
Arab. J. Math. (2016) 5:145–158
DOI 10.1007/s40065-016-0149-x Arabian Journal of Mathematics

Nipen Saikia

New theta-function identities and general theorems for the
explicit evaluations of Ramanujan’s continued fractions

Received: 8 November 2014 / Accepted: 20 July 2016 / Published online: 2 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We prove some new theta-function identities for two continued fractions of Ramanujan which are
analogous to those of Ramanujan–Göllnitz–Gordon continued fraction. Then these identities are used to prove
new general theorems for the explicit evaluations of the continued fractions.
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1 Introduction

Throughout the paper, we assume |q| < 1 and

(a; q)∞ :=
∞∏

n=0

(1 − aqn).

Ramanujan’s general theta-function f (a, b) is given by

f (a, b) =
∞∑

k=−∞
ak(k+1)/2bk(k−1)/2, |ab| < 1. (1.1)

Three special cases of f (a, b) are

φ(q) := f (q, q) =
∞∑

n=−∞
qn

2 = (−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞ , (1.2)

ψ(q) := f (q, q3) =
∞∑

k=0

qk(k+1)/2 = (q2; q2)∞
(q; q2)∞ , (1.3)

and

f (−q) := f (−q, −q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞. (1.4)
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In his notebooks, Ramanujan recorded several q-continued fractions which have beautiful theories. Among
them is the celebrated Ramanujan–Göllnitz–Gordon continued fraction K (q) defined by

K (q) := q1/2

1 + q + q2

1 + q3 + q4

1 + q5 + · · ·

, |q| < 1. (1.5)

On page 299 of his second notebook [11], Ramanujan recorded a product representation of K (q), namely

K (q) := q1/2
(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞ . (1.6)

Without the knowledge of Ramanujan’s work, Göllnitz [8] and Gordon [9], independently, rediscovered and
proved (1.6). Shortly thereafter, Andrews [1] proved (1.6) as a corollary of a more general result. Ramanathan
[10] also found an alternative proof of (1.6). In addition to (1.6), Ramanujan offered the following two other
identities [11, p. 299] for K (q):

1

K (q)
− K (q) = φ(q2)

q1/2ψ(q4)
(1.7)

and
1

K (q)
+ K (q) = φ(q)

q1/2ψ(q4)
. (1.8)

Proofs of (1.7) and (1.8) can be found in [7] and [12]. Yuttanan [19] also proved that

1

K (q)
+ 2 − K (q) = φ(q1/2)

q1/2ψ(q4)
(1.9)

and
1

K (q)
− 2 − K (q) = φ(−q1/2)

q1/2ψ(q4)
. (1.10)

For further references on K (q) see Chan and Huang [7], Vasuki and Kumar [18], and Baruah and Saikia [3].
In this paper, we prove some theta-function identities analogous to (1.7)–(1.10) for the continued fractions

T (q) and W (q) which are defined, respectively, as

T (q) := q

1 − q2 + q4

1 − q6 + q8

1 − q10 + · · ·

, |q| < 1. (1.11)

and
W (q) := q

1 − q2 + q2(1 + q2)2

1 − q6 + q4(1 + q4)2

1 − q10 + · · ·

, |q| < 1. (1.12)

and use them to prove new general theorems for the explicit evaluations of T (q) and W (q). The continued
fractions T (q) and W (q) are introduced and studied by Saikia in [14] and [15], respectively. Saikia [14, p. 4,
Theorem 3.1] proved that

T (q) = f (q) − f (−q)

f (q) + f (−q)
. (1.13)

The identity analogous to (1.13) and satisfied by the continued fraction W (q) is [15, Theorem 3.1]:

2W (q) = f 2(q) − f 2(−q)

f 2(q) + f 2(−q)
. (1.14)
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Saikia also established some modular relations and explicit values for T (q) and W (q) in [14] and [15],
respectively.

In Sects. 3 and 4, we prove new theta-function identities for the continued fractions T (q) and W (q),
respectively. In Sects. 5 and 6, we prove new general theorems for the explicit evaluations of T (q) and W (q)
by using theta-function identities established in Sects. 3 and 4, respectively, and give examples of explicit
evaluations. Section 2 is devoted to record some preliminary results for ready references in this paper.

To end this introduction, we define some parameters of theta-functions which will be used in the explicit
evaluations of T (q) and W (q). For any positive real numbers k and n, define

Ak,n = φ(−q)

2 k1/4qk/4ψ(q2k)
; q = e−π

√
n/k, (1.15)

s4,n = f (q)√
2q1/8 f (−q4)

; q = e−π
√
n/2, (1.16)

Jn = f (−q)√
2q1/8 f (−q4)

; q = e−π
√
n . (1.17)

The parameter Ak,n is introduced by Saikia [13, p. 107, (1.7)]. The parameter s4,n is the particular case k = 4
of the general parameter sk,n defined by

sk,n = f (q)

k1/4q(k−1)/24 f (−(−1)kqk)
; q = e−π

√
n/k (1.18)

and is due to Berndt [6, p. 9, (4.7)]. The parameter Jn is the particular case k = 4 of the general parameter
rk,n , introduced by Yi [20, p. 11, (2.1.1)] (also see [6, p. 9, (4.6)]) and defined by

rk,n := f (−q)

k1/4q(k−1)/24 f (−qk)
, q = e−2π

√
n/k . (1.19)

Yi [20] evaluated several explicit values of the parameter rk,n .

2 Preliminary results

This section is devoted to record some transformation formulas and P-Q theta-function identities which will
be used in the succeeding sections. The P-Q identities presented in Lemmas 2.6–2.8 are new. Since modular
equations are key in the proofs of P-Q theta-function identities, first we define Ramanujan’s modular equation.

The ordinary or Gaussian hypergeometric function 2F1 (a, b; c; x) is defined by

2F1 (a, b; c; x) =
∞∑

n=0

(a)n(b)n
(c)nn! xn,

where (a)0 = 1 and (a)n = a(a + 1)(a + 2) · · · a(a + n − 1) for n ≥ 1 and |x | < 1.
Let, for 0 < α < 1,

z1 = 2F1

(
1

2
,
1

2
; 1;α

)
and q = exp

(
−πcsc(π/2)

2F1
( 1
2 ,

1
2 ; 1; 1 − α

)

2F1
( 1
2 ,

1
2 ; 1;α

)
)

. (2.1)

Assume that for some integer n

n
2F1

( 1
2 ,

1
2 ; 1; 1 − α

)

2F1
( 1
2 ,

1
2 ; 1;α

) = 2F1
( 1
2 ,

1
2 ; 1; 1 − β

)

2F1
( 1
2 ,

1
2 ; 1;β

) . (2.2)

Then a modular equation of degree n is a relation between α and β induced by (2.2). We often say β has degree
n over α. The multiplier m connecting α and β is defined by m = z1/zn , where zn = 2F1

( 1
2 ,

1
2 ; 1;β

)
.
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Lemma 2.1 [13, p. 111, Theorem 4.1]We have

Ak,1 = 1 and Ak,1/n = 1/Ak,n .

Lemma 2.2 [2, p. 9, Theorem 6.1]We have

J1/n = 1/Jn.

Lemma 2.3 [5, p. 40, Entry 25]We have

φ(q) + φ(−q) = 2φ(q4), (2.3)

φ(q) − φ(−q) = 4qψ(q8), (2.4)

φ2(q) − φ2(−q) = 8qψ2(q4), (2.5)

φ2(q) + φ2(−q) = 2φ2(q2), (2.6)

φ(q)φ(−q) = φ2(−q2). (2.7)

Lemma 2.4 [4, Lemmas 3.10 and 3.11]We have

φ(q) = f 5(−q2)

f 2(−q) f 2(−q4)
, φ(−q) = f 2(−q)

f (−q2)
,

ψ(q) = f 2(−q2)

f (−q)
, f (q) = f 3(−q2)

f (−q) f (−q4)
.

Lemma 2.5 [5, p. 122–123, Entry 10(ii) and Entry 11(v)] If z1, q, and α are related by (2.1), then

φ(−q) = √
z1(1 − α)1/4 and ψ(q8) = 1

4

√
z1

{
1 − (1 − α)1/4

}
/q.

Lemma 2.6 If P = φ(−q)

qψ(q8)
and Q = φ(−q2)

q2ψ(q16)
,

then Q2 − P2Q − 4PQ − 2P2 − 8P = 0. (2.8)

Proof Transcribing using Lemma 2.5, we find that

(1 − α)1/4 = P

4 + P
and β = 1 −

(
Q

4 + Q

)4

, (2.9)

where β has degree 2 over α. From [5, p. 214, Entry 24(iii)] we note that, if β has degree 2 over α, then

m
√
1 − α + √

β = 1 (2.10)

and
m2

√
1 − α + β = 1. (2.11)

Eliminating m between (2.10) and (2.11) and then simplifying, we deduce that
(
1 + β + (β − 1)

√
1 − α

)2 − 4β = 0. (2.12)

Employing (2.9) in (2.12) and factorizing usingMathematica, we obtain
(
Q2 − P2Q − 4PQ − 2P2 − 8P

)

× (
32P + 8P2 + 16PQ + 4P2Q + 4Q2 + 4PQ2 + P2Q2) = 0. (2.13)

Since the second factor is non-zero, we arrive at the desired result. ��
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Lemma 2.7 If P = φ(−q)

qψ(q8)
and Q = φ(−q3)

q3ψ(q24)
,

then P4 − 64PQ − 48P2Q − 12P3Q − 48PQ2 − 30P2Q2 − 6P3Q2 − 12PQ3 − 6P2Q3

−P3Q3 + Q4 = 0. (2.14)

Proof Transcribing using Lemma 2.5, we find that

(1 − α)1/4 = P

4 + P
(1 − β)1/4 = Q

4 + Q
, (2.15)

α = 1 −
(

P

4 + P

)4

, and β = 1 −
(

Q

4 + Q

)4

, (2.16)

where β has degree 3 over α. From [5, p. 230, Entry 5(ii)] we note that, if β has degree 3 over α, then

(αβ)1/4 + {(1 − α)(1 − β)}1/4 = 1 (2.17)

and can also be expressed as

αβ − (
1 − (1 − α)1/4(1 − β)1/4

)4 = 0. (2.18)

Employing (2.15) and (2.16) in (2.18) and simplifying with the help ofMathematica, we arrive at the desired
result. ��

Lemma 2.8 If P = φ(−q)

qψ(q8)
and Q = φ(−q5)

q5ψ(q40)
,

then P6 − 4096PQ − 5120P2Q − 2560P3Q − 640P4Q − 70P5Q − 5120PQ2

−6400P2Q2 − 3200P3Q2 − 785P4Q2 − 80P5Q2 − 2560PQ3 − 3200P2Q3 − 1620P3Q3

−400P4Q3 − 40P5Q3 − 640PQ4 − 785P2Q4 − 400P3Q4 − 100P4Q4 − 10P5Q4 − 70PQ5

−80P2Q5 − 40P3Q5 − 10P4Q5 − P5Q5 + Q6 = 0. (2.19)

Proof Transcribing using Lemma 2.5, we find that

c := (1 − α)1/8 =
√

P

4 + P
d := (1 − β)1/8 =

√
Q

4 + Q
, (2.20)

where β has degree 5 over α. From [5, p. 280–281, Entry 13(v) & (vi)] we note that, if β has degree 5 over α,
then

m =
1 +

(
(1 − β)5

1 − α

)1/8

1 + {
(1 − α)3(1 − β)

}1/8 . (2.21)

5

m
=

1 −
(

(1 − α)5

1 − β

)1/8

1 − {
(1 − α)(1 − β)3

}1/8 . (2.22)

Employing (2.20) in (2.21) and (2.22), we find that

m = c + d5

c(1 + c3d)
(2.23)
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and
5

m
= d − c5

d(1 − cd3)
, (2.24)

respectively. Eliminating m between (2.23) and (2.24) and simplifying, we deduce that

5cd(1 + c3d)(1 − cd3) − (c + d5)(d − c5) = 0. (2.25)

Equivalently,
4(cd − c5d5) = (5c2d4 − 5c4d2 − c6 + d6). (2.26)

Squaring (2.26) and substituting for c and d from (2.20) and simplifying with the help of Mathematica, we
arrive at desired result. ��

3 New identities for T(q)

In this section we prove theta-function identities for T (q) analogous to (1.7)–(1.10).

Theorem 3.1 We have

(i)
1

T (q1/4)
+ T (q1/4) = φ(q)

q1/4ψ(q2)
= f 2(q)

q1/4 f 2(−q4)
,

(ii)
1

T (q1/2)
− T (q1/2) = φ(−q)

q1/2ψ(q4)
,

(iii)
1

T (q)
+ 2 + T (q) = φ(q)

qψ(q8)
,

(iv)
1

T (q)
− 2 + T (q) = φ(−q)

qψ(q8)
.

Proof (i) From (1.13), we note that

1

T (q)
+ T (q) = f (q) + f (−q)

f (q) − f (−q)
+ f (q) − f (−q)

f (q) + f (−q)

= 2
{
f 2(q) + f 2(−q)

}

f 2(q) − f 2(−q)
. (3.1)

From Lemma 2.4, we note that

f 2(q) = f 6(−q2)

f 2(−q) f 2(−q4)
=

(
f 5(−q2)

f 2(−q) f 2(−q4)

) (
f (−q2)

f 2(−q)

)
f 2(−q)

= φ(q)

φ(−q)
f 2(−q). (3.2)

Employing (3.2) in (3.1), and simplifying, we deduce that

1

T (q)
+ T (q) = 2 {φ(q) + φ(−q)}

φ(q) − φ(−q)
. (3.3)

Employing (2.3) and (2.4) in (3.3) and simplifying, we obtain

1

T (q)
+ T (q) = φ(q4)

qψ(q8)
. (3.4)

Replacing q by q1/4 in (3.4), we prove the first equality. To prove the second equality, from Lemma 2.4 we
note that

φ(q)

ψ(q2)
= f 2(q)

f 2(−q4)
. (3.5)
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Employing (3.5) in the first equality, we arrive at the desired result.
(ii) From (1.13), we deduce that

1

T (q)
− T (q) = 4 f (q) f (−q)

f 2(q) − f 2(−q)
. (3.6)

Employing (3.2) in (3.6) and simplifying, we find that

1

T (q)
− T (q) = 4

(
f (q)φ(−q)

f (−q)

) (
1

φ(q) − φ(−q)

)
. (3.7)

From Lemma 2.4, we note that

f (q)φ(−q)

f (−q)
= f 2(−q)

f (−q4)
= φ(−q2). (3.8)

Employing (2.4) and (3.8) in (3.7) and simplifying, we obtain

1

T (q)
− T (q) = φ(−q2)

qψ(q8)
. (3.9)

Replacing q by q1/2 in (3.9), we arrive at the desired result.
(iii) From (1.13), we deduce that

1√
T (q)

+ √
T (q) =

√
f (q) + f (−q)

f (q) − f (−q)
+

√
f (q) − f (−q)

f (q) + f (−q)

= 2 f (q)√
f 2(q) − f 2(−q)

. (3.10)

Employing (3.2) in (3.10) and simplifying, we obtain

1√
T (q)

+ √
T (q) = 2 f (q)

√
φ(−q)

f (−q)
√

φ(q) − φ(−q)
. (3.11)

Squaring (3.11), we find that

1

T (q)
+ 2 + T (q) = 4 f 2(q)φ(−q)

f 2(−q) {φ(q) − φ(−q)} . (3.12)

Employing (2.4) and (3.2) in (3.12) and simplifying, we arrive at the desired result.
(iv) From (1.13), we deduce that

1√
T (q)

− √
T (q) =

√
f (q) + f (−q)

f (q) − f (−q)
−

√
f (q) − f (−q)

f (q) + f (−q)

= 2 f (−q)√
f 2(q) − f 2(−q)

. (3.13)

Squaring (3.13) and simplifying by employing (3.2), we obtain

1

T (q)
− 2 + T (q) = 4φ(−q)

φ(q) − φ(−q)
. (3.14)

Employing (2.4) in (3.14) and simplifying, we complete the proof. ��
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Corollary 3.2 We have

(i)
1

T 2(q)
− 2 + T 2(q) = φ2(−q2)

q2ψ2(q8)
,

(ii)
1√
T (q)

+ √
T (q) =

√
φ(q)

qψ(q8)
,

(iii)
1√
T (q)

− √
T (q) =

√
φ(−q)

qψ(q8)
.

Proof From Theorem 3.1(iii) and (iv), we have
(

1

T (q)
+ 2 + T (q)

)(
1

T (q)
− 2 + T (q)

)
= φ(q)φ(−q)

q2ψ2(q8)
. (3.15)

Employing (2.7) in (3.15), we arrive at (i). To prove (ii) and (iii), we employ (3.2) in (3.11) and (3.13),
respectively, and simplify. ��

4 New identities for W(q)

This section is devoted to proving theta-function identities analogous to (1.7)–(1.10) for the continued fraction
W (q).

Theorem 4.1 We have

(i)
1

W (
√
q)

+ 4W (
√
q) = φ2(q)

q1/2ψ2(q2)
= f 4(q)

q1/2 f 4(−q4)
,

(ii)
1

W (
√
q)

− 4W (
√
q) = φ2(−q)

q1/2ψ2(q2)
= f 4(−q)

q1/2 f 4(−q4)
,

(iii)
1

W 2(
√
q)

− 16W 2(
√
q) = φ4(−q2)

qψ4(q2)
.

Proof (i) From (1.14), we deduce that

1

2W (q)
+ 2W (q) = 2

{
f 4(q) + f 4(−q)

}

f 4(q) − f 4(−q)
. (4.1)

Squaring (3.2), then employing in (4.1) and simplifying, we obtain

1

2W (q)
+ 2W (q) = 2

{
φ2(q) + φ2(−q)

}

φ2(q) − φ2(−q)
. (4.2)

Employing (2.5) and (2.6) in (4.2) and simplifying, we obtain

1

W (q)
+ 4W (q) = φ2(q2)

qψ2(q4)
. (4.3)

Replacing q by
√
q in (4.3) we prove the first equality. To prove the second equality, from Lemma 2.4 we note

that
φ(q)

ψ(q2)
= f 2(q)

f 2(−q4)
. (4.4)

Employing (4.4) in the first equality, we arrive at the desired result.
(ii) From (1.14), we note that

1

2W (q)
− 2W (q) = 4 f 2(q) f 2(−q)

f 4(q) − f 4(−q)
. (4.5)
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Employing (3.2) in (4.5) and simplifying, we obtain

1

2W (q)
+ 2W (q) = 4φ(q)φ(−q)

φ2(q) − φ2(−q)
. (4.6)

Employing (2.5) and (2.7) in (4.6) and simplifying, we obtain

1

W (q)
+ 4W (q) = φ2(−q2)

qψ2(q4)
. (4.7)

Replacing q by
√
q in (4.7), we prove the first equality. To prove the second equality, from Lemma 2.4 we

note that
φ(−q)

ψ(q2)
= f 2(−q)

f 2(−q4)
. (4.8)

Employing (4.8) in the first equality, we arrive at the desired result.
(iii) From part (i) and (ii), we deduce that

(
1

W (
√
q)

+ 4W (
√
q)

) (
1

W (
√
q)

− 4W (
√
q)

)
= φ2(q)φ2(−q)

qψ4(q2)
. (4.9)

Employing (2.7) in (4.9) and simplifying, we complete the proof. ��
Theorem 4.2 We have

(i)
1√
W (q)

+ 2
√
W (q) = φ(q)

q1/2ψ(q4)
,

(ii)
1√
W (q)

− 2
√
W (q) = φ(−q)

q1/2ψ(q4)
.

Proof (i) From (1.14), we deduce that

1√
2W (q)

+ √
2W (q) = 2 f 2(q)√

f 4(q) − f 4(−q)
. (4.10)

Employing (3.2) in (4.10) and simplifying, we obtain

1√
2W (q)

+ √
2W (q) = 2φ(q)√

φ2(q) − φ2(−q)
. (4.11)

Employing (2.5) in (4.11) and simplifying, we arrive at the desired result.
(ii) From (1.14), we deduce that

1√
2W (q)

− √
2W (q) = 2 f 2(−q)√

f 4(q) − f 4(−q)
. (4.12)

Employing (3.2) in (4.12) and simplifying, we obtain

1√
2W (q)

− √
2W (q) = 2φ(−q)√

φ2(q) − φ2(−q)
. (4.13)

Employing (2.5) in (4.13) and simplifying, we complete the proof. ��
Corollary 4.3 We have

(i)
1

W (q)
+ 4 + 4W (q) = φ2(q)

qψ2(q4)
,

(ii)
1

W (q)
− 4 + 4W (q) = φ2(−q)

qψ2(q4)
.

Proof Squaring Theorem 4.2(i) and (ii) we easily arrive at (i) and (ii), respectively. ��
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5 General theorems for explicit evaluations of T (q)

In this section we prove new general theorems for the explicit evaluations of T (q) and give examples.

Theorem 5.1 If s4,n is as defined in (1.16), then

1

T (e−π
√
n/8)

+ T (e−π
√
n/8) = 2s24,n .

Proof Setting q = e−π
√
n/2 in Theorem 3.1(i) and employing the definition of s4,n we complete the proof.

��
Remark 5.2 From Theorem 5.1 it is obvious that if we know explicit values of the parameter s4,n the explicit
values of T (e−π

√
n/8) can be easily evaluated. Baruah and Saikia [3] evaluated s4,n for n =1, 2, 3, 4, 5, 7, 8,

9, 10, 12, 13, 15, 16, 18, 20, 24, 25, 28, 32, 36, 40, 52, 64, 68, 72, 100, 108, 144, 196, 2/3, 1/2, 4/7, 4/5, 4/9, 4/
25, 4/49, 2/5, 1/3, 1/5, 1/7, 1/13, 1/15, and 1/25. For example, setting n = 4, employing the value s4,4 = 21/8

in Theorem 5.1 and solving the resulting equation, we obtain

T (e−π/4) = 21/4 ±
√

−1 + √
2. (5.1)

For |q| < 1, neglecting q8 and higher powers of q in (1.11), we find that

T (q) ≈ q(1 − q6)
(
(1 − q2)(1 − q6) + q4

)−1

and for q = e−π/4, T (e−π/4) ≈ 0.545559 < 1. So choosing minus sign in (5.1), we obtain

T (e−π/4) = 21/4 −
√

−1 + √
2.

Theorem 5.3 We have

(i)
1

T (e−π
√
n/(2

√
2))

− T (e−π
√
n/(2

√
2)) = 25/4A2,n,

(ii)
1

T (e−π/(2
√
2n))

− T (e−π/(2
√
2n)) = 25/4

A2,n
.

Proof Setting q = e−π
√
n/2 in Theorem 3.1(ii) and employing the definition of Ak,n with k = 2, we arrive at

(i). Replacing n by 1/n in (i) and simplifying using Lemma 2.1, we complete the proof of (ii). ��
Remark 5.4 From Theorem 5.3(i) and (ii) it is clear that if we know explicit values of the parameter A2,n then

explicit values of T (e−π
√
n/(2

√
2)) and T (e−π/(2

√
2n)) can easily be evaluated, respectively. Saikia [13,17]

evaluated A2,n for n = 1, 2, 3, 4, 5, 7, 9, 25, and 49. For example, setting n = 3, employing the value

A2,3 =
√
2 + √

2 +
√
9 + 6

√
2 from [13, p. 115, Theorem 5.4(i)] in Theorem 5.3(i) and (ii) and solving the

resulting equations, we evaluate

T (e−π
√
3/(2

√
2)) =

√

3 + 2
√
2 +

√
18 + 12

√
2 − 21/4

√

2 + √
2 +

√
9 + 6

√
2

and

T (e−π/(2
√
6)) = −21/4 +

√
2 + 2

√
2 +

√
9 + 6

√
2

√
2 + √

2 +
√
9 + 6

√
2

,

respectively.
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Theorem 5.5 We have

(i)
1

T (e−π
√
n/2)

− 2 + T (e−π
√
n/2) = 23/2A4,n,

(ii)
1

T (e−π/(2
√
n))

− 2 + T (e−π/(2
√
n)) = 23/2

A4,n
.

Proof Setting q = e−π
√
n/4 in Theorem 3.1(iv) and employing the definition of Ak,n with k = 4, we arrive at

(i). Replacing n by 1/n in (i) and simplifying using Lemma 2.1, we complete the proof of (ii). ��
Remark 5.6 From Theorem 5.5(i) and (ii) it is obvious that if we know explicit values of the parameter A4,n

then explicit values of T (e−π
√
n/2) and T (e−π/2

√
n) can easily be evaluated, respectively. For example, setting

n = 1 in Theorem 5.3(i), noting A4,1 = 1 from Lemma 2.1 and solving the resulting equation, we evaluate

T (e−π/2) = 1 + √
2 −

√
2 + 2

√
2.

A systematic study of the parameter Ak,n for k = 4 has not been undertaken and no other value of the parameter
A4,n is evaluated in literature. So we devote the remainder of this section to evaluate some new explicit values
of A4,n by using P-Q theta-function identities established in Sect. 2.

Theorem 5.7 We have

(i) A4,2 = 1 +
√
1 + √

2,

(i i) A4,4 = 2 + √
2 +

√
2(4 + 3

√
2).

Proof (i) Setting q = e−π
√
n/4 in Lemma 2.6 and employing the definition of Ak,n with k = 4 from (1.15),

we obtain
P = 23/2A4,n and Q = 23/2A4,4n . (5.2)

Setting n = 1/2 in (5.2) and simplifying using Lemma 2.1, we obtain

P = 23/2

A4,2
and Q = 23/2A4,2. (5.3)

Employing (5.3) in (2.8) and simplifying, we deduce that

A4
4,2 − 4A2

4,2 − 4
√
2A4,2 − 2 = 0. (5.4)

Solving (5.4) usingMathematica and noting A4,n has positive real value greater than unity, we arrive at (i).
(ii) Setting n = 1 in (5.2), employing (2.8) and simplifying, we obtain

A2
4,4 − (4 + 2

√
2)A4,4 − (2 + 2

√
2) = 0. (5.5)

Solving (5.5) and choosing the appropriate root, we complete the proof of (ii). ��
Theorem 5.8 We have

(i) A4,3 = 1

2

(
2 + √

2 +
√
18 + 12

√
2)

)
,

(ii) A4,9 = 5 + 3
√
2 +

√
3(17 + 12

√
2)

+
√

93 + 66
√
2 + 314

√
3(17 − 12

√
2) + 222

√
6(17 − 12

√
2).
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Proof (i) Setting q = e−π
√
n/4 in Lemma 2.7 and employing the definition of Ak,n with k = 4 from (1.15),

we obtain
P = 23/2A4,n and Q = 23/2A4,9n . (5.6)

Setting n = 1/3 in (5.6) and simplifying using Lemma 2.1, we obtain

P = 23/2

A4,3
and Q = 23/2A4,3. (5.7)

Employing (5.7) in (2.14) and simplifying with the help ofMathematica, we deduce that

A8
4,3 − 12A6

4,3 − 24
√
2A5

4,3 − 46A4
4,3 − 24

√
2A3

4,3 − 12A2
4,3 + 1 = 0. (5.8)

Solving (5.8) usingMathematica and choosing the appropriate root, we arrive at (i).
(ii) Setting n = 1 in (5.6), employing in (2.14) and simplifying, we obtain

A4
4,9 − (20 + 12

√
2)A3

4,9 − (30 + 24
√
2)A2

4,9 − (20 + 12
√
2)A4,9 + 1 = 0. (5.9)

Solving (5.9) usingMathematica and choosing the appropriate root, we complete the proof of (ii). ��
Theorem 5.9 We have

(i) A4,5 = 1

2

(
3 + √

2 +
√
5(3 + 2

√
2)

)

+ 1√
2

√(
19 + 14

√
2 + 2

√
5(3 + 2

√
2) + 3

√
10(3 + 2

√
2)

)
,

(ii) A4,25 = 114 + 80
√
2 + 3

√
5(577 + 408

√
2)

+ 2

√

12940 + 9150
√
2 + 171

√

5(577 + 408
√
2) + 120

√
10(577 + 408

√
2).

Proof (i) Setting q = e−π
√
n/4 in Lemma 2.8 and employing the definition of Ak,n with k = 4 from (1.15),

we obtain
P = 23/2A4,n and Q = 23/2A4,25n . (5.10)

Setting n = 1/5 in (5.10) and simplifying using Lemma 2.1, we obtain

P = 23/2

A4,5
and Q = 23/2A4,5. (5.11)

Employing (5.11) in (2.19) and simplifying with the help ofMathematica, we deduce that

A12
4,5 − 70A10

4,5 − 320
√
2A9

4,5 − 1425A8
4,5 − 1920

√
2A7

4,5 − 3348A6
4,5 − 1920

√
2A5

4,5

−1425A4
4,5 − 320

√
2A3

4,5 − 70A2
4,5 + 1 = 0. (5.12)

Solving (5.12) usingMathematica and choosing the appropriate root, we arrive at (i).
(ii) Setting n = 1 in (5.10), employing in (2.19) and simplifying, we obtain

(1 + y2)
(
y4 + (456 + 320

√
2)y3 − (674 + 480

√
2)y2 − (456 + 320

√
2)y + 1

)
= 0, (5.13)

where
y = A4,25. (5.14)

dividing second factor of (5.13) by y2 and rearranging the terms, we obtain
(
y2 + 1

y2

)
+ (456 + 320

√
2)

(
y + 1

y

)
− (674 + 480

√
2) = 0. (5.15)
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Equivalently,
(z2 − 2) − (456 + 320

√
2)z − (674 + 480

√
2) = 0, (5.16)

where

y + 1

y
= z. (5.17)

Solving (5.16) and choosing the positive real root greater than unity, we obtain

z = 2

(
114 + 80

√
2 + 3

√
5(577 + 408

√
2)

)
. (5.18)

Employing (5.18) in (5.17), solving for y = A4,25, and choosing the appropriate root, we complete the proof
of (ii). ��

6 General theorems for the explicit evaluations of W(q)

In this section we prove general theorems for the explicit evaluations of the continued fraction W (q).

Theorem 6.1 If s4,n is as defined (1.16), then

1

W (e−π
√
n/4)

+ 4W (e−π
√
n/4) = 4s44,n .

Proof Setting q := e−π
√
n/2 in Theorem 4.1(i) and employing the definition of s4,n , we complete the proof.

��
Remark 6.2 From Theorem 6.1 it is clear that if we know the explicit values of s4,n then explicit values
of W (e−π

√
n/4) can easily be evaluated. For example, setting n = 8 in Theorem 6.1, employing the value

s4,8 = (1 + √
2)1/4 from [3, p. 276, Corollary 3.3.(iv)], and solving the resulting equation, we evaluate

W (e−π/
√
2) =

(
1 + √

2 −
√
2(1 + √

2)

)
/2.

Theorem 6.3 If Jn is as defined in (1.17), then

(i)
1

W (e−π
√
n/2)

− 4W (e−π
√
n/2) = 4J 4n ,

(ii)
1

W (e−π/(2
√
n))

− 4W (e−π/(2
√
n)) = 4

J 4n
.

Proof Setting q = e−π
√
n in Theorem 4.1(ii)and employing the definition of Jn , we arrive at (i). To prove (ii),

we replace n by 1/n in part (i) and use Lemma 2.2. ��
Remark 6.4 From Theorem 6.3(i) and (ii) it is clear that if we know explicit values of Jn then explicit values
of W (e−π

√
n/2) and W (e−π/(2

√
n)) can easily be calculated, respectively. Baruah and Saikia [2] evaluated Jn

for n =1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 23, 25, 31, 36, and 49. Saikia [16] also evaluated
Jn for n =15, 5/3, 21, 7/3, 33, and 11/3. For example, setting n = 3 in Theorem 6.3(i) and (ii), employing the
value of J3 and solving the resulting equations, we evaluate

W (e−π
√
3/2) =

(
−2 − √

3 +
√
8 + 4

√
3

)
/2

and

W (e−π/(2
√
3)) =

(
−1 +

√
8 + 4

√
3

)(
2 − √

3
)

/2,

respectively.
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Theorem 6.5 We have

(i)
1

W (e−π
√
n/2)

− 4 + 4W (e−π
√
n/2) = 25/2A2

2,n,

(ii)
1

W (e−π/
√
2n)

− 4 + 4W (e−π/
√
2n) = 25/2

A2
2,n

.

Proof Setting q = e−π
√
n/2 in Corollary 4.3(ii) and employing the definition of Ak,n with k = 2, we arrive at

(i). To prove (ii), we replace n by 1/n in (i) and simplify using Lemma 2.1. ��
Remark 6.6 From Theorem 6.5(i) and (ii) it is clear that if we know explicit values of A2,n then explicit values

ofW (e−π
√
n/2) andW (e−π/

√
2n) can be evaluated, respectively. For example, setting n = 2 in Theorem 6.5(i)

and (ii), employing the value A2,2 =
√
2 + √

2 from [13, p. 114, Theorem 5.2(i)] and solving the resulting
equations, we evaluate

W (e−π ) =
(
3 + 2

√
2 − 2

√
4 + 3

√
2

)
/2

and

W (e−π/2) =
(√

2 − 1
)

/2,

respectively.
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