1-F7,2 1 1

βFP2-F4,2 2.486 −0.840

βFP2-F8,2 −3.631 0.188

μFP1-F3 25.210 2.162 <0.001 39.647 1.307 <0.001

μFP1-F7 30.648 2.252 <0.001 36.499 1.473 <0.001

μFP2-F4 39.058 2.107 <0.001 58.268 1.608 <0.001

μFP2-F8 48.853 3.615 <0.001 54.765 1.947 <0.001

Table 10 Fitted Π̂ matrices for the two periods

Π̂ prior to seizure Π̂ during seizure

FP1-F3 FP1-F7 FP2-F4 FP2-F8 FP1-F3 FP1-F7 FP2-F4 FP2-F8

FP1-F3 4.388 1.572 −11.120 5.743 −5.305 −11.021 9.447 0.971

FP1-F7 1.519 0.892 −2.985 0.725 −4.335 −7.285 6.275 1.116

FP2-F4 0.540 −0.050 −1.971 1.589 −10.265 −17.047 14.686 2.681

FP2-F8 −0.733 −1.658 −1.613 4.108 −14.907 −14.729 12.909 5.776

On the left side is the estimated matrix prior to the seizure, on the right side is the estimated matrix during
the seizure

a good precision identify the coupling structure as a subspace for this type of model.
A standard measure to identify synchronization in the literature is the mean phase
coherence measure. Contrary to this standard measure, we can detect uni-directional
coupling, and we can construct and test hypotheses on the model in form of linear
restrictions in the estimated subspace. Furthermore, comparing the mean phase coher-
ence measure with the cointegration analysis in Sect. 4.6, we found that cointegration
detects interaction in a system more robustly and for weaker coupling strength than

123



876 J. Østergaard et al.

does the mean phase coherence measure. Combined with the fact that cointegration
does not just provide a level of synchronization, but rather the structure of the syn-
chronization mechanism, this technique can be used to infer system structures in a
much more detailed manner. Of course this higher level of information comes at a
cost, since the mean phase coherence measure is easily implemented for any system,
whereas the cointegration analysis is more involved and time consuming.

Due to the linear nature of the cointegration theory used, we are not able to cover
more complex models, such as the Kuramoto model. Thus, an important extension for
future work would be to allow for nonlinear coupling functions. However, the linear
structure appears naturallywhen considering a linearization around somephase-locked
state, such as for systems showing synchrony or asynchrony. Another interesting pur-
suit is to extend the model framework to include nonlinear deterministic trends, such
that also models like the FitzHugh–Nagumo or the van der Pol oscillator would be
covered. The model considered in this paper was constructed from the starting point
of the phase process in the spirit of the Kuramoto model, and noise was added on
this level. Another approach would be to start from a biological model or a reduction
thereof and introduce the noise on the DGP. This would also lead to non-linearities
both in drift and diffusion of the phase process. Finally, high dimensional systems
are a major challenge in the area of coupled oscillators, hence it would only be nat-
ural to investigate cointegration properties of high dimensional systems. A system of
more than two synchronizing oscillators that are nonlinearly phase coupled, facilitate
chaotic behavior since phases can then bilaterally attract and repel each other. When
the number of oscillators increase, one quickly ends up with intuitive shortcomings.
The number of parameters rapidly increase with the dimension of the system, possibly
leading to a desirable reduction to a sparse interaction structure. This is a key issue
with the cointegration framework, which take into account all individual oscillators, as
opposed to amean-field approach that does not run into the same curse of dimensional-
ity. The quality of the estimators will rapidly decreasewith increasing dimension of the
parameter space or numerical problems may arise. This problem might be alleviated
by imposing a sparse interaction structure through a LASSO L1 penalization.

Cointegration to identify coupling of oscillators has been attempted before in a neu-
roscience context byDahlhaus andNeddermeyer (2012). There, theKuramotomodel is
approximated for strongly phase coupled oscillators by setting sin(φ j −φi ) ≈ φ j −φi ,
since the phase differences are assumed to be small. We have used the idea from
Dahlhaus and Neddermeyer (2012) of analyzing the unwrapped multivariate phase
process. Contrary to Dahlhaus and Neddermeyer (2012), however, we have not lin-
earized the sine function to replicate Kuramoto, since this will cause a discrepancy
when the phase difference of two oscillators is closer to π than 0 (or 2π ). To mitigate
this problem, we have instead taken the approach of designing a DGP with the prop-
erties we are interested in, and which allows for any phase differences. Furthermore,
this DGP enables us to specify a cointegration model that comply with data from this
DGP. Although it may not fully comply with a biological model, it can point to where
necessary flexibility is needed in order to develop more realistic cointegration models
for biological processes. A first attempt to analyze EEG signals with cointegration
analysis with linear coupling structures has been presented. The results are promising,
and reveal a finer dependence structure characterizing states of seizure and non-seizure
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in epileptic patients, which in this example was not possible from the simple Mean
Phase Coherence measure. To fully explore the potential of the cointegration analysis
for EEG signals, it would be useful to extend the model and analysis tools to allow
for non-linearities and simultaneous treatment of many traces, as well as time varying
coupling strengths.

Summing up, by applying cointegration as a technique to the field of coupled
oscillators in biology, we open up for a whole new area of applications for this sta-
tistical theory. On the other hand, using cointegration methods, biologists can gain
new insights into network structures, being able to fit models and carry out statis-
tical hypothesis testing. If the cointegration framework presented in this paper can
be extended to include the standard models currently used in the field, cointegration
would prove a powerful analysis tool for researchers.
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Appendix 1: Derivation of an oscillating process with cointegrated phases

Using a transformation from polar to Cartesian coordinates, we can use Itô calculus
to derive a data generating process zt = (x1t , y1t , . . . , xpt , ypt )′, which will yield a
phase process, φt , and amplitude process, γt , that comply with (2) and (3).

Assume a system of p oscillators, such that φt ∈ R
p, γt ∈ R

p and zt ∈ R
2p.

Let ζt = (γ1t , φ1t , . . . , γpt , φpt )
′ denote the 2p-dimensional process in the polar

coordinates. For notational purposes, we omit the time index t for zt , ζt , xkt , ykt , φkt

and γkt , where k = 1, . . . , p, then we have the following relations

z = (x1, y1, . . . , xp, yp)
′ = h(ζ ) =

⎛
⎜⎜⎜⎜⎜⎝

γ1 cos(φ1)

γ1 sin(φ1)
...

γp cos(φp)

γp sin(φp)

⎞
⎟⎟⎟⎟⎟⎠

∈ R
2p.

For k = 1, . . . , p, we find that the k’th coordinate pair (xk, yk)′ are given as the 2k−1
and 2k entries in z = h(ζ ), i.e., (xk, yk)′ = (z2k−1, z2k)′ = (hk−1(ζ ), hk(ζ ))′ =
(γk cos(φk), γk sin(φk))

′. Using the multivariate version of Itô’s Lemma, we find that
for k = 1, . . . , p

dz2k−1 =
∑
i

∂γk cos(φk)

∂ζi
dζi + 1

2

∑
i, j

∂2γk cos(φk)

∂ζi∂ζ j
dζi dζ j

= ∂γk cos(φk)

∂γk
dγk + ∂γk cos(φk)

∂φk
dφk
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+ 1

2

(
∂2γk cos(φk)

∂γ 2
k

(dγk)
2 + ∂2γk cos(φk)

∂φ2
k

(dφk)
2 + 2

∂2γk cos(φk)

∂γk∂φk
(dγkdφk)

)

= cos(φk)dγk − γk sin(φk)dφk − 1

2
γk cos(φk)(dφk)

2 − sin(φk)(dγkdφk)

= xkγ
−1
k dγk − ykdφk − 1

2
xk(dφk)

2 − ykγ
−1
k dγkdφk

dz2k =
∑
i

∂γk sin(φk)

∂ζi
dζi + 1

2

∑
i, j

∂2γk sin(φk)

∂ζi∂ζ j
dζi dζ j

= · · ·
= sin(φk)dγk + γk cos(φk)dφk − 1

2
γk sin(φk)(dφk)

2 + cos(φk)(dγkdφk)

= ykγ
−1
k dγk + xkdφk − 1

2
yk(dφk)

2 + xkγ
−1
k dγkdφk .

Note that γk, φk are both uni-variate processes.

d

(
xk
yk

)
=

(
xk
yk

)
γ −1
k dγk +

(−yk
xk

)
dφk − 1

2

(
xk
yk

)
(dφk)

2 +
(
xk
yk

)
γ −1
k dγkdφk

=
(

(1 + dφk)γ
−1
k dγk − 1

2 (dφk)
2 −dφk

dφk (1 + dφk)γ
−1
k dγk − 1

2 (dφk)
2

)(
xk
yk

)

(35)

Insert the relations

dγk = gk(φ, γ )dt + σ
γ

k dW
γ

k

dφk = fk(φ, γ )dt + σ
φ
k dW

φ
k

(dφk)
2 =

(
σ

φ
k

)2
dt

dγkdφk = σ
γ

k σ
φ
k dt

γk =
√
x2k + y2k

into (35) and obtain

d

(
xk
yk

)
=

⎛
⎜⎝− 1

2

(
σ

φ
k

)2 − fk(φ, γ )

fk(φ, γ ) − 1
2

(
σ

φ
k

)2
⎞
⎟⎠

(
xk
yk

)
dt +

(
0 −σ

φ
k

σ
φ
k 0

) (
xk
yk

)
dWφ

k

︸ ︷︷ ︸
”Phase related”

+ gk(φ, γ ) + σ
γ

k σ
φ
k√

x2k + y2k

(
xk
yk

)
dt + σ

γ

k√
x2k + y2k

(
xk
yk

)
dW γ

k

︸ ︷︷ ︸
”Amplitude related”

(36)
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The quotation marks in the description in (36) imply that one can intuitively interpret
the system in this way, but the system is not mathematically split into these parts, as
clearly f and g both depends on φ and γ , and σ

φ
k enters in the ”amplitude” part.

Generalizing (36) we find

dzt = (Rt + Qt )ztdt + a(zt ,Σφ)dWφ + b(zt ,Σγ )dW γ , (37)

where Rt is a block diagonal matrix of 2 × 2 rotation matrices and Qt is a diagonal
matrix of amplitude dependent adjustments. The noise is composed of a sum of two
state dependent multivariate processes, where the functions a, b define the noise as
given in (36). The time index t has been added in (37) to emphasize the timedependency
of the matrices Rt and Qt .

Appendix 2: Rank test for Π and estimation of cointegrated models

Here we outline the procedure for determining the cointegration rank and estimating
parameters in model (2). For a thorough presentation of this method, see Johansen
(1996).

We refer to model (16) with rank(P) = r and μt = μ as Hr . Using this catego-
rization, we have a nested sequence of models

H0 ⊂ · · · ⊂ Hr ⊂ · · · ⊂ Hr ,

which enables us to specify likelihood-ratio tests for the hypothesis Hr given Hr+1 or
Hr given Hp, where Hp is the unrestricted model. The first critical step for analyzing
(2), is to determine the cointegration space dimension r . Given r , we can estimate
the parameters in the model using reduced rank regression and ordinary least squares
(OLS). The first step is to remove the deterministic trend by regression, then reduced
rank regression is used to estimate b by solving an eigenvalue problem, and finally the
remaining parameters are estimated by OLS, using the estimated b̂.

To describe the regression procedure, some convenient notation needs to be estab-
lished. Define for n = 1, . . . , N , the following functions of the data, ϒ0tn =
Δφtn , ϒ1tn = φtn−1 and let εtn ∼ Np(0,Ω).

The log-likelihood function is then (up to a constant)

log L(a, b, μ,Ω) = −1

2
N log |Ω|

− 1

2

N∑
n=1

(ϒ0tn − ab′ϒ1tn − μ)′Ω−1(ϒ0tn − ab′ϒ1tn − μ). (38)
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Define

R
p×p � Mi j = N−1

N∑
n=1

ϒi tnϒ
′
j tn , for i, j = 0, 1

R
p � Mi2 = N−1

N∑
n=1

ϒi tn , for i = 0, 1

R � M22 = 1. (39)

Note that Mi j = M ′
j i . Then the estimate of μ given a and b is

μ̂(a, b) = M02 − ab12

= N−1
N∑

n=1

(
Δφtn − ab′φtn−1

)
(40)

Define the residuals

R0tn = ϒ0tn − M02 = Δφtn − N−1
N∑

n=1

Δφtn

R1tn = ϒ1tn − M12 = φtn−1 − N−1
N∑

n=1

φtn−1

(41)

With these preliminary steps, we obtain the profiled likelihood function

log L(a, b,Ω) = −1

2
N log |Ω| − 1

2

N∑
n=1

(R0tn − ab′R1tn )
′Ω−1(R0tn − ab′R1tn ),

(42)

equivalent to the regression equation

R0tn = ab′R1tn + ε̂tn . (43)

Equation (43) is estimated as a reduced rank regression, by solving for eigenvalues.
Define

Si j = N−1
N∑

n=1

Ritn R
′
j tn = Mi j − Mi2M2 j , for i, j = 0, 1. (44)

Then for a fixed b, we obtain estimates for a and Ω by OLS with b′R1tn as the
independent variable,
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â(b) = S01b(b
′S11b)−1, (45)

Ω̂(b) = S00 − S01b(b
′S11b)−1b′S10, (46)

and the likelihood is then maximized as

L−2/N
max (b) = |S00 − S01b(b

′S11b)−1b′S10|.

Using the Schur complement for the matrix

∣∣∣∣ S00 S01b
b′S10 b′S11b

∣∣∣∣ , (47)

we find

|S00 − S01b(b
′S11b)−1b′S10| = |S00|||b′(S11 − S10S

−1
00 S01)b|/|b′S11b|. (48)

Equation (48) is maximized for all p× r matrices by solving for the p eigenvalues λi
in

|λS11 − S10S
−1
00 S01| = 0, (49)

such that

λi S11vi = S10S
−1
00 S01vi ,

and the p × 1 eigenvectors vi , i = 1, . . . , p are normalized,

v′
j S11vi =

{
1, for i = j

0, for i 	= j.
(50)

Then for a given r , b̂ (p× r ) is given by the r eigenvectors, v1, . . . , vr , corresponding
to the r largest eigenvalues λ̂1 > · · · > λ̂r , and the maximum value of the likelihood
function with this b̂ is

L−2/N
max = |S00|

r∏
i=1

(1 − λ̂i ). (51)

Since (51) holds for r = 0, . . . , p, where for r = 0 we set sp(b̂) = {0} and for r = p
we set sp(b̂) = R

p, we have solved for all possible ranks r once and for all, and we
can form the likelihood ratio test

−2 log Q
(
Hr |Hp

) = −N
p∑

i=r+1

log(1 − λ̂i ), (52)
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for the model Hr versus the model Hp. Equation (52) is known as the trace statistic,
whereas

−2 log Q
(
Hr |Hr+1

) = −N log(1 − λ̂r+1), (53)

is known as the maximum eigenvalue statistic. The asymptotic distributions of (52)
and (53) are both non-standard mixed Gaussian. Critical values for these can be found
via simulation of a p − r dimensional Brownian motion and using either the trace
or maximum eigenvalue of a specially constructed (p − r) × (p − r) matrix, where
the construction of the matrix depends on the structure of the deterministic terms in
the model. Another possibility is to use bootstrapping as presented by Cavaliere et al.
(2012).

Using the trace test (52), the rank r is then determined by proceeding as follows

1. Initialize with r = 0.
2. For r = 0, . . . , p − 1, if Hr versus Hp is rejected, set r → r + 1 and calculate

(52).
3. Repeat step 2 until Hr versus Hp cannot be rejected, and set rank(Π) = r .
4. If r + 1 = p, set r = p.

When the rank r is determined, then b̂ is used for estimating the remaining parameters
which follows from Eqs. (40), (45) and (46).

Observe some conveniences of Johansens procedure. First, all the p eigenvalues
are determined at the same time. Thus, the eigenvalue problem only needs to be solved
once through the whole procedure. Secondly, with tabulated or simulated values for
the likelihood ratio tests, determining r follows a simple procedure. Finally with b
fixed, the remaining parameters are estimated using OLS.
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