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Abstract The concept of minimal detectable bias (MDB)
as initiated by Baarda (Publ Geod New Ser 2(5), 1968)
and later developed by Wang and Chen (Acta Geodaet et
Cartograph Sin Engl Edn 42–51, 1994), Schaffrin (J Eng
Surv 123:126–137, 1997), Teunissen (IEEE Aerosp Elec-
tron Syst Mag 5(7):35–41, 1990, J Geod 72:236–244 1998,
Testing theory: an introduction. Delft University Press, Delft,
2000) and others, refers to the issue of outlier detectability.
A supplementation of the concept is proposed for the case
of correlated observations contaminated with a single gross
error. The supplementation consistsmainly of an outlier iden-
tifiability index assigned to each individual observation in
a network and a mis-identifiability index being the maxi-
mumprobability of identifying awrong observation. To those
indices there can also be added the MDB multiplying factor
to increase the identifiability index to a satisfactory level. As
auxiliary measures there are indices of partial identifiability
concerning pairs of observations. The indices were derived
assuming the generalized outlier identification procedure as
in Knight et al. (J Geod. doi:10.1007/s00190-010-0392-4,
2010), which with one outlier case being assumed is simi-
lar to Baarda’s w-test (Baarda in Publ Geod New Ser 2(5),
1968). The following two options of identifiability indices
and partial identifiability indices are distinguished: I. the
indices related to identification of a contaminated observa-
tion within a set of observations suspected of containing a
gross error (identifiability), II. the indices related to iden-
tification of a contaminated observation within a whole set
of observations (pseudo-identifiability). To characterize the
proposed approach in the context of the existing solutions
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of similar topic being the separability testing, the proper-
ties of both types of identifiability indices are discussed with
reference to the concept of Minimal Separable Bias (Wang
and Knight in J Glob Position Syst 11(1):46–57, 2012) and
a general approach in Yang et al. (J Geod 87(6):591–604,
2013). Numerical examples are provided to verify the pro-
posed approach.

Keywords Outlier-exposing responses · Outlier identifia-
bility index · Mis-identifiability index · Partial identifiability
index · Folded normal distribution

1 Introduction

The concept of minimal detectable error (Baarda 1968), later
termed minimal detectable bias (MDB), was a pioneering
tool for the analysis of behaviour of a network in the pres-
ence of an outlier. Being assumed as a measure of network
internal reliability it was meant to span the a priori analysis
of network sensitivity to an outlier with the chances to detect
it. The original formula for MDB covering the case of cor-
related observations, was later analyzed by Wang and Chen
(1994), Schaffrin (1997), Teunissen (1990, 1998, 2000) and
was further extended upon the case of multiple outliers (Teu-
nissen 2000; Knight et al. 2010). It was noticed in numerical
tests that the gross errors of MDB magnitudes are often not
identified, but identification can be successful at greatermag-
nitudes (e.g. Hekimoglu and Erenoglu 2005). The concept of
III-type error was introduced (Hawkins 1980; Förstner 1983)
to cover the situations when the error-free observation can
be identified mistakenly as the one contaminated by a gross
error.

TheMDB concept itself does not cover the issue of outlier
identifiability. It only determines the minimal magnitude of a
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gross error in a particular observation, the presence of which
in a system can be disclosed through excessive non-centrality
effect in a global test. Hence, extending the MDB concept
upon the issue of outlier identifiability would be a desirable
research task.

Also the “response-based” measures of network internal
reliability (Prószyński 2010) that provide reliability crite-
ria clearly interpretable in terms of network responses to
outliers, are not associated with the chances for outlier iden-
tification.

Taking into account the above description of the problem,
the objective of the researchwas assumed to be the following:

i. towork out amethod of evaluating the chances to identify
a gross error of the MDB magnitude (assumed to be a
single gross error in a system), and together with some
other related characteristics to create supplementation of
the MDB concept with regard to outlier identifiability,

ii. to propose a method for a priori evaluation of increase
of MDB necessary to ensure that the thus obtained gross
error can be reliably identified in practice,

iii. to provide probabilistic support for response-based reli-
ability criteria with regard to outlier identifiability.

Since the identifiability issue has much in common with
the concept of outlier separability, some common elements
are discussed of the proposed approach and the chosen
existing methods of outlier separability analysis (Wang and
Knight 2012; Yang et al. 2013).

2 Preliminaries

The main part of the paper will be preceded with some pre-
liminary statements and auxiliary concepts describing the
approach and presenting the notation applied in the analy-
ses.

2.1 Specifying the terms “detectable gross error”
and “identifiable gross error”

Since the distinction between “outlier detection” and “outlier
identification” is clearly defined (Teunissen 2000), we give
some details that specify the approach to a priori analysis of
outlier identifiability proposed in the present paper.

We confine the explanations to the case when a network is
contaminated with a single gross error (i.e. one outlier case).

Detectable gross error—an observation error of the mag-
nitude such that its presence in a network is signalized by the
global model test statistic exceeding its critical value.

Identifiable gross error—adetectable gross error the exact
location of which in a network, i.e. in a particular observa-
tion, can be identified among the suspected observations in

the first adjustment run, i.e. without subsequent diagnostic
operations such as removal or re-weighting of observations.
It is when the outlier test statistic of maximum absolute value
of all the outlier test statistics that exceed the critical value,
corresponds to the contaminated observation.

In the above definition “outlier identification” is clearly
separated from “outlier detection”, since it is meant as a sub-
sequent process of forming the set of suspected observations
and finding among them the contaminated observation.

Unidentifiable gross error—adetectable gross error locat-
ed in such a specific region of a network (consisting of at least
two observations), where all the observations obtain equal
values of outlier test statistics. The error is unidentifiable
within the region (Cen et al. 2003; Prószyński 2008).

The conditions concerning the existence of the Regions of
Unidentifiable Errors (RUE) for correlated observations are
derived in Appendix A.

2.2 GM model and the disturbance/response
relationship

Let us consider a GM model, written in an original form

Ax + e = y; e ∼ (0, C) (1)

and in the equivalent modified form that exposes the corre-
lation matrix (Prószyński 2010)

ASx + eS = yS; es ∼ (0, Cs) (2)

where y the n× 1 vector of observations; A the n× u design
matrix; rankA= u−d (d—systemdefect,d ≥ 0);x theu×1
vector of unknown parameters; e the n× 1 vector of random
errors; we shall also use v = −e; C the n× n covariance
matrix of e (positive definite), C = σ 2

o P−1 = σ 2
o Q; σ =

(diag C)1/2, As = σ−1A, es = σ−1e, ys = σ−1y, Cs =
σ−1Cσ−1, Cs a correlation matrix; for uncorrelated obser-
vations Cs = I.

The LS estimator of the vector vs, where vs = −es, is
given by

v̂s = −Hys (3)

where
H = I − As(AT

s C−1
s As)

+AT
s C−1

s is the modified reliabil-
ity matrix (Prószyński 2010), i.e. the reliability matrix for
the modified GM model as in (2), (*)+ denotes the pseudo-
inverse.

Decomposing the vector ys, so that ys = ytrues − vs +
�ys, where �yS is the vector of standardized observation
gross errors (i.e. standardized disturbances), and realizing
that H · ytrue

S
= 0, we obtain (3) in the form
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Revisiting Baarda’s concept of minimal detectable bias… 995

v̂s = Hvs − H · �ys (4)

Denoting the second term in (4) by �v̂s, being the vector of
standardized increments in LS residuals (i.e. standardized
responses), we get on its basis the well known distur-
bance/response relationship for the system (2), i.e.

�v̂S = −H · �yS (5)

where �v̂S = −�êS .

2.3 A short note on minimal detectable error (MDB)
and response-based reliability measures

Below, we present the formula for MDB as given in Wang
and Chen (1994), Teunissen (1990, 1996), using the notation
as in Sect. 2.2

MDBi = σ i ·
√

λ

ri
ri =

{
HTC−1

S H
}
i i

; ri [0,∞) (6)

where MDBi minimal detectable bias in the i-th observa-
tion; its standardized form i.e. MDBS,i = MDBi /σi is termed
as controllability of the i-th observation, σi the standard devi-
ation of the i-th observation, λ the non-centrality parameter
(as in a global model test), ri a generalized reliability number
for the i-th observation, CS , H the matrices as in (2) and (3),
respectively; HT C−1

S
H = C−1

S
H.

The generalized reliability number ri alone can also be
considered as internal reliability measure (Caspary 1988).

The behaviour of a system in the presence of a sin-
gle gross error can also be characterized by the so called
response-based internal reliability measures (Prószyński
2010), derived on the basis of disturbance/response relation-
ship (5), i.e. disregarding the random-error environment. For
correlated observations the measures are the following pairs
of indices

hii , wi i , or equivalently hii , ki

where hii the i-th diagonal element of the matrix H, wi i the
asymmetry index for the i-th row and the i-th column of the
matrix H, ki the ratio of the squared quasi-global response
Q(i) and the squared local response hii to an outlier in the
i-th observation [see formula (28) in Appendix A].

The reliability criteria are the following

0.5 < hii ≤1 ∧ hii −2h2i i <wi i <hii −h2i i i=1, . . . , n

(7)

or, equivalently

0.5 < hii ≤ 1 ∧ 0 < ki < 1 i = 1, . . . , n

They are derived from the postulate that the maximum sys-
tem response should be located in the observation in which
the gross error resides, and that the responses in other obser-
vations should possibly be the smallest (Prószyński 2010).
Hence, there are then the chances for effective identification
of a single gross error residing in any of the observations. We
can then state that the criteria determine the area of outlier-
exposing responses. The set of values (hii , wi i ) which form
this area (see Figs. 2, 3) will be denoted by SO.

It is not possible to interrelate the above two types of
measures, i.e. ri and (hii ,wi i ) or (hii ,ki ) on the grounds of
rigorous matrix operations due to different generation prin-
ciples. So, instead of direct interrelations we can establish
indirect correspondence between these measures by finding
their values on basis of the model (1) or model (2) compo-
nents, as shown on a scheme below

A, C → As, Cs → H, Cs →
{
ri
hii ;wi i

i = 1, . . . , n (8)

3 A study on outlier identifiability evaluation
in terms of probability

The a priori analysis of outlier identifiability presented in this
paper, refers in principle to outlier identification procedure
as in Knight et al. (2010). In that procedure the global model
test is followed by the local outlier tests resulting in a set
of suspected outliers. The final outcome of the procedure is
the observation with a maximum absolute value of the test
statistic. The outlier test statistics (i.e w2) are obtained from
mean-shift model. The global model test and the local outlier
tests are coordinated by equalizing the non-central parame-
ters and selecting the probabilities according to theβ-Method
(Baarda 1968). In the present paper, for finding the suspected
outliers and identifying the contaminated observation instead

of w2 the |w| values are used, assuming |w|crit =
√

w2
crit.

Thew-variables, being the standardized randomvariables,
are defined by

wi(i) = ẑi(i)
σẑi(i)

; w j (i) = ẑ j (i)
σẑ j (i)

i, j = 1, . . . , n j �= i (9)

where “i” denotes the observation contaminated with a gross
error, “ j” denotes any other observation; ẑ is the LS estimator
of a gross error, obtained on basis of “mean-shift” model
(Knight et al. 2010)

With one outlier case being assumed as in the present
research, the above testing procedure is similar to Baarda’s
w-test (Baarda 1968).
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3.1 Parameters of outlier test statistics for the needs
of identifiability analysis

In the notation of the present paper the w-variables as in (9)
in a network contaminated with a single gross error �yS,i ,
have the following detailed form

wi(i) =
{

HT C−1
S

H
}
i∗√{

HT C−1
S

H
}
i i

· (eS + �yS(i) )

=
{

HT C−1
S

H
}
i∗√{

HT C−1
S

H
}
i i

· eS +
√{

HT C−1
S

H
}
i i
�yS,i

w j (i) =

{
HT C−1

S
H

}
j∗√{

HT C−1
S

H
}
j j

(eS + �yS(i) )

=

{
HT C−1

S
H

}
j∗√{

HT C−1
S

H
}
j j

eS +

{
HT C−1

S
H

}
j i√{

HT C−1
S

H
}
j j

�yS,i

i, j = 1, . . . , n j �= i (10)

where {·}i∗ and{·} j∗ denote the i-th and the j-th row of
HT C−1

S
H.

With e ∼ N(0,C), and consequently es ∼N(0, Cs), we get
after simple operations

wi(i) ∼ N (μi , 1) μi =
√{

HT C−1
S

H
}
i i

· �yS,i (11)

w j (i) ∼ N (μ j , 1) μ j =
{
HT C−1

S
H

}
j i√{

HT C−1
S

H
}
j j

· �yS,i (12)

ρi j = cor(wi(i), w j (i)) =
{
HT C−1

S
H

}
i j√{

HT C−1
S

H
}
i i

√{
HT C−1

S
H

}
j j

(13)

as in (Förstner 1983).
To analyze outlier identifiability, it is most reasonable to

consider detectable gross errors, i.e. �yS,i ≥ MDBS,i , where
MDBS,i as in (6). Substituting �yS,i = MDBS,i into (11) and
(12), we obtain

μi = √
λ; μ j = ρi j · √

λ; ρi j (14)

The formula (14) reflects a well known property (Förstner
1983) that with the defined I type and II type errors the

correlation between the outlier test statistics is decisive for
identification of the contaminated i-th observation.

3.2 Identifiability indices and their properties

To identify within a set of suspected observations the i-
th observation in which a gross error of MDB magnitude
resides, we need that |wi(i)| is dominating over each of the
corresponding absolute values for the remaining observa-
tions within this set. For each of the suspected observations
we have |w| > |w|crit, or for short |w| > c (we assume

|w|crit =
√

w2
crit).

Using |w j (i)||wi(i)| < 1 as an equivalent condition to |wi(i)| >

|w j (i)|, we may form for the i-th observation an identifia-
bility index denoted as IDi , defined in terms of conditional
probability

IDi = P(Qi

∣∣R̄i ) (15)

where

Qi = |w1(i)||wi(i)| < 1 ∩ · · · ∩ |w j (i)||wi(i)| < 1 ∩ · · · ∩ |wn−1(i)||wi(i)| < 1;

j �= i

R = ∣∣w1(i)
∣∣ < c ∪ . . . ∪ ∣∣wi(i)

∣∣ < c ∪ · · · ∪ ∣∣wn(i)
∣∣ < c

where non-centralities μ of the w-variables are determined
for MDBs,i as in (14); R̄i being an event opposite to Ri ,
contains all possible sets of suspected observations, each cor-
responding to a particular distribution of random errors in a
single measurement of a network.

In formulating Qi , we take into account the fact that dom-
ination of |wi(i)|within the set of all the observations implies
its domination within any set of suspected observations con-
taining wi(i).

Using for each component in Qi a symbol Z as for a ratio
of two folded normal variables (see Appendix B), we may
write (15) in the form

IDi = P

(
Z1(i) < 1 ∩ · · · ∩ Z j (i)

< 1 ∩ · · · ∩ Zn−1(i) < 1
∣∣∣R̄i

)
j �= i (16)

Due to a high complexity of the definition (15), increas-
ing with the number (n) of observations in a network, an
empirical method based on numerical simulation of random
observation errors was applied in the research. The method
consists in:

– simulating numerically a certain number (e.g. 1000)
of n-dimensional vectors of correlated random errors
(according to a given C);
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– computing w-variables for each vector of random errors
using the formulas (10), the systematic components being
as in (14);

– after elimination of the sets ofw-variableswhere the criti-
cal values are not exceeded, computing sample frequency
for the sets where |w| for a contaminated observation
(such that |w| > c) is dominating, the sample frequency
being empirical approximation of ID. As a check on cor-
rectness of simulation procedure a sample frequency for
the eliminated sets of w-variables (i.e. with |w| < c) was
used as being empirical approximation of II type error
probability β.

To extend the scope of identifiability analysis, the computer
programwritten for the method contains the formulas (10) in
a modified form introducing a multiplying factor, such that
the systematic components are as follows

μi = gi · √
λ; μ j = ρi j · gi · √

λ; gi > 0 (17)

which corresponds to the use of �yS,i = gi · MDBS,i .
This modification can be used in case of unsatisfactory

values of IDi obtained with �yS,i = MDBS,i .
We do not have exact theoretical reference for evaluating

the accuracy of the simulation method. Therefore, we may
only analyze the degree of dispersion of the ID values for
different sets of simulated data and different observations in
a network. The estimates obtained in that way for networks
in Examples 1 and 2 (see Sect. 6) with 1000 simulations used
are within ± 1 or ± 2% (standard deviations).

For the purpose of this study we consider also iden-
tification of the contaminated observation without setting
restrictions onto the values of w-variables. Such a proce-
dure that covers also the outlier detection is a departure from
the assumed definition of outlier identification (see Sect. 2.1)
and will be termed pseudo-identification. Consequently, we
shall operate with a pseudo-identifiability index, denoted by
ID∗

i , and having the form

ID∗
i = P(Qi ) (18)

where Qi as in (15).
Although to a smaller degree than in the case of P(Qi

∣∣R̄i )

(15), finding P(Qi ) is still a complex computation task. How-
ever, wemay get empirical approximation of this index (ID

∗
i )

by means of slightly modified simulation method.
On the grounds of probability theory some relations can

be established between ID∗
i and IDi

P
{
Qi

∣∣R̄i
} = P

{
Qi ∩ R̄i

}
P

{
R̄i

} = P
{
Qi

} − P
{
Qi ∩ Ri

}
P

{
R̄i

}
where P(R̄i ) = 1 − β,

and hence

ID∗
i = (1 − β) · IDi + P

{
Qi ∩ Ri

}
(19)

Assuming that P({Qi ∩ Ri}) > 0, we get

ID∗
i > (1 − β) · IDi (20)

Hypothetically, the case that ID ∗
i = ID i might occur when

P(Qi ∩ R̄i ) = P(Qi ) · P(R̄i ), i.e. when Qiand R̄i were inde-
pendent events. Then with IDi = 1, we would also have
ID∗

i = 1, which would imply domination of |wi(i)| in each
possible set in R. Since the above independency is only a
detached theoretical assumption, we can only state that IDi

is an unattainable upper limit for ID ∗
i .

The above relations have been confirmed by the results
obtained from the simulation method.

3.3 Partial identifiability indices and their properties

As an auxiliary tool for network analysis, the partial identifi-
ability indices for pairs of observations were introduced, i.e.
for the i-th observation contaminated by a gross error and the
j-th observation being error-free. Similarly to two options of
identifiability indices (Sect. 3.2) we distinguish

– partial identifiability index IDi/j

IDi/j = P

(∣∣w j (i)
∣∣∣∣wi(i)
∣∣ < 1

∣∣R̄i j

)
(21)

where Ri j = |wi(i)| < c ∪ |w j (i)| < c
or in notation of (16)

IDi/j = P(Z j (i) < 1
∣∣R̄ i j )

– partial pseudo-identifiability index ID∗
i/j .

ID∗
i/j = P

(∣∣w j (i)
∣∣∣∣wi(i)
∣∣ < 1

)
, (22)

or in notation of (16),

IDi/j = P{Z j (i) < 1}

The indices are the values of distribution function of ratio
of two folded normal variables. In the case of IDi/j the
space of the values of w-variables is reduced in terms
of absolute values, assuming that both the i-th and the
j-th observation are the elements of a set of suspected
observations.
For finding the values of ID∗

i/j , a MATLAB-based soft-
ware has been developed (Appendix B) for computing
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Fig. 1 Variability of the index ID∗
i/j as a function of correlation

ρ(wi , w j )

the values of the distribution function of Z. We can also
find empirical approximation of each type of index (i.e.
IDi/j and ID∗

i/j ) by means of the simulation method pre-
sented in Sect. 3.2, by computing sample frequencies for
chosen pairs of observations.
The following properties of ID∗

i/j indices can be formu-
lated:

– from the formula (14), whereμi > |μ j |, and the property
(32) in Appendix B, it follows that for any pair of obser-
vations in a network we shall have ID∗

i/j > 0.5. Figure 1
shows dependence of ID∗

i/j on magnitude of correlation

|ρi j | (|ρi j | < 1), obtained with μi = √
λ = 4.13 and

μ j = ρi j
√

λ = 4.13 ·ρi j (as in formula (14). We can see
that the smaller |ρi j |, the greater is ID∗

i/j .
– due to ρ(wi , w j ) = ρ(w j , wi ), the ID∗

i/j indices are
symmetrical within pairs of observations, i.e. ID∗

i/j =
ID∗

j/ i .
– for all the observations forming a RUE region in a net-
work, we shall have IDi = ID j = IDk . . . = IDRue,
where IDRue could be termed the identifiability index
for a RUE region containing an outlier. For all pairs of
observations within RUE we shall have ID∗

i/j = 0. The
index IDRue does not apply to networks being a RUE as
a whole. In such networks IDi = ID j = IDk . . . = 0 and
ID∗

i/j = 0 for all the observations.

3.4 Mis-identifiability indices and probabilities of III
type errors

To cover in a priori analysis the possibility of identifying
the j-th error-free observation instead of the contaminated
i-th observation, defined as III type error (Hawkins 1980;
Förstner 1983), we introduce mis-identifiability indices as
shown below

MIDi j = P(Q j

∣∣R̄ i )

Q j =
∣∣w1(i)

∣∣∣∣w j (i)
∣∣ <1 ∩ · · · ∩

∣∣wi(i)
∣∣∣∣w j (i)
∣∣ <1 ∩ · · · ∩

∣∣wn−1(i)
∣∣∣∣w j (i)

∣∣ < 1 i �= j

(23)

where R̄i as in (19).
The indices MIDi j correspond to probabilities of com-

mitting III type errors, denoted by γi j (Förstner 1983). The
indices are determined for gross errors of the MDB magni-
tudes.

Using the simulationmethodwe can get empirical approx-
imation ofMIDi j by computing sample frequency for the sets
where

∣∣w j (i)
∣∣ (such that ∣∣w j (i)

∣∣ > c) is dominating
Taking into account the MIDi j indices for all the j-th

observations, we may find the observation with maximum
value of MIDij, i.e. MIDij,max.

Realizing that all MIDi j indices together with IDi indices
refer to disjoint events that form a complete event, we may
formulate on basis of (15) and (23) the following relationship

IDi = 1 −
n−1∑

j=1, j �=i

MIDi j (24)

where n as in (15) is the number of all the observations in a
network.

According to (24), with the IDi values being greater than
0.5 there can be no observation with MIDi j > 0.5.

This confirms the well known property, that the greater
the probability of finding the contaminated observation (e.g.
Wang and Knight 2012), the smaller is the probability of
committing the III-type error.

4 Proposed supplementation of the MDB concept
for a priori analysis of network reliability

By definition the MDB concept is not associated with outlier
identifiability. Based on the study of outlier identifiability
evaluation (Sect. 3),wepropose supplementationof theMDB
concept as in formula (6) with identifiability index IDi , as in
formula (15). The pair (MDBi , IDi ) would characterize the
minimal detectable error in a particular observation together
with the chances for its identification in a network.

In case of unsatisfactory value of IDi, we may find the
multiplying factor gi as in (17) that shows the degree of
magnification of MDBi necessary to obtain a required level
of outlier identifiability. We may also find a particular j-th
( j �= i) observation corresponding to maximum probabil-
ity of III type error, i.e. γi j (see mis-identifiability indices
MIDi j,max in Sect. 3.4).

For more detailed analysis of outlier identifiability, we
may compute the index ID∗

i and the indices IDi/j and ID∗
i/j

for some chosen pairs of observations.
SUPPLEMENTATION of MDB for the i-th observation

can thus be formed in the following two levels:
BASIC—IDi, gi , MIDi j,max; AUXILIARY—ID∗

i , IDi/j ,
IDi/k ,…, ID∗

i/j , ID
∗
i/k , …
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Additionally, by finding the response-based reliability
measures (hii ,wi i ) or (hii ,ki ) for the analyzed i-th observa-
tion, we obtain in an indirect way a link between the network
response and the indices IDi and MIDi j,max.

5 Common elements of the proposed approach
with some chosen solutions in outlier separability
testing

Although in the present paper the term “separability” is not
used explicitly, the proposed identifiability indices can be
considered to some extent as outlier separability measures.
A direct link of the proposed approach with outlier sep-
arability analysis are mis-identifiability indices being the
maximum probabilities of III type errors. Analogy can be
found between the proposed approach and that in (Wang and
Knight 2012). In the letter approach the concept of minimal
separable bias (MSB) is presented, being the magnitude of
MDB increased by the multiplying factor so as to ensure
identifying of an outlier at a satisfactory confidence level
(denoted there as 1 − αs). This corresponds in the present
paper to the use of partial pseudo-identifiability index ID∗

i/j .
Due to possibility of increasingMDBby the iteratively deter-
mined multiplying factor to reach a corresponding level of
partial pseudo-identifiability, we may obtain a bias equiva-
lent to MSB. One can also notice that the two options of
the standardized separability test statistic (Wang and Knight
2012) contain exactly the arguments h′

1 and h′
2 of a distri-

bution function P(Z < 1) as in formula (31) in the present
paper. The ratio itself can be a proposal of test statistic for
the above mentioned separability test.

Analogies can also be expected between the proposed
approach and multiple alternative hypotheses testing (Yang
et al. 2013) with respect to definitions of probabilities of
committing different types of errors as well as in the rela-
tions between these probabilities.

6 Numerical examples

To illustrate the proposed approach we use a levelling net-
work analyzed in Knight et al. (2010) (Fig. 2a) and a GPS
network (Fig. 2b). Referring to the first publication gives
opportunity to expand the conclusions reached there.

(a) X, Y
GPS

3
1Y

X

2
(b)

P1 P5 P4

P3P2

y1

y2

y3

y4y5

y6

Fig. 2 Networks used in numerical examples

Example 1 For a network in Fig. 2a, we have

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 1 0
0 −1 0
0 0 1
0 0 −1

−1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

;

CS =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.00 0.80 0.14 −0.59 −0.48 0.04
0.80 1.00 0.00 −0.17 −0.68 −0.30
0.14 0.00 1.00 −0.67 0.25 0.76

−0.59 −0.17 −0.67 1.00 −0.29 −0.76
−0.48 −0.68 0.25 −0.29 1.00 0.57
0.04 −0.30 0.76 −0.76 0.57 1.00

⎤
⎥⎥⎥⎥⎥⎥⎦

To save space we show only the matrix HTC−1
S H and a cor-

relation submatrix for the variables w2 and w3

HTC−1
S H=

⎡
⎢⎢⎢⎢⎢⎣

10.58 −1.06 −0.48 11.54 4.48 5.97
−1.06 0.62 0.28 −1.06 −0.55 −0.91
−0.48 0.28 0.13 −0.48 −0.25 −0.41
11.54 −1.06 −0.48 13.68 5.07 6.46
4.48 −0.55 −0.25 5.07 1.95 2.59
5.97 −0.91 −0.41 6.46 2.59 3.56

⎤
⎥⎥⎥⎥⎥⎦

ρ

[
w2
w3

]
=

[
1 1
1 1

]

The mutually parallel column-vectors (and row-vectors) in
HTC−1

S H are marked in bold. Further results of analysis are
given in Table 1 and Fig. 3.

None of the observations satisfy the reliability criteria
required for outlier-exposing responses. The network con-
tains RUE formed by the observations 2 and 3. Hence,
based on the results of the simulation method we can write
ID2 = ID3 = IDRUE = 0.49. The equal MDB values
for these observations, represent minimal detectable gross
errors that are identifiable as located in the RUE region
of a network, but are unidentifiable within this region, i.e.
ID∗

2/3 = ID∗
3/2 = 0.

It is difficult to find out a relationship between the indices
IDi and internal reliability measures ri or (hii ,wi i ). Except
for observation 5, the indices IDi are not specially differen-
tiated and they represent a low level, slightly exceeding 0.5
for the observation 4.

This level does not ensure a sufficiently reliable identi-
fication of gross errors. This is reflected in the values of
MIDi j,max indices.

Below,we show the effect upon IDi of increasing themag-
nitude of a gross error by applying the multiplying factor
gi >1 [see formula (17) for the observation 1, 5 and 6], i.e.

– obs. 1; g1 = 2, ID1 = 0.63; g1 = 3, ID1 = 0.79;
– obs. 5; g5 = 2, ID5 = 0.36; g5 = 3, ID5 = 0.61;
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Table 1 Results of internal reliability and identifiability analysis for the network 1

Obs σi hii wi i ki Crit. ri MDBi MDBS,i IDi MIDi j,max

1 2.35 0.96 −1.49 1.64 – 10.58 0.72 · √
λ 0.31 · √

λ 0.43 0.24 obs. 6

2 1.97 0.60 −0.42 1.82 – 0.622 2.50 · √
λ 1.27 · √λ 0.49 0.50 obs. 3a

3 0.89 0.01 −0.20 2251 – 0.128 2.50 · √
λ 2.80 · √

λ 0.49 0.50 obs. 2a

4 2.32 1.02 −4.50 4.29 – 13.68 0.63 · √
λ 0.27 · √

λ 0.57 0.18 obs. 1

5 0.45 0.13 −0.29 23.02 – 1.954 0.32 · √
λ 0.72 · √

λ 0.19 0.31 obs. 4

6 1.18 0.27 −0.39 8.12 – 3.558 0.63 · √
λ 0.53 · √

λ 0.50 0.23 obs. 1

	 = 3.00 a Theoretical values

k = 0.0
k
=
1.0

hii

wii
0.5

-1.0

-4.0

-2.0

3

1

4

0.0
1.00.5-0.5 1.5

2
5

6

0.57

0.50 0.49
0.19
0.49

-3.0

outlier-exposing
responses

0.43

Fig. 3 Identifiability indices (IDi ) shown in a (hii ,wi i ) system for Net-
work 1

– obs. 6; g6 = 2, ID6 = 0.67; g6 = 3, ID6 = 0.82.

The correlations ρi j between the w-variables for the obser-
vations not forming a RUE are in absolute values within the
interval [0.36, 0.98], and hence, the values of ID∗

i/j indices
are within [0.64, 0.99] (see Fig. 1).

Example 2 We omit showing the design matrix A (12 × 4)
(with elements 1 and −1), and confine presentation of the
covariance matrix C to the range of values of standard devia-
tions and correlation coefficients, i.e. σ [2.5, 3.2], ρ[−0.24,
0.21].

As we can see in Fig. 4 all the observations satisfy the reli-
ability criteria required for outlier-exposing responses. The
indices IDi represent high values as they all lay in the interval
[0.969, 0.992]. The values of MIDi j,max indices are within
the interval [0.002, 0.023]. This means that identification of a

0.0

-0.1

0.1 k
=
1.0

k
=
0.0

0.2

0.5 1.0

||wii

hii

outlier-exposing
responses

0.973
0.978

0.983

0.973

0.969

0.982
0.978
0.989

0.977

0.992

Fig. 4 Identifiability indices (IDi ) shown in a (hii ,wi i ) system for Net-
work 2

gross error of MDB magnitude in each observation is highly
reliable.

The correlations ρi j between the w-variables being in
absolute values within the interval [0.002, 0.563] are much
smaller than in Network 1. Consequently, the values of ID∗

i/j
indices are much greater (see Fig. 1), i.e. [0.973, 0.996].

The values of ID
∗
i indices are only slightly smaller than

those of IDi , i.e. [0.943, 0.972], which confirms the case
discussed in Sect. 3.2.

7 Concluding remarks

For networks satisfying the response-based reliability criteria
we have a high level of outlier identifiability, which is due to
small correlations between w-variables.

By supplementing the MDB concept with the identifi-
ability index one may evaluate at an a priori analysis the
probability of identifying a gross error of MDB magnitude
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in the first adjustment run. For the observations with small
identifiability indices one may find the magnitude of gross
error, greater than MDB, necessary to ensure a satisfactory
level of identifiability. While setting a certain requirement
for the probability level, e.g. ID ≥ 0.95, as well as for the
level of mis-identification, e.g. MIDi j,max < 0.02, the pro-
posed approach can be used in optimizing networks with
respect to internal reliability. The identifiability index can
also be useful in explaining discrepancies between the MDB
values and the actual results of outlier identification. The
significant discrepancies reported in some papers do not
indicate weaknesses of the MDB concept but are a result
of incorrect treating the magnitudes of actually identified
gross errors as the quantities equivalent to the corresponding
MDBs.

The proposal requires further clarification in terms of the
theoretical basis and testing on a wider range of observation
systems. That would allow one to determine the optimal sam-
ple size for the simulation method and the actual accuracy
of empirical estimates. Also the working program used for
this purpose needs optimization to reduce the operation time.
The relationship between the indices ID∗

i and IDi deserves a
more in-depth analysis.

The similar issue of reliable identification of outliers,
termed as outlier separability (Wang et al. 2012) and (Yang
et al. 2013), slightly touched in this paper, can serve as
future reference for more detailed comparative analysis of
the approach proposed herein.

The question of analogous approach for the case of mul-
tiple outliers is a much more complicated problem and is
planned to be a topic of the next research. In seeking solu-
tion an interesting concept of maximum MDB (Knight et al.
2010) will be taken into account. Also the approach to cor-
relation between multiple outlier detection statistics (i.e. the
use of maximum correlation and global correlation coeffi-
cients) as in (Wang et al. 2012), will play an important role
in shaping the strategy of further research.
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Appendix A

1. Condition for existence of RUE

Let us consider the following w-variables as in (Knight et al.
2010),

– with a gross error �ys,i in the i-th observation:

wi(i) = ẑi(i)
σẑi(i)

; w j (i) = ẑ j (i)
σẑ j (i)

– with a gross error �ys, j in the j-th observation:

wi( j) = ẑi( j)
σẑi( j)

; w j ( j) = ẑ j ( j)
σẑ j ( j)

Applying the formula (10), we get the corresponding
pairs of relationships

wi(i) =
{

HTC−1
S H

}
i∗√{

HTC−1
S H

}
i i

· (eS + �yS(i))

w j (i) =
{

HTC−1
S H

}
j∗√{

HTC−1
S H

}
j j

· (eS + �yS(i))

wi( j) =
{

HTC−1
S H

}
i∗√{

HTC−1
S H

}
i i

· (eS + �yS( j))

w j ( j) =
{

HTC−1
S H

}
j∗√{

HTC−1
S H

}
j j

· (eS + �yS( j))

where {·}i∗, {·} j∗ are the i-th and the j-th row of HTC−1
S H.

Requiring that |wi(i)| = |w j (i)| and |wi( j)| = |w j ( j)|, and
taking into account that thew-variables can be of the same or
opposite signs, we get after simple operations the condition

{
HTC−1

s H
}
i∗ = ±

√{
HTC−1

s H
}
i i√{

HTC−1
s H

}
j j

{
HTC−1

s H
}
j∗ (25)

i.e. the i-th and the j-th row in HTC−1
S H are linearly depen-

dent vectors with positive or negative coefficient.
Applying (25) to pairs of the corresponding elements in

the i-th and the j-th row, we get the following condition for
the i-th and the j-th observation to be a RUE region

√{
HTC−1

s H
}
i i

·
√{

HTC−1
s H

}
j j

=
∣∣∣∣
{

HTC−1
s H

}
i j

∣∣∣∣ (26)

or, equivalently
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{
HTC−1

s H
}
i i

·
{

HTC−1
s H

}
j j

=
{

HTC−1
s H

}2
i j

(27)

The above reasoning can be extended upon several observa-
tions in a network.

It follows immediately from (25), that the networks with
rank (HTC−1

S H) = 1, i.e. where all the rows and columns are
linearly dependent, are as a whole RUE regions, irrespective
of the correlation matrix used.

Correlation of w-variables within RUE is represented by
a submatrix (or a matrix) with non-diagonal elements being
|ρi j | = 1.

2. Condition excluding the existence of RUE

For (hii , wi i ) ∈ SO , i = 1, . . ., n, we have, 0.5 < hii ≤ 1 ∧
0 < ki < 1.

Since

ki = Q2
(i)

h2i i
(for hii �= 0), where Q2

(i) =
n∑

q=1,q �=i

h2qi (28)

we obtain |hqi | ≤ 0.5 for q �= i, i = 1, . . ., n. Hence, for
any pair of observations, e.g. yi , y j , we get

hii · h j j > hi j · h ji . (29)

SinceH · AS = 0, and henceHTC−1
S

H · AS = 0, the inequality
(29) implies that HTC−1

S
H, being of the same rank as H, has

all determinants of the 1st and 2nd order positive, so

{
HTC−1

S
H

}
i i

·
{

HTC−1
S

H
}
j j

>
{

HTC−1
S

H
}2
i j

i, j = 1, . . . , n, i �= j (30)

which contradicts the condition (27) for the existence of RUE
in a network.

Appendix B

Probabilistic tool for a priori analysis of outlier partial
pseudo-identifiability

Let us consider two independent normal variables X1 ∼
N(μ1, σ 2

1), X2 ∼N(μ2, σ 2
2) and the corresponding folded

normal variables |X1| ∼ FN(μ1, σ 2
1), |X2| ∼ FN(μ2, σ 2

2).
The ratio Z = |X1||X2| has distribution Z∼RFN(μ1,μ2, σ 2

1, σ
2
2)

with distribution function F(z), z > 0 (Kim 2006). The
generalization of the approach for dependency case is pre-
sented in (Kim 2014), where the distribution function of
Z ∼ RFN(μ1,μ2, σ 2

1, σ
2
2, ρ) is determined, valid for |ρ| < 1.

Assuming σ 1 = 1, σ 2 = 1 and z = 1, as needed for the
analysis in the present paper, we obtain on the basis of the
above mentioned generalized distribution function a formula
for P(Z < 1) as a function of μ1, μ2, ρ, i.e.

P(Z < 1) = 2L(h′
1,−δ′, ρ′

1) + 2L(h′
2,

′
δ, ρ

′
2)

+�(h′
1) + �(h′

2) − 2 (31)

where

h′
1 = μ1 − μ2√

2(1 − ρ)
; h′

2 = μ1 + μ2√
2(1 + ρ)

; δ′ = μ2;

ρ′
1 =

√
(1 − ρ)√

2
; ρ′

2 =
√

(1 + ρ)√
2

L(a, b, ρ) = P(X > a,Y > b);
X,Y ∼ N (0, 1); ρ (|ρ| < 1)

�(a) = P(X < a); X ∼ N(0, 1); L(a, b, ρ) can be equiva-
lently replaced by �(−a,−b, ρ).

Several properties of the function P(Z < 1) = f (μ1, μ2,

ρ) as in (31) concerning the signs of its arguments, can be
readily proved, e.g.

f (μ1 > 0, μ2 > 0, ρ > 0) = f (μ1 < 0, μ2 < 0, ρ > 0)
f (μ1 > 0, μ2 > 0, ρ < 0) = f (μ1 < 0, μ2 < 0, ρ > 0)

The properties can be helpful in simplifying tables or dia-
grams constructed for the function.

We present a property corresponding to basic formulas
used in identifiability analysis (14), Sect. 3.1, where μ1 > 0
and μ2 is of the same sign as ρ

f (μ1 > 0, μ2 > 0, ρ > 0) = f (μ1 > 0, μ2 < 0, ρ < 0)(32)

We can prove this property by substituting in right-hand side
function of the above equality μ∗

2 = − μ2 and ρ∗ = − ρ

instead of μ2 and ρ respectively, and finally finding that

(h′
1)

∗ = h′
2; (h′

2)
∗ = h′

1; (δ′)∗ = −δ′; (ρ′
1)

∗ = ρ′
2;

(ρ′
2)

∗ = ρ′
1

which are exactly the components of the formula (31) deter-
mining the value of the left-hand side function.

For computing the values of the function P(Z < 1) =
f (μ1, μ2, ρ), a software based on the MATLAB package
was developed.

On the basis of computations we may list some important
properties useful for interpretation of the results of identifi-
ability analysis. To visualize the properties we show a graph
of the function P(Z < 1) = f (μ1, μ2, ρ) for 0 ≤ μ1 ≤ 6,
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Fig. 5 Graph of the function P(Z < 1) for chosen values of parameters

0 ≤ μ2 ≤ 6, ρ = 0.7 (Fig. 5):

– for |μ2| > |μ1| ,we have P(Z < 1) > 0.5; |ρ| < 1

The greater the difference |μ2| − |μ1| , the greater is

P(Z < 1).

– for |μ2| = |μ1| ,we have P(Z < 1) = 0.5; |ρ| < 1

– for |μ2| < |μ1| ,we have P(Z < 1) < 0.5; |ρ| < 1

The greater the difference |μ1| − |μ2| , the smaller is

P(Z < 1).

A specific case, when |μ1| = |μ2|, |ρ| = 1, cannot be
analyzed with the use of formula (31), since the distribution
function of Z ∼ RFN(μ1, μ2, σ

2
1 , σ 2

2 , ρ) is not valid for
|ρ| = 1. In this case we have |X1| = |X2| with probability
P = 1. and hence Z = |X1||X2| = |X1||X1| = 1 (Z becomes a
constant), so P(Z < 1) = 0
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