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A series of novel imidazolium based ionic liquids containing the urea moiety were designed and synthesized for anion recognition. 
1-Ethylurea-3-methylimidazolium acetate ([Eumim]OAc) was used as the receptor for the halides and complex anions (BF4

–, PF6
–, 

BPh4
–). 1H NMR spectra showed that the urea protons and imidazolium C(2) proton of the receptor ([Eumim]OAc) moved upfield 

on addition of various anions. A Job plot showed that the [Eumim]OAc receptor formed a 1:1 complex with BPh4
–. X-ray diffrac-

tion analysis and the molecular modeling study revealed that the conformations of [Eumim]OAc and [Eumim]BPh4 were different. 
The conformational change of the cation was caused by anion exchange, and may provide an alternative to current methods for 
recognition of anions. 
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Anions such as fluoride, chloride, tetrafluoroborate, and 
hexafluorophate play a significant role in a wide range of 
environmental, biological and industrial processes [1–4]. 
Accordingly, the design and development of receptors for 
selective sensing or recognition of anions has attracted in-
creasing interest. Most anion receptors have hydrogen bond 
donating groups, such as amide [5,6], pyrrole [7,8], guani-
dinium [9], imidazolium [10,11], urea or thiourea [12,13], 
to recognize anions through the formation of hydrogen 
bonds. However, recognition of anions like BF4

–, PF6
– and 

BPh4
– is difficult with this type of receptor because these 

anions have a poor ability to form hydrogen bonds. 
Ionic liquids are widely used as new and designable 

green chemical materials in organic and inorganic synthesis 
[14], catalysis [15,16], electrochemical [17] and separation 
processes [18]. They have high thermal stability and low 
volatility, and their physicochemical properties can be  

finely tuned by selection of the anion and cation. Recently, 
the interaction between the cations and anions was found to 
play a major role in controlling the physicochemical proper-
ties of ionic liquids [19–21]. The interaction energies of ion 
pairs of ionic liquids were studied by ab initio calculations, 
and the magnitude of the interaction energies of ionic liq-
uids with the same cation varied with the counter anion [19]. 
The cation of the ionic liquid preferentially combines with the 
anion, which they can form the larger interaction energy. 
Therefore, anion exchange probably takes place when an-
other anion is added to the ionic liquid, and this changes the 
specific physicochemical properties of the ionic liquid. 
These changes could be used to develop a method for anion 
recognition. In the present study, a series of imidazolium 
based ionic liquids containing the urea moiety were synthe-
sized. The ionic liquids were used as receptors to recognize 
halides and complex anions, such as BF4

–, PF6
– and BPh4

–, 
via the variation in the chemical shifts of the urea and im-
idazolium C(2) protons. 
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1  Experimental  

1.1  Materials and methods 

2-Chloroethylurea and butyl isocyanate were purchased 
from Tokyo Chemical Industry (Tokyo, Japan) and N-(3- 
aminopropyl) imidazole was purchased from Alfa Aesar 
(Ward Hill, MA). N-Methylimidazole was fractionally dis-
tilled. All other reagents and the anion salts were commer-
cial reagents of AR grade and used without further purifica-
tion.  

1H and 13C NMR spectra were recorded in DMSO-d6, on 
a Bruker Avance DRX 500 FT NMR spectrometer (Bruker, 
Billerica, MA) at 500 MHz for 1H NMR spectra and at 126 
MHz for 13C NMR spectra. The internal standard was tet-
ramethylsilane. Each anion (1 equiv.) was added to a solu-
tion of 10 mg of [Eumim]OAc in 0.6 mL of DMSO-d6. The 
halides were added as tetrabutylammonium salts. The com-
plex anions, such as BF4

–, PF6
– and BPh4

–, were added as 
sodium salts.  

The stoichiometry was determined using Job’s method. 
In this method, solutions of [Eumim]OAc and NaBPh4 
(both 6.0×10–2 mol/L) were prepared in dry DMSO-d6. 
Then the [Eumim]OAc and NaBPh4 solutions were mixed 
in different proportions while maintaining a total volume  
of 0.6 mL. The ratios of [Eumim]OAc:NaBPh4 were 1:0, 

4:1, 3:1, 2:1, 1.5:1, 1:1, 1:1.5, 1:2, 1:3, 1:4, and    

0:1. All the prepared solutions were kept at room tempera-
ture for 5 h, and then their chemical shifts were recorded. 
The concentration of [HG] was calculated using [HG]    
= ∆δ/δ0 × [H], where ∆δ/δ0 is the relative chemical shift  
of the urea NH2 protons and [H] is the concentration of  
the pure [Eumim]OAc. The amount-of-substance fraction of 
the guest (XG) was plotted against the concentration of HG. 
The maximum [HG] indicated the stoichiometry of the 
complex.  

The geometries of all species were optimized in the gas 
phase using B3LYP with Gaussian 03 program on a Pen- 
tium (R) Dual-Core E5200 computer. The 6-31+G(d) basis 
set was used for all atoms. The electronic energies were 
obtained from the output files of the geometry optimization 
calculations [22]. 

1.2  Synthesis of 1-ethylurea-3-methylimidazolium 
chloride [Eumim]Cl 

N-Methylimidazole (4.51 g, 55 mmol) in 50 mL of ethanol 
was added dropwise to 2-chloroethylurea (6.13 g, 50 mmol) 
at 40°C. The mixture was stirred under N2 at 80°C for 3 d. 
After evaporation of the solvent, the residue was recrystal-
lized from ethanol to give 9.59 g (93.8%) of white solid. 1H 
NMR (500 MHz, D2O, Me4Si) δ 3.40 (t, J = 6 Hz, 2 H), 3.77 
(s, 3 H), 4.15 (t, J = 6 Hz, 2 H), 7.32 (s, 1 H), 7.36 (s, 1 H), 
8.50 (s, 1 H). 

1.3  Synthesis of 1-ethylurea-3-methylimidazolium  
acetate [Eumim]OAc 

Silver acetate (3.34 g, 20 mmol) was added to a solution of 
[Eumim]Cl (4.09 g, 20 mmol) in water (80 mL) and stirred 
at room temperature for 4 h in the dark. The suspension was 
filtered to remove silver chloride. The water was removed 
in vacuo to afford 4.38 g (96%) of colorless oil. 1H NMR 
(500 MHz, DMSO-d6, Me4Si) δ 1.61 (s, 3 H) , 3.34–3.38 (m, 
2 H), 3.85 (s, 3 H), 4.18 (t, J = 6.0 Hz, 2 H), 6.15 (s, 2 H), 
7.69 (s, 1 H), 7.76 (s, 1 H), 8.14 (s, 1 H), 9.31 (s, 1 H); 13C 
NMR (125 MHz, DMSO-d6) δ 25.6, 35.6, 40.1, 49.3, 122.6, 
123.2, 137.2, 159.5, 174.5; ESI-MS m/z Calcd for 
[C9H16N4O2–OAc]: 169.1, found for (M–OAc)+: 169.0. 

1.4  Synthesis of 1-ethylurea-3-methylimidazolium  
tetrafluoroborate [Eumim]BF4 

Silver tetrafluoroborate (0.58 g, 3 mmol) was added to a 
solution of [Eumim]Cl (0.61 g, 3 mmol) in water (30 mL) 
and stirred at room temperature for 4 h in the dark. The 
suspension was filtered to remove silver chloride. The water 
was removed in vacuo to afford 0.61 g (79%) of colorless 
oil. 1H NMR (500 MHz, DMSO-d6, Me4Si) δ 3.37–3.41 (m, 
2 H), 3.85 (s, 3 H), 4.17 (t, J = 5.75 Hz, 2 H), 5.59 (s, 2 H), 
6.16 (t, J = 5.5 Hz, 1 H), 7.70 (d, J = 0.8 Hz, 2 H), 9.08 (s, 1 
H); 13C NMR (126 MHz, DMSO-d6) δ 35.71, 39.27, 49.57, 
122.67, 123.50, 136.87, 158.72; ESI-MS m/z Calcd for 
[C7H13BF4N4O–BF4]: 169.1, found for (M–BF4)

+: 169.0.  

1.5  Synthesis of 1-ethylurea-3-methylimidazolium 
tetraphenylborate [Eumim]BPh4 

Sodium tetraphenylborate (1.03 g, 3 mmol) was added to a 
solution of [Eumim]Cl (0.61 g, 3 mmol) in water (100 mL) 
and stirred at room temperature for 5 h. The suspension was 
filtered to obtain 1.39 g (95%) of white solid. 1H NMR (500 
MHz, DMSO-d6, Me4Si) δ 3.37–3.40 (m, 2 H), 3.83 (s, 3 H), 
4.16 (t, J = 5.5 Hz, 2 H), 5.59 (s, 2 H), 6.12 (t, J = 5. 5 Hz,  
1 H), 6.80 (t, J = 7.0 Hz, 4 H), 6.93 (t, J = 7.0 Hz, 8 H), 
7.19 (d, J = 1.5 Hz, 8 H), 7.68 (t, J = 1.5 Hz, 2 H), 9.04 (t, J 
= 1.5 Hz, 1 H). 

1.6  Synthesis of 1-ethylurea-2,3-dimethylimidazolium 
chloride [Eummim]Cl 

1,2-Dimethylimidazole (1.92 g, 20 mmol) in 50 mL of etha- 
nol was added dropwise to 2-chloroethylurea (2.45 g, 20 
mmol) at 40°C. The mixture was stirred under N2 at 80°C 
for 3 d. After evaporation of the solvent, the residue was 
recrystallized from ethanol to give 1.69 g (40%) of white 
solid. 1H NMR (500 MHz, D2O, Me4Si) δ 2.51 (s, 3 H), 
3.42 (t, J = 5.5 Hz, 2 H), 3.69 (s, 3 H), 4.13 (t, J = 5.5 Hz,  
2 H), 7.24 (d, J = 2.0 Hz, 1 H), 7.26 (d, J = 2.0 Hz, 1 H).  
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1.7  Synthesis of 1-ethylurea-2,3-dimethylimidazolium 
acetate [Eummim]OAc 

Silver acetate (1.29 g, 7.73 mmol) was added to a solution 
of [Eummim]Cl (1.69 g, 7.73 mmol) in water (70 mL) and 
stirred at room temperature for 6 h in the dark. The suspen-
sion was filtered to remove silver chloride. The water was 
removed in vacuo to afford 1.48 g (79%) of white solid. 1H 
NMR (500 MHz, DMSO-d6, Me4Si ) δ 1.58 (s, 3 H), 2.57 (s, 
3 H), 3.27–3.30 (m, 2 H), 3.74 (s, 3 H), 4.11 (t, J = 5.5 Hz, 
2 H), 5.74 (s, 1 H), 6.14 (s, 2 H), 7.59 (d, J = 2.0 Hz, 1 H), 
7.62 (d, J = 2.0 Hz, 1 H), 8.08 (s, 1 H); 13C NMR (125 MHz, 
DMSO-d6) δ 9.14, 25.48, 34.56, 39.06, 121.17, 122.16, 
144.74, 159.59, 174.26; ESI-MS m/z Calcd for [C10H18N4O2- 
OAc]: 183.1, found for (M–OAc)+: 183.0. 

1.8  X-ray crystallographic studies 

Diffraction data were collected from a single crystal at 173 
K on a Bruker APEX II diffractometer equipped with a 
charge coupled device detector and graphite-monochro- 
mated Mo K radiation ( = 0.71073 Å). Empirical absorp-
tion corrections were applied using the SADABS program 
[23]. The structure was solved using direct methods and 
refined by the full-matrix least-squares method on F 

2 with 
anisotropic thermal parameters for all non-hydrogen atoms 
[24]. Hydrogen atoms attached to the carbon atoms were 
located geometrically and refined using the riding model, 
and hydrogen atoms attached to nitrogen atoms were locat-
ed based on difference maps and refined with isotropic 
thermal parameters. 

2  Results and discussion 

2.1  Design and synthesis of ionic liquids 

The ionic liquid 1-ethylurea-3-methylimidazolium acetate 
([Eumim]OAc) was synthesized by the reaction of N-me- 
thylimidazole with 2-chloroethylurea followed by ion-  
exchange with silver acetate in the overall yield of 94%. 1- 
Ethylurea-3-methylimidazolium tetrafluoroborate ([Eumim]- 
BF4), 1-ethylurea-3-methyl-imidazolium tetraphenylborate 
([Eumim]BPh4) and 1-ethylurea-2,3-dimethylimidazolium 
acetate ([Eummim]OAc) were synthesized using similar 
procedures. The neutral receptor, 1-butyl-3-propyl-imidaz- 
ole urea (Bpimu) was synthesized following an established 
method [25]. The structures of these compounds are shown 
in Figure 1. 

2.2  Halide binding studies  

To investigate the binding behavior of [Eumim]OAc,    
1H NMR spectra were recorded in the presence of various  
halides in deuterated DMSO (DMSO-d6). Addition of hal-
ides as their tetrabutylammonium salts to a solution of  

 

Figure 1  Structures of the ionic and neutral receptors containing the urea 
moiety. 

[Eumim] OAc (1:1) in DMSO-d6 resulted in upfield shifts 
of the imidazolium C(2) proton (C(2)–H) and urea protons 
(NH, NH2) (Figure 2). The change in the chemical shifts 
was different for various halides. For example, on addition 
of F 

–, a slight upfield shift of about 0.04 (from 9.33 to 9.29) 
was observed for the imidazolium C(2)–H. By contrast, the 
NH and NH2 protons displayed significant upfield shifts of 
about 0.34 (from 8.05 to 7.71) and 0.12 (from 6.12 to 6.00), 
respectively. Addition of Cl– and Br– resulted in moderate 
upfield shifts for the NH and NH2 protons and a slight 
downfield shift for the C(2)–H. The largest upfield shifts for 
C(2)–H (0.05), NH (0.50) and NH2 (0.13) were observed 
with the addition of I–. For comparison, the neutral receptor 
Bpimu, which has a similar structure to [Eumim]OAc, was 
also investigated with F 

–, Cl 

–, Br 

– and I 

–. These halides all 
caused downfield shifts of the urea protons. The magnitude 
of the chemical shift changes decreased in the order of F 

–
 > 

Cl 

–
 > Br 

–
 >  I 

– (Figure 3), which is consistent with their rela-
tive hydrogen-bonding abilities [26,27]. The different trends 
for the chemical shift changes indicate that the recognition 
mechanisms for the ionic liquid and neutral receptors are 
completely different. 

2.3  Complex anion binding studies 

The unusual upfield shift of the urea protons when [Eumim]- 
OAc interacted with the halides promoted further investigation 

  

 

Figure 2  Partial 1H NMR spectra of [Eumim]OAc (c = 7.1×10–2 mol/L) 
in DMSO-d6 with different halides. (a) [Eumim]OAc only; (b) [Eumim]- 
OAc and 1 equiv. of F  

–; (c) [Eumim]OAc and 1 equiv. of Cl 

–; (d) [Eumim]- 
OAc and 1 equiv. of Br 

–; (e) [Eumim]OAc and 1 equiv. of I 

–. 
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Figure 3  Partial 1H NMR spectra of Bpimu (c = 7.1×10–2 mol/L) in 
DMSO-d6 with different halides. (a) Bpimu only; (b) Bpimu and 1 equiv. 
of F 

–; (c) Bpimu and 1 equiv. of Cl–; (d) Bpimu and 1 equiv. of Br–; (e) 
Bpimu and 1 equiv. of I–. 

of the binding behavior between [Eumim]OAc and complex 
anions such as BF 4

–, PF6 
– and BPh4

–. The peaks for the imid-
azolium C(2) proton and urea protons of [Eumim]OAc 
shifted dramatically in the presence of 1 equiv. of these 
complex anions (Figure 4). After addition of 1 equiv. of BF4

–, 
the C(2)–H, NH and NH2 protons all showed large upfield 
shifts of 0.21 (from 9.33 to 9.12), 1.36 (from 8.05 to 6.69), 
and 0.40 (from 6.12 to 5.72), respectively. Addition of PF6

– 
and BPh4

– also caused upfield shifts as follows: PF6
–, ∆δ 

C(2)–H = 0.15, ∆δ NH = 1.02, ∆δ NH2 = 0.36; and BPh4
–, 

∆δ C(2)–H = 0.20, ∆δ NH = 0.97, ∆δ NH2 = 0.29 ppm. The 
change in the chemical shifts of the NH proton decreased in 
the order of BF 4

–>PF 6
–>BPh4

–. The complex anions also 
caused upfield shifts of the urea protons of [Eummim]OAc 
(Figure 5). 

It has been reported that the charge densities on the F 
atoms of BF 4

– and PF6 
– are relative low and they only form 

weak hydrogen bonds with hydrogen bonding receptors [28]. 
Furthermore, BPh4

– does not have an electronegative atom 
for hydrogen bonding with the receptor. Therefore, both the 
charge density properties of BF 4

–, PF 6
– and BPh4

– and the up-
field shifts of the urea protons of the ionic liquids indicate 
that the dominate interaction between the anions and ionic 
liquid receptors is not hydrogen bonding. The binding be-
havior of the neutral receptor (Bpimu) with the complex  

 

 

Figure 4  Partial 1H NMR spectra of [Eumim]OAc (c = 7.1×10–2 mol/L) 
in DMSO-d6 with different complex anions. (a) [Eumim]OAc only;     
(b) [Eumim]OAc and 1 equiv. of BF 4 

–; (c) [Eumim]OAc and 1 equiv. of 
PF  6

–; (d) [Eumim]OAc and 1 equiv. of BPh4
–. 

 
Figure 5  Partial 1H NMR spectra of [Eummim]OAc (c = 7.1×10–2 mol/L) 
in DMSO-d6 with different complex anions. (a) [Eummim]OAc only; (b) 
[Eummim]OAc and 1 equiv. of BF 4

–; (c) [Eummim]OAc and 1 equiv. of 
PF6

–; (d) [Eummim]OAc and 1 equiv. of BPh4
–. 

anions (BF4 
–, PF6 

– and BPh4
–) was also investigated by 1H 

NMR, and this confirmed that these complex anions could 
not form hydrogen bonds with the urea moiety (Figure 6).  

The stoichiometric ratios of [Eumim]OAc and NaBPh4 

were determined by Job’s method. The maximum concen-
tration of the host-guest complex (HG) occurred with an 
amount-of-substance fraction of the guest (XG) of 0.5  
(Figure 7), which indicates that [Eumim]OAc formed a 1:1 
complex with BPh4

–. On addition of 3 equiv. of BPh4
–, the 

chemical shifts of the NH and NH2 peaks moved to 6.34 and 
5.67, which were close to the chemical shifts of NH and 

 

 
Figure 6  Partial 1H NMR spectra of Bpimu (c = 7.1×10–2 mol/L) in DMSO- 
d6 with different complex anions. (a) Bpimu only; (b) Bpimu and 1 equiv. 
of BF 4

–; (c) Bpimu and 1 equiv. of PF 6
–; (d) Bpimu and 1 equiv. of BPh4

–. 

 
Figure 7  Job plot for formation of a host-guest (HG) complex of  
[Eumim]OAc with NaBPh4 with different amount-of-substance fractions of 
the guest (XG), [H]+[G] = 6.0×10–2 mol/L. 
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(1) 
NH2 for [Eumim]BPh4 (NH = 6.12 and NH2 = 5.59). These 
results suggest that anion exchange occurs between [Eum-
im]OAc and BPh4

– and forms [Eumim]BPh4 (eq. (1)). Simi-
lar results were obtained in binding studies of [Eumim]OAc 
with BF 4

– and PF 6
–. 

2.4  Structures of the imidazolium based ionic liquids 

To clarify the mechanism of the upfield shift of the urea 
protons of [Eumim]OAc on addition of the halides and 
complex anions, the structures of the ionic liquids were 
studied by X-ray diffraction analysis and the molecular 
modeling study. Single crystals of [Eumim]BPh4 suitable for 
X-ray diffraction analysis were obtained by slow evapora-
tion of a methanol solution. Crystal data and structure re-
finements for [Eumim]BPh4 are listed in Table 1. The crys-
tal structure (Figure 8) indicates that the torsion angle of the 
imidazolium ring and the urea moiety is 78.1°. The urea  
 

Table 1  Crystal data and structure refinements for [Eumim]BPh4 

Compound [Eumim]BPh4 

Empirical formula C31H33BN4O 

Formula weight 488.42 

Color Colorless 

Shape  Block 

Temperature (K)  173(2) 

System  Monoclinic 

Space group Cc 

a (Å) 9.4084(4) 

b (Å) 30.4212(12) 

c (Å) 9.4988(4) 

α (°) 90.00 

β (°) 102.8690(10) 

γ (°) 90.00 

V (Å3) 2650.41(19) 

Z 4 

Crystal size (mm3) 0.45×0.29×0.22 

Dc (g cm–3) 1.224 

μ (mm–1) 0.075 

F (000) 1040 

θ range (°) 2.32–25.00 

Limiting indices –11 ≤ h ≤ 11, –36 ≤ k ≤ 36, –9 ≤ l ≤ 11 

Unique reflections 4188 

R (int) 0.0177 

GOF on F2 1.061 

Final R indices [I > 2σ(I)] R1 = 0.0250, wR2 = 0.0651 

R indices (all data) R1 = 0.0258, wR2 = 0.0658 

Largest diff. peak hole(e Å–3) 1.098 and –0.507 

moiety is on the top of the imidazolium ring, and the ring 
current of the imidazolium ring causes the peak for the urea 
protons to shift upfield [29]. The interaction between 
[Eumim]+ and BPh4

–
 is mainly through electrostatic force. 

The crystal structure also reveals that there are intermole- 
cular hydrogen bonds between the [Eumim]+ cations. A urea 
oxygen atom (O1) of one [Eumim]+ cation forms two hy-
drogen bonds with two urea protons (H3C, H4B) of another 
[Eumim]+ cation, and the N3–H3C···O1 and N4–H4B···O1 
bond lengths are 2.919 Å and 3.132 Å, respectively. The 
bond angles of N3–H3C···O1 and N4–H4B···O1 are 
151.85° and 141.23°, respectively. Because the other ionic 
liquids were liquids at room temperature and it was difficult 
to obtain single crystals of them, their structures were opti-
mized by Gaussian-03 using the Becke’s three-parameter 
hybrid functional (B3LYP) and the 6-31+G(d) basis set. 
The optimized geometry of [Eumim]OAc demonstrates that 
OAc– interacts with the urea moiety through N–H···O hy-
drogen bonds (Figure 9). The N1–H1···O1 and N2–H2···O1 
bond lengths were 2.785 Å and 3.003 Å, respectively. The 
imidazolium ring and two methylene groups were located in  
 
 

 
Figure 8  The crystal structure of [Eumim]BPh4 and intermolecular hy-
drogen bonds between [Eumim]+ cations, some hydrogen atoms are omit-
ted for clarity. 

 
 

 

Figure 9  Optimized geometry (B3LYP/6-31+G(d)) of [Eumim]OAc, 
some hydrogen atoms are omitted for clarity.  
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almost the same plane, and the torsion angle of the imidazo-
lium ring and the urea moiety was 90.5°. The urea moiety 
was not on the top of the imidazolium ring, and it would not 
be affected by the ring current. The different conformations 
of the [Eumim] cation in [Eumim]OAc and [Eumim]BPh4 
caused distinct chemical shifts for the urea moiety. The 
simulated structures of the other ionic liquids such as 
[Eumim]F, [Eumim]Cl, [Eumim]Br, [Eumim]BF4 and 
[Eumim]PF6 showed similar conformations to [Eumim]- 
BPh4. The conformational changes of these ionic liquids 
account for the upfield shift of the urea protons of [Eumim] 
OAc on addition of anions. 

3  Conclusions 

A novel imidazolium based ionic liquid containing the urea 
moiety, [Eumim]OAc, was developed for recognition of 
halides and complex anions such as BF4

–, PF6
– and BPh4

– 
through anion exchange. 1H NMR spectra revealed that the 
peaks for the urea protons and imidazolium C(2) proton of 
[Eumim]OAc shifted upfield on addition of these anions. 
These unusual upfield shifts occurred because of the con-
formational changes in the cation of the ionic liquid on in-
teraction with the different anions. The conformational 
change of the cation was caused by anion exchange, and 
this may provide an alternative to current methods for 
recognition of anions. 

This work was supported by the National Natural Science Foundation of 
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