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Abstract Four main DNA mismatch repair (MMR) genes

have been identified, MLH1, MSH2, MSH6, and PMS2,

which when mutated cause susceptibility to Lynch syn-

drome (LS). LS is one of the most prevalent hereditary

cancer syndromes in man and accounts for 1–3 % of uns-

elected colorectal carcinomas and some 15 % of those with

microsatellite instability and/or absent MMR protein. The

International Society for Gastrointestinal Hereditary

Tumours (InSiGHT) maintains a database for LS-associ-

ated mutations since 1996. The database was recently

reorganized to efficiently gather published and unpublished

data and to classify the variants according to a five-tiered

scheme linked to clinical recommendations. This review

provides an update of germline mutations causing suscep-

tibility to LS based on information available in the

InSiGHT database and the latest literature. MMR gene

mutation profiles, correlations between genotype and phe-

notype, and possible mechanisms leading to the charac-

teristic spectrum of tumors in LS are discussed in light of

the different functions of MMR proteins, many of which

directly serve cancer avoidance.
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DNA mismatch repair genes: shared
and specialized functions

Functional DNA mismatch repair (MMR) is vital for basic

biology and cancer avoidance. The main function of MMR

proteins is to maintain genomic stability by correcting

single-base mismatches and insertion/deletion loops (IDL)

that may arise during replication [1]. Malfunction of MMR

results in a mutator phenotype and microsatellite instability

(MSI) characteristic of most tumors from Lynch syndrome

(LS) and some 15 % of sporadic tumors [2]. MMR proteins

also recognize diverse types of endogenous and exogenous

damage, such as that induced by oxidation [3] or alkylation

[4], and correct the lesions, or if this is not possible, signal

DNA damage to cell cycle arrest or apoptosis. MMR pro-

teins regulate genetic recombination by correcting mis-

matches that may occur in recombination during meiosis

and by suppressing recombination between homeologous

(=related but non-identical) sequences during mitosis [5].

Unexpectedly, the MMR system can also promote muta-

tions when needed. For example, the MMR proteins MSH4

and MSH5 facilitate meiotic crossover between homolo-

gous chromosomes [6]. Additionally, MMR proteins pro-

mote somatic hypermutation and class switch of antibody

genes [7].

In humans, five MutS homologues (MSH2, MSH6,

MSH3, MSH4, and MSH5) and four MutL homologues

(MLH1, PMS2, PMS1, and MLH3) have been identified

which can form heterodimers in different combinations [8–

10] (Fig. 1). The main mismatch-binding factor in humans

is hMutSa, consisting of MSH2 and MSH6, which recog-

nizes single-base mispairs and IDLs. Another mismatch-

binding heterodimer is hMutSb, formed by MSH2 and

MSH3, which mainly acts on IDLs. Upon mismatch

binding, the hMutS complex undergoes an ATP-driven
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conformational change into a sliding clamp and a hMutL

heterodimer is recruited. The main hMutL complex is

hMutLa, consisting of MLH1 and PMS2 and participating

in the repair of single-base mismatches and IDLs. Alter-

native hMutL heterodimers are hMutLc, composed of

MLH1 and MLH3, which may predominantly contribute to

IDL repair, and hMutLb (MLH1 and PMS1), which does

not seem to participate in MMR. When the hMutS-hMutL

complex encounters a strand discontinuity, an excision

machinery is recruited, the mismatch containing fragment

is degraded, and a new strand synthesized [7, 9].

Substrate specificities of the individual MMR proteins

are reflected in the different MSI phenotypes observed in

tumors from LS patients. MSH2 and MLH1 mutations are

associated with high-degree instability involving mononu-

cleotide and dinucleotide (and other short tandem) repeats

[11]. The same is true for PMS2 mutations [12]. MSH6

mutations are associated with low-degree MSI with a

preferential involvement of mononucleotide repeats [13].

In tumors from MLH3 mutation carriers, mononucleotide

repeats may be less informative than dinucleotide and

tetranucleotide repeats [14] and phenotypes ranging from

MSI-high [14] to no MSI [15] have been reported.

Germline mutations in MMR genes predisposing
to LS

Shares of individual MMR genes

MLH1, MSH2, MSH6 and PMS2 account for 40, 34, 18,

and 8 %, respectively, of the 3000 unique germline

sequence variants of MMR genes deposited to the Inter-

national Society for Gastrointestinal Hereditary Tumours

(InSiGHT) database ([16] and www.insight-group.org, date

accessed December 19th, 2015). The different substrate

specificities described above may explain why MLH1 and

MSH2 are the most important predisposing genes for LS

(their protein products are obligatory components in all

types of heterodimers, Fig. 1), followed by MSH6 and

PMS2, whereas MLH3 mutations are rare (functionally

redundant with PMS2), and no LS-predisposing germline

mutations are known for MSH3 (functionally redundant

with MSH6). No LS-associated germline mutations have

been detected in MSH4 or MSH5 (their primary role is in

meiotic recombination rather than MMR).

Mutation spectra

Mutations are scattered throughout the MMR genes (www.

insight-group.org). Figure 2 displays the gene-specific

distributions of germline variants by the type of mutation

and predicted coding change [17]. Most MLH1, MSH2, and

MSH6 mutations are truncating (predominantly nonsense

or frameshift mutations). Moreover, the share of missense

changes, which lead to single amino acid substitutions, is

significant (*30–60 %) for all four genes. The abundance

of missense mutations prompted the InSiGHT to undertake

a large-scale effort to classify MMR gene variants

according to pathogenicity, based on variant and family

characteristics on the one hand and results from various

functional assays on the other hand [16]. A five-tiered

classification of the International Agency for Research on

Cancer was adopted since it is linked to clinical

Fig. 1 The different hMutS and

hMutL complexes in human

MMR. In addition to MMR

proteins, the repair process

requires a number of other

proteins, such as proliferating

cell nuclear antigen (PCNA),

replication factor C (RFC),

EXO1 (a 50–30 exonuclease),
DNA helicases, RPA

(replication protein A, a single-

stranded DNA binding protein),

DNA polymerases, and DNA

ligase
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recommendations. Classes 5 and 4 indicate a ‘‘pathogenic’’

and ‘‘likely pathogenic’’ variant, respectively, implying

that a causative mutation was detected that warrants

surveillance according to full high-risk guidelines and

qualifies for predictive testing of at-risk relatives. Nonsense

and frameshift mutations constitute a majority (59 %) of

class 5 and 4 variants [16]. Classes 2 and 1 indicate a

‘‘likely non-pathogenic’’ and ‘‘non-pathogenic’’ variant,

respectively, suggesting that the test result was normal and

is to be treated as ‘‘no mutation detected’’. Intronic variants

(42 %) as well as non-synonymous (29 %) and synony-

mous (18 %) missense variants are the main types of

changes represented among class 2 and 1 variants [16].

Class 3 is synonymous with a variant of unknown signifi-

cance (VUS) that requires a multilevel functional assess-

ment for a reliable assignment of pathogenic significance

and clinical treatment is case by case. Non-synonymous

missense changes are abundant (68 %) among class 3

variants [16]. Figure 3 shows the breakdown of the main

pathogenicity classes across each MMR gene, based on the

germline mutation data deposited in the InSiGHT mutation

database [16]. Pathogenic mutations (classes 4 ? 5) con-

stitute a majority (except for MSH6 with a dominant class

3) and normal variants (classes 1 ? 2) constitute a

minority of all database variants for each gene. The share

of VUSes is 31 % for all deposited variants inMLH1, 28 %

for MSH2, 47 % for MSH6, and 26 % for PMS2.

Unique versus recurrent mutations

Most MMR gene mutations are inherited from either parent

and de novo mutations are rare (2.3 % [18]). A majority of

all MMR gene mutations are unique, i.e. specific to a single

family. However, some prevalent recurrent mutations are

known and based on haplotype analysis, may arise de novo

or alternatively, represent founder mutations [19]. Certain

regions of MMR genes may be mutation-prone due to

specific sequence characteristics. For example,

c.942?3A[T, a splicing mutation in intron 5 of MSH2 and

one of the most frequently recurring MMR gene mutations

worldwide, is likely to arise as a consequence of

misalignment while replicating 26 consecutive adenines, of

which the mutation-associated adenine is the first [20]. The

same A26 repeat is part of BAT26, a key marker in MSI

detection [21]. The c.942?3A[T mutation arises de novo

in some populations [20] and represents a founder mutation

in other populations [22]. Founder mutations originate

from a single ancestor and become enriched in isolated

populations [23]. Based on the extent of haplotype con-

servation, the age of founder mutations in MMR genes

ranges from a few hundred to more than a thousand years

Fig. 2 Distributions of the

types of germline variants

across each MMR gene. The

analysis is based on data

deposited in the InSiGHT

database [17] and is restricted to

variants with coding changes.

The total numbers of variants

per gene included in the analysis

are 1104 for MLH1, 883 for

MSH2, 414 for MSH6, and 197

for PMS2

Fig. 3 Distributions of the different pathogenicity classes within the

LS-associated MMR genes. The relative shares of normal variants

(pathogenicity classes 1 and 2), VUSes (class 3), and pathogenic

mutations (classes 4 and 5) reported for each MMR gene in the

InSiGHT database [16] are depicted. The analysis includes 932

sequence variants for MLH1, 842 for MSH2, 449 for MSH6, and 137

for PMS2
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[19]. To date, over 50 proven founder mutations in MMR

genes are known from all over the world and may account

for over 50 % of all LS families in some populations [19].

Rates of mutation detection in LS families

Germline mutations in MMR genes are detectable in up to

88 % of LS families fulfilling the Amsterdam criteria [24,

25] and showing MSI in tumors [26, 27]. Smaller or

atypical families and families not pre-screened for MMR

deficiency in tumor tissues may display mutation fre-

quencies of 10–40 % depending on the criteria of ascer-

tainment [26, 28, 29]. A genetic point mutation is the

predominant type of germline mutation in MMR genes in

most populations [26, 27, 30]. Analysis of LS cohorts from

several different geographic locations yielded a frequency

of 15 % (68 unrelated kindreds out of 439) for large

genomic rearrangements; among 48 different rearrange-

ments, 29 affected MSH2, 13 MLH1, 2 MSH6 and 4 PMS2

[31]. A few percent of Lynch-suspected families with

MMR-deficient tumors and negative for point mutations

and large rearrangements are due to constitutional epimu-

tations in MMR genes (see below).

Over half of MMR-deficient tumors that are not

explained by germline mutations or (acquired or constitu-

tional) promoter methylation of MMR genes (‘‘Lynch-like

syndrome’’) were recently shown to arise as a consequence

of somatic mutations in MMR genes [32–34] occasionally

combined with POLE/POLD1 defects [35], i.e. are non-

hereditary as a rule. MMR gene mutations are very rare in

families with MMR-proficient tumors, even if they meet the

Amsterdam criteria (Familial Colorectal Cancer Type X)

[36]. The genetic basis of Familial Colorectal Cancer Type

X families seems heterogeneous and predisposing genes and

mutations remain unknown in a majority [37–39].

Constitutional epimutations in LS predisposition

Constitutional epimutation refers to hypermethylation at

the promoter of one allele of a given gene leading to

silencing of expression from that allele in all main somatic

tissues. Constitutional epimutation of MLH1 occurs in

2–3 % of mutation-negative Lynch-suspected families with

silenced MLH1 expression in tumors [40–42]. Since con-

stitutional epimutations are reversible during meiosis [43],

epimutations segregate in a non-Mendelian fashion and are

seldom associated with strong family histories of cancer.

Epimutations secondary to genetic mutations constitute an

exception and may arise on ancestral founding haplotypes

[44]. The prevalence of MLH1 constitutional epimutations

in colorectal cancers lacking MLH1 expression and

showingMLH1 methylation in tumor tissue was reported to

be 0 % among unselected cases and 16 % among cases

fulfilling the revised Bethesda criteria [21], suggesting that

testing for MLH1 epimutations should regularly be

restricted to the latter group of patients [45].

Constitutional epimutations of MSH2 are secondary to

deletions of the 30 end of the EPCAM gene which make

transcription of EPCAM read into the adjacent, structurally

normal MSH2 gene inducing its promoter to be methylated

[46]. EPCAM deletion-associated MSH2 epimutations vary

a lot in frequency between populations depending on

possible founder effects and may account for 10–40 % of

families with absent MSH2 protein in tumors [42, 46].

Such epimutations show regular Mendelian transmission

along with EPCAM deletion in pedigrees [46].

Genotype–phenotype correlations

Cancer risks associated with germline mutations

in individual MMR genes

The lifetime risks of cancer are significantly higher in

MSH2 and MLH1 mutation carriers compared to carriers of

MSH6 or PMS2 mutations, which may reflect functional

redundancy of MSH6 (with MSH3) and PMS2 (with

MLH3 and PMS1) (see above). The lifetime risk by age 70

of any LS-associated cancer has been found to range

between 57 % [47] and close to 80 % [48] for MSH2 and

59 % [47] and *65 % [48] for MLH1. For MSH6, lifetime

risks of 25 % for males and females combined [47] and

24 % (males) and 40 % (females) [49] have been reported.

Heterozygous PMS2 mutation carriers may have a

25–32 % lifetime risk of any cancer [50].

Among the various cancers arising in MSH2 and MLH1

mutation carriers, the highest lifetime risk is for colorectal

cancer, followed by endometrial cancer and other extra-

colonic cancers; moreover, MSH2 mutations may be

associated with higher risks of extracolonic cancers com-

pared to MLH1 mutations [48, 51]. Female carriers of

MSH6 mutations are at a higher risk of endometrial than

colorectal cancer [47, 49, 52]. The same may be true for

heterozygous carriers of PMS2 mutations [50]. Further-

more, MSH6 and PMS2 mutations show reduced age-

specific penetrance, resulting in higher average ages at

onset of various cancers in MSH6 [52] and PMS2 [50, 53]

carriers compared to MSH2 or MLH1 mutation carriers,

although family- and/or mutation-specific variations exist.

No clear-cut correlations have been observed between the

type (e.g., truncating vs. missense) or location (e.g., rela-

tive to different functional domains) of a MMR gene

mutation and clinical phenotype.
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LS tumor spectrum

A major puzzle in LS (in common with a majority of

familial cancer syndromes) is the specific spectrum of

tumors in constitutional mutation carriers. The Amsterdam

II criteria [25] acknowledge cancers of the colon and rec-

tum, endometrium, small bowel, ureter, and renal pelvis as

LS-associated cancers, based on their significant overrep-

resentation in LS compared to the average population.

Since these criteria were formulated, significantly

increased standardized incidence ratios have repeatedly

been reported for several other cancers as well, including

cancers of the stomach, ovaries, and pancreas [54, 55].

Combined with molecular profiles characteristic of LS

(e.g., consistent MMR protein loss or MSI [56–58],

inclusion of these tumors in the LS spectrum seems justi-

fied. For breast cancer, the observed standardized incidence

ratios vary from comparable to the average population [59,

60] to significantly elevated [54, 55], making it difficult to

conclude whether or not breast cancer belongs to the LS

spectrum. A recent comparative study on proven mutation

carriers versus non-carriers did find a significant difference

in the rate of MMR deficient breast carcinomas between

those two groups (65 vs. 0 %, P\ 0.001) [61]. Moreover,

the age at onset in mutation carriers depended on the MMR

status of their tumors (earlier onset if the tumor was MMR-

deficient), suggesting a role for deficient MMR in breast

cancer development in LS [61].

Factors that may contribute to the LS tumor

spectrum

As described above, the individual MMR genes may be

associated with somewhat different tumor spectra. In

addition, a number of other factors may contribute to the

LS tumor spectrum. Tissue-specific patterns of MMR

deficiency in cancers from MMR gene mutation carriers

(Fig. 4) may constitute one such factor. While immuno-

histochemical analysis of malignant tumors regularly

demonstrates the absence of MMR protein corresponding

to the gene mutant in the germline, the frequencies of

tumors with MSI-high vary, being 80 % or above for

stomach, ovary, colon, and ureter cancer, *50 % for

bladder, endometrium, and kidney cancer, and 35 % or

below for breast and brain tumors [57, 61, 62]. Clonal

heterogeneity is a feature of LS and sporadic MMR-defi-

cient tumors [63, 64] and may in part explain the different

frequencies of MSI between tumor types. Moreover, BAT

markers show shorter allelic shifts in endometrial cancers

compared to colorectal cancers from LS patients [65]. Such

differences may be important considering the fact that

genes with repetitive sequences in coding regions are

mutation-prone in MMR-deficient cancers. Different genes

confer selective advantage in different cancers, for exam-

ple, the TGFb superfamily is a mutational target in gas-

trointestinal cancers and PTEN in endometrial cancers [65,

66]. Tissue-specificity for MMR deficiency and genes tar-

geted by failing MMR may therefore contribute to organ-

selectivity.

Two lines of evidence imply that the dosage of the

MMR gene or protein is important for phenotype. First,

homozygosity or compound heterozygosity for germline

mutation gives rise to a distinct syndrome, constitutional

mismatch repair deficiency syndrome (CMMRD). Cur-

rently, 146 patients from 91 families with this syndrome

are known [67]. Childhood cancers of the hematological

system and brain, signs of neurofibromatosis type 1 (café-

au-lait spots) and Turcot syndrome (coexistence of col-

orectal tumor and brain tumor) are common manifestations

of CMMRD. The peculiar tumor spectrum may reflect the

sensitivity of particular (e.g. neural and hematological)

progenitor cells to MMR deficiency via specific somatic

target genes (NF1 mutation [68]). PMS2 and MSH6 pre-

dominate over MSH2 and MLH1 as genes underlying

CMMRD [67]. Contrary to traditional LS with heterozy-

gous MMR gene mutations, CMMRD patients lack

expression of the MMR protein(s) in question not only in

cancer tissue but in normal tissue as well. MSI in tumor

tissues varies in the same way as in conventional LS

(present in gastrointestinal tumors but absent in brain

tumors as shown for LS in Fig. 4). Standard techniques

cannot usually detect MSI in peripheral blood lymphocytes

because of clonal heterogeneity, whereas immortalized

lymphoblastoid cells may reveal a MSI phenotype [67].

Another line of evidence in support of the importance of

MMR gene or protein dosage comes from observations that

the presence of the wild-type copy of a MMR gene in

somatic cells is not always sufficient for a normal function

(haploinsufficiency). While MMR genes usually comply

Fig. 4 Tumor-specific patterns of MMR defects. Percentages of

tumors with MSI-high and MMR protein inactivation among cancers

arising in different organs in germline carriers of MMR gene

mutations from a nation-wide registry [57, 61, 62] are shown
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with Knudson’s two-hit hypothesis for tumor suppressor

genes [69] as evidenced by the lack of the responsible

MMR protein in LS-associated cancers (biallelic inactiva-

tion), colorectal adenoma development seems possible in

LS even if the wild-type allele of the predisposing MMR

gene is retained [70, 71]. Other possible molecular ‘‘hits’’,

such as epigenetic inactivation of tumor suppressor genes

[71] may contribute to tumor initiation in such haploin-

sufficient cells. Haploinsufficiency may be function-

specific; for example, it has been demonstrated that DNA

damage signaling requires a higher dosage of MMR protein

than the repair function [72]. Failure of apoptosis signaling

likely provides MMR-deficient cells with selective advan-

tage needed for tumorigenesis [73]. Different organs may

have different requirements for MMR gene dosage [61,

74], which may influence their susceptibility to tumor

development.

As discussed above, the MMR system recognizes sev-

eral other types of DNA damage besides replication errors,

including oxidative [3] and alkylating [4] damage, as well

as heterocyclic amine (e.g., PhIP) DNA adducts [75]. Such

damage can be exogenous (e.g., PhIP is a cooked meat-

derived mutagen [75]) or endogenous (e.g., oxidation

resulting from normal cellular metabolism or inflammation

[76]). Organs commonly exposed to such damage, such as

the gastrointestinal tract and endometrial epithelium,

would obviously be at elevated risk of cancer development,

especially in individuals with deficient MMR. Unhealthy

diet (‘‘snack’’ pattern [77] and tobacco smoking [78] have

been shown to increase colorectal adenoma risk in MMR

gene mutation carriers, which might imply a reduced

capacity to correct dietary and tobacco-associated damage.

Tumor development initiated by replication errors or

carcinogen-induced mutations may proceed at different

rates in different tissues depending on their proliferative

activity [79]. Colon and many other epithelial cells have

fast turnovers, and there may be less time to repair repli-

cation errors if cell cycles are short [80]. Furthermore, in

colon and other epithelial organs, stem cell divisions con-

tinue throughout life. Hematopoietic tissue, too, is highly

proliferative, but may be less prone to malignancies

because of fewer stem cell divisions during lifetime [80].

These general concepts are in agreement with the fact that

a majority of LS-associated tumors are epithelial and that

MMR deficiency also predisposes to hematological

malignancies, but mainly in the context of CMMRD only.

Frameshift mutations typical of MMR deficiency result

in the formation of neoantigens recognized by the immune

system. Consequently, colon, gynecological, and other

tumors from LS patients display high levels of tumor

infiltrating lymphocytes (TILs) [81, 82]. The abundance of

CD8? cells (dominant in TILs) is a good prognostic sign in

LS and sporadic cancers [81, 83]. On the other hand,

frameshift mutations may also affect cell surface proteins

responsible for antigen processing and presentation and

thereby facilitate escape from immune surveillance [84].

Varying frequencies of MMR defects in different types of

tumors (Fig. 4), combined with possible variations in the

inherent efficacy of immune surveillance in different

organs, may thus contribute to organ-specific tumor sus-

ceptibility in LS.

Concluding remarks

Research on LS conducted to date has greatly advanced our

understanding of the significance of the MMR system in

human cancer. Yet, many essential questions wait for

definitive answers regarding the mechanisms of tumorige-

nesis (e.g., two-hit inactivation vs. haploinsufficiency) and

the complex relationship between genotype and phenotype

(e.g., genetic vs. non-genetic influences; unequivocal def-

inition of the LS tumor spectrum) to mention a few. Tar-

geted gene panels based on next-generation sequencing

[85, 86] will be changing the approach to screen for pre-

disposing mutations in LS and other hereditary disorders in

the coming years. The simultaneous screening of all LS-

associated MMR genes and other possible susceptibility

genes in LS-suspected cases is likely to more accurately

define the spectrum of genes and mutations predisposing to

LS and the population incidence of LS. Next-generation

sequencing of the whole exomes and genomes is also

anticipated to provide new insights into the genetic basis of

colon cancer families that are unrelated to MMR defects

(Familial Colorectal Cancer Type X) [38, 87, 88].

Comprehensive genetic, epigenetic, and expressional

cataloguing of tumor alterations in analogy to ongoing

efforts on sporadic cancers (e.g., by the Cancer Genome

Atlas Network [89, 90]) will be useful to define the

developmental mechanisms of colonic and extracolonic

tumors in LS and to better understand the molecular basis

of organ-specific tumor susceptibility. Targeted studies [57,

91] have already revealed distinct mutational patterns in LS

tumors that may explain the disease outcome and be clin-

ically actionable. When linked to clinical parameters,

comprehensive molecular profiles of constitutional and

tumor tissues will be informative to establish clinical cor-

relations of molecular aberrations and facilitate the man-

agement of individuals with LS.
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