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Abstract This paper proposes using a previously well-trained deep neural network
(DNN) to enhance the i-vector representation used for speaker diarization. In effect,
we replace the Gaussian mixture model typically used to train a universal background
model (UBM), with a DNN that has been trained using a different large-scale dataset.
To train the T -matrix, we use a supervised UBM obtained from the DNN using filter-
bank input features to calculate the posterior information and then MFCC features to
train theUBM instead of a traditional unsupervisedUBMderived from single features.
Next we jointly use DNN and MFCC features to calculate the zeroth- and first-order
Baum–Welch statistics for training an extractor fromwhichwe obtain the i-vector. The
system will be shown to achieve a significant improvement on the NIST 2008 speaker
recognition evaluation telephone data task compared to state-of-the-art approaches.
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1 Introduction

Speaker diarization is a technology used to solve the problem of “who spoke what
and when did they speak” in a multi-party conversation. Speaker segmentation and
clustering are two important components of a speaker diarization system. Segmenta-
tion detects change points in a recording and then cuts the speech into many smaller
segments at these divisions. Ideally, each small segment contains speech from just one
speaker. Next, speaker clustering gathers together neighbouring segments uttered by
the same speaker. The most popular method for clustering is currently a bottom-up
approach known as agglomerative hierarchical clustering (AHC) [17].

Diarization can be applied to several speech areas [7]. Themain applications include
the transcription of telephone and broadcast meetings, dominant speaker detection
and auxiliary video segmentation. With such technology, we can envisage effective
management of audio streams, leading to the realization of structured content at a
higher semantic level. Segmentation itself has application in other areas such as speaker
verification. Meanwhile, with the advent of reliable speaker diarization methods, we
can achieve real-time detection of the number of speakers as well as being able to
attribute what each speaker says in a meeting or in a news broadcast.

Although state-of-the-art speaker diarization systems can achieve good results on
telephone data, there are still problems with current systems. Previous approaches
model each segment with a single GMMmodel or i-vector extracted from a universal
background model (UBM), for example in [18]. This has been shown capable of
representing some segments in speaker diarization quite well, but the complexity and
hence capability of the model are relatively low, and thus, it is not always able to
represent all of the underlying speech. This is one area that will be addressed in this
paper.

In recent years, many alternative diarization algorithms have been proposed, often
inspired from related speech research. For example, factor analysis was first applied
to speaker diarization by Kenny et al. [9]. The technique was used with a sim-
ple eigenchannel (EC) algorithm for speaker verification [6]. Subsequently, other
researchers [18] contributed a two-step clustering method based on Cross Likelihood
Ratio (CLR). This was developed tomeasure the similarity between segments. Used in
the second pass, this is an effective solution to the problem of a single Gaussian model
describing the complex distribution of the features. It also helps to solve a common
problem associated with the Bayesian information criterion (BIC) in that the distance
metric between clusters is data size dependent [1].

An open research topic is the derivation of a suitable model that can represent
short segments, as well as enable a measure of the similarity and difference between
neighbouring segments for clustering. State-of-the-art systems represent segments by
making use of a Gaussian mixture model (GMM) adapted from the UBM to form an
i-vector. Such representations, which we denote UBM/i-vector, generally report good
results.However,wenote that deepneural networks (DNN)havebeen found to perform
well in related fields (including speech recognition, language recognition and speaker
verification). They appear to be capable of constructing accurate models of speech,
even for shorter segments. We thus propose utilizing a well-trained DNN to construct
a UBM and T -matrix with the aim of the extracted i-vectors being better models of the
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underlying segments. Additional motivation comes from some promising recent work
which combines convolutional neural networks (CNN) with an i-vector representation
for language [10] and speaker [12] identification tasks, as well as the use of transfer
learning for DNN/i-vector in language identification [16].

In this paper, the Switchboard database will be used to train a DNN [8], using
phonetic ground truth data. While the resulting DNN can be very well trained due to
the quality and quantity of the training database, its output conveys phonetic informa-
tion rather than the speaker-dependent information required for diarization. Thus, we
will specifically consider the DNN to be a UBM which encodes phone information.
Next, we model the variance of all outputs in a similar way to a total variability (TV)
system [6] and subsequently combine the DNN and TV information into a new rep-
resentation that we denote DNN/i-vector. The performance of this proposed approach
will be evaluated with various system-level parameters against current state-of-the-art
UBM/i-vector methods.

The remainder of this paper is organized as follows. In Sect. 2, we briefly describe
the baseline UBM/i-vector technique followed by the proposed DNN/i-vector tech-
nique. Section 3 reports results from a number of experiments for different features
and dimensions. Finally, Sect. 4 will conclude the paper.

2 Diarization Overview

The baseline diarization system is constructed based on Wu et al. [18]. The main
difference being that we propose replacing the UBM/i-vector extractor with a well-
trained DNN/i-vector extractor that has been trained on a phonetic basis using a much
larger database. We will describe the method in terms of both structure and training
below, after first reviewing the traditional i-vector extractor.

2.1 Traditional UBM/i-Vector Systems

Figure 1 shows the structure of a traditional diarization system which trains a UBM,
usually based on 13-dimensional MFCC features. Next a T -matrix and hence i-vector
are extracted using zeroth- and first-order statistics from the UBM, from the same
input features [15,18]. In general, the first step is to use the Linde–Buzo–Gray (LBG)
algorithm [17] to extract initial model parameters in a GMM representation. However,
the Gaussian model parameters derived from the LBG algorithm use hard decisions
which can easy fall into local minima, meaning that the final Gaussian model will not
be a good match. Therefore, the expectation–maximization algorithm (i.e. allowing
soft decisions) is applied to adjust the parameters of the model. Given this, the same
MFCC features are then used to train the UBM,

Fig. 1 The UBM/i-vector baseline system
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p(X) =
c∑

i=1

λi N (X; Mi ,Σi ) (1)

where λi is the weight of each Gaussian, N (X; Mi ,Σi ) represents the Gaussian func-
tion and the mean and covariance matrices of the Gaussian function are Mi and Σi .
For each mixture component c, we denote the extracted centred zeroth- and first-order
Baum–Welch statistics as Nc and Fc,

Nc =
∑

t

γt (c) (2)

Fc =
∑

t

γt (c)(Xt − mc) (3)

where mc is a subvector corresponding to mixture component c and γt (c) is the pos-
terior probability that the observation at time t is generated by mixture component c.
This information is used to train theUBM.Following that, the T matrix and i-vector are
extracted. Dehak et al. [6] were the first to make the further simplification and refine-
ment in speaker verification of using joint factor analysis (JFA), which combines the
speaker space and channel space together. Named the TV space, this captures the
difference between speakers and across different channels. The speaker- and channel-
dependent GMM mean supervector M for a given utterance can then be modelled as
follows,

M = M0 + Tw (4)

where M0 is the UBM supervector. T is the total variability vector, and w is a ran-
dom low-dimensional matrix with normal distribution N (0, I ). However, in speaker
diarization, unlike in speaker verification, the additional issue of intra-speaker variabil-
ity must be considered. Thus, we extend the basic TV model to explicitly compensate
for the intra-conversation intra-speaker variability. In this extended model, each short
speech segment in the conversation is represented as follows:

Ms = M0 + Tw +U1xs (5)

where the definitions of M0, T andw are the same as in Eqn. 4 for total variability. Ms

is the GMMmean supervector of a speech segment s. Intra-conversation intra-speaker
variability is modelled by U1xs . More detail on the method of this representation can
be found in [18]. Because of the nature of speaker diarization, segments can be very
short and sometimes TV cannot model these short segments well. However, the intra-
conversation intra-speaker variability can be explicitly compensated for to yield amore
accurate representation. The intra-conversation intra-speaker variability subspace is
trained according to Eq. 5. To achieve this in practice, the output of the voice activity
detector (VAD) already present in the front end of the diarization system is scanned
to identify short segments. These are then extracted and used to explicitly model U1.
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Fig. 2 The proposed DNN/i-vector system, showing training step 1 using Switchboard, training steps 2 to
3 using SRE training material, and i-vector extraction from SRE test data in step 4

2.2 DNN/i-Vector System

The proposed DNN/i-vector system structure and sequence are shown in Fig. 2. This
was inspired partly from recent work by Yun Lei et al. [11] who reported that i-vectors
derived from a well-trained DNN performed well for speaker identification (SID)
tasks, compared to existing i-vector extraction methods. Further details of DNNs can
be found explained in a number of references, such as in [13]. Since the i-vector
extraction step used in state-of-the-art diarization systems is similar to that for the SID
task, we also attempt to create some well-trained DNNs using different input features
for i-vector extraction. In other words, inspired by this SID approach, we adapt it into
a diarization framework. Subsequently, we evaluate whether the use of a DNN to train
a UBM for i-vector extraction yields benefit for the diarization task.

In traditional speaker verification systems employing i-vector models, the t-th
speech frame x (i)

i is derived from a generative model using the i-th speech segment
Gaussian distribution as follows,

x (i)
t ∼

∑

k

γk t
(i)N (μk + Tkw

(i), Σk) (6)

γk t
(i) = p(k|x (i)

t ) (7)

where μk and Σk are the mean and convariance of the k-th Gaussian and γk t (i) are the
alignments of x (i)

t . In general, the posterior of the k-th Gaussian is used to represent
the alignments. By contrast to the traditional method, we first train a DNN using a
large-scale development dataset (Fig. 2, step 1) and then use this DNN as a feature
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extractor from training data to train the UBM (Fig. 2, step 2). The means μk and the
convariance Σk are now as follows,

μk =
∑

i,t γ
(i)
kt x

(i)
t

∑
i,t γ

(i)
kt

(8)

Σk =
∑

i,t γ
(i)
kt x

(i)
t x (i)T

t
∑

i,t γ
(i)
kt

− μkμ
T
k (9)

The posteriors p(k|x (i)
t ) are computed from the ASR system for each class k for

each frame. x (i)
t are the acoustic features which can differ from the features used by

the DNN. ASR features (e.g. log-Mel filterbanks) act as the inputs to the DNN for
generating posteriors for each senone, for each frame. These posterior probabilities,
along with the SD features, are used to train the UBM (Fig. 2, step 2). In addition, the
posterior acts as the Gaussian distribution in a traditional UBM. The zeroth- and first-
order statistics, as well as means μk and covariances Σk , are then obtained from the
UBM. Following this, the zeroth- and first-order statistics from the UBM, operating
on training data, are used to form a T -matrix as in UBM (Fig. 2, step 3), which then
enables i-vector extraction from test data, and performance evaluation, to proceed as
usual (described in Sect. 2.1 and shown in Fig. 2, step 4).

2.3 Selection of Input Features

The resulting DNN/i-vector system uses posterior probability information from the
well-trained DNN in addition to the traditional UBM features to perform diarization.
It would be reasonable to expect the UBM input features and the DNN input features
to be the same (typically MFCCs); however, the arrangement allows for an interesting
possibility of using mismatched feature types. Note that a similar exploration may
also be possible in other systems such as in the CNN/i-vector language identification
approach of Lei et al. [10]. One set of input features, which we will term ASR features
(since they are effectively performing an automatic speech recognition front end task),
is used to train the DNN and subsequently to calculate the posterior probabilities. The
second set of input features, which we term SD features (since they are those used
typically in state-of-the-art speaker diarization systems), is used to train the UBM
and for the following stages, alongside the posterior probabilities from the previously
trained DNN. We will explore the effect of several choices for each feature input.

An important observation is that both sets of features should be properly aligned
(i.e. the audio sample ranges forming the analysis frames of both features should
be identical); otherwise, substantial performance degradation occurs. Once the UBM
is trained, we determine the zeroth- and first-order statistics to train the T -matrix
and hence extract i-vectors as usual. The backend processing is also unchanged from
existing systems.
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3 Experiments and Results

For baseline comparison, we use a state-of-the-art speaker diarization system [18]
comprising voice activation detection (VAD), speaker change detection (SCD), seg-
mentation, clustering, re-segmentation and refinements. After VAD and SCD, the
speech is chopped into small segments using the method in [4]. The proposed DNN/i-
vector and UBM/i-vector approaches are then compared by using them to form
i-vectors of the segments. The input segment list and all subsequent processing and
classification steps are common. Namely, the following step is to apply principal
component analysis (PCA) to reduce the dimensionality of the i-vector and obtain
the directions of the maximum variability in the i-vector space. When we perform
clustering, we apply k-means to the PCA-projected and reduced-dimension i-vectors
based on their cosine distance. An HMM model is used to do the Viterbi decoding
during the re-segmentation procedure. Meanwhile, the cluster models are re-estimated
through soft-clustering, as described in [3]. During the second pass, the segmentation
results are further refined by iteratively extracting a single i-vector for each respective
speaker from the re-segmented features and reassigning the entire segment i-vector to
its closest speaker i-vector, in terms of cosine similarity.

3.1 UBM/i-Vector

The dataset used for training the baseline system is the SRE 05 and SRE 06 telephone
data from NIST. SRE 08 data are then used for testing. In former experiments by
other researchers using the same datasets, such as Shum et al. [15], Wu et al. [18]
and Kenny et al. [9], it was found that MFCC features tended to yield better results
for speaker diarization than other common ASR features. Therefore, we also adopt
MFCC features for the UBM/i-vector baseline and will additionally evaluate the per-
formance of the basic 13-dimensional MFCCs, as well as 26-dimensional MFCC+Δ,
and 39-dimensional MFCC+Δ+Δ2 features, which are commonly used in ASR and
related domains. Several UBMswith 128, 256, 512 and 1024 diagonal components are
also evaluated using these features. Meanwhile, the intra-conversation intra-speaker
variabilityU matrix is formed from the same training data as used to determine the T
matrix. The same prior work [9,15,18] reported better results for i-vectors of dimen-
sion 100 along and a rank of 100 forU compared with dimension 50 vectors (we will
also evaluate both). Note that the traditional AHC, re-segmentation and refinements
are performed identically on all of the compared systems.

Results are reported in Table 1, in terms of the composite diarization error rate
(DER) as defined by NIST for the SRE competitions. It can be seen that the best
performing system has 1024 Gaussian mixtures and employs only the 13-dimensional
MFCCs, yielding a performance score of 0.91%. This is comparable with the best
performance reported by other authors on the same dataset, namely 0.91% in [18]
and 0.90% in [15]. Generally speaking, it might be expected that when the dimension
of features grows, results will improve to some extent, because higher-dimensional
features can convey more information. However, we see that the simplest features
perform best here, which may be due to the fact that many segments are too short to
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Table 1 UBM/i-vector performance of different size MFCCs and Gaussian mixture numbers

Mix num 13-MFCC (%) 26-MFCC (%) 39-MFCC (%)

128 1.36 2.34 3.42

256 1.18 2.28 3.26

512 1.06 2.17 3.14

1024 0.91 2.05 3.10

Table 2 UBM/i-vector performance of different U -matrix ranks and Gaussian mixture numbers

Mix no. Long sentences Short sentences

Rank(U ) = 50 (%) Rank(U ) = 100 (%) Rank(U ) = 50 (%) Rank(U ) = 100 (%)

128 1.39 1.36 1.59 1.54

256 1.17 1.18 1.41 1.38

512 1.08 1.06 1.35 1.33

1024 0.94 0.91 1.16 1.12

reliably capture higher-order statistics. Thus, we maintain the 13-dimensional MFCC
input features throughout. As mentioned, we also explore the effect of the U -matrix
rank. Systems were constructed with both rank 100 and rank 50, using 13MFCC input
features and a rank 100 T -matrix.

Results are reported separately in Table 2 for long (5min) sentences and short
(1min) sentences. These figures confirm that the best performing U matrix rank for
almost every tested condition is 100. There is a performance degradation of around
15% between results for the longer and shorter sentences.

In summary, this section has constructed a baseline UBM/i-vector system and
explored the effects of several system parameters. Performance is shown to be on
a par with the best previously published state-of-the-art system performance on the
SRE08 diarization test. We will now evaluate the DNN/i-vector system similarly and
compare against these results.

3.2 DNN/i-Vector

The DNN configuration we adopt is similar to that used for ASR [2,5,14]. The system
is first well trained using the large (300 h) Switchboard dataset. The input layer of
the DNN encompasses 15 frames of features (i.e. features from the current frame
concatenated with features from a context of 7 neighbouring frames). The output
layer matches the phonetic content of the dataset, comprising 3349 senones. Thus, the
structure of the DNN is one input layer, five hidden layers of size 1200 and one output
layer (i.e. 600−{1200 × 5}−3349). In operation, each input frame corresponds to 40
log-Mel filterbank coefficients and the DNN is used to yield the posterior probabilities
from each frame plus context, on a frame-by-frame basis.
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Table 3 DNN/i-vector performance comparison for different U -matrix ranks for different DNN input
(ASR) features

U -matrix Long sentences Short sentences

39-dim PLP (%) 40-dim FBK (%) 39-dim PLP (%) 40-dim FBK (%)

rank(U ) = 50 1.24 0.89 1.38 1.02

rank(U ) = 100 1.18 0.72 1.29 0.87

Table 4 DNN/i-vector
performance comparison of
different ASR features being
input to the DNN along with
different SD features used by the
UBM

SD ASR features

Features 39-dim PLP (%) 40-dim FBK (%)

13-MFCC 1.18 0.72

26-MFCC 2.49 1.93

39-MFCC 4.52 2.74

13-PLP 2.04 0.96

26-PLP 3.52 2.47

39-PLP 5.03 3.75

For consistency, the same features from the UBM/i-vector baseline system (i.e.
13-dimensional MFCCs) were used to compute sufficient statistics from the frame
alignment given by the DNN, and the system hyper-parameters were also matched to
the baseline system.

We repeated the U -matrix rank experiment of the previous section, but this time
we also tried two different types of ASR features for training/operating the DNN.
One system used 39-dimensional perceptual linear prediction (PLP) features, which
have shown promise in related speech fields. The second system used 40-dimensional
Mel filterbank (FBK) features. The structure of the remainder of the DNN for each
system was identical. Results, shown in Table 3, are again presented separately for
long and short sentences. These confirm the findings from the previous section that
better performance is achieved with a U -matrix rank of 100, and additionally show
that FBK outperforms PLP for ASR features. In this case, it is noticeable that the
performance degradation between long and short sentences is significantly reduced
compared to the results in Table 2, indicating that the DNN/i-vector system is less
sensitive to the source sentence length than the UBM/i-vector system.

For further comparison, setting theU - and T -matrix ranks at 100, we evaluated SD
features using different orders of PLP and MFCC, allied with posterior probabilities
from DNNs trained using both types of ASR feature (PLP and FBK). The results are
shown in Table 4. Common sense would suggest that, since PLP features can carry
more speaker-relevant information than the FBK features, they should perform better,
whereas in fact, they exhibit higher error rates for all tested conditions. In fact, it may
be that the ability of the DNN to learn its own discriminative features outweighs the
well-known advantages of choosing perceptually relevant features. In fact, this ability
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Table 5 Performance comparison of state-of-the-art UBM/i-vector baseline, the Shum et al.’s [15] system,
a phonetically aligned GMM and the proposed DNN/i-vector method

UBM/i-vector
baseline (%)

UBM/i-vector
[15] (%)

Phonetically
aligned GMM
(%)

DNN/i-vector (%)

0.91 0.90 1.41 0.72

of DNNs to infer relevant information from less structured data has been noted in
related audio fields [5,13].

In operation, we effectively treat each output from the DNN as a UBM that is just
concerned with phone information, without speaker-dependency. In practice, we need
to model the variance of all these outputs in a way similar to that for the TV method.
So when we combine a DNNwith TV, it therefore follows that we should probably not
use features for the DNN which emphasize speaker information. To put this another
way, the ASR features should be those that perform better for speaker-independent
tasks, while the SD features should be those that perform better for speaker-dependent
tasks. Thus, it is no surprise that the best result is the 600− {1200 × 5} − 3349 DNN
whose ASR features are 40-dimensional FBK, allied with 13-dimensional MFCC SD
features.

3.2.1 Summary

The overall performance of the baseline UBM/i-vector system, and that of the best
published SRE08 result that the authors are aware of, is given in Table 5. Since the
proposed DNN-based method benefits from the phonetic alignment from an underly-
ing ASR system, a fair comparison would be against a phonetically aligned GMM.
This was then implemented (with matching 3349mixtures) and evaluated, with results
also presented in Table 5. Finally, the proposed DNN/i-vector system performance is
also given. Clearly, a significant improvement is achieved using the proposed method
over the baseline, prior work and over the phonetically aligned GMM. The latter
result indicates that a major benefit is obtained through the discriminative learning of
the DNN rather than from the underlying alignment. We can thus conclude that the
DNN extractor that was first proposed for speaker verification appears to work well
for diarization, possibly because it is better able to represent shorter segments, since
results above indicate that it is less sensitive to utterance length. In summary, the com-
bination of the DNN-derived ASR features with the more traditional SD features with
the DNN/i-vector approach proposed in this paper enables a 20% step improvement
in performance over existing state-of-the-art UBM/i-vector approaches for SRE08
diarization evaluation. In effect, since the SRE08 evaluation consists of telephone
speech, the diarization performance is being aided by a relevant feature extractor
which has been better trained using the much larger training dataset of Switchboard
telephone speech.
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4 Conclusion

This paper has proposed a novel diarization method that makes use of a well-
trained DNN to enhance the representation of speech segments through an accurate
phonetic classification. This is inspired by recent work in the related speaker verifica-
tion domain, extended here to cater for intra-speaker, intra-conversational variability
in a speaker diarization context. The relatively speaker-independent DNN-derived
UBM features, allied with more traditional speaker diarization features which cap-
ture speaker-dependent information, are shown to yield a more representative i-vector
representation of individual speech segments. In operation, the DNN is well trained
using filterbank features from a very large database of telephone speech and performs
a roughly similar task to the GMM in a typical UBM/i-vector system. One advantage
of utilizing two separate models is that different representations can be chosen for
each. In fact, evaluations tested several of the more common feature types, including
zeroth-, first- and second-order MFCCs, PLPs and filterbanks, with the best perfor-
mance being obtained from the DNN trained using 40-dimensional filterbank data
combined with 13-dimensional MFCC features. Other evaluations investigated the
effect of various parameters such as matrix rank and number of Gaussian mixtures for
the more traditional UBM/i-vector approach. The overall performance of the system
for the SRE08 task is significantly better than that of the baseline method, as well as
the currently published state-of-the-art UBM/i-vector system performance.
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