
Optim Lett (2013) 7:613–616
DOI 10.1007/s11590-012-0445-0

SHORT COMMUNICATION

A note on proving the strong NP-hardness
of a scheduling problem with position dependent
job processing times

Radosław Rudek

Received: 12 September 2011 / Accepted: 13 January 2012 / Published online: 28 January 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract In this paper, we show that the strong NP-hardness proof of the single
machine makespan minimization problem with ready times and job processing times
described by a non-increasing power function dependent on a job position in a sequence
presented in Bachman and Janiak (J Oper Res Soc 55:257–264, 2004) is incorrect.
Namely, the applied transformation from 3- Partition problem to the considered
scheduling problem is polynomial not pseudopolynomial. Thus, the related problem
is NP-hard, but it is not proved to be strongly NP-hard.

Keywords Computational analysis · Strong NP-hardness · Scheduling ·
Learning effect · Position-dependent processing time

1 Introduction

Bachman and Janiak [1] claimed that the single machine makespan minimization prob-
lem with ready times is strongly NP-hard if job processing times are described by a
non-increasing power function dependent on a job position in a sequence. To prove it,
the authors constructed a reduction from 3-Partition to the decision version of this
problem. However, we show that the reduction is only polynomial not pseudopolyno-
mial. Therefore, the authors did not prove the strong NP-hardness, but NP-hardness
only. Thus, the complete computational status of this problem is still an open issue.

Furthermore, the results presented in this paper can be a useful hint: how to avoid
serious mistakes during proving the strong NP-hardness.

Throughout the paper, we will keep the notation and terminology used by Bachman
and Janiak [1].

R. Rudek (B)
Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland
e-mail: radoslaw.rudek@ue.wroc.pl

123

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/191340637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

614 R. Rudek

2 Problem formulation

There are given a single machine and a set J = {1, . . . , n} of n independent and non-
preemptive jobs available for processing at their ready times ri , i = 1, . . . , n. The pro-
cessing time pi (v) of job i is a function dependent on its position v in a sequence. The
considered model of the job processing time is characterized by position-dependent
function:

pi (v) = aiv
−b, (1)

where ai and b denote a normal processing time and a learning ratio, respectively.
It is assumed that ai are positive integers and b is a non-negative rational.

The completion time Cπ(i) of a job placed in the i th position in the schedule π is
given by the following recursive expression:

Cπ(i) = max{Cπ(i−1), rπ(i)} + pπ(i)(i), (2)

where Cπ(0) = 0 and i = 1, . . . , n. The problem is to find a schedule π for which the
criterion value Cmax (the makespan) is minimized, i.e., Cmax � Cπ(n). The problem
according to the three field notation scheme is denoted by 1|pi (v) = aiv

−b|Cmax.

3 Computational complexity

In this section, we will show that the strong NP-hardness proof in [1] is incorrect.
At first let us recall the proof and the definition of 3- Partition .

3- Partition [3]: Given 3m + 1 positive integers x1, . . . , x3m and B satisfying∑3m
j=1 x j = m B and B/4 < x j < B/2 for j = 1, . . . , 3m, is there a partition of

the set {1, . . . , 3m} into m disjoint subsets X1, . . . , Xm such that
∑

j∈Xi
x j = B for

i = 1, . . . , m?
The decision version of the considered scheduling problem is given as follows:

Does there exist such a schedule π of jobs on the machine for which the criterion
value Cmax is equal or lower than the given value y?

Based on an instance of 3- Partition , the authors constructed an instance of
n = m(m4 B + 3) jobs with a common learning ratio b = 1. Among them there are
3m partition jobs with the following parameters:

ai = xi ; ri = 0; i = 1 . . . , 3m.

There are m5 B enforcer jobs, which are characterized by a common normal pro-
cessing time aE

(j−1)m4 B+i
=aE =1, where j =1, . . . , m and i =1, . . . , m4 B. However,

the enforcer jobs have different ready times, which partition them into m groups with
the following parameters:

rE
(j−1)m4 B+i

= rE j = (j − 1)m4 B + B

m4 B + 3

j−1∑

k=1

1

k
, (3)

123

A note on proving the strong NP-hardness 615

where j = 1, . . . , m, and i = 1, . . . , m4 B. Finally the parameter y, that was missing
in [1], is defined as follows y = m5 B + B

m4 B+1

∑m
k=1

1
k .

At first recall that the computational complexity theory requires “reasonable and
concise” encoding scheme for the problem to represent values of its parameters on
Deterministic Turing Machine (see [3]). Therefore, the values of parameters of the
considered problem have to be expressed as integer numbers. If it is not the case, then
the values of parameters have to be transformed (by multiplying) to the integer num-
bers. Note that only rE j in (3) are fraction numbers by the term 1

m4 B+3

∑ j−1
k=1

1
k and

y by 1
m4 B+1

∑m
k=1

1
k . Therefore, to use the computational complexity theory, we have

to express each rE j and y as the integer numbers. Without loss of generality the value
of y and each parameter al and rl for l = 1, . . . , m(m4 B + 3) have to be multiplied
by the number A′ = (m4 B + 3)(m4 B + 1) · A such that r ′

E j
= A′ · rE j and y′ = A′ · y

are integer numbers for j = 1, . . . , m. On this basis, the constructed instance of
the decision version of the considered scheduling problem has the following integer
parameters:

a′
i = A′ · xi ; r ′

i = 0; i = 1 . . . , 3m,

b′ = 1, a′
E

(j−1)m4 B+i
= a′

E = A′, where j = 1, . . . , m and i = 1, . . . , m4 B and

r ′
E

(j−1)m4 B+i
= r ′

E j
= A′ ·

⎡

⎣(j − 1)m4 B + B

m4 B + 3

j−1∑

k=1

1

k

⎤

⎦

= (j − 1)m4 B · (m4 B + 3)(m4 B + 1)A + B · (m4 B + 1)A ·
j−1∑

k=1

1

k

and

y′ = A′ ·
[

m5 B + B

m4 B + 1

m∑

k=1

1

k

]

= m5 B · (m4 B + 3)(m4 B + 1)A + B · (m4 B + 3)A ·
j−1∑

k=1

1

k
.

Since the values of the parameters have to be integers, therefore, A is such number
that all terms A · ∑ j

k=1
1
k for j = 1, . . . , m are integers. Note that the values of all

terms A ·∑ j
k=1

1
k (where j = 1, . . . , m) are the least integers if A is the least common

multiple (lcm) of the following numbers 1, 2, . . . , m, i.e., A = lcm(1, 2, . . . , m).
Following [2,4], we know that log lcm(1, 2, . . . , m) � m, thus, A can be bounded
below by 2m as m tends to infinity.

Recall now a condition from a definition of a pseudopolynomial reduction [3,5,6].
Let π1 and π2 are two decision problems. Let Dπ1 and Dπ2 denote their sets of all
possible instances, Max(I) denotes the maximum value of the numbers for an instance

123

616 R. Rudek

I and N (I) is the size of I . Let f : Dπ2 −→ Dπ1 denote the reduction from π2 to π1.
One of the requirements for f to be pseudopolynomial is such that there must exist a
polynomial Q of two variables that holds:

∀I ∈ Dπ2 : Max(f (I)) ≤ Q(Max(I), N (I)). (4)

It means that the values of any instance I of the problem π2 cannot increase in an
exponential manner if π2 is reduced to π1.

Let π2 denote 3- Partition and π1 is the considered scheduling problem. It is obvi-
ous that for the given reduction and I ∈ Dπ2 , we have Max(I) = B, N (I) = 3m,
Max(f (I)) > A ≥ 2m and N (f (I)) = m(m4 B + 3). Note that the values of the
problem π1 increase in an exponential manner depending on the values of π2, thus,
there does not exist such Q for which (4) holds, thereby the reduction cannot be
pseudopolynomial. Therefore, the proof of the strong NP-hardness is incorrect.

Nevertheless, the constructed reduction is polynomial one, thus, the problem
1|pi (v) = aiv

−b|Cmax is at least NP-hard, but the strong NP-hardness is not
determined.

4 Conclusion

In this note, we showed that the strong NP-hardness proof of the single machine make-
span minimization problem with ready times and job processing times described by a
non-increasing power function dependent on a job position in a sequence provided by
Bachman and Janiak [1] is incorrect. Thus, the problem is at least NP-hard. However,
the complete computational complexity of this problem is still an open issue: strongly
or ordinary NP-hard?

Acknowledgements This work was financially supported by the Polish Ministry of Science and Higher
Education.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Bachman, A., Janiak, A.: Scheduling jobs with position dependent processing times. J. Oper. Res.
Soc. 55, 257–264 (2004)

2. Farhi, B., Kane, D.: New results on the least common multiple of consecutive integers. P. Am. Math.
Soc. 137, 1933–1939 (2009)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco (1979)

4. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press,
New York (1979)

5. Lee, C.-Y., Vairaktarkis, G. : Complexity of single machine hierarchical scheduling: a survey. In:
Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 269–298. World Scientific, Singapore
(1993)

6. Pardalos, P.M., Resende, M.: Combinatorial optimization. In: Pardalos, P.M., Resende, M. (eds.) Hand-
book of Applied Optimization, pp. 51–52. Oxford University Press, Oxford (2002)

123

	A note on proving the strong NP-hardness of a scheduling problem with position dependent job processing times
	Abstract
	1 Introduction
	2 Problem formulation
	3 Computational complexity
	4 Conclusion
	Acknowledgements
	References

