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Abstract Wepropose a newoptimal controlmodel of product goodwill in a segmented
market where the state variable behaviour is described by a partial differential equation
of the Lotka–Sharp–McKendrick type. In order to maximize the sum of discounted
profits over a finite time horizon, we control the marketing communication activities
which influence the state equation and the boundary condition.Moreover,we introduce
the mathematical representation of heterogeneous electronic word of mouth. Based on
the semigroup approach, we prove the existence and uniqueness of optimal controls.
Using a maximum principle, we describe a numerical algorithm to find the optimal
solution. Finally, we examine several examples on the optimal goodwill model and
discover two types of marketing strategies.
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1 Introduction

In this paper we investigate the mathematical model of the product goodwill. For the
first time in this type of models, we consider segmentation with respect the consumer
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usage experience, moreover we propose the new way of creating goodwill among
potential customers by taking into account electronic word of mouth (eWOM). We
are interested in goodwill because it is one of the most important phenomena in the
context of increasing competition in global markets. It refers to the difference between
the price paid by the buyer for the company and the book value of the assets of that
company. This value may be created by the positive experiences of its clients, and
may be improved by investment in marketing instruments such as advertising or other
promotional tools. Thus goodwill translates to an enhancement in the competitiveness
of the company and to the acquisition of future earning power Cañibano et al. (2000).
Many times it can be observed that a company making a loss is bought at a high price
because of its well-known brands. Some real examples of this type of merger and
acquisition may be found in Kapferer (2012), p. 18. Although many researchers have
studied this phenomenon, there are still some gaps that prevent a full understanding
of the nature of the dynamics of goodwill.

Modelling is one way to explore the properties of company goodwill. Nerlove
and Arrow in 1962 took the first steps in modelling the concept of goodwill. They
interpreted goodwill as the part of the demand for products that is created by current
and past advertising efforts, see Nerlove and Arrow (1962), and assumed that the
stock of goodwill depreciates over time at a constant rate and depends positively on
the advertising effort. They described the dynamics of goodwill in a non-segmented
market by an ordinary differential equation.

The model proposed by Nerlove and Arrow has been modified and analysed by
many scientists, see eg. Fruchter et al. (2006) and Huang et al. (2012). Recently they
have taken into account dynamic games, see Jørgensen and Zaccour (2014) and Lam-
bertini (2014), or market segmentation (Buratto et al. 2006). In goodwill models with
segmented market it is often assumed that the firm sells one product in infinitely many
segments, indicated by the age of the customers a, and the demand in segment a and
time t depends on the level G(t, a) of goodwill for this product. This assumption
results in the representation of the goodwill dynamics by a first-order hyperbolic par-
tial differential equation, see Grosset and Viscolani (2005) and Faggian and Grosset
(2013). The same state equation but with a different interpretation is proposed by
Barucci and Gozzi (1999). They consider also a goodwill model with market seg-
mentation and describe a monopolistic firm selling infinitely many products with new
goods continuously launched onto the market.

The model proposed in this paper has few important modifications which may
improve the description and explanation of complex real-world phenomena. First, we
consider a new way of market segmentation which is based on customer experience in
using a product. The usage experience reflects a consumer’s perceptions, responses,
attitudes, and emotions about using a particular product and has a strong influence
over purchasing decisions. This observation is confirmed by the usage dominance
theory described in Deighton et al. (1994). As far as we know, this type of market
segmentation has not previously been included in goodwill models.

Moreover, since the empirical studies summarized by Bagwell (2007) indicate the
existence of decreasing returns to marketing efforts, we include this observation in
the new model and we assume a non-linear relationship between marketing commu-
nication efforts and goodwill. A similar assumption was used byWeber (2005) and by
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Mosca and Viscolani (2004) in a goodwill model expressed by an ordinary differential
equation. In addition, we have expanded the existing models by allowing the depre-
ciation of goodwill to be non-constant, but rather heterogeneous with respect to the
usage experience of the product. The main difference between the existing models and
that presented in this paper is the process of building the goodwill among consumers
with no usage experience. We assume that goodwill on the part of new consumers
depends on offensive marketing instruments, and on eWOM communication which
can be amplified by defensive marketing efforts aimed at existing consumers. Con-
sumers consider eWOM to be credible, reliable and relevant communication channel
(Gruen et al. 2006). Word of mouth is taken into account in modelling the sales of
many products (for example Monahan 1984), but so far, have not yet been taken into
account in models describing the dynamics of goodwill involving firms operating in
a segmented market. Our idea of using eWOM in modelling goodwill is based on the
empirical evidence, see, for example, Bruce et al. (2012) and Agliari et al. (2010),
in which the authors claim that consumer to consumer communication have a strong
influence on the level of goodwill.

The goodwill control problem analysed in this paper is interpreted as an optimal
double control problem. Dynamics of the state variable is described by a partial differ-
ential equation of Lotka–Sharp–McKendrick type1. Our aim is to choose marketing
instruments that maximize the sum of the discounted profits in the finite time hori-
zon. A general class of optimal control models with heterogeneous state variables
which include age structured systems is introduced in Veliov (2008) and the exis-
tence and uniqueness of an optimal solution is proved. In our goodwill equation, the
dependence on the controls is not Lipschitz continuous, hence the existence result
from Veliov (2008) can not be applied directly. Following the semigroup approach,
see Pazy (1983), Prato and Iannelli (1994) and Lasiecka and Triggiani (2000), the
existence and uniqueness of the state equation is proven (see Theorem 4 in “Appendix
1”). The existence of a unique optimal solution is contained in “Appendix 2” (The-
orem 1). Proposition 5 in “Appendix 1” shows that the semigroup-based generalised
mild solution (see Definition 3) is the solution on the characteristic lines introduced in
Feichtinger et al. (2003), Definition 1. Hencewe are able to use themaximumprinciple
from Feichtinger et al. (2003) to construct a numerical solution to the optimal control
problem. Finally, using the new numerical algorithm we examine several examples on
the optimal goodwill model and discover two types of marketing strategies: ‘support-
ive’ and ‘strengthening’.

The remainder of this paper is organized as follows. Section 2 presents the new
model of product goodwill and discusses the economic background of the new idea of
market segmentation based on usage experience. Moreover, a mathematical descrip-
tion of heterogeneous eWOM communication is introduced. Section 3 establishes
the existence and uniqueness of an optimal solution to the goodwill model. Further-
more, in Sect. 3.1 the necessary optimality conditions are derived. Section 4 presents
the results of simulations of the optimal goodwill model obtained by means of the
numerical algorithm from Sect. 3.2.

1 Known also as the Von Foerster equation.
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2 Optimal goodwill control problem with eWOM recommendations

We shall consider a company in a market with a monopolistic structure divided into
segments by the consumer usage experience e ∈ [0, 1]. More precisely, the variable
e indicates the time spent using the product. The segment e = 0 includes consumers
who have already purchased the product. Themaximal usage experience is normalized
to the value 1. This means that consumers in segment e = 1 will not use the product in
the next periods. For example a service of mobile operators can be used by consumers
for a whole lifetime starting from childhood, hence for these goods the unit of time
can be greater than 70 years. On the other hand there are many products which are
used only for a certain period of life, eg nappies, where the time unit is about 4 years.

In the previous models it is assumed that goodwill in created only by advertising
efforts. In the paper Heiman et al. (2001) it is observed that goodwill is built not only
through advertising efforts but also through other promotional mechanism such as
sampling. This idea is also consistent with the Spremann model (1985), where the
author considers two types of firm’s image: goodwill and reputation. The former is
created fromadvertisingwhereas the later is built through price promotion. Both stocks
of reputation and goodwill influence the product demand.According to thewell known
fourC’s classification byLauterborn (1990) themarketing communication is one of the
business tools used to create a dialogue with the customers and it includes advertising,
public relations, sales organisation and sales promotion. One of the basic objectives
of marketing communication is to increase demand. Taking into account the above
observations we extend the classical Nerlove-Arrow goodwill model and assume that
goodwill is created by all kinds of current and past marketing communication efforts.

We assume that the company operates in finite horizon T > 0. Moreover, in each
segment e and at each moment of time t ∈ [0, T ] we consider the product goodwill
G(t, e) defined as a part of demand which comes from current and past marketing
communication activities. In order to formalize the concept of eWOM recommen-
dation, we assume that G(t, e) is equal to the number of consumers who have been
using the product for e ∈ [0, 1] units of time and they continue buying the product
at time t ≥ 0 as the effect of marketing communication. Since the product demand
can be reasonably well approximated by the number of consumers, our definition of
product goodwill reflects the Nerlove and Arrow (1962) seminal statement. There are
manymethods of measuring goodwill. For instance in Heiman et al. (2001) the authors
define goodwill as the average likelihood of purchasing a product, which is a similar
measure of the phenomenon to our proposition.

The company is able to stimulate different levels of product goodwill by market-
ing communication tools. The company instruments (control variables) u(t, e) and
u0(t) represent the intensiveness of defensive and offensive marketing efforts at time
t directed to consumer segment e, and to new consumers, respectively. The offensive
marketing u0 is identified with every marketing activity that attracts new consumers.
Similar to Martín-Herrán et al. (2012) we define the defensive marketing strategy u as
all marketing activities which are focused on retaining existing consumers and foster-
ing brand loyalty. Bothmarketing strategies make a distinction between the consumers
with different usage experience. This phenomenon is commonly used by service com-
panies. For example mobile phone providers offer clients discounts depending on their
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usage experience. This information is transmitted by marketing communication chan-
nels such as direct advertising. In our model, we assume a linear and non-linear effect
of marketing communication efforts on goodwill, which is reflected in the parameter
ρ = 1 and ρ ∈ (0, 1), respectively. Therefore, λρuρ(t, e) and λρuρ

0 (t) positively
influence the product goodwill G(t, e) in segment e and the level of product goodwill
G(t, 0) of new consumers, respectively. Here λρ is the effectiveness of marketing
channel. Furthermore, there is a natural depreciation rate of goodwill δ(e) ≥ 0, differ-
ent for each consumer segment e. This expresses a situation in which the depreciation
rate depends on the time spent using the product, and it is natural for an experience
product, see Nelson (1974). For this type of goods during the use of the product, con-
sumers learn about its features and they may update their judgement about it. This
results in changes in the depreciation rate of the goodwill. Therefore, the dynamics of
the goodwill is governed by the following PDE:

∂G(t, e)

∂t
= −∂G(t, e)

∂e
− δ(e)G(t, e) + λρuρ(t, e). (1)

The main novelty in the presented model of goodwill is in the construction of
goodwill in the segment of new consumers. In each time t we assume that the value
of goodwill in the segment of new consumers G(t, 0) is influenced by the positive
eWOM recommendation and defensive and offensive marketing efforts. Given the
distinct characteristic of Internet communication, eWOM is defined in Hennig-Thurau
et al. (2004) as “any positive or negative statement made by potential, actual, or former
customers about a product or company,which ismade available to amultitude of people
and institutions via the Internet”. A number of empirical studies have concluded that
eWOMare a credible source of information, see Andreassen and Streukens (2009) and
Gruen et al. (2006), in particular for consumers without any experience in using the
product. Therefore consumer recommendations reduce the risk of purchase decisions
and facilitate consumer choice, see Trusov et al. (2009).

For reasons of clarity, let N (t, e) represent consumerswho at time t buy the good for
the first time and their purchase propensity stems from the eWOM recommendations
coming from segment e or from defensive marketing campaigns directed to segment e.
We distinguish two disjoint groups N1(t, e) and N2(t, e) of new consumers such that
N (t, e) = N1(t, e) + N2(t, e). The first group N1(t, e) includes new consumers who
want to buy the product influenced by eWOM recommendations given by consumers
with usage experience e. The size of N1(t, e) depends on the amount of existing
consumers and the effectiveness of eWOM in segment e, thus it is equal to

N1(t, e) = R(e)G(t, e). (2)

Here R(e) reflects the share of consumers in segment e who assess positively the
product attributes and are willing to effectively recommend it, thus R(e) is a measure
of the effectiveness of consumer recommendations. Since eWOM recommendations
are closely connected with the product quality, which is assumed to be constant in the
decision making horizon, R(e) is time homogeneous. On the other hand, usually the
quality of the product can only be recognised after some amount of time spent using
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the product, see Godes and Mayzlin (2004), therefore, R(e), is heterogeneous with
respect to usage experience e.

Defensive marketing efforts u(t, e) influence not only the level of goodwill G(t, e)
but also the strength of eWOM recommendations in segment e by reminding con-
sumers of the reasons for a positive judgement of the product, and thus encouraging
them to share their opinion about the product with potential consumers (Keller 2009).
In conclusion, defensive marketing efforts u(t, e) act as a reinforcement of the effec-
tiveness of eWOM recommendations in segment e. As a result, a new group of people
N2(t, e) buy the product, which can be calculated by

N2(t, e) = R(e)λρuρ(t, e), (3)

where λρuρ(t, e) is the effectiveness of defensive marketing in consumer generation
e at time t .

Finally, by (2)–(3)we obtain that the number of new consumerswho buy the product
at time t as a result of eWOM recommendations is equal to

∫ 1

0
N (t, e)de =

∫ 1

0
(N1(t, e) + N2(t, e))de

=
∫ 1

0
R(e)

(
G(t, e) + λρuρ(t, e)

)
de. (4)

The value of goodwill G(t, 0) in the segment of new consumers is also affected by
offensivemarketing instruments u0(t) directed at consumerswith no usage experience.
Hence, adding the effect of eWOM and defensive and offensive marketing activities
(cf. (4)), we obtain

G(t, 0) =
∫ 1

0
R(e)

(
G(t, e) + λρuρ(t, e)

)
de + λρuρ

0 (t). (5)

From the above considerations the dynamics of goodwill is given by

⎧⎪⎨
⎪⎩

∂G(t,e)
∂t + ∂G(t,e)

∂e + δ(e)G(t, e) = λρuρ(t, e),

G(t, 0) = ∫ 1
0 R(e) (G(t, e) + λρuρ(t, e)) de + λρuρ

0 (t),
G(0, e) = G0(e),

(6)

where G0(e) ≥ 0 is the initial stock of goodwill in segment e.

Remark 1 Equation (6) is known in the literature as the Lotka–Sharpe–McKendrick
and it provides a framework for the mathematical modelling of many other real world
phenomena. The most popular application of the equation is a description of age-
structured population dynamicswith a boundary condition describing the reproduction
process of the population. Population dynamics with an appropriate goal functional
is of interest for many biological issues, such as harvesting and birth control, see
Chan and Zhu (1989), Prato and Iannelli (1994), Park et al. (1998), Anita (2000) and
references therein.
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The product goodwill can be only accumulated by marketing communication, see
(6), therefore if we stop investing in marketing activities (u0 = u = 0), then in each
market segment the product goodwill G(t, e) should decrease to zero. Therefore, we
assume that

Assumption 1 Let the function R : [0, 1] → [0,∞) belongs to L∞(0, 1) and let
δ : [0, 1] → [0, 1] be a measurable function such that

∫ 1

0
R(e)e− ∫ e

0 δ(s)dsde < 1. (7)

We assume similarly as in Nerlove and Arrow (1962) that the demand function q
is of the form

q(t, e) = p(t, e)−εpG(t, e)εg , (8)

where p(t, e) is the price of the product for consumers in segment e, −εp < −1
is the price elasticity of demand, and εg is the goodwill elasticity of demand. Let
C(t, e) = C(q(t, e)) be the total operating cost function at time t in segment e and
the optimal price p∗(t, e) be the solution to the problem:

max
p(t,e)

(p(t, e)q(t, e) − C(q)). (9)

Then

p∗(t, e) = dC

dq
(q(t, e)) · m, (10)

where m = εp
εp−1 is a monopolistic mark-up. We assume that C(q) = qα + c f , where

c f > 0 is fixed cost, α ≥ 1 is the elasticity of variable cost with respect to output.
Thus, based on (8) and (10) the optimal price is given by

p∗(t, e) = (m · α)
1

1+εp (α−1) G(t, e)
εg (α−1)

1+εp (α−1) . (11)

Observe that the optimal production q∗(t, e) which meets the demand in consumer
segment e is given by

q∗(t, e) = p∗(t, e)−εpG(t, e)εg = KG(t, e)
εg

1+εp (α−1) , (12)

where K = (m · α)
−εp

1+εp (α−1) .
We assume similarly to Grosset and Viscolani (2005) that the instantaneous costs

of defensive and offensive marketing instruments are given by

CM (u(t, e)) = β

2
u2(t, e), CM (u0(t)) = β

2
u20(t), (13)
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respectively, where β
2 > 0 is the unit price of marketing activities. Therefore, from

(10) to (13), it follows that the firm’s profit at time t from market segment e is

Π(t, e) = p∗(t, e) · q∗(t, e) − C(q∗(t, e)) − CM (u(t, e)) − CM (u0(t))

= KΠGγ (t, e) − c f − β

2
(u2(t, e) + u20(t)) (14)

for a.e. (t, e) ∈ [0, T ]× (0, 1], where KΠ = K
1− 1

εp − K α and γ = εgα

1+εp(α−1) . In the
sequel, we assume that KΠ > 0. The firm wants to maximise the sum of discounted
profits in the finite horizon T . Hence the goal functional for the firm takes the form

J (G, u0, u) =
∫ 1

0

∫ T

0
e−r tΠ(t, e)dtde

=
∫ 1

0

∫ T

0
e−r t

(
KΠGγ (t, e) − β

2
(u2(t, e) + u20(t)) − c f

)
dtde,

(15)

where G is a solution to (6), and r > 0 is the force of interest.
In conclusion the company faces the goodwill control problem of the form:

max
(u0,u)∈U0,ad×Uad

J (G, u0, u) subject to (6), (16)

where for themaximalmarketing communication efforts (possibly infinite) I ∈ (0,∞]
we denote by

Uad = {u ∈ L∞((0, T ) × (0, 1)) : 0 ≤ u(t, e) ≤ I for a.e. (t, e) ∈ [0, T ] × [0, 1]}

and

U0,ad = {u0 ∈ L∞(0, T ) : 0 ≤ u0(t) ≤ I for a.e. t ∈ [0, T ]}

the sets of admissible controls.
Theorem 4 in “Appendix 1” shows that for each pair of admissible controls there

exists a generalised mild solution to (6) (see Definition 3 from “Appendix 1”).

3 The optimal solution to the goodwill control problem

Definition 1 The triple (G∗, u∗
0, u

∗) is an optimal solution to the goodwill control
problem (16) if G∗ is a generalised mild solution (see Definition 3 in “Appendix 1”)
to (6) with (u∗

0, u
∗) ∈ U0,ad ×Uad and

J (G∗, u∗
0, u

∗) ≥ J (G, u0, u)

holds for any admissible controls (u0, u) ∈ U0,ad ×Uad and G satisfying (6).
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Theorem 1 Assume that (7) holds and let G0 ∈ L2(0, 1) be an almost everywhere
non-negative function. The optimal control problem (16) admits a unique solution.

The existence of an optimal solution to (16) is proven using the classical results for
general extreme problems in a Hilbert space H . Details are presented in “Appendix
2”.

3.1 Necessary optimality conditions

In this section we assume that (7) hold and G0 ∈ L∞(0, 1) is non-negative a.e. Then
by Remark 7 in “Appendix 1” and Theorem 1 there exists an unique optimal solution
(G∗, u∗

0, u
∗) ∈ L∞(0, T ; L∞(0, 1))∩C(0, T ; L2(0, 1))×U0,ad×Uad to the goodwill

control problem (16). Furthermore, from Proposition 2 in Feichtinger et al. (2003) it
follows that there exists a unique solution ξ : [0, T ] × [0, 1] → R to the adjoint
system:

⎧⎨
⎩

∂ξ(t,e)
∂t + ∂ξ(t,e)

∂e = KΠe−r tγ (G∗(t, e))γ−1 + ξ(t, e)δ(e) − ξ(t, 0)R(e),
ξ(T, e) = 0,
ξ(t, 1) = 0.

(17)

We follow Feichtinger et al. (2003) in defining theHamiltonian associatedwith bound-
ary condition

Hb(t, u0) = ξ(t, 0)

(∫ 1

0
R(e)

(
G∗(t, e) + λρ

(
u∗(t, e)

)ρ)
de + λρuρ

0

)

−
∫ 1

0
e−r t

(
KΠ(G∗(t, e))γ − β

2
(u∗(t, e))2

)
de + e−r t β

2
u20

for a.e. t ∈ [0, T ] and every u0 ∈ [0, I ], and the distributed Hamiltonian

H(t, e, u) = e−r t
(

β

2
u2 + β

2
(u∗

0)
2(t) + C f − KΠ(G∗(t, e))γ

)

+ ξ(t, e)
(−δ(e)G∗(t, e) + λρuρ

)
+ ξ(t, 0)R(e)

(
G∗(t, e) + λρuρ

)

for a.e. (t, e) ∈ [0, T ] × [0, 1] and every u ∈ [0, I ].
Based on maximum principle introduced in Feichtinger et al. (2003) the optimal

solution (16) satisfies

u∗
0(t)=

⎧⎪⎪⎨
⎪⎪⎩

0 for ξ(t, 0)>0,(
−ρλρ

β
ertξ(t, 0)

) 1
2−ρ

for ξ(t, 0) ∈
[
− β

ρλρ e−r t I 2−ρ, 0
]
,

I for ξ(t, 0)<− β
ρλρ e−r t I 2−ρ

(18)
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and

u∗(t, e) =

⎧⎪⎪⎨
⎪⎪⎩

0 for R(e)ξ(t, 0) + ξ(t, e)>0,(
− ρλρ

β
ert (ξ(t, e) + R(e)ξ(t, 0))

) 1
2−ρ for R(e)ξ(t, 0)+ξ(t, e)∈

[
− β

ρλρ e−r t I 2−ρ, 0
]
,

I for R(e)ξ(t, 0)+ξ(t, e)<− β
ρλρ e−r t I 2−ρ

(19)

for a.e. (t, e) ∈ [0, T ] × [0, 1].
Summarizing the above considerations, the optimal triple (G∗, u∗

0, u
∗) is the solu-

tion of the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂G∗(t,e)
∂t + ∂G∗(t,e)

∂e + δ(e)G∗(t, e) = λρ(u∗(t, e))ρ,

G∗(t, 0) = ∫ 1
0 R(e) (G∗(t, e) + λρ(u∗(t, e))ρ) de + λρ(u∗

0(t))
ρ,

G∗(0, e) = G0(e),
∂ξ(t,e)

∂t + ∂ξ(t,e)
∂e = KΠe−r tγ (G∗(t, e))γ−1 + ξ(t, e)δ(e) − ξ(t, 0)R(e),

ξ(T, e) = 0,
ξ(t, 1) = 0,

(20)

where u∗
0, u

∗ are given by (18) and (19).

3.2 Numerical algorithm

The system of equations (20) does not possess an explicit solution. Therefore, in order
to analyse the properties of optimal trajectories, we describe an algorithm to solve
(20) numerically. For this purpose we apply well-known approach in the numerical
analysis of PDEs - so-called method of lines (MOL) (cf. Kamont 1999; Schiesser and
Griffiths 2009). In the first step we use a finite difference approximation to discretize
the space variable e on a selected space mesh. Thus, let {e0 = 0, e1, e2, . . . , eN = 1}
be uniform grid of the consumers’ segments and Δe = Δei = ei − ei−1 be the
diameter of this division. In the segment ei for i = 0, 1, . . . , N we set up the notation:
G∗

i (t) = G∗(t, ei ), ξi (t) = ξ(t, ei ), Ri = R(ei ), δi = δ(ei ), u∗
i (t) = u∗(t, ei ).

Moreover, we apply the composite trapezoidal rule for the approximation of the
definite integral (Gautschi 1997, p. 153)

∫ 1

0

(
R(e)G∗(t, e) + (λu∗(t, e))ρ

)
de ≈ Δe

(
1

2
f1(t) +

N−1∑
i=2

fi (t) + 1

2
fN (t)

)
,

where

fi (t) = Ri
(
G∗

i (t) + (
λu∗

i (t)
)ρ)

for i = 1, . . . , N ,
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and the explicit and the implicit Euler schemes as the approximations of derivatives2:

∂G∗(t, ei )
∂e

= G∗
i (t) − G∗

i−1(t)

Δe
, for i ≈ 1, 2, . . . , N ,

∂ξ(t, ei )

∂e
= ξi+1(t) − ξi (t)

Δe
, for i ≈ 0, 1, . . . , N − 1.

Therefore, the system (20) is transformed to the system of 2N ordinary differential
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG∗
i (t)
dt = −G∗

i (t)
(
δi + 1

Δa

)
+ 1

Δa G
∗
i−1(t) + (

λu∗
i (t)

)ρ
, i = 1, . . . , N ,

G∗
0(t) = Δa

(
1
2 f1(t) +

N−1∑
i=2

fi (t) + 1
2 fN (t)

)
+ (

λu∗
0(t)

)ρ
,

G∗
i (0) = G∗

0,i , i = 0, . . . , N ,

dξi (t)
dt = KΠ e−r tγ (G∗

i (t))
γ−1 − ξ0(t)Ri + ξi (t)

(
δi + 1

Δa

)
− 1

Δa ξi+1(t), i = 1, . . . , N − 1,

ξN (t) = 0,
ξi (T ) = 0, i = 0, . . . , N − 1,
fi (t) = Ri

(
G∗
i (t) + (

λu∗
i (t)

)ρ)
i = 0, . . . , N ,

(21)

where the controls u0, u∗
i with i = 1, . . . , N are of the forms

u∗
0(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for ξ0(t) > 0,(
−ρλρ

β
ertξ0(t)

) 1
2−ρ

for ξ0(t) ∈
[
−β

ρ
e−r t I 2−ρ, 0

]
,

I for ξ0(t) < −β
ρ
e−r t I 2−ρ

and

u∗
i (t)=

⎧⎪⎪⎨
⎪⎪⎩

0 for Riξ0(t)+ξi (t)>0,(
−λρρ

β
ert (ξi (t)+Riξ0(t))

) 1
2−ρ

for Riξ0(t)+ξi (t) ∈
[
−β

ρ
e−r t I 2−ρ, 0

]
,

I for Riξ0(t)+ξi (t)<−β
ρ
e−r t I 2−ρ,

respectively. The system (21) is a non-linear boundary value problem (BVP) and it
can be solved with the Matlab solver bvp5c.

The challenge with implementation of the Matlab solver bvp5c is providing an
initial approximation to the solution i.e. guess function such that bvp5c solver leads to
convergence, see Shampine et al. (2003). Therefore, we apply the iterative procedure
for solving the system (21). At the beginning, we establish a very sparse mesh for
space division and based on the polynomial interpolation with respect to the initial
condition in (21) we obtain first guess function and then, using bvp5c procedure we
find the initial solution to (21). Next, we increase the division of space and find a
new guess function based on polynomial interpolation of the initial solution to (21)

2 Note that instead of Euler’s discretization schema one may also use higher-order Runge-Kutta integration
methods.
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and using it we solve the system (21) again. This scheme is repeated until we obtain
a sufficient degree of accuracy of the solutions, i.e. the next increase in number of
spatial grid points causes no significant change in a solution.

The analysis of convergence of some numerical MOL schemes can be found in Ver-
wer and Sanz-Serna (1984) and Kamont (1999), but the convergence of the solutions
of (21) to the solution of PDEs (20) is still an open problem.

4 Illustrative examples of the goodwill model

In this section, we verify the validity and practicability of the results from Sect. 3.
Therefore, we find optimal defensive and offensive marketing strategies and the cor-
responding optimal trajectories of goodwill. In particular, we draw attention to the
impact of different values of the goodwill elasticity of demand (εg) and the parameter
of the marketing response function (ρ) on the optimal solution and the level of the
company profit.We consider an experience good. Hence the consumers learn about the
attributes of the product after using it for some time, see Nelson (1974). Moreover, we
assume that the product is low conformance quality and the longer consumers use it, the
lower the proportion of them evaluate it positively. Therefore, we assume that the rate
of eWOM recommendation R(e) is decreasing with respect to a segment e and it takes
the form R(e) = 0.48 − 0.12

√
e. The assumption causes also that the depreciation

rate of goodwill is increasing and it takes the form: δ(e) = 0.8− 0.4
1−exp(−1) exp(−e). It

reflects the fact that as time goes by, more and more consumers might become disap-
pointed about the product’s functionality. Different values of the goodwill elasticity of
demand εg are related to the consumer response to marketing communication efforts.
A low goodwill elasticity of demand may occur in a situation where the consumer
has commitments which block the use of a substitute product. Therefore, despite the
fact that marketing activities have convinced the consumer to use another product,
the consumer is only able to purchase an additional part of the service. Thus, their
contribution to demand is relatively small. A good example is that of mobile opera-
tors, where post-paid service requires the consumers to sign a contract. By contrast,
pre-paid customers do not have any obligation to the mobile operator and may change
firms at any time. Therefore, the goodwill elasticity of demand for this group of users
is high. In addition, we examine how the non-linear shape of the marketing response
function in the goodwill equation affects the optimal defensive and offensive mar-
keting strategies, optimal goodwill path, and the firm’s profit. For these reasons, we
analyse the linear ρ = 1 and concave-downward ρ = 0.5 responses of marketing
instruments. Besides, we assume that the rate of interest r is equal to 2.8%, the length
of the product life cycle T = 1, the unit advertising cost β = 0.000001, and the
parameter KΠ = 0.34. The initial level of goodwill is G0(e) = 100.

The results of the simulations are shown in Figs. 1, 2, 3 and 4. Each graphical
presentation consist of the following three plots (from left to right): a contour plot
of the optimal defensive marketing strategy, a contour plot of the optimal goodwill
paths, a plot of the optimal offensive marketing strategy. We find two types of optimal
marketing strategies: we will refer to them as ‘supportive’ and ‘strengthening’. The
first maintains the level of goodwill at most at its initial level, while the latter causes
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Fig. 1 The optimal marketing strategies u∗ and u∗
0, and optimal goodwill path G∗ in the experiment for

εg = 0.2 and ρ = 0.5

Fig. 2 The optimal marketing strategies u∗ and u∗
0, and optimal goodwill path G∗ in the experiment for

εg = 0.2 and ρ = 1

Fig. 3 The optimal marketing strategies u∗ and u∗
0, and optimal goodwill path G∗ in the experiment for

εg = 1 and ρ = 0.5

Fig. 4 The optimal marketing strategies u∗ and u∗
0, and optimal goodwill path G∗ in the experiment for

εg = 1 and ρ = 1
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a significant increase in the level of goodwill from its initial value. Different types
of optimal marketing strategies are responsible for different shapes of the associated
optimal goodwill paths. The optimal paths of product goodwill G∗ for a strengthening
strategy reaches a maximum value for segments of consumers with a little experience
and these values spread over time to the segments of consumers with long experience
(see Fig. 4). Whereas for the second type, the maximum value of G∗ is achieved in
all segments at the beginning of the product life cycle and then decreases, moreover,
the rate of decline is the greatest among consumers with a little usage experience (see
Figs. 1, 2, 3). Furthermore, themaximum values of optimal offensivemarketing efforts
are smaller by 25% for ρ = 0.5 and by 50% for ρ = 1 than the maximum values of
optimal defensive efforts (cf. Table 1).

For the low value of goodwill elasticity of demand (εg = 0.2) we recognize that
all optimal marketing strategies are supportive (see Figs. 1, 2). One may observe
that the rate of decline of goodwill is lower for larger value of parameter ρ. More
precisely, at the end of the product life cycle the mean value of optimal goodwill
path for model with ρ = 0.5 decreases by 70% of its initial value (cf. Table 1),
whereas for ρ = 1 we observe 30% decline in the average level of product goodwill.
Moreover, in eachmarket segment e onemay observe two shapes of optimalmarketing
strategies: for ρ = 0.5 we have parabolic shape with a maximum (see Fig. 1) and for
ρ = 1 we receive decreasing concave shape (see Fig. 2). Strictly speaking, a non-
linear marketing response function in the goodwill model results that the maximum
defensive marketing efforts occur much later. However, the maximum level of optimal
strategies with a parabolic shape is more than three times smaller than for the strategy
with a decreasing concave shape.

For the high value of goodwill elasticity of demand (εg = 1) we observe both
supportive and strengthening marketing strategies (see Figs. 3, 4). The differences
between linear and non-linear models for εg = 1 are more striking. The strengthening
policy occurs in the experiment for a linear marketing response function, ρ = 1 (see
Fig. 4). It causes that the optimal goodwill path reaches level of 590, which is almost
six times bigger than its initial value. Furthermore, the average goodwill at the end of
the product life cycle increases four times. As for the model with supportive strategy
(ρ = 0.5) we observe a four-fold average decrease in goodwill at the end of the time
horizon.

In the experiments presented on Figs. 3 and 4 the curves of optimal marketing com-
munication efforts posses two shapes depending on the marketing response function.
Supportive strategies, u∗ and u∗

0 have a concave decreasing shape in each market seg-
ment (see Fig. 3). Moreover, their maximum level is achieved at the beginning of the
product life cycle and for consumers with little usage experience. For the linear model
(see Fig. 4) marketing strategies change shape into a serpentine, piecewise linear. In
comparison with the non-linear model the greatest values of strengthening defensive
and offensive polices are nearly seven and six times larger, respectively (see Table 1).

Finally, we compare financial consequences of investments in defensive and offen-
sive marketing communication efforts. They are presented in Table 1.

The ratio ΔJ
J0

is a measure of the benefit from investments in marketing and is equal
to the percentage change of the company profits caused by introducing the optimal
marketing polices. Our experiments confirm that a low level of goodwill elasticity of
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Table 1 The essential values for optimal solutions: J0 is the company profit with no marketing investment,
ΔJ
J0

= J−J0
J0

, maxG∗—the maximal value of goodwill G∗, mean G∗
T—the mean value of goodwill G∗ at

final time T

εg ρ ΔJ
J0

(%) max u∗ max u∗
0 maxG∗ Mean G∗

T

0.2 0.5 1 5 4 100 30

0.2 1 3 19 13 103 63

1 0.5 7 34 27 100 38

1 1 92 236 159 590 400

demand causes a small percentage increase in the company profits ΔJ
J0

for both values
of parameter ρ. In case of a high goodwill elasticity of demand the company benefit
form marketing investments is higher compared to the previous experiments and for
the linear marketing response function ΔJ

J0
reaches 92%.

The above analysis highlights the importance of eWOM and the levels of good-
will elasticity of demand in creating an optimal defensive and offensive marketing
campaign. Moreover, the non-linear effect of marketing communication efforts has a
strong impact on optimal goodwill path in every market segment. Finally, conducted
experiments have confirmed that the defensive and offensive marketing strategies have
different magnitudes and it should be taken into account by managers.
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Appendix 1: Existence and uniqueness of the solution to the goodwill
equation

In order to prove existence and uniqueness of the solution to (6) we transform this
equation into a PDE with homogeneous boundary conditions (26) and then use the
semigroup approach to find a generalised mild solution.

Let

w(t) =
∫ 1

0
R(e)λρuρ(t, e)de + λρuρ

0 (t), t ∈ [0, T ] (22)

denote the term with controls from the boundary condition (5).

Remark 2 If (u0, u) ∈ U0,ad × Uad , then the function w : [0, T ] → [0,∞) belongs
to L∞(0, T ).
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Denote

D(e) = e− ∫ e
0 δ(s)ds, e ∈ [0, 1] (23)

the future value in time e of 1 unit of goodwill in segment of new consumers.Moreover,
let

Q(t, e) = G(t, e) − g(t, e), (t, e) ∈ [0, T ] × [0, 1] a.e., (24)

where

g(t, e) = μw(t)D(e), μ = 1

1 − ∫ 1
0 R(e)D(e)de

> 1. (25)

Theorem 2 Assume (7) holds and u ∈ Uad, u0 ∈ U0,ad are positive-valued, differen-
tiable functions such that ∂u

∂t and
du0
dt are continuous. Moreover, let δ be a continuous

function. Then, G is a classical solution3 to (6) if and only if Q, given by (24), belongs
to C1 ([0, T ] × [0, 1]) and satisfies the following equation

⎧⎪⎨
⎪⎩

∂Q(t,e)
∂t + ∂Q(t,e)

∂e = −δ(e)Q(t, e) + λρuρ(t, e) − μD(e)w′(t),
Q(t, 0) = ∫ 1

0 R(e)Q(t, e)de,
Q(0, e) = G0(e) − μw(0)D(e).

(26)

Proof Let G be a classical solution to (6). Then, the assumptions on controls u, u0
guarantee that there exists continuous derivative w′. By (24), (25) and (6) we obtain

∂Q(t, e)

∂t
+ ∂Q(t, e)

∂e
= −δ(e)Q(t, e) + λρuρ(t, e) − μD(e)w′(t)

for all (t, e) ∈ [0, T ]× [0, 1]. Moreover, for all e ∈ [0, 1] from (24) and (25) we have
the initial condition

Q(0, e) = G0(e) − μw(0)D(e).

By (24), (25) and (5) we have the boundary condition

Q(t, 0) =
∫ 1

0
R(e)Q(t, e)de +

∫ 1

0
R(e)g(t, e)de − μw(t) + w(t)

=
∫ 1

0
R(e)Q(t, e)de + w(t)

(
μ

(∫ 1

0
R(e)D(e)de − 1

)
+ 1

)

=
∫ 1

0
R(e)Q(t, e)de

3 A function G : [0, T ] × [0, 1] → R is called a classical solution to (6) if G ∈ C1 ([0, T ] × [0, 1]) and
satisfies the Eq. (6) for all (t, e) ∈ [0, T ] × [0, 1].
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for all t ∈ [0, T ]. Similarly, one can prove the ”if” implication. �


5.1 The goodwill equation as a homogeneous Cauchy problem in a Hilbert space

Since we want to consider non-smooth controls u, u0, we need to introduce a weaker
concept of solution to (6). Let L2(0, 1) be the Lebesgue space of square integrable
functions on (0, 1) and W 1,p(0, 1), with p ≥ 1, be the Sobolev space of p-integrable
functions with weak derivative in L p(0, 1). We rewrite (26) as an evolution equation
in L2(0, 1). Define the linear unbounded operator on L2(0, 1) by

D(A) =
{
φ ∈ W 1,2(0, 1) : φ(0) =

∫ 1

0
R(e)φ(e)de

}
,

Aφ = −φ′ − δφ, φ ∈ D(A).

Then, under the assumption (7) the operator (A,D(A)) generates strongly continuous
semigroup of linear operators (S(t))t≥0 on L2(0, 1), see Webb (1985); Prato and
Iannelli (1994). The semigroup (S(t))t≥0 is given by

(S(t)φ)(e) =
{
Bφ(t − e)D(e) for e ∈ [0, t],
φ(e − t) D(e)

D(e−t) for e > t,
(27)

where Bφ is the solution of Volterra integral equation

Bφ(t) = Fφ(t) +
∫ t

0
κ(t − s)Bφ(s)ds, t ≥ 0 (28)

with

κ(t) =
{
R(t)D(t) for t ∈ [0, 1],
0 for t > 1

and

Fφ(t) =
∫ 1

t∧1
φ(s − t)R(s)

D(s)

D(s − t)
ds.

Remark 3 By (7) the semigroup (S(t))t ≥ 0 is uniformly exponentially stable [cf. Sect.
4.5 in Chapter VI in Engel and Nagel (2006)].

Proposition 3 Assume (7) holds. Then, for all φ ∈ L2(0, 1):

1. The equation (28) possesses the unique continuous solution Bφ on [0,∞);
2. The function Bφ satisfies

‖Bφ‖L∞(0,1) ≤ μ‖φ‖L∞(0,1)‖R‖L∞(0,1); (29)
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3. For D defined in (23), the function BD satisfies

BD(t) =
∫ 1

t∧1
R(s)D(s)ds +

∫ t∧1

0
R(s)D(s)BD(t − s)ds

and is differentiable on [0,∞). Moreover, B ′
D ∈ L∞

loc(0,∞) is the solution to

B ′
D(t) =

{
− 1

μ
R(t)D(t) + ∫ t

0 R(s)D(s)B ′
D(t − s)ds for t ∈ [0, 1),∫ 1

0 R(s)D(s)B ′
D(t − s)ds for t ≥ 1

(30)

and hence for all t > 0 satisfies

‖B ′
D‖L∞(0,t) ≤ ‖R‖L∞(0,1). (31)

Proof Let φ ∈ L2(0, 1).

Part 1. Note that Fφ ∈ C([0,∞)), thus the result follows from Theorem 3.5 in
Chapter 2 in Gripenberg et al. (1990).

Part 2. Since D(s)
D(s−t) = e− ∫ s

s−t δ(u)du < 1 for all s ≥ t ≥ 0, from (28) we obtain

‖Bφ(·)‖L∞(0,1) ≤ ‖φ‖L∞(0,1)‖R‖L∞(0,1) +
∫ 1

0
R(s)D(s)ds‖Bφ‖L∞(0,1).

Hence and using the definition of μ in (25) we get

‖Bφ(·)‖L∞(0,1) ≤ μ‖φ‖L∞(0,1)‖R‖L∞(0,1).

Part 3. Since FD(t) = ∫ 1
t∧1 R(s)D(s)ds, t ≥ 0 is differentiable a.e on [0,∞)

and F ′ ∈ L∞(0,∞), BD is differentiable a.e. on [0,∞) by Theorem
3.3 from Chapter 3 in Gripenberg et al. (1990). Moreover, the derivative
B ′
D ∈ L∞

loc(0,∞) satisfies (30). Finally, note that (31) is a simple conse-
quence of (30). �


Observe that the Eq. (26) can be reformulated as a Cauchy problem in the Hilbert
space L2(0, 1):

{
Q′(t) = AQ(t) + λρuρ(t) − μDw′(t),
Q(0) = G0 − μw(0)D.

(32)

Based on Pazy (1983) we introduce the following definition.

Definition 2 A measurable function Q : [0, T ] → L2(0, 1) is called a mild solution
to (32) if G0 ∈ L2(0, 1) and w ∈ W 1,1([0, T ]) and for any t ∈ [0, T ] one has

Q(t) = S(t)Q(0) +
∫ t

0
S(t − s)λρuρ(s)ds − μ

∫ t

0
S(t − s)Dw′(s)ds. (33)
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Remark 4 Let the assumptions of Theorem 2 be satisfied. If Q is a classical solution
to (26), then Q is a mild solution to (32) (cf. Engel and Nagel 2000; Pazy 1983).

Definition 3 A measurable function G : [0, T ] → L2(0, 1) is called a generalised
mild solution to (6) if G0 ∈ L2(0, 1), (u0, u) ∈ L2(0, T ) × L2((0, T ) × (0, 1)) and
for any t ∈ [0, T ] one has

G(t) = S(t)G0 +
∫ t

0
S(t − s)λρuρ(s)ds − μA

∫ t

0
S(t − s)Dw(s)ds.

We write G = G(u, u0;G0) to denote that generalised mild solution to (6) depends
on the controls u, u0 and the initial value G0.

Remark 5 If Q is a mild solution to (32), then G = Q + g is a generalised mild
solution to (6).

Proof (Proof of Remark 5) Indeed, from (33), (25) and (24) we get

G(t) = S(t)G0 − μw(0)S(t)D + μw(t)D

+
∫ t

0
S(t − s)λρuρ(s)ds − μ

∫ t

0
w′(s)S(t − s)Dds.

We integrate by parts the last term to obtain

G(t) = S(t)G0 − μw(0)S(t)D + μw(t)D +
∫ t

0
S(t − s)λρuρ(s)ds

− μ

(
[w(s)S(t − s)D]t0 + A

∫ t

0
w(s)S(t − s)Dds

)

= S(t)G0 +
∫ t

0
S(t − s)λρuρ(s)ds − μA

∫ t

0
w(s)S(t − s)Dds. �


From Remarks 4, 5 and Theorem 2 we obtain:

Remark 6 Under the assumptions of Theorem 2, if G is a classical solution to (6),
then G is a generalised mild solution to (6).

Here and subsequently, z stands for

z(t) =
∫ t

0
w(s)S(t − s)Dds, (34)

where w is given by (22).

Theorem 4 Let G0 ∈ L2(0, 1), (u0, u) ∈ L2(0, T ) × L2((0, T ) × (0, 1)) and (7)
holds. Then,

1. There exists a unique generalised mild solution G(u, u0;G0) to (6) i.e. z(t) ∈
D(A) for all t ∈ [0, T ];
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2. Az ∈ C(0, T ; L2(0, 1)) ∩ L∞(0, T ; L∞(0, 1)).

Furthermore, if (u10, u
1) ∈ L2(0, T ) × L2((0, T ) × (0, 1)) and G = G(u, u0;G0)

and G1 = G1(u1, u10;G0) are the generalised mild solution to (6), then there exist
L1, L2 > 0 such that

3. sup
t∈[0,T ]

‖G(t)‖L2(0,1)

≤ L1

(
‖G0‖L2(0,1) + ‖u‖ρ

L2((0,1)×(0,T ))
+ ‖u0‖ρ

L2(0,T )

)
,

sup
t∈[0,T ]

‖G(t) − G1(t)‖L2(0,1)

≤ L1

(
‖u − u1‖ρ

L2((0,1)×(0,T ))
+ ‖u0 − u10‖ρ

L2(0,T )

)
;

4. If moreover (u0, u), (u10, u
1) ∈ U0,ad ×Uad and G0 ∈ L∞(0, 1), then we have

sup
t∈[0,T ]

‖G(t)‖L∞(0,1)

≤ L2

(
‖G0‖L∞(0,1) + ‖u‖ρ

L∞((0,1)×(0,T )) + ‖u0‖ρ

L∞(0,T )

)
,

sup
t∈[0,T ]

‖G(t) − G1(t)‖L∞(0,1)

≤ L2

(
‖u − u1‖ρ

L∞((0,1)×(0,T )) + ‖u0 − u10‖ρ

L∞(0,T )

)
.

�


Proof Let z1(t) = ∫ t
0 S(t − s)Dw1(s)ds where w1(t) = ∫ 1

0 R(e)λρ(u1(t, e))ρde +
(λu10(t))

ρ for all t ≥ 0. By (Prato and Iannelli 1994, Theorem 2.2) we obtain that
z(t), z1(t) ∈ D(A) for all t ∈ [0, T ], and Az(·),Az1(·) ∈ C([0, T ]; L2(0, 1)) and

‖A(z(t) − z1(t))‖L2(0,1) ≤ LT ‖w − w1‖L2(0,T ), (35)

where LT = ( 1
μ

+ ‖R‖L∞(0,1)
√
T ). Moreover, by Hölder’s continuity of x �→ xρ

and the Hölder inequalities we have

‖w − w1‖L2(0,T )

≤ λρ ‖R‖L∞(0,1)

∥∥∥∥t �→
∫ 1

0
|u(t, e) − u1(t, e)|ρde

∥∥∥∥
L2(0,T )

+ λρ
∥∥∥(u0 − u10)

ρ
∥∥∥
L2(0,T )

≤ T
1−ρ
2 λρ

(
‖R‖L∞(0,1)‖u − u1‖ρ

L2((0,1)×(0,T ))
+ ‖u0 − u10‖ρ

L2(0,T )

)
. (36)
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Similarly, we have

∥∥∥∥
∫ t

0
S(t − s)λρ(uρ(s) − (u1(s))ρ)ds

∥∥∥∥
L2(0,1)

≤ M(T )

∫ t

0
λρ

∥∥∥(u(s) − u1(s))ρ
∥∥∥
L2(0,1)

ds

≤ T 1− ρ
2 M(T )λρ‖u − u1‖ρ

L2((0,1)×(0,T ))
, (37)

where M(T ) = supt∈[0,T ] ‖S(t)‖L(L2(0,1)) < ∞. Therefore, by (35)–(37) we obtain

inequalities from part 3. of Theorem 4, where L1 = max
{
M(T ), λρT 1− ρ

2 M(T ), λρ

μLT T
1−ρ
2 (‖R‖L∞ ∨ 1)

}
.

Nowweprove parts 2. and 4. of Theorem4.By the definition of semigroup (S(t))t≥0
(cf. (27)) we can rewrite (34) as

z(t, e) = D(e)

(∫ t∧e

0
BD(s − e)w(t − s)ds +

∫ t

t∧e
w(t − s)ds

)
(38)

for all a ∈ [0, 1] and t ∈ [0, T ]. Differentiating (38) with respect to e we obtain

Az(t)(e) =
{

−D(e)
[
1
μ
w(t − e) + ∫ t

a B ′
D(s − e)w(t − s)ds

]
for t ≥ e,

0 for t < e
(39)

for all t ∈ [0, T ]. Hence

‖Az(t)‖L∞(0,1) ≤
(
1

μ
+ t

∥∥B ′
D

∥∥
L∞(0,T )

)
‖w‖L∞(0,T )

≤ λρ

(
1

μ
+ tμ‖R‖L∞(0,1)

)

(
‖R‖L∞(0,1)‖u‖ρ

L∞((0,1)×(0,T ))
+ ‖u0‖ρ

L∞(0,T )

)
, (40)

where the last inequality follows form the third part of Proposition 3. Since 0 <

D(e) ≤ 1 for every a ∈ [0, 1], by (29) we obtain

‖S(t)φ‖L∞(0,1) ≤ (
μ‖R‖L∞(0,1) ∨ 1

) ‖φ‖L∞(0,1) (41)

for all φ ∈ L∞(0, 1). Similarly, by (29) we have

∥∥∥∥
∫ t

0
S(s)λρuρ(t − s)ds

∥∥∥∥
L∞(0,1)

≤ λρ t (μ‖R‖L∞(0,1) ∨ 1)‖u‖ρ

L∞((0,T )×(0,1)). (42)
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Finally, form (40)–(42) we get

‖G(t)‖L∞(0,1) ≤ ‖S(t)G0‖L∞(0,1) +
∥∥∥∥
∫ t

0
S(t − s)uρ(s)ds

∥∥∥∥
L∞(0,1)

+ ‖μAz(t)‖L∞(0,1)

≤ L2

(
‖G0‖L∞(0,t) + ‖u‖ρ

L∞((0,1)×(0,T ))
+ ‖u0‖ρ

L∞(0,T )

)

for all G0 ∈ L∞(0, 1) and t ∈ [0, T ], where

L2 = max
{(

μ‖R‖L∞(0,1) ∨ 1
)
, λρ t

(
μ‖R‖L∞(0,1) ∨ 1

)
, λρ

(
1 + tμ2‖R‖L∞(0,1)

)
(‖R‖L∞(0,1) ∨ 1

)}
. �


5.2 The relationship between the generalised mild solution and the solution
along the characteristic lines

In order to apply the maximum principle introduced by Feichtinger et al. (2003) we
formulate the following proposition.

Proposition 5 If (7) holds, then the generalised mild solution to (6) satisfies the
following formulae:

G(t, t + c) = G0(t) −
∫ t

0
δ(s + c)G(s, s + c)ds

+
∫ t

0
λρuρ(s, s + c)ds (43)

for all c ∈ (0, 1] and all t ∈ [0, 1 − c], and

G(t, t + c) = G(−c, 0) −
∫ t

−c
δ(s + c)G(s, s + c)ds

+
∫ t

−c
λρuρ(s, s + c)ds (44)

for all c ∈ [−T, 0] and all t ∈ (−c, T ], and

G(t, 0) =
∫ 1

0
R(e)G(t, e)da +

∫ 1

0
R(e)λρuρ(t, e)da

+ λρuρ
0 (t) (45)

for all t ∈ [0, T ].
Proof Identity (45) follows directly by applying (27), (39) to the definition of the
generalised mild solution. We prove (44), as the formula (43) can be proven similarly.
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Observe that by (27) we obtain

(S(t)G0) (t + c) = BG0(−c)D(t + c) (46)

and

(∫ t

0
S(s)λρuρ(t − s)ds

)
(t + c) = λρ

∫ t+c

0
uρ(t − s, t + c − s)

D(t + c)

D(t + c − s)
ds

+
∫ t

t+c
Buρ(t−s)(s − t − c)D(t + c)ds

= λρD(t + c)

(∫ t+c

0
uρ(r − c, r)

1

D(r)
dr

+
∫ −c

0
Buρ(−c−r)(r)dr

)
. (47)

for a.e. c ∈ [−T, 0] and t ∈ (−c, T ]. Moreover, using (39) we have

− μ

(
A

∫ t

0
w(t − s)S(s)Dds

)
(t + c)

= D(t + c)

(
w(−c) − μ

∫ −c

0
B ′
D(−c − s)w(s)ds

)
. (48)

As a result, by (46)–(48) the generalised mild solution of (6) takes the form

G(t, t + c) = D(t + c)
(
BG0(−c) + λρ

∫ t+c

0
uρ(r − c, r)

1

D(r)
dr

+ λρ

∫ −c

0
Buρ(−c−r)(r)dr

+ w(−c) − μ

∫ −c

0
B ′
D(−c − s)w(s)ds

)
(49)

for a.e. c ∈ [−T, 0] and for all t ∈ [−c, T ]. Hence for all c ∈ [−T, 0] the mapping
t �→ G(t, t + c) has an absolutely continuous version. Finally, for a.e. t ∈ [−c, T ]
the derivative t �→ G(t, t + c) is equal to

dG(t, t + c)

dt
= −δ(t + c)D(t + c)

×
(
BG0(−c) + λρ

∫ t+c

0
uρ(r − c, r)

1

D(r)
dr

+ λρ

∫ −c

0
Buρ(−c−r)(r)dr

+ w(c) − μ

∫ −c

0
B ′
D(−c − s)w(s)ds

)
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+ λρuρ(t, t + c)

= −δ(t + c)G(t, t + c) + λρuρ(t, t + c),

which proves (44). �

Remark 7 By Theorem 4 and Proposition 5, if G0 ∈ L∞(0, 1), and (u, u0) ∈ U0,ad ×
Uad then the generalised mild solution G(u, u0;G0) of (6) is the solution of (6)
along the characteristic lines as in Feichtinger et al. (2003). In particular G(u, u0;G0)

belongs to L∞(0, T ; L∞(0, 1)) ∩ C(0, T ; L2(0, 1)).

Appendix 2: The existence and uniqueness of an optimal solution to the
goodwill control problem

In this section we present the proof of Theorem 1. We apply the following classical
results for general extreme problems in a Hilbert space H (see Theorem 6).

Let f : U → R be a functional defined on subsetU ⊂ H . Consider the optimization
problem

inf
h∈U f (h). (50)

Theorem 6 [Kurdila and Zabarankin (2005), Theorems 7.3.5, 7.3.7] If the functional
f : U → R is lower semicontinuous, convex and coercive, and the set U is not empty,
closed and convex, then there exist a solution u∗ ∈ U to (50) i.e. f (u∗) = infh∈H f (h).

Notice that if U is bounded, then in Theorem 6 the coercivity of f is superfluous.
Moreover, if f is additionally strictly convex, then the solution u∗ ∈ U is unique.

In the proof of Theorem 1 we need the following lemma.

Lemma 1 Let E1, E ′
1, E2 be Banach function spaces over a σ -finite measure space

(S,Σ,μ). Consider an operator F : E1 × E ′
1 → E2 such that, μ-almost everywhere,

F(α f1 + (1 − α) f2) ≥ αF( f1) + (1 − α)F( f2), (51)

and let f ∗ be a positive and strictly concave functional on E2. Then, the composition
f ∗ ◦ F is strictly concave functional on E1.

Proof Let α ∈ (0, 1) and f1, f2 ∈ E1. Then, from the assumptions on f ∗ and by (51)
it follows that

( f ∗ ◦ F)(α f1 + (1 − α) f2) ≥ f ∗(αF( f1) + (1 − α)F( f2)) ≥ α f ∗(F( f1))

+ (1 − α) f ∗(F( f2)),

where in the last inequality we use strict concavity of f ∗. �
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Proof (Proof of Theorem 1) FixG0 ∈ L2(0, 1) such thatG0(e) ≥ 0 for a.e a ∈ (0, 1).
We can rewrite the problem (16) as (50) with H = L2(0, T ) × L2((0, T ) × (0, 1))
and the functional f (u0, u) = −J (G, u0, u) defined on U = U0,ad ×Uad ⊂ H . The
set of admissible controls U is obviously nonempty and convex. To prove closedness
of U let {(u0,n, un)}n≥1 be a sequence of admissible controls converging in H -norm
to (u0, u). We show that u0 ∈ U0,ad and u ∈ Uad . Indeed, the sets A = {t ∈ (0, T ) :
u0(t) < 0} B = {t ∈ (0, T ) : u0(t) − I > 0} are measurable and

∫
A u0,n(t)dt ≥ 0,∫

B(u0,n(t) − I )dt ≤ 0 for all n ≥ 1. Taking the limits in these two sequences of
integrals we obtain

∫
A u0(t)dt ≥ 0 and

∫
B(u0(t) − I )dt ≤ 0. Thus |A| = 0 and

|B| = 0 and we conclude that 0 ≤ u0(t) ≤ I for a.e. t ∈ (0, T ). Hence u0 ∈ U0,ad .
The same argument can be used to prove that u ∈ Uad .

Moreover, since ρ, γ ∈ (0, 1] one can prove that J given by (15) is strictly concave.
Indeed, first notice that J can be represented as follows

J (G, u0, u) = J1(u0, u) − β

2

∫ 1

0

∫ T

0
e−r t (u2(t, e) + u20(t) − c f )dtde (52)

with

J1(u0, u) =
∫ 1

0

∫ T

0
e−r t KΠ

(
G1(u

ρ)(t, e) + G2(u
ρ
0 )(t, e)

)γ
dtde (53)

for all (u0, u) ∈ H , where G(u0, u;G0) = G1(uρ;G0) + G2(u
ρ
0 ), G1 : L2((0, 1) ×

(0, T )) → C([0, T ]; L2(0, 1)) is given by

G1(u;G0)(t, e) = (S(t)G0)(e) +
(∫ t

0
S(t − s)λρu(s)ds

)
(e)

− μ

(
A

∫ t

0
S(t − s)Dwu(s)ds

)
(e),

wu(s) =
∫ 1

0
λρR(e)u(s, e)de

and G2 : L2(0, T ) → C([0, T ]; L2(0, 1)) satisfies

G2(u0)(t, e) = −μ

(
A

∫ t

0
λρu0(s)S(t − s)Dds

)
(e).

Since any norm in a Hilbert space is strictly convex, the mapping H � (u, v) �→
−β

2

∫ 1
0

∫ T
0 e−r t (u2(t, e) + v2(t) − c f )dtda is strictly concave. Hence it is enough to

show that J1 : H → R is strictly concave. Notice that J1 is a composition of the
Niemycki operator (u0, u) �→ ((u0)ρ, (u)ρ) on H and the positive linear operators
G1, G2 with the strictly concave functional

(G1(u),G2(u0)) �→
∫ 1

0

∫ T

0
e−r t KΠ (G1(u)(t, e) + G2(u0)(t, e))

γ dtda
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on C([0, T ]; L2(0, 1)). Positivity of G1, G2 follows by assumption G0 ≥ 0 and by
positivity of the Lotka-Sharp-McKendrick semigroup (S(t))t≥0 (cf. Engel and Nagel
2000, Sect. 4 in Chapter IV). Hence by Lemma 1 J1 is strictly concave.

Furthermore, in the case of I = ∞ we show that the functional f is coer-
cive. For this purpose consider a sequence {(u0,n, un)}n≥1 ⊂ U0,ad × Uad such
that ‖(u0,n, un‖L2(0,T )×L2((0,T )×(0,1)) → ∞, thus ‖un‖L2((0,T )×(0,1)) → ∞ or
‖u0,n‖L2(0,T ) → ∞. From Theorem 4 for each element of sequence {(u0,n, un)}n≥1
there exists the generalised mild solution Gn = Gn(u0,n, un;G0) to (6). Therefore,

| f (u0,n, un)|

=
∣∣∣∣
∫ 1

0

∫ T

0

(
β

2
u2n(t, e) + β

2
u20,n(t) − KΠGγ

n (t, e)

)
dtda

∣∣∣∣
≥ β

2

(
‖un‖2L2((0,T )×(0,1)) + ‖u0,n‖2L2(0,T )

)
− KΠ

∫ 1

0

∫ T

0
|Gn(t, e)|γ dtda

≥ β

2

(
‖un‖2L2((0,T )×(0,1)) + ‖u0,n‖2L2(0,T )

)
− KΠ

∫ T

0

(∫ 1

0
|Gn(t, e)|2da

) γ
2

dt

≥ β

2

(
‖un‖2L2((0,T )×(0,1)) + ‖u0,n‖2L2(0,T )

)
− KΠ sup

t∈[0,T ]
‖Gn(t)‖γ

L2(0,1)

≥ β

2

(
‖un‖2L2((0,T )×(0,1)) + ‖u0,n‖2L2(0,T )

)

− KΠ Lγ
1

(
‖G0‖L2(0,1) + ‖u‖ρ

L2((0,1)×(0,T ))
+ ‖u0‖ρ

L2(0,T )

)γ

.

Thus, since ρ, γ ∈ (0, 1], | f (u0,n, un)| → ∞ as n tends to ∞. Hence the functional
f is coercive.
Since by Theorem 4 the generalised mild solution to (6) continuously depends on

(u0, u) ∈ H , it follows that the functional J : H → R is continuous.
Therefore, by Theorem 6 the goodwill control problem (16) admits a unique

solution. �
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