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Abstract In our paper we consider an infinite horizon consumption-investment prob-
lem under a model misspecification in a general stochastic factor model. We formulate
the problem as a stochastic game and finally characterize the saddle point and the value
function of that game using an ODE of semilinear type, for which we provide a proof
of an existence and uniqueness theorem for its solution. Such equation is interested
on its own right, since it generalizes many other equations arising in various infinite
horizon optimization problems.
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1 Introduction

Amajor weakness of a portfolio optimization is a huge sensitivity to estimation errors
and a model misspecification. The concern about a model uncertainty should lead the
investor to design a strategy which is robust to model imperfections. In this paper
a max–min robust version of the classical Merton optimal investment-consumption
model is presented. We consider a financial market consisting of a stock and a bond.
A stock and a bond dynamics are assumed to be stochastic differential equations.
In addition coefficients of our model are affected by a non-tradable but observable
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stochastic factor. The investor trades between these assets and is supposed to consume
part of his wealth. Instead of supposing that this is the exact model, we assume here
that the trader knows only that the correct model belongs to a wide class of models,
which will be described later. To determine a robust consumption-investment controls
the investor maximizes his worst case total expected discounted HARA utility of
consumption. In our paper the problem is formulated as a stochastic game between the
market and the investor. To solve it we use a nonlinear Hamilton–Jacobi–Bellman–
Isaacs equation. After several substitutions we are able to reduce it to a semilinear
equation of the Hamilton–Jacobi–Bellman type, for which we provide a proof of an
existence and uniqueness theorem.

Infinite horizon consumption-investment problems in stochastic factor models, but
without a model uncertainty assumption, were considered, among others by Fleming
et al. [5,6], and Pang [16,17], Hata et al. [12]. Most of these papers use a sub- and
supersolution method to prove that there exists a smooth solution to the resulting
equation. The exception is Fleming et al. [5] paper, where the solution to the infinite
horizon HJB equation is approximated by a solution to finite horizon problems. Our
approach is closest to the latter and in the proof we use stochastic methods to obtain
estimates needed to apply the Arzel–Ascolli Lemma. Moreover, our paper extends
many other aforementioned papers, since to prove that there exists a smooth solution
to the resulting equation we do not need any differentiability assumption on model
coefficients.

The finite horizon analogue of our problem was considered and solved by Schied
[18]. For literature review about finite horizon max–min problems we refer to Zawisza
[21].

Max–min infinite horizon optimization methods has recently gained a lot of attrac-
tion in the theoretical economics and finance. A variety of modifications to our issue
were considered among others by Anderson et al. [1], Faria et al. [4], Gagliardini et
al. [9], Hansen et al. [11], Trojani et al. [19,20]. Most of these works consider usu-
ally the problem from an economical/financial point of view only. Even if our model
description can be treated as a special case of their setting, they do not provide strict
mathematical proofs of their findings.

It is worth mentioning also the work of Knispel [14], where the robust risk-sensitive
optimization problem is solved.

2 Model Description

Let (�,F , P) be a probability space with filtration (Ft , 0 ≤ t < +∞) (possi-
bly enlarged to satisfy usual assumptions) generated by two independent Brown-
ian motions (W 1

t , 0 ≤ t < +∞), (W 2
t , 0 ≤ t < +∞). We assume that investor

has an imprecise knowledge about the dynamic economic environment and therefore
the measure P should be regarded only as an approximate probabilistic description
of the economy. Our economy consists of two primitive securities: a bank account
(Bt , 0 ≤ t < +∞) and a share (St , 0 ≤ t < +∞). We assume also that the price of
the share is modulated by one non-tradable (but observable) factor (Yt , 0 ≤ t < +∞).
This factor can represent an additional source of an uncertainty such as: a stochastic
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volatility, a stochastic interest rate or other economic conditions. Processes mentioned
above are solutions to the system of stochastic differential equations

⎧
⎪⎨

⎪⎩

dBt = r(Yt )Btdt,

dSt = b(Yt )Stdt + σ(Yt )StdW 1
t ,

dYt = g(Yt )dt + a(Yt )(ρdW 1
t + ρ̄dW 2

t ).

(2.1)

The coefficients r , b, g, a, σ > 0 are continuous functions and they are assumed
to satisfy all the required regularity conditions, in order to guarantee that the unique
strong solution to (2.1) exists. We treat ρ ∈ [−1, 1] as a correlation coefficient.

As it wasmentioned, the investor believes that his model is an imprecise description
of the market. A common approach in describing a model uncertainty over the finite
horizon T is to assume that the probability measure is not precisely known and the
investor knows only a class of possible measures. In many papers (Cvitanic, Karatzas
[2] and Hernández, Schied [13]) it is usually assumed that this class is equal to

QT :=
{

Qη
T ∼ P | dQ

η
T

d P
= E

(∫

η1,t dW
1
t + η2,t dW

2
t

)

T
, (η1, η2) ∈ M

}

,

(2.2)

where E(·)t denotes the Doleans–Dade exponential and M denotes the set of all
bounded, progressively measurable processes η = (η1, η2) taking values in a fixed
compact, convex set � ⊂ R

2. In our setting we will follow that type of the problem
formulation.

The dynamics of the investors wealth process (Xπ,c
t , 0 ≤ t < +∞) is given by the

stochastic differential equation

{
dXt = (r(Yt )Xt + πt (b(Yt ) − r(Yt )))dt + πtσ(Yt )dW 1

t − ctdt,

X0 = x,
(2.3)

where x denotes a currentwealth of the investor,π we can interpret as a capital invested
in St , whereas c is a consumption per unit of time.

Formulation of the Problem

We consider a hyperbolic absolute risk aversion (HARA) utility function U (x) = xγ

γ
with a parameter 0 < γ < 1, with γ �= 0. The negative parameter case (γ < 0)
is discussed at the end of our paper. The objective we use is equal to the overall
discounted utility of consumption i.e.

Jπ,c,η(x, y) := lim
t→∞E

η,t
x,y

∫ t∧τx,y

0
e−wtU (ct ) dt= lim

t→∞E
η,t
x,y

∫ t∧τx,y

0
e−wt

(
ct

)γ

γ
dt,

(2.4)
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where w > 0 is a discount rate, τx,y = inf{t > 0, Xπ,c,η
t ≤ 0}, Eη,t

x,y denotes the
expectation with respect to the measure Qη

t . Note that we use the short notation for
τx,y , whereas full form is τ

π,c
x,y .

Definition 2.1 A control (or a strategy) (π, c) = ((πt , ct ), 0 ≤ t < +∞) is admissi-
ble for a starting point (x, y), (π, c) ∈ Ax,y , if it satisfies the following assumptions:

(1) the process (ct , 0 ≤ t < +∞) is nonnegative,
(2) (π, c) is progressivelymeasurablewith respect to thefiltration (Ft , 0 ≤ t < +∞),
(3) there exists a unique solution to (2.3) and

E
η,t
x,y sup

0≤s≤t∧τπ,c

(
Xπ,c
s

)γ
< +∞

for all t > 0, η ∈ M.

Our investor uses the Gilboa and Schmeidler [10] type preferences to maximize his
overall satisfaction. More precisely he uses a minimax criterion and tries to maximize
his objective in the worst case model i.e.

maximize inf
η∈M

Jπ,c,η(x, y) (2.5)

over the class of admissible strategies Ax,y .
The problem (2.5) is considered as a zero-sum stochastic differential game problem.

Process η is the control of player number 1 (the “market”), while strategy (π, c) is
the control of player number 2 (the “investor”). We are looking for a saddle point
((π∗, c∗), η∗) ∈ Ax,y × M and a value function V (x, y) such that

Jπ,c,η∗
(x, y) � Jπ∗,c∗,η∗

(x, y) � Jπ∗,c∗,η(x, y),

and

V (x, y) = Jπ∗,c∗,η∗
(x, y).

As usuallywewill seek optimal strategies in the feedback form ((π(Xt ,Yt ), c(Xt ,Yt ),
η(Xt ,Yt )), 0 ≤ t < +∞), where π(x, y), c(x, y), η(x, y) are Borel measur-
able functions and Xt and Yt are solutions to the system (2.3). Such controls
are often called Markov controls and are denoted simply by (π(x, y), c(x, y),
η(x, y)).

3 HJBI Equations and Saddle Point Derivation

We will use the standard HJB approach to solve the robust investment problem stated
in the previous section. Let Lπ,c,η denotes the differential operator given by

Lπ,c,ηV (x, y) = 1

2
a2(y)Vyy + 1

2
π2σ 2(y)Vxx + ρπσ(y)a(y)Vxy

+(
ρη1 + ρ̄η2

)
a(y)Vy + g(y)Vy + π

(
b(y) − r(y)
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+η1σ(y)
)
Vx + r(y)xVx − cVx .

For simplicity, we omit (x, y) variables in the functions’ notation. To establish a link
between this operator and a saddle point of our initial problem, we need to prove a
verification theorem. The following one seems to be new in the literature.

Theorem 3.1 Suppose there exists a function V ∈ C2,2((0,+∞)×R)∩C([0,+∞)×
R), an admissible Markov control (π∗(x, y), c∗(x, y), η∗(x, y)) and constants
D1, D2 > 0 such that

Lπ∗(x,y),c∗(x,y),ηV (x, y) − wV (x, y) + (c∗(x, y))γ

γ
≥ 0, (3.1)

Lπ,c,η∗(x,y)V (x, y) − wV (x, y) + cγ

γ
≤ 0, (3.2)

Lπ∗(x,y),c∗(x,y),η∗(x,y)V (x, y) − wV (x, y) + (c∗(x, y))γ

γ
= 0, (3.3)

D1x
γ ≤ (

c∗(x, y)
)γ

, (3.4)

V (x, y) ≤ D2x
γ (3.5)

for all η ∈ �, (π, c) ∈ R × (0,+∞), (x, y) ∈ (0,+∞) × R and

τπ∗,c∗,η
x,y = +∞, (3.6)

E
η,t
x,y

(

sup
0≤s≤t∧τπ,c

e−ws |V (Xπ,c
s ,Ys)|

)

< +∞ (3.7)

for all (x, y) ∈ (0,+∞) × R, t ∈ [0,+∞), (π, c) ∈ Ax,y , η ∈ M. Then

Jπ,c,η∗
(x, y) ≤ V (x, y) ≤ Jπ∗,c∗,η(x, y)

for all π ∈ Ax,y , η ∈ M, and

V (x, y) = Jπ∗,c∗,η∗
(x, y).

Proof Assume that (x, y) ∈ (0,+∞)×R are fixed. Let’s fix first η ∈ M and consider
the system (Qη dynamics of (Xt ,Yt )):

{
dXt = r(Yt )Xtdt + π∗

t

(
b(Yt ) − r(Yt ) + η1,tσ(Yt )

)
dt + π∗

t σ(Yt )dW
1,η
t − c∗

t dt,

dYt = (
g(Yt ) + a(Yt )(η1,tρ + η2,t ρ̄)

)
dt + a(Yt )(ρdW

1,η
t + ρ̄dW 2,η

t ),
(3.8)

where π∗
t = π∗(Xt ,Yt ), c∗

t = c∗(Xt ,Yt ). If we apply the Itô formula to (3.8) and the
function e−wt V (x, y), we get

E
η,t
x,y

(
e−wt∧Tn V (Xt∧Tn , Yt∧Tn )

)
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= V (x, y) + E
η,t
x,y

∫ t∧Tn

0
e−ws(Lπ∗

s ,c∗
s ,ηs − w)V (Xs, Ys)ds + E

η,t
x,y

∫ t∧Tn

0
MsdW

η
s ,

where (Tn, n = 1, 2, . . .), (Tn → +∞) is a localizing sequence of stopping times
such that

E
η,t
x,y

∫ t∧Tn

0
MsdW

η
s = 0.

Applying (3.1) yields

E
η,t
x,y

(
e−w(t∧Tn)V (Xt∧Tn ,Yt∧Tn )

)
� V (x, y) − E

η,t
x,y

∫ t∧Tn

0
e−wsU (c∗

s )ds.

By letting (n → ∞) and using (3.7) we get

E
η,t
x,y

(
e−wt V (Xt ,Yt )

) + E
η,t
x,y

∫ t

0
e−wsU (c∗

s ) ds ≥ V (x, y). (3.9)

We should consider two cases
Case I

lim
t→+∞E

η,t
x,y

∫ t

0
e−ws(Xs)

γ ds < +∞.

Since we have (3.5), then

Ex,y
(
e−wt V (Xt ,Yt )

) ≤ D2Ex,ye
−wt (Xt )

γ ,

which means that Ex,y
(
e−wt V (Xt ,Yt )

)
is convergent to 0.

Case II

lim
t→+∞E

η,t
x,y

∫ t

0
e−ws(Xs)

γ ds = +∞.

Note that U (x) = xγ

γ
and (3.4) can be used to obtain

+∞ = D1

γ
lim

t→+∞E
η,t
x,y

∫ t

0
e−ws(Xs)

γ ds ≤ lim
t→+∞E

η,t
x,y

∫ t

0
e−wsU (c∗

s ) ds.

In both scenarios (Cases I, II) we can deduce from (3.9) that

V (x, y) ≤ lim
t→+∞Ex,y

∫ t

0
e−wsU (c∗

s )ds = Jπ∗,c∗,η(x, y).

In addition (3.6) holds, which gives us the desired inequality

V (x, y) ≤ lim
t→+∞E

η,t
x,y

∫ τx,y∧t

0
e−wsU (c∗

s )ds = Jπ∗,c∗,η(x, y).
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If we use η∗ instead of η and use (3.3) then instead of (3.9) we have

E
η∗,t
x,y

(
e−wt V (Xt ,Yt )

) + E
η∗,t
x,y

∫ t

0
e−wsU (c∗

s ) ds = V (x, y),

which means that

D1 lim
t→+∞E

η∗,t
x,y

∫ t

0
e−ws(Xs)

γ ds ≤ lim
t→+∞E

η∗,t
x,y

∫ t

0
e−wsU (c∗

s )ds < +∞.

Hence, Case I is satisfied also for η = η∗ and consequently after passing t → +∞
and using (3.6) we conclude that

V (x, y) = lim
t→+∞E

η∗,t
x,y

∫ t

0
e−wsU (c∗

s )ds = Jπ∗,c∗,η∗
(x, y).

Next we choose (π, c) ∈ Ax,y and apply the Itô formula to the system

{
dXt = r(Yt )Xtdt + πt

(
b(Yt ) − r(Yt ) + η∗

1,tσ(Yt )
)
dt + πtσ(Yt )dW

1,η
t − ctdt,

dYt = (
g(Yt ) + a(Yt )

(
η∗
1,tρ + η∗

2,t ρ̄
))
dt + a(Yt )

(
ρdW 1,η

t + ρ̄dW 2,η
t

)
.

Repeating the method presented above and using (3.2) we get

Ex,y
(
e−w(t∧Tn∧τx,y)V (Xπ,c

t∧Tn∧τx,y
,Yt∧Tn∧τx,y )

)

≤ V (x, y) − Ex,y

∫ t∧Tn∧τx,y

0
e−wsU (cs) ds.

Since V is nonnegative, we get

V (x, y) � lim
t→+∞E

η∗,t
x,y

∫ t∧τx,y

0
e−wsU (cs) ds = Jπ,c,η∗

(x, y).

�
Let us point out that conditions (3.1)–(3.3) hold if the upper and the lower Hamilton–
Jacobi–Bellman–Isaacs equations are satisfied:

max
π∈R

max
c>0

min
η∈�

(

Lπ,c,ηV − wV + cγ

γ

)

= min
η∈�

max
π∈R

max
c>0

(

Lπ,c,ηV − wV + cγ

γ

)

= 0.

To find the saddle point it is more convenient for us to use the upper Isaacs equation.
Once we verify that it has a unique solution V , it is also necessary to prove that V is
also a solution to the lower equation. To do that we use the followingminimax theorem
proved by Fan [3, Theorem 2].

123



476 Appl Math Optim (2015) 72:469–491

Theorem 3.2 Let X be a compact Hausdorff space and Y an arbitrary set (not topol-
ogized). Let f be a real-valued function on X × Y such that, for every η ∈ Y , f (π, η)

is lower semi-continuous on X. If f is convex on X and concave on Y , then

min
η∈X sup

π∈Y
f (π, η) = sup

π∈Y
min
η∈X f (π, η).

3.1 Saddle Point Derivation

As announced, to find explicit forms of the saddle point ((π∗(x,y), c∗(x,y)), η∗(x,y)),
we start with the upper Isaacs equation

min
η∈�

max
π∈R

max
c>0

(

Lπ,c,ηV − wV + cγ

γ

)

= 0,

i.e.

1

2
a2(y)Vyy + min

η∈�
max
π∈R

(
1

2
π2σ 2(y)Vxx + ρπσ(y)a(y)Vxy

+(
ρη1 + ρ̄η2

)
a(y)Vy + g(y)Vy + π

(
b(y) − r(y) + η1σ(y)

)
Vx

)

+ r(y)xVx + max
c>0

(−cVx + cγ

γ

) − wV = 0. (3.10)

This type of reasoning is well known in the literature and therefore we do not present
it with all details. Note that if there exists V ∈ C2,2((0,∞) × R), Vxx < 0, then the
maximum over (π, c) in (3.10) is well defined and achieved at

π∗(x, y, η) = −ρa(y)

σ (y)

Vxy

Vxx
− (b(y) − r(y) + η1σ(y))

σ 2(y)

Vx

Vxx
,

c∗(x, y) =
(
Vx

γ

) 1
γ−1

.

(3.11)

The HARA type utility motivates us to seek the solution of the form

V (x, y) = xγ

γ
F(y). (3.12)

Substituting (3.11) and (3.12) in (3.10) yields

π∗(x, y, η) = ρa(y)x

(1 − γ )σ (y)

Fy

F
+ (λ(y) + η1)x

(1 − γ )σ (y)
,

c∗(x, y) = F
1

γ−1 x,

(3.13)

where λ(y) := b(y) − r(y)

σ (y)
and F should satisfy the following equation
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1

2
a2(y)Fyy + ρ2γ

2(1 − γ )
a2(y)

F2
y

F
+

(

g(y) + ργ

1 − γ
a(y)λ(y)

)

Fy (3.14)

+ min
(η1,η2)∈�

(

ρ̄η2a(y)Fy + ρ

(1 − γ )
a(y)η1Fy + γ

2(1 − γ )

(
λ(y) + η1

)2
F

)

+ γ r(y)F + (1 − γ )F
γ

γ−1 = 0.

Assuming that there exists a smooth solution to (3.14) we can determine a saddle
point candidate (π∗(x, y), c∗(x, y), η∗(x, y)) by finding a Borel measurable function
η∗(x, y) such that

min
η∈�

max
π∈R

max
c>0

(

Lπ,c,ηV (x, y) − wV (x, y) + cγ

γ

)

= max
π∈R

max
c>0

(

Lπ,c,η∗(x,y)V (x, y) − wV (x, y) + cγ

γ

)

and Borel measurable functions (π∗(x, y), c∗(x, y)) such that

max
π∈R

max
c>0

min
η∈�

(

Lπ,c,ηV (x, y) − wV (x, y) + cγ

γ

)

= min
η∈�

(

Lπ∗(x,y),c∗(x,y),ηV (x, y) − wV (x, y) + (c∗(x, y))γ

γ

)

.

From calculations (3.10)–(3.14), it follows that η∗(x, y) does not depend on
x and is equal to the minimizer of (3.14). Moreover, (π∗(x, y), c∗(x, y)) =
(π∗(x, y, η∗

1(y)), c
∗(x, y)), where (π∗(x, y, η), c∗(x, y)) is given by (3.13). The last

claim is a consequence of the following two facts:

(1) the minimax equality holds:

min
η∈�

max
π∈R

max
c>0

(

Lπ,c,ηV (x, y) − wV (x, y) + cγ

γ

)

= max
π∈R

max
c>0

min
η∈�

(

Lπ,c,ηV (x, y) − wV (x, y) + cγ

γ

)

=
(

Lπ∗(x,y),c∗(x,y),η∗(x,y)V (x, y) − wV (x, y) + (c∗(x, y))γ

γ

)

,

(2) Lπ∗(x,y),c,η∗(x,y)V (x, y) = max
π

Lπ,c,η∗(x,y)V (x, y) and therefore

(π∗(x, y), c∗(x, y)) is the unique solution to the equation

Lπ,c,η∗(x,y)V (x, y) + cγ

γ
= Lπ∗(x,y),c∗(x,y),η∗(x,y)V (x, y) +

(
c∗(x, y)

)γ

γ
.
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4 Smooth Solution to the Resulting PDE

In this section, we use stochastic methods to derive existence and uniqueness results
for classical solutions to differential equations which play a key role in the solution to
our initial problem. Let’s recall it once more

1

2
a2(y)Fyy + ρ2γ

2(1 − γ )
a2(y)

F2
y

F
+

(

g(y) + ργ

1 − γ
a(y)λ(y)

)

Fy (4.1)

+ min
(η1,η2)∈�

(

ρ̄η2a(y)Fy + ρ

(1 − γ )
a(y)η1Fy + γ

2(1 − γ )

(
λ(y) + η1

)2
F

)

+ γ r(y)F + (1 − γ )F
γ

γ−1 − wF = 0.

Assume now that there exists F – a solution to Eq. (4.1) such that
a(y)Fy

F
is bounded.

In this case there exists R > 0 such that

max
q∈[−R,R]

(−Fq2 + 2a(y)Fyq
) = a2(y)

F2
y

F
.

Therefore, it is reasonable to consider equations of the form

1

2
a2(y)Fyy + max

q∈[−R,R]
(−θFq2 + 2θa(y)Fyq

)

+ min
η∈�

([î(y) + l̂(η)a(y)]Fy + ĥ(y, η)F
) + max

c>0

( − γ cF + cγ
) − wF = 0,

where θ > 0. This type of equation can be rewritten into

1
2a

2(y)uyy + maxδ∈D minη∈�

([i(y) + l(δ, η)a(y)]uy + h(y, δ, η)u
)

(4.2)

+maxc>0
( − γ cu + cγ

) − wu = 0,

where D ⊂ R
n, � ⊂ R

k are compacts. To the best of our knowledge, subsequent
results on classical solutions to (4.2) have not been available so far under assumptions
given here.

We make the following two assumptions.

Assumption 1 Functions a, h and i , l are continuous, a2(y) > ε > 0 and there exist
L1 > 0, L2 ≥ 0 such that

|h(y, δ, η) − h(ȳ, δ, η)| + |i(y) − i(ȳ)| ≤ L1|y − ȳ|,
|h(y, δ, η)| ≤ L1, |i(y) + l(δ, η)a(y)| ≤ L1(1 + |y|), (4.3)

(y − ȳ)[i(y) + l(δ, η)a(y) − i(ȳ) − l(δ, η)a(ȳ)] + 1

2
|a(y) − a(ȳ)|2≤ L2|y − ȳ|2.

(4.4)

Remark Assume for a moment that a is constant. If (4.3) is satisfied then also (4.4)
holds with L2 = L1. Nevertheless in some models the constant L2 can be much lower
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than L1, for instance it is worth to notice the case i(y)+ l(δ, η)a(y) = −y+η, where
L2 can be set to zero.

Assumption 2 There exist a Borel measurable function η∗(δ, y, u, p) and a Borel
measurable function δ∗(y, u, p) such that

η∗(δ, y, u, p) ∈ argmin
η∈�

G(δ, η, y, u, p), δ∗(y, u, p) ∈ argmax
δ∈D min

η∈�
G(δ, η, y, u, p),

where

G(δ, η, y, u, p) = [i(y) + l(δ, η)a(y)]p + h(y, δ, η)u.

Remark By classical measurable selection results all conditions of Assumption 2 are
satisfied for instance, when h(y, δ, η) = h1(y, δ) + h2(y, η), l(δ, η) = l1(δ) + l2(η)

and h1, h2, l1, l2 are continuous functions.

To construct a candidate solution to our problem we use a sequence of solutions to
finite time horizon problems of the form

ut + 1

2
a2(y)uyy + max

δ∈D min
η∈�

(

[i(y) + l(δ, η)a(y)]uy + h(y, δ, η)u

)

(4.5)

+ max
m1≤c≤m2

(−γ cu + cγ
) − wu = 0, (y, t) ∈ R × [0, T ),

with terminal condition u(y, T ) = 0.

Lemma 4.1 Suppose that h and i are continuous, all conditions of Assumption 1 and
Assumption 2 are satisfied and there exists u—a polynomial growth solution to (4.5).
Then u is a unique polynomial growth solution to (4.5), which in addition is bounded
and strictly positive. Moreover it admits a stochastic representation of the form

u(y, t) = sup
δ∈D, c∈Cm1,m2

inf
η∈N

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

, (4.6)

where dYt = [i(Yt ) + l(δt , η(δt ))a(Yt )] dt + a(Yt )dW
l(δ,η(δ))
t , D is the class of

all progressively measurable processes taking values in D, N is the family of all
functions:η : D×[0,+∞)×� → � with the property that for all δ ∈ D the process
(η(δt ) := η(δt , t, ·)| 0 ≤ t < +∞) is progressively measurable and Cm1,m2 denotes
the class of all continuous processes (ct | 0 ≤ t < +∞) that m1 ≤ ct ≤ m2.

Proof Under conditions of Assumption 2 for all functions η : � → D and for all
δ ∈ D, (y, u, p) ∈ R

3, we have

G(δ, η∗(δ, y, u, p), y, u, p) ≤ max
δ∈D min

η∈�
G(δ, η, y, u, p)

≤ G(δ∗(y, u, p), η(δ∗(y, u, p)), y, u, p).

In addition let c∗(y) be a Borel measurable function, which maximize (4.5). Then for
all η ∈ N , δ ∈ D, c ∈ [m1,m2], y ∈ R, we get
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Kδ,c,η∗(δ,y,u,uy)u(y, t) ≤ 0 ≤ Kδ∗(y,u,uy),c∗(y),η(δ∗(y,u,uy))u(y, t),

where

Kδ,c,ηu(y, t) = ut + 1

2
a2(y)uyy + [i(y) + l(δ, η)a(y)]uy

+h(y, δ, η)u + max
m1≤c≤m2

(−γ cu + cγ
) − wu.

Recall that the solution u satisfies a polynomial growth condition and all conditions
of Assumption 1 are satisfied, which gurantees that for all η ∈ N and δ ∈ D

E
l(δ,η(δ))
y,t sup

t≤s≤T
|u(Ys)| < +∞,

(for the proof see Appendix D of Fleming and Soner [7]). Therfore, we can use the
standard verification argument, which leads us to the conclusion

E
l(δ,η∗(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η∗(δk ))−γ ck−w) dkcγ

s ds

)

≤ u(y, t) ≤ E
l(δ∗,η(δ∗))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δ∗

k ,η(δ∗
k ))−γ ck−w) dkcγ

s ds

)

,

which is true for all δ ∈ D and η ∈ N , c ∈ Ĉm1,m2 . Here Ĉm1,m2 denotes the class of all
progressively measurable processes taking values in the interval [m1,m2], η∗(δ) is the
abbreviationofη∗(δ,Y, u(Y ), uy(Y )) and δ∗ is the abbreviationof δ∗(Y, u(Y ), uy(Y )).
For more details about the verfication reasoning, which was used here, see for example
the proof of Theorem 6.1 from Zawisza [22].

This implies that

inf
η∈N

sup
δ∈D, c∈Ĉm1,m2

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

≤ u(y, t) ≤ sup
δ∈D, c∈Ĉm1,m2

inf
η∈N

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

.

Since the oposite inequality

sup
δ∈D, c∈Ĉm1,m2

inf
η∈N

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

≤ inf
η∈N

sup
δ∈D, c∈Ĉm1,m2

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

is always satisfied, we get

u(y, t) = sup
δ∈D, c∈Ĉm1,m2

inf
η∈N

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

. (4.7)
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This representation confirms the uniqueness, the boundedness and the strict positivity
of u(y, t).

Finally, we are able to notice that instead of the class Ĉm1,m2 in (4.7), we can limit
ourselves to the class Cm1,m2 , since when u is strictly positive, then the maximumwith
respect to c in (4.5) is achieved at

c∗(y) =

⎧
⎪⎪⎨

⎪⎪⎩

m1, if u
1

γ−1 (y) ≤ m1,

u
1

γ−1 (y) if m1 ≤ u
1

γ−1 (y) ≤ m2,

m2 if u
1

γ−1 (y) ≥ m2,

which is a continuous function. �
It is also possible to rewrite Eq. (4.5) in the following form

ut + 1

2
a2(y)uyy + H(y, u, uy) − wu = 0,

where

H(y, u, p) = max
δ∈D min

η∈�

(

[i(y)+l(δ, η)a(y)]p+h(y, δ, η)u

)

+ max
m1≤c≤m2

(

−γ cu+cγ

)

.

Lemma 4.2 If Assumption 1 is satisfied then H is continuous and there exists K > 0
that

|H(y, 0, 0)| ≤ K ,

|H(y, u, p) − H(y, ū, p)| ≤ K |u − ū|, (4.8)

|H(y, u, p) − H(ȳ, u, p)| ≤ K (1 + |p|)|y − ȳ|,
|H(y, u, p) − H(y, u, p̄)| ≤ K (1 + |y|)|p − p̄|.

Proof It is sufficient to note that if D ⊂ R
n , � ⊂ R

k and f is a continuous function
then

|max
δ∈D min

η∈�
f (z, δ, η) − max

δ∈D min
η∈�

f (z̄, δ, η)| ≤ max
δ∈D max

η∈�
| f (z, δ, η) − f (z̄, δ, η)|.

�
Theorem 4.3 Suppose that for each T > 0 there exists a unique bounded solution to
(4.5), all conditions of Assumptions 1 and 2 are satisfied with L1 > 0, L2 ≥ 0 and
w > supη,δ,y h(y, δ, η) + L2. Then there exists a unique bounded solution to

1

2
a2(y)uyy + max

δ∈D min
η∈�

(

[i(y) + l(δ, η)a(y)]uy + h(y, δ, η)u

)

+ max
m1≤c≤m2

(−γ cu + cγ
) − wu = 0, (4.9)

which, in addition, is bounded together with the y-derivative and bounded away from
zero.
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Proof The solution will be constructed by taking the limit in a sequence of solutions
to finite horizon problems (4.5).

Suppose that T > 0 is fixed and let u be the solution to (4.5). To use the Arzel–
Ascolli Lemma we need to prove uniform estimates for u and all its derivatives. We
can use a stochastic control representation to obtain

u(y, t) = sup
δ∈D, c∈Cm1,m2

inf
η∈N

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

.

Since h is bounded and w > supη,δ,y h(y, δ, η) then there exists α > 0 that

|u(y, t)| ≤ sup
δ∈D, c∈Cm1,m2

inf
η∈N

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t −α−γ ck dkcγ

s ds

)

≤ mγ
2

∫ T

t
e−α(t−s)ds ≤ mγ

2

α
.

A bound for uy will be obtained by estimating the Lipschitz constant. Note that if
w > supη,y h(y, η) + L2, then w1 := w − L2 > supη,y h(y, η). Moreover we will
use the fact that |ex − ey | ≤ |x − y| for x, y ≤ 0. For a notational convenience we
will write El(δ,η(δ)) f (Yt (y, s)) instead of El(δ,η(δ))

y,s f (Yt ).

|u(y, t) − u(ȳ, t)| ≤ sup
c∈Cm1,m2

sup
η∈N ,δ∈D

E
l(δ,η(δ))

∫ T

t
cγ
s e

− ∫ s
t (γ ck+L2) dk ·

·
∣
∣
∣
∣e

∫ s
t (h(Yk(y,t),δk ,η(δk ))−w1) dk − e

∫ s
t (h(Yk(ȳ,t),δk ,η(δk ))−w1) dk

∣
∣
∣
∣ds

≤ sup
c∈Cm1,m2

sup
η∈N ,δ∈D

E
l(δ,η(δ))

∫ T

t
cγ
s e

− ∫ s
t (γ ck+L2) dk

·
∫ s

t
|h(Yk(y, t), δk, η(δk)) − h(Yk(ȳ, t), δk, η(δk))| dk ds

≤ L1 sup
c∈Cm1,m2

sup
η∈N ,δ∈D

E
l(δ,η(δ))

∫ T

t
cγ
s e

− ∫ s
t γ ck dk

·
∫ s

t
e−L2(s−t)|Yk(y, t) − Yk(ȳ, t)| dk ds

≤ L1m
γ
2 sup

η∈N ,δ∈D
E
l(δ,η(δ))

∫ T

t

·
∫ s

t
e−(L2+γm1)(s−t)|Yk(y, t) − Yk(ȳ, t)| dk ds.

Using the Itô formula we have

E
l(δ,η(δ))(Yk(y, t) − Yk(ȳ, t))

2 = (y − ȳ)2 +
∫ k

t
2El(δ,η(δ))(Yl(y, t) − Yl(ȳ, t))
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· [i(Yl(y, t)) + l(δt , η(δt ))a(Yl(y, t)) − i(Yl(ȳ, t)) − l(δt , η(δt ))a(Yl(ȳ, t))] dl

+
∫ k

t
E
l(δ,η(δ))(a(Yl(y, t)) − a(Yl(ȳ, t))

2 dl.

Using (4.4) we have

E
l(δ,η(δ))(Yk(y, t) − Yk(ȳ, t))

2 ≤ (y − ȳ)2 + 2L2

∫ k

t
E
l(δ,η(δ))(Yl(y, t) − Yl(ȳ, t))

2dl.

Gronwall’s lemma yields

E
l(δ,η(δ))(Yk(y, s) − Yk(ȳ, s))

2 ≤ (y − ȳ)2e2L2(k−s).

We should consider now two cases:
Case I L2 > 0.

|u(y, t) − u(ȳ, t)| ≤ L1m
γ
2 |y − ȳ|

∫ T

t
e
∫ s
t (−L2−γm1) dk

∫ s

t
eL2(k−t)dkds (4.10)

≤ L1m
γ
2

L2
|y − ȳ|

∫ T

t
e(−γm1)(s−t) ≤ L1m

γ
2

γm1L2
|y − ȳ|.

Case II L2 = 0

|u(y, t) − u(ȳ, t)| ≤ L1m
γ
2 |y − ȳ|

∫ T

t
e
∫ s
t (−γm1) dk(s − t)ds (4.11)

= L1m
γ
2 |y − ȳ|

∫ T−t

0
e−γm1kkdk

= L1m
γ
2 |y − ȳ|

(
(T − t)e−γm1(T−t)

γm1
+ 1 − e−γm1(T−t)

γ 2m2
1

)

.

Note that above estimates do not depend on the time horizon T (the last one for large
values of T − t). We consider new function v(y, t) = uT (y, T − t), where uT denotes
the solution to equation (4.5) with the terminal condition given at time T . Then v is a
solution to

vt − 1

2
a2(y)vyy − H(y, v, vy) + wv = 0

with the initial condition v(y, 0) = 0. From the uniqueness property we get that

v(y, t)=ut (y, 0)= sup
δ∈D, c∈Cm1,m2

inf
η∈N

E
l(δ,η(δ))
y,0

(∫ t

0
e
∫ s
0 (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

.

Thanks to that we have an estimate on vt . Namely, let t ≥ 0 be fixed. Observe that for
ξ > 0
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|v(y, t + ξ) − v(y, t)| ≤ sup
δ∈D, c∈Cm1,m2

sup
η∈N

∣
∣
∣
∣I (t + ξ, y, η, c) − I (t, y, η, c)

∣
∣
∣
∣,

where

I (t, y, η, c) := E
l(δ,η(δ))
y,0

(∫ t

0
e
∫ s
0 (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

.

Note that

∂ I

∂t
(t, y, η, c) = E

l(δ,η(δ))
y,0 e

∫ t
0 (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s .

We assumed that w > supy,δ,η h(Yk, δk, η(δk)), hence there exists β > 0 that for
ξ > 0 we have

∣
∣
∣
∣
∂ I

∂t
(t + ξ, y, η, c)

∣
∣
∣
∣ ≤ mγ

2 e
−βt

and finally
∣
∣
∣
∣I (t + ξ, y, η, c) − I (t, y, η, c)

∣
∣
∣
∣ ≤ mγ

2 e
−βt |ξ |.

The above inequality ensures that vt (y, t) is uniformly bounded and vt (y, t) is con-
vergent to 0 (t → ∞), uniformly with respect to y.

We have obtained so far uniform bounds for v, vt , vy . Moreover we know that
equation

{
vt − 1

2a
2(y)vyy + wv − H(y, v, vy) = 0 (y, t) ∈ R × (0,+∞),

v(y, 0) = 0 y ∈ R.
(4.12)

is satisfied, H satisfies (4.8) and a2(y) > ε > 0.Hence, a proper bound is also satisfied
for vyy .

By the Arzel-Ascolli Lemma, there exists a sequence (tn, n = 1, 2, . . .) such that
(v(y, tn), n = 1, 2, . . .) is convergent to some twice continuously differentiable func-
tion, which will be denoted further also by v(y). What is more, the convergence holds
locally uniformly together with vy(y, tn) and vyy(y, tn). This indicates that v,vy are
bounded and

1

2
a2(y)vyy + H(y, v, vy) − wv = 0.

The uniqueness follows from the infinite horizon analogue of stochastic representation
(4.6). �

Gathering Lemma 4.2 and Theorem 2.1 of Friedman [8] we get that if conditions
of Assumption 1 are satisfied and a �= 0 then for all T > 0 there exists a unique
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bounded solution to finite horizon equation (4.5). We are sure that a smooth solution
to equation (4.5) exists under more general conditions but we will treat this problem
elsewhere. Up to the end we assume that a is a nonzero constant. We should focus
now on

1

2
a2Fyy + max

q∈[−R,R]
(−θFq2 + 2θaFyq

)
(4.13)

+ min
η∈�

([î(y) + al̂(η)]Fy + ĥ(y, η)F
) + max

c>0

( − γ cF + cγ
) − wF = 0.

We have already proved that if ĥ and î are continuous and

|ĥ(y, η) − ĥ(ȳ, η)| + |î(y) − î(ȳ)| ≤ L1|y − ȳ|,
|ĥ(y, η)| ≤ L1, |î(y, η)| ≤ L1(1 + |y|), (4.14)

(y − ȳ)(î(y) − î(ȳ)) ≤ L2|y − ȳ|2, (4.15)

then there exists a nonnegative, bounded and C2(R) solution to

1

2
a2Fyy + max

q∈[−R,R]
(−θFq2 + 2θaFyq

)

+min
η∈�

([î(y) + al̂(η)]Fy + ĥ(y, η)F
) + max

m1≤c≤m2

( − γ cF + cγ
) − wF = 0.

(4.16)

We denote this solution by Fm1,m2,R . The proof of Theorem 4.3 shows that

Fm1,m2,R ≤ mγ
2

α
,

where α := w − supy,η ĥ(y, η).

Lemma 4.4 If ĥ, î are continuous, a �= 0 and (4.14), (4.15) are satisfied then there
exists P > 0 that

Fm1,m2,R ≥ P, for all 0 < m1 ≤ 1 ≤ m2, R > 0.

Proof Since Fm1,m2,R is approximated by finite horizon problems, then

Fm1,m2,R(y)

= lim
t→∞ sup

c∈Cm1,m2

sup
q∈[−R,R]

inf
η∈M

E
l(η)
y,0

(∫ t

0
e
∫ s
0 (ĥ(Yk ,η(δk ))−θq2k −γ ck−w) dk(cs

)γ
ds

)

≥ lim
t→∞ inf

η∈M
E
l(η)
y,0

(∫ t

0
e
∫ s
0 (ĥ(Yk ,η(δk ))−γ−w) dkds

)

.

Since w > supy,η h(y, δ, η), then for p := w + γ − inf y,η h(y, δ, η) > 0 we have
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Fm1,m2,R(y) ≥
(∫ +∞

0
e−psds

)

= 1

p
=: P.

�
Lemma 4.5 Under the conditions of Lemma 4.4 there exist m∗

1 and m∗
2 that m∗

1 ≤
1 ≤ m∗

2 and Fm∗
1,m

∗
2,R

is a solution to (4.13). In addition, m∗
1 and m∗

2 do not depend
on R.

Proof Maximum with respect to c in (4.17) is achieved at

c∗
m1,m2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m1, if F
1

γ−1
m1,m2,R

≤ m1,

F
1

γ−1
m1,m2,R

if m1 ≤ F
1

γ−1
m1,m2,R

≤ m2,

m2 if F
1

γ−1
m1,m2,R

≥ m2.

From Lemma 4.4 and Theorem 4.3 we know that

P ≤ Fm1,m2,R ≤ mγ
2

α
.

Hence

(
mγ

2

α

) 1
γ−1

≤ (
Fm1,m2,R

) 1
γ−1 ≤ P

1
γ−1 .

In that case we can set m∗
2 := max{P 1

γ−1 , 1, α
1
γ }, m∗

1 := (mγ
2

α

) 1
γ−1 . For such m∗

1, m
∗
2

we have

max
c>0

( − γ cFm∗
1,m

∗
2,R

+ cγ
) = max

m∗
1≤c≤m∗

2

( − γ cFm∗
1,m

∗
2,R

+ cγ
)
.

And the conclusion follows. �
Finally we are able to consider our main equation:

1

2
a2Fyy + ρ2γ

2(1 − γ )
a2

F2
y

F
+

(

g(y) + ργ

1 − γ
aλ(y)

)

Fy (4.17)

+ min
(η1,η2)∈�

(

ρ̄η2aFy + ρ

(1 − γ )
aη1Fy + γ

2(1 − γ )

(
λ(y) + η1

)2
F

)

+ γ r(y)F + (1 − γ )F
γ

γ−1 − wF = 0.

Proposition 4.6 Under the conditions of Lemma 4.4 there exists a unique bounded
together with the y-derivative and bounded away from zero solution to (4.17).
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Proof It is sufficient to note that Lemma 4.5 and inequalities (4.10), (4.11) ensure that

for all R > 0, there exists FR—a solution to (4.13) such that
FR
y

F R is bounded by a
constant which is independent of R. This allows to conclude that there exists R∗ that∣
∣
∣
∣
∣

aF R∗
y

F R∗

∣
∣
∣
∣
∣
≤ R∗ and FR∗

is also a solution to (4.17). �

5 Final Result

Theorem 5.1 Suppose that a �= 0 is a constant, g, r , λ are Lipschitz continuous
functions, λ, r are bounded and g is of a linear growth condition. In addition let
w > supy,η ĥ(y, η) + L2, where

ĥ(y, η) = γ

2(1 − γ )

(
λ(y) + η1

)2 + γ r(y),

î(y, η) = ργ

1 − γ
aλ(y) + g(y) + ρ̄η2a + ρ

(1 − γ )
aη1.

Then there exists a saddle point (π∗(x, y), c∗(x, y), η∗(x, y)) such that

π∗(x, y) = ρax

(1 − γ )σ (y)

Fy

F
+ (λ(y) + η∗

1(y))x

(1 − γ )σ (y)
, c∗(x, y) := F

1
γ−1 x,

where F is a unique bounded together with the y-derivative and bounded away from
zero solution to (4.17). The term η∗ is a Borel measurable function which realizes
minimum in (4.17).

Proof It follows from Proposition 4.6 that there exists a positive, bounded away from
zero and bounded together with the first y-derivative solution to (4.17).

By the classical measurable selection theorem there exists a Borel measurable
η∗(y) ∈ � being realization of the minimum in (4.17). If we set

V (x, y) := xγ

γ
F(y),

π∗(x, y) := ρax
(1−γ )σ (y)

Fy
F + (λ(y)+η∗

1(y))x
(1−γ )σ (y) , c∗(x, y) := F

1
γ−1 x,

thendue to (3.10)–(3.14), it is sufficient to proveonly that (π∗(x, y), c∗(x, y), η∗(x, y))
is an admissible Markov saddle point and conditions (3.6) and (3.7) hold. Let

ζ1(y) := ρa

(1 − γ )σ (y)

Fy

F
+ (λ(y) + η∗

1(y))

(1 − γ )σ (y)
, ζ2(y) := F

1
γ−1 .

Note that ζ1 · (b− r), ζ1 ·σ , and ζ2 are bounded functions since λ and λ2 are bounded.
Therefore, the process Zt := Xπ∗,c∗

t is a unique solution to the equation

dZt = [ζ1(Yt )(b(Yt ) − r(Yt )) + η1ζ1(Yt )σ (Yt ) − ζ2(Yt )]Ztdt + ζ1(Yt )σ (Yt )ZtdW
1,η
t .
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This is a linear equation with bounded stochastic coefficients, which implies that

E
η,T
x,y sup

0≤s≤T

(
Xπ∗,c∗
s

)γ
< +∞,

for all η ∈ M. This confirms the admissibility of (π∗(x, y), c∗(x, y)).
In addition Xπ∗,c∗

t is strictly positive and this ensures that (3.6) holds. Condition
(3.7) is satisfied since F is bounded and for any x, y ∈ (0,+∞) × R,

E
η,T
x,y sup

0≤s≤T
|V (Xπ,c

s ,Ys)| = E
η,T
x,y sup

0≤s≤T

(
Xπ,c
s

)γ |F(Ys)| < +∞.

�

Examples

We can apply our main result to the following (ε modifications) of standard stochastic
volatility models:

• The Scott model:
{
dSt = bdt + √

eYt + εdW 1
t , ε > 0,

dYt = (κ − θYt )dt + ρdW 1
t + ρ̄dW 2

t .

• The Stein and Stein model:
{
dSt = bdt + (|Yt | + ε)dW 1

t , ε > 0,

dYt = (κ − θYt )dt + ρdW 1
t + ρ̄dW 2

t .

6 Negative HARA Parameter Case

It is easy to check that for a negative HARA parameter (γ < 0), HJBI equations

max
π∈R

max
c>0

min
η∈�

(Lπ,c,ηV (x, y) − wV (x, y) + cγ

γ
)

= min
η∈�

max
π∈R

max
c>0

(Lπ,c,ηV (x, y) − wV (x, y) + cγ

γ
) = 0

have a trivial solution equals 0. This may suggest that the problem is ill posed. Indeed,
a careful analysis of the investor’s objective function

Jπ,c,η(x, y) = lim
t→∞E

η,t
x,y

∫ t∧τx,y

0
e−wt

(
ct

)γ

γ
dt,

shows that there is no saddle point for that problem, since there is no constraint for
the consumption process. Therefore we might consider a constrained problem, which
is based on the following investor’s objective:
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J̄π,c,η(x, y) = lim
t→∞E

η,t
x,y

∫ t∧τx,y

0
e−wt

(
c̄t X

π,c̄
t

)γ

γ
dt,

where the dynamics of the investor’s wealth process (Xπ,c̄
t , 0 ≤ t < +∞) is given by

the stochastic differential equation

dXt = (r(Yt )Xt + πt (b(Yt ) − r(Yt )))dt + πtσ(Yt )dW
1
t − c̄t Xtdt.

In that problem we assume that the consumption is proportional to the wealth i.e.
ct = c̄t X

π,c̄
t . We interpret the process c̄t as a consumption rate and assume it belongs

to the class Cm1,m2 .
After considering HJBI equation and after several transformations (as in (3.10)–

(3.14)) we get the equation:

1

2
a2(y)Fyy + ρ2γ

2(1 − γ )
a2(y)

F2
y

F
+

(

g(y) + ργ

1 − γ
a(y)λ(y)

)

Fy (6.1)

+ max
(η1,η2)∈�

(

ρ̄η2a(y)Fy + ρ

(1 − γ )
a(y)η1Fy + γ

2(1 − γ )

(
λ(y) + η1

)2
F

)

+ γ r(y)F + min
m1≤c̄≤m2

(

−γ c̄F + c̄γ

)

− wF = 0.

This may be rewritten into

1

2
a2(y)uyy + max

δ∈D min
η∈�

([i(y) + l(δ, η)a(y)]uy + h(y, δ, η))u
)

(6.2)

+ min
m1≤c≤m2

( − γ cu + cγ
) − wu = 0,

where D ⊂ R
n, � ⊂ R

k are compacts.
We have the following theorem

Theorem 6.1 Suppose that for each T > 0 there exists a unique bounded solution
to (4.5), all conditions of Assumption 1 and Assumption 2 are satisfied with L1 > 0,
L2 ≥ 0 and w > supη,δ,y h(y, δ, η) − γm2 + L2. Then there exists a unique bounded
solution to (6.2) which, in addition, is bounded together with the y-derivative and
bounded away from zero.

Proof In the light of the proof of Theorem 4.3 it is sufficient to find estimates for u
and uy , where u is given by

u(y, t) = sup
δ∈D

inf
η∈N , c̄∈Cm1,m2

E
l(δ,η(δ))
y,t

(∫ T

t
e
∫ s
t (h(Yk ,δk ,η(δk ))−γ ck−w) dkcγ

s ds

)

.

Since h is bounded andw > supη,δ,y h(y, δ, η)−γm2+L2 then there exists α > 0
that

|u(y, t)| ≤ sup
δ∈D

inf
η∈N , c̄∈Cm1,m2

E
l(δ,η)
y,t

(∫ T

t
e
∫ s
t −α dkcγ

s ds

)
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≤ mγ
1

∫ T

t
e−α(t−s)ds ≤ mγ

1

α
.

The bound for uy will be obtained by estimating the Lipschitz constant. Note that if
w > supη,y h(y, η)−γm2+ L2, then there existsw1 thatw > w1 > supη,y h(y, η)−
γm2 + L2. We need also a separate notation for w2 := w1 − L1.

|u(y, t) − u(ȳ, t)| ≤ sup
c∈Cm1,m2

sup
η∈N ,δ∈D

E
l(δ,η(δ))

∫ T

t
cγ
s e

− ∫ s
t (w−w1+L2) dk

·
∣
∣
∣
∣e

∫ s
t (h(Yk(y,t),δk ,η(δk ))−w2) dk − e

∫ s
t (h(Yk(ȳ,t),δk ,η(δk ))−w2) dk

∣
∣
∣
∣ds

≤ sup
c∈Cm1,m2

sup
η∈N ,δ∈D

E
l(δ,η(δ))

∫ T

t
cγ
s e

− ∫ s
t (w−w1+L2) dk

·
∫ s

t
|h(Yk(y, t), δk, η(δk)) − h(Yk(ȳ, t), δk, η(δk))| dk ds

≤ L1 sup
c∈Cm1,m2

sup
η∈N ,δ∈D

E
l(δ,η(δ))

∫ T

t
cγ
s e

− ∫ s
t (w−w1+L2) dk

·
∫ s

t
|Yk(y, t) − Yk(ȳ, t)| dk ds

≤ L1m
γ
1 sup

η∈N ,δ∈D
E
l(δ,η(δ))

∫ T

t

∫ s

t
e−(w−w1+L2)(s−t)|Yk(y, t)

− Yk(ȳ, t)| dk ds.

The rest of the proof is just a simple repetition of the proof of Theorem 4.3. �
Acknowledgments The author would like to thank the anonymous referee whose suggestions helped to
improve first version of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Anderson, E., Hansen, L.P., Sargent, T.: A quartet of semi-groups for model specification, robustness,
prices of risk, and model detection. J. Eur. Econ. Assoc. 1, 68–123 (2003)
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