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Abstract

In this series we examine the calculation of the 2kth moment and shifted moments of
the Riemann zeta-function on the critical line using long Dirichlet polynomials and
divisor correlations. The present paper begins the general study of what we call Type II
sums which utilize a circle method framework and a convolution of shifted convolution
sums to obtain all of the lower order terms in the asymptotic formula for the mean
square along [T, 2T ] of a Dirichlet polynomial of length up to T 3 with divisor functions
as coefficients.

1 Background
This paper is part 4 of a sequence of papers devoted to understanding how to conjecture
all of the integral moments of the Riemann zeta-function from a number theoretic per-
spective. The method is to approximate ζ (s)k by a long Dirichlet polynomial and then
compute the mean square of the Dirichlet polynomial (c.f. [9]). There will be many off-
diagonal terms and it is the care of these that is the concern of these papers. In particular
it is necessary to treat the off-diagonal terms by a method invented by Bogomolny and
Keating [1,2]. Our perspective on this method is that it is most properly viewed as a
multi-dimensional Hardy-Littlewood circle method.
In part 3 [7] we considered the type I off diagonal terms from a general perspective. Now

we look at the simplest type II sums.
The formula we obtain is in complete agreement with all of the main terms predicted

by the recipe of [3] (and in particular, with the leading order term conjectured in [10]).

2 Shiftedmoments
We are interested in developing a number theoretic approach to the moments of the
Riemann zeta-function on the critical line, in particular to the general “shifted” moment
given by

IψA,B(T ) =
∫ ∞

0
ψ

(
t
T

) ∏
α∈A

ζ (s + α)
∏
β∈B

ζ (1 − s + β) dt (1)

where ψ is a smooth function with compact support, say ψ ∈ C∞[1, 2] and s = 1/2 + it
and A and B are sets of small complex numbers, referred to as the shifts. It is useful to
consider aswell the general shiftedmoment of a longDirichlet polynomial. To express this
we first introduce the generalized divisor function τA(n) by way of its generating function:
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∏
α∈A

ζ (s + α) =
∞∑
n=1

τA(n)
ns

=: DA(s).

Then we let

DA(s;X) =
∑
n≤X

τA(n)
ns

and consider

IψA,B(T ;X) : =
∫ ∞

0
ψ

(
t
T

)
DA(s;X)DB(1 − s;X) dt

= T
∑

m,n≤X

τA(m)τB(n)ψ̂
(

T
2π log m

n

)
√
mn

. (2)

The recipe [3] tells us how to predict the behaviour of these moments. Firstly, we
conjecture that

IψA,B(T ) = T
∫ ∞

0
ψ(t)

∑
U⊂A,V⊂B|U |=|V |

(
tT
2π

)−∑
α∈U
β∈V

(α+β)

×B(A − U + V−, B − V + U−) dt + o(T )

where B is given by

B(A, B) =
∞∑
n=1

τA(n)τB(n)
n

in the case that this series converges (for example if �α,�β > 0 for all α ∈ A and β ∈ B)
and is given by analytic continuation otherwise. An alternate expression is B(A, B) =
A(A, B)Z(A, B) where

Z(A, B) :=
∏
α∈A
β∈B

ζ (1 + α + β)

andA(A, B) is a product over primes that converges nicely in the domains under consid-
eration (see below). We have used an unconventional notation here; by A − U + V− we
mean the following: start with the set A and remove the elements of U and then include
the negatives of the elements of V . We think of the process as “swapping” equal numbers
of elements between A and B; when elements are removed from A and put into B they
first get multiplied by −1. We keep track of these swaps with our equal-sized subsets U
and V of A and B; and when we refer to the “number of swaps” in a term we mean the
cardinality |U | of U (or, since they are of equal size, of V ).
The Euler productA is given by

A(A, B) =
∏
p

Zp(A, B)
∫ 1

0
Ap,θ (A, B) dθ ,

where zp(x) := (1 − p−x)−1, Zp(A, B) = ∏
α∈A
β∈B

zp(1 + α + β)−1 and

Ap,θ (A, B) :=
∏
α∈A

zp,−θ

(
1
2

+ α

) ∏
β∈B

zp,θ
(
1
2

+ β

)

with zp,θ (x) := (1 − e(θ )p−x)−1.



Conrey and Keating Res. Number Theory (2016) 2:24 Page 3 of 24

The technique we are developing in the present series of papers is to approach our
moment problem (1) through the moments IψA,B(T ;X) of long Dirichlet polynomials for
various ranges of X . The recipe of [3] also leads to a conjectural formula for IψA,B(T ;X). To
explain this we begin with Perron’s formula

DA(s;X) = 1
2π i

∫
w

Xw

w
DAw (s) dw

where we use the convenient notation

Aw = {α + w : α ∈ A}.
Thus, we have

IψA,B(T ;X) = 1
(2π i)2

∫∫
z,w

Xz+w

zw
IψAw,Bz (T ) dw dz.

We insert the conjecture above from the recipe and expect that

IψA,B(T ;X) = T
∫ ∞

0
ψ(t)

1
(2π i)2

∫∫
z,w

Xz+w

zw
∑

U⊂A,V⊂B|U |=|V |

(
tT
2π

)−∑
α∈U
β∈V

(α+w+β+z)

×B(Aw − Uw + V−
z , Bz − Vz + U−

w ) dw dz dt + o(T ).

We have done a little simplification in this expression: instead of writingU ⊂ Aw we have
written U ⊂ A and changed the exponent of (tT/2π ) accordingly.
Notice that there is a factor (X/T |U |)w+z here. As mentioned above we refer to |U | as

the number of “swaps” in the recipe, and now we see more clearly the role it plays; in the
terms above for which X < T |U | we move the path of integration in w or z to +∞ so that
the factor (X/T |U |)w+z → 0 and the contribution of such a term is 0. Thus, the size of X
determines how many “swaps” we must keep track of.
Our principal aim in this series of papers is to evaluate IψA,B(T ;X) directly using a con-

jecture for the correlations of τA(n) and then to compare with the above formula coming
from the recipe of [3]. In [5] and [7] we considered the situation of 0 swaps which leads
to the usual “diagonal” terms and 1 swap which corresponds to the usual “shifted divisor”
problem. In [6] we considered a special case of 2 swaps. Now we look at the general case
of two swaps. This means that we are interested in the terms for which X > T 2 and for
which |U | = |V | = 2.
It is helpful to review the result of [7] before proceeding. The mathematical content of

that paper is basically a conjecture and a theorem. First of all let ε > 0 be a small fixed
number for this discussion and let |α|, |β| < ε for all α ∈ A and β ∈ B. The conjecture is
about the analytic continuation of

SA,B(s, h) :=
∞∑

m=1

τA(m)τB(m + h)
ms

and the sum of the residues near 1 of this:

RA,B(y; h) :=
∑

|s−1|<ε

Res SA,B(s, h)ys−1

where we intend this notation to mean that RA,B(y; h) is the sum of the residues of
SA,B(s, h)ys−1 over all of the poles in |s − 1| < ε. Let

DA

(
s, e

(
1
q

))
:=

∞∑
m=1

τA(m)e(mq )
ms
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and

RA(y, q) =
∑

|s−1|<ε

ResDA

(
s, e

(
1
q

))
ys−1

be the sum of the residues near s = 1, i.e. including poles at s = 1 − α for α ∈ A. Let

R∗
A,B(y; h) :=

∞∑
q=1

rq(h)RA(y, q)RB(y, q)

where rq(h) is the Ramanujan sum.

Conjecture 1 We conjecture for each fixedh > 0 that SA,B(s, h) has a meromorphic con-
tinuation to�s > 1

2 + ε with all poles only in the region|s − 1| < ε and that

RA,B(y; h) = R∗
A,B(y; h).

The above is essentially the obvious pole structure that one would conjecture by using
the δ-method for example.
Now we briefly describe the calculation of [7]. We evaluate

∑
m,n≤X
m
=n

τA(m)τB(n)√
mn

ψ̂

(
T
2π

log
m
n

)

as

2
∑
h>0

∫ X

T
〈τA(m)τB(m + h)〉m∼uψ̂

(
Th
2πu

)
du
u

which we evaluate by differentiating Perron’s formula with respect to u and then moving
the s-contour to the left to give

2
∑
h>0

∫ X

T
RA,B(u, h)ψ̂

(
Th
2πu

)
du
u

Wemake the change of variable v = Th
2πu and rewrite this as

2
∫ ∞

0
ψ̂(v)

∑
h≤ 2πXv

T

RA,B

(
Th
2πv

, h
)
dv
v

At this point we replaceR byR∗ and have

2
∫ ∞

0
ψ̂(v)

∑
h≤ 2πXv

T

∞∑
q=1

rq(h)RA

(
Th
2πv

, q
)
RB

(
Th
2πv

, q
)
dv
v
.

Now

rq(h) =
∑
d|h
d|q

dμ(q/d)

so, replacing h by hd and q by qd the above is

2
∫ ∞

0
ψ̂(v)

∞∑
q=1

μ(q)
∑

hd≤ 2πXv
T

d RA

(
Thd
2πv

, qd
)
RB

(
Thd
2πv

, qd
)
dv
v
.

Now we express this using Cauchy’s theorem as

2
∫ ∞

0
ψ̂(v)

∞∑
q=1

μ(q)
(2π i)3

∫∫∫
�s=2|w−1|<ε

|z−1|<ε

Xs
∞∑

h,d=1

(
Thd
2πv

)z+w−s−2
d

× DA

(
w, e(− 1

qd
)
)
DB

(
z, e(− 1

qd
)
)
dv
v

dz dw
ds
s
.



Conrey and Keating Res. Number Theory (2016) 2:24 Page 5 of 24

Now we replace the sum over h by ζ (2 + s − w − z) and the integral over v by
χ (w + z − s − 1)

2

∫ ∞

0
ψ(t)tz+w−s−2 dt.

This leads to∫ ∞

0
ψ(t)

∞∑
q=1

μ(q)
(2π i)3

∫∫∫
�s=2|w−1|<ε

|z−1|<ε

Xsζ (w + z − s − 1)
∞∑
d=1

d
(
Tdt
2π

)z+w−s−2

×DA

(
w, e(− 1

qd
)
)
DB

(
z, e(− 1

qd
)
)

dt dz dw ds.

Upon comparison with the recipe we have the identity

Theorem 1

Res
w=1−α
z=1−β

∞∑
q=1

μ(q)
∞∑
d=1

dz+w−1ζ (w + z − 1)DA

(
w, e

(
− 1
qd

))
DB

(
z, e

(
− 1
qd

))

= B(A′ ∪ {−β}, B′ ∪ {−α}).

Theorem 1 follows from the identity stated at the end of Sect. 3 of [7] and the fact that
the singular part ofDA(s, e( 1q )) is the same as q−s ∏

α∈A ζ (s + α)GA(s, q), as proved in [4].
We call this theorem the “analytic version of the general shifted divisor sum.” In this

paper we prove an identity that is an analogue of Theorem 1 but for a convolution of two
shifted divisor sums. This is a step forward in this process of understanding moments.
The key theorem is a convolution identity

Theorem 2

Res
w1=1−α1
z1=1−β1
w2=1−α2
z2=1−β2

ζ (w1 + z1 − 1)ζ (w2 + z2 − 1)
∑

(M,N )=1
d1 ,d2q1 ,q2

μ(q1)μ(q2)dz1+w1−1
1 dz2+w2−1

2
Mz1+w2−1Nw1+z2−1

×DA1

(
w1, e

(
− N
q1d1

))
DA2

(
w2, e

(
− M
q2d2

))

×DB1

(
z1, e

(
− M
q1d1

))
DB2

(
z2, e

(
− N
q2d2

))

= B(A′′ ∪ {−β1,−β2}, B′′ ∪ {−α1,−α2}).

Theorem2 follows fromSect. 11 because if (a, q) = 1 then the singular part ofDA(s, e( aq ))
is identical to that of q−s ∏

α∈A ζ (s + α)GA(s, q).
A particularly interesting feature of this theorem is the appearance of the sum over M

andN . It is these parameters which prompt us to liken this calculation to a circle method
calculation. Basically the M and N make their appearance because of a splitting of the
equationm1m2−n1n2 = h into a pair of equations wherem1/n1 ≈ M/N ≈ n2/m2 which
givesMm1 −Nn1 = h1, Nm2 −Mn2 = h2. This is the fundamental new idea of the paper.
In the next section of this paperwe present the basic set up, which involves a convolution

of two shifted divisor sums. In Sect. 4, 5 and 6 we deal with the semi-diagonal case
where one of the shifted divisor sums is degenerate. In Sect. 7, 8 and 9 we motivate
heuristically the identity of Theorem 2. This identity is sufficiently complicated that we
find it convenient to recast it as an equality of certain power series. Sect. 10 and 11 are
devoted to the rigorous proof of this identity.



Conrey and Keating Res. Number Theory (2016) 2:24 Page 6 of 24

3 Type II convolution sums
To proceed we approach the moment IψA,B(T ;X) through arithmetic means. To do this,
we consider a convolution of shifted correlation sums.
We first make use of the fact that if A = A1 ∪ A2 and B = B1 ∪ B2 then τA and τB are

convolutions: τA = τA1 ∗ τA2 and τB = τB1 ∗ τB2 . We are thus interested in

OII =
∑

m1m2 ,n1n2≤X
0<|m1m2−n1n2|<m1m2/τ

τA1 (m1)τA2 (m2)τB1 (n1)τB2 (n2)
m1m2

×ψ̂

(
T
2π

log((n1n2)/(m1m2))
)
.

Now we embark on a discrete analog of the circle method which basically consists of
approximating a ratio, say m1/n1 by a rational number with a small denominator, say
M/N , and then sum all of the terms withm1/n1 close toM/N .
To this end we introduce a parameter Q and subdivide the interval [0, 1] into Farey

intervals associated with the fractionsM/N with 1 ≤ M ≤ N ≤ Q and (M,N ) = 1 from
the Farey sequence FQ; see [6] for details. We define

h1 := m1N − n1M

and

h2 := m2M − n2N.

We have

m1m2MN − n1n2MN = h1m2M + h2m1N − h1h2
so that

m1m2 − n1n2
m1m2

= h1
m1N

+ h2
m2M

− h1h2
m1m2MN

and

log
n1n2
m1m2

= h1
m1N

+ h2
m2M

+ O
( h1h2
m1m2MN

)
.

The error term is negligible so we have now arranged the sum as
∑

M≤N≤Q
(M,N )=1

∑
h1 ,h2

∑
m1m2≤X
(∗1),(∗2)

τA1 (m1)τA2 (m2)τB1 (n1)τB2 (n2)
m1m2

ψ̂

(
Th1

2πm1N
+ Th2

2πm2M

)
(3)

where

(∗1) : m1N − n1M = h1 and (∗2) : m2M − n2N = h2
Note that for a givenm1, n1 and h1 the condition (∗1) implies thatm1/n1 ∈ MM,N so we
don’t need to write that condition.

4 The case of h2 = 0
We remark first of all that the terms with h1 = h2 = 0 are precisely the diagonal terms.
Now we consider what happens if h2 = 0 and h1 
= 0. We call this a “semi-diagonal” term
after [1].
If h2 = 0 then m2M = n2N . Since (M,N ) = 1 it follows that m2 = N� and n2 = M�

for some �. Thus we have∑
M≤N

(M,N )=1

φ

(
M
Q

)
φ

(
N
Q

) ∑
h1

∑
m1 ,n1 ,�
(∗1)

n1≥|h1|Q

τA1 (m1)τA2 (N�)τB1 (n1)τB2 (M�)
m1N�

ψ̂

(
Th1

2πm1N

)
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where

(∗1) : m1N − n1M = h1.

In general, with ∗ : mN − nM = h, we expect by the delta-method that

〈τA(m)τB(n)〉(∗)m=u ∼
∑
α∈A
β∈B

u−α−βM−1+βN−βZ(A′−α)Z(B′−β ) (4)

×
∑
d|h

1
d1−α−β

∑
q

μ(q)(qd,M)1−β (qd, N )1−α

q2−α−β

×GA

(
1 − α,

qd
(qd, N )

)
GB

(
1 − β ,

qd
(qd,M)

)
,

where G is a multiplicative function for which

GA(1 − α, pr) =
∏
α̂∈A′

(
1 − 1

p1+α̂−α

) ∞∑
j=0

τA′ (pj+r)
pj(1−α)

with A′ = A − {α} and where

Z(A) =
∏
a∈A

ζ (1 + a).

5 A diversion
The ensuing calculations are about to become (more) complicated largely due to arith-
metic factors. We pause in the calculation to show what the calculations look like without
the arithmetic factors. That should help the reader when we complete this calculation in
the next section. Basically we ignore the terms with q ≥ 2 and we replace GA(1− α, d) by
τA′ (d).
Altogether we now have

∑
α∈A1
β∈B1

Z((A′
1)−α)Z((B′

1)−β )
∑
M≤N

(M,N )=1

φ

(
M
Q

)
φ

(
N
Q

) ∑
�,h1

τA2 (�)τB2 (�)
�

×
∫
u≤ X

N�

∑
d|h1

(d, N )1−α(d,M)1−βτA′
1

( d
(d,N )

)
τB′

1

( d
(d,M)

)
τA2 (N )τB2 (M)

M1−βN 1+βuα+βd1−α−β
ψ̂

(
Th1

2πuN

)
du
u
.

Wemake the substitution

v = Th1
2πuN

.

The above is
∑
α∈A1
β∈B1

Z((A′
1)−α)Z((B′

1)−β )
∑
M≤N

(M,N )=1

φ

(
M
Q

)
φ

(
N
Q

)∑
�,h1

τA2 (�)τB2 (�)
�

×
∫
v≥ Th1�

2πX

∑
d|h1

(d,N )1−α(d,M)1−βτA′
1

(
d

(d,N )

)
τB′

1

(
d

(d,M)

)
τA2 (N )τB2 (M)

M1−βN 1+β
(

Th1
2πvN

)α+β

d1−α−β

ψ̂(v)
dv
v
.



Conrey and Keating Res. Number Theory (2016) 2:24 Page 8 of 24

Now we switch the sums around; replacing h1 by h1d and bringing the sum over h1 and �

to the inside, we have

∑
α∈A1
β∈B1

(
T
2π

)−α−β

Z((A′
1)−α)Z((B′

1)−β )
∑
M≤N

(M,N )=1

φ
(
M
Q

)
φ

(
N
Q

)
τA2 (N )τB2 (M)

M1−βN 1−α

×
∫
v

ψ̂(v)
v1−α−β

∑
d�h1≤ 2πXv

T

(d,N )1−α(d,M)1−βτA′
1

( d
(d,N )

)
τB′

1

( d
(d,M)

)
τA2 (�)τB2 (�)

d�hα+β
1

dv.

Using Perron’s formula we write this as

∑
α∈A1
β∈B1

(
T
2π

)−α−β

Z((A′
1)−α)Z((B′

1)−β )
∑
M≤N

(M,N )=1

φ
(
M
Q

)
φ

(
N
Q

)
τA2 (N )τB2 (M)

M1−βN 1−α

×
∫
v

ψ̂(v)
v1−α−β

1
2π i

∫
(2)

∑
d,�,h1

(d,N )1−α(d,M)1−βτA′
1

( d
(d,N )

)
τB′

1

( d
(d,M)

)
τA2 (�)τB2 (�)

ds+1�s+1hs+α+β
1

×
(
2πXv
T

)s ds
s

dv.

The sum over � and h1 here is essentially

ζ (s + α + β)Z((A2)s, B2).

The sum over d, M and N we evaluate to a first approximation by looking at the polar
parts of

∑
d,M,N

(M,N )=1

(d,M)1−β (d,N )1−ατA′
1

(
d

(d,N )

)
τB′

1

(
d

(d,M)

)
τA2 (N )τB2 (M)

d1+sM1−βN 1−α
;

these are calculated with the help of the following table:

d M N Euler term Z − factor
p 1 1 τA′

1
(p)τB′

1
(p)/p1+s Z((A′

1)s, B
′
1)

1 p 1 τB2 (p)/p1−β Z(B2, {−β})
1 1 p τA2 (p)/p1−α Z(A2, {−α})
p 1 p τB′

1
(p)τA2 (p)/p1+s Z(B′

1, (A2)s)
p p 1 τA′

1
(p)τB2 (p)/p1+s Z((A′

1)s, B2)

We take the product of all of these Z factors. Now the v-integral is
∫
v

ψ̂(v)
v1−s−α−β

dv = (1/2)χ (1 − s − α − β)
∫ ∞

0
ψ(t)t−s−α−β dt.

Note that

χ (1 − s − α − β)ζ (s + α + β) = ζ (1 − s − α − β).

If we include the factors Z((A2)s, B2), Z((A′
1)−α)Z((B′

1)−β ), and Z({−s − α}, {−β}) then
the product of all of these Z-factors is

Z
(
(A′

1 ∪ A2)s ∪ {−β}, B′
1 ∪ B2 ∪ {−s − α}

)
= Z

(
(A′)s ∪ {−β}, B′ ∪ {−s − α}

)
.
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Thus, altogether we have

∑
α∈A1
β∈B1

(
T
2π

)−α−β ∫
t

ψ(t)
tα+β

1
2π i

∫
(2)

Z
(
(A′)s ∪ {−β}, B′ ∪ {−s − α}

)(
2πX
tT

)s ds
s

dt.

Compare this with Eq. (4) of [7] which gives the “one-swap” terms from the recipe:
∫ ∞

0
ψ(t)

∑
α∈A
β∈B

(
Tt
2π

)−α−β

Z((A′)−α)Z((B′)−β )

× 1
2π i

∫
�s=4

( 2πX
Tt

)s
s

A(A′ ∪ {−β − s}, B′
s ∪ {−α})Z(A′

s, B′)ζ (1 − α − β − s) ds.

The only differences are that so far we have ignored the arithmetic factors and that in the
expression we just derived we have the restrictions α ∈ A1 and β ∈ B1. But as A1 and
B1 vary through subsets of A and B every possible α and β will appear. Also, we have the
terms whereM > N and those with h1 = 0.

6 The same calculation with the arithmetic factors
We replace m1 by u1; taking into account the arithmetic considerations and also using
u1�N = m1m2 ≤ X , we have that our sum is

∑
α,β Z((A′

1)−α)Z((B′
1)−β )

×
∑
M≤N

(M,N )=1

φ

(
M
Q

)
φ

(
N
Q

) ∑
h1

∑
�

τA2 (N�)τB2 (M�)
M1−βN 1+β�

×
∫
u1�≤ X

N

∑
d|h1

∞∑
q=1

μ(q)(qd,M)1−β (qd, N )1−α

d1−α−βq2−α−β

×GA1

(
1 − α,

qd
(qd, N )

)
GB1

(
1 − β ,

qd
(qd,M)

)ψ̂
(

Th1
2πu1N

)
du1

u1+α+β
1

.

The term with h1 = 0 just leads to diagonal terms which are easy to deal with. Now we
group the non-zero terms h1 and −h1 together and use ψ(−v) = ψ(v). We replace h1 by
h1d. We make the substitution v1 = Th1d

2πu1N in the integral and switch the integral over v1
with the sum over h1, d and �. Then (with h1 > 0) we have that

�NTh1d
2πv1N

= u1�N ≤ X

implies that

�h1d ≤ 2πXv1
T

.

Thus we have

∑
α∈A1
β∈B1

(
T
2π

)−α−β

Z((A′
1)−α)Z((B′

1)−β )
∑
M≤N

(M,N )=1

φ
(
M
Q

)
φ

(
N
Q

)

M1−βN 1−α

∫ ∞

0
(2�ψ̂(v1))

×
∑

h1�d≤ 2πXv1
T

τA2 (N�)τB2 (M�)
hα+β
1 �d

∑
q≥1

μ(q)(qd,M)1−β (qd, N )1−α

q2−α−β

×GA1

(
1 − α,

qd
(qd, N )

)
GB1

(
1 − β ,

qd
(qd,M)

)
dv1

v1−α−β
1

.
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Now we use Perron’s formula to evaluate the sum over h1�d. This gives

∑
α∈A1
β∈B1

(
T
2π

)−α−β

Z((A′
1)−α)Z((B′

1)−β )
∑
M≤N

(M,N )=1

φ
(
M
Q

)
φ

(
N
Q

)

M1−βN 1−α

1
2π i

∫
(2)

×
∫ ∞

0
(2�ψ̂(v1))

(
2πXv1
T

)s ∑
h1 ,�,d

τA2 (N�)τB2 (M�)
hs+α+β
1 �1+sd1+s

∑
q≥1

μ(q)(qd, N )1−α(qd,M)1−β

q2−α−β

×GA1

(
1 − α,

qd
(qd, N )

)
GB1

(
1 − β ,

qd
(qd,M)

)
dv1

v1−α−β
1

ds
s
.

The sum over h1 is ζ (s + α + β). The integral over v1 is

∫ ∞

0
v−1+s+α+β
1 (2�ψ̂(v1)) dv1 = χ (1 − s − α − β)

∫ ∞

0
ψ(t)t−s−α−β dt.

Combining these two facts and using the functional equation for ζ we have

∑
α∈A1
β∈B1

(
T
2π

)−α−β

Z((A′
1)−α)Z((B′

1)−β )
∫ ∞

0
t−α−βψ(t)

∑
M≤N

(M,N )=1

φ
(
M
Q

)
φ

(
N
Q

)

M1−βN 1−α

× 1
2π i

∫
(2)

ζ (1 − s − α − β)
(
2πX
tT

)s ∑
�,d

τA2 (N�)τB2 (M�)
�1+sd1+s

×
∑
q≥1

μ(q)(qd, N )1−α(qd,M)1−β

q2−α−β
GA1

(
1 − α,

qd
(qd, N )

)
GB1

(
1 − β ,

qd
(qd,M)

)
ds
s

dt.

This requires studying the Dirichlet series

∑
(M,N )=1

1
M1−βN 1−α

∑
�,d

τA2 (N�)τB2 (M�)
�1+sd1+s

∑
q≥1

μ(q)(qd, N )1−α(qd,M)1−β

q2−α−β

×GA1

(
1 − α,

qd
(qd, N )

)
GB1

(
1 − β ,

qd
(qd,M)

)

See the appendix for the resolution of this arithmetic factor.
Regarding multiplicities, see the section on automorphisms at the end of the paper.
Taking account of the termswithh1 = 0 andh2 
= 0wefind thatwe have nowaccounted

for all of the one-swap terms from the semi-diagonal contributions.

7 h1h2 �= 0
Now we come to the crux of the paper, the terms where neither h1 nor h2 are 0; we need
to match these up with the two swap terms.
In the formula (3) above we replace the convolution sums by their averages, i.e.

∫∫
u1u2≤X

〈τA1 (m1)τB1 (n1)〉(∗1)m1∼u1〈τA2 (m2)τB2 (n2)〉(∗2)m2∼u2 ψ̂

(
Th1

2πu1N
+ Th2

2πu2M

)
du1
u1

du2
u2

.
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We insert the formula (4) for these averages. After switching the ensuing sums over
h1, h2 and d1, d2 we have

∑
M,N φ(M/Q)φ(N/Q) times

∑
α1∈A1
α2∈A2

∑
β1∈B1
β2∈B2

Z((A′
1)−α1 )Z((A′

2)−α2 )Z((B′
1)−β1 )Z((B′

2)−β2 )
∑

q1 ,d1 ,h1
q2 ,d2 ,h2

μ(q1)μ(q2)
q2−α1−β1
1 q2−α2−β2

2

×
GA1 (1 − α1, q1d1

(q1d1 ,N ) )GA2 (1 − α2, q2d2
(q2d2 ,M) )GB1 (1 − β1, q1d1

(q1d1 ,M) )GB2 (1 − β2, q2d2
(q2d2 ,N ) )

(q1d1, N )−1+α1 (q1d1,M)−1+β1 (q2d2,M)−1+α2 (q2d2, N )−1+β2d1−α1−β1
1 d1−α2−β2

2

×
∫∫

T 2≤u1u2≤X
M−1+β1−β2N−1+β2−β1u−α1−β1

1 u−α2−β2
2

×ψ̂

(
Th1d1
2πu1N

+ Th2d2
2πu2M

)
du1
u1

du2
u2

.

Let’s first assume that h1 > 0 and h2 > 0. We make the changes of variable v1 = Th1d1
2πu1N

and v2 = Th2d2
2πu2M and bring the sums over h1 and h2 to the inside; u1u2 < X implies that

h1d1h2d2 <
4π2Xv1v2MN

T 2 .

Then the sums over the qi, hi, di are N−1+α1+β2M−1+α2+β1 times
(

T
2π

)−α1−α2−β1−β2 ∫∫
v1 ,v2

vα1+β1
1 vα2+β2

2 ψ̂(v1 + v2)
1

2π i

∫
(2)

∑
q1 ,d1 ,h1
q2 ,d2 ,h2

μ(q1)μ(q2)
q2−α1−β1
1 q2−α2−β2

2

×
GA1 (1 − α1, q1d1

(q1d1 ,N ) )GA2 (1 − α2, q2d2
(q2d2 ,M) )GB1 (1 − β1, q1d1

(q1d1 ,M) )GB2 (1 − β2, q2d2
(q2d2 ,N ) )

(q1d1, N )−1+α1 (q1d1,M)−1+β1 (q2d2,M)−1+α2 (q2d2, N )−1+β2d1+s
1 d1+s

2 hα1+β1+s
1 hα2+β2+s

2

×
(
4π2Xv1v2MN

T 2

)s
s

ds
dv1
v1

dv2
v2

.

The sums over h1 and h2 are ζ (s + α1 + β1)ζ (s + α2 + β2). The other 3 cases of the signs
of h1 and h2 can be taken care of similarly. Then we use

ψ̂(v1 + v2) =
∫ ∞

0
ψ(t)e(t(v1 + v2)) dt

to see that

ψ̂(v1 + v2) + ψ̂(v1 − v2) + ψ̂(−v1 + v2) + ψ̂(−v1 − v2)

=
∫ ∞

0
ψ(t)

(
e(tv1) + e(−tv1)

)(
e(tv2) + e(−tv2)

)
dt.

Also∫ ∞

0
vs+α+γ−1
1 (e(tv1) + e(−tv1)) dv1 = t−s−α−γ χ (1 − s − α − γ ),

and similarly for the integral over v2. This leaves us with a total for the sum over
M,N, qi, hi, di of

∫ ∞

0
ψ(t)

(
tT
2π

)−α1−α2−β1−β2 1
2π i

∫
(2)

(
4π2X
t2T 2

)s
s

ζ (1 − s − α1 − β1)ζ (1 − s − α2 − β2)

×
∑

(M,N )=1
M≤N

φ(M/Q)φ(N/Q)
M1−s−α2−β1N 1−s−α1−β2

∑
q1 ,d1
q2 ,d2

μ(q1)μ(q2)
q2−α1−β1
1 q2−α2−β2

2

GA1 (1 − α1, q1d1
(q1d1 ,N ) )

(q1d1, N )−1+α1

×
GA2 (1 − α2, q2d2

(q2d2 ,M) )GB1 (1 − β1, q1d1
(q1d1 ,M) )GB2 (1 − β2, q2d2

(q2d2 ,N ) )

(q1d1,M)−1+β1 (q2d2,M)−1+α2 (q2d2, N )−1+β2d1+s
1 d1+s

2
ds dt.
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Recall that

GA(1 − α, p) = τA′ (p) + O(1/p);

we use this to calculate the polar part of

∑
d1 ,d2

(M,N )=1
M≤N

τA′
1
( d1
(d1 ,N ) )τB′

1
( d1
(d1 ,M) )τA′

2
( d2
(d2 ,M) )τB′

2
( d2
(d2 ,N ) )

(d1, N )−1+α1 (d1,M)−1+β1 (d2,M)−1+α2 (d2, N )−1+β2d1+s
1 d1+s

2 M1−s−α2−β1N 1−s−α1−β2
.

We do this by calculating the significant parts of the Euler product. The following table
is helpful; we let A′

1 = A1 − {α1}, A′
2 = A2 − {α2}, B′

1 = B1 − {β1}, and B′
2 = B2 − {β2}.

d1 d2 N M Euler term Z − factor
p 1 1 1 τA′

1
(p)τB′

1
(p)/p1+s Z((A′

1)s, B
′
1)

1 p 1 1 τA′
2
(p)τB′

2
(p)/p1+s Z((A′

2)s, B
′
2)

1 1 p 1 pα1+β2/p1−s Z({−α1 − s}, {−β2})
1 1 1 p pα2+β1/p1−s Z({−α2 − s}, {−β1})
p 1 p 1 τB′

1
(p)/p1−β2 Z(B′

1, {−β2})
p 1 1 p τA′

1
(p)/p1−α2 Z(A′

1, {−α2})
1 p p 1 τA′

2
(p)/p1−α1 Z(A′

2, {−α1})
1 p 1 p τB′

2
(p)/p1−β1 Z(B′

2, {−β1})
p p p 1 τA′

2
(p)τB′

1
(p)/p1+s Z((A′

2)s, B
′
1)

p p 1 p τA′
1
(p)τB′

2
(p)/p1+s Z((A′

1)s, B
′
2)

If we include the factors Z((A′
1)s, {−s−α1})Z(B′

1, {−β1}), Z((A′
2)s, {−s−α2})Z(B′

2, {−β2}),
Z({−s − α1}, {−β1}) and Z({−s − α2}, {−β2}) then the product of all of these Z-factors is

Z
(
(A′

1 ∪ A′
2)s ∪ {−β1} ∪ {−β2}, B′

1 ∪ B′
2 ∪ {−s − α1} ∪ {−s − α2}

)
= Z((A − S)s + T−, B − T + (Ss)−)

where S = {α1,α2} and T = {β1,β2}.
The predicted two-swap terms from the recipe are

∑
S⊂A,T⊂B
|S|=|T |=2

∫ ∞

0
ψ(t)

(
tT
2π

)− ∑
α∈S
β∈T

(α+β)

× 1
2π i

∫
(2)

(
4π2X
t2T 2

)s
s

AZ((A − S)s + T−, B − T + S−
s ) ds dt

which matches the above except that S and T are allowed to range over all two-element
subsets of A and B in the recipe version whereas in the correlation version we first split
A = A1 ∪ A2 and B = B1 ∪ B2 and then take one element from A1 and one from A2 to
make up our two element set S and similarly one element from B1 and one from B2 to
make our two element set T .
See the last two sections for the calculation of the arithmetic factor.

8 Automorphisms
The final step of this paper is to explain the apparent over-counting that has occurred.
The explanation is that there are automorphisms that have to be taken into account. In
this section we explain these multiplicities.
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We start with{
Nm1 = Mn1 + h1
Mm2 = Nn2 + h2

Suppose m1 = μ1μ̂1, m2 = μ2μ̂2, n1 = ν1ν̂1 and n2 = ν2ν̂2. Multiply the first equation
by μ2ν2 and the second equation by μ1ν1. Let

M̃ = ν1μ2M; Ñ = μ1ν2N ; m̃1 = μ̂1μ2; m̃2 = μ1μ̂2; ñ1 = ν̂1ν2; ñ2 = ν1ν̂2.

Then we have{
Ñ m̃1 = M̃ñ1 + h̃1
M̃m̃2 = Ñ ñ2 + h̃2

where

h̃1 = μ2ν2h1 and h̃2 = μ1ν1h2.

This scheme provides lots of automorphisms and explains the overcounting we have.
Basically there is one automorphism for each quadruple of divisors ofm1, m2, n1 and n2.

We havem = m1m2 and n = n1n2 where if |A| = k and |B| = � then τA is a convolution
of k and τB a convolution of � atomic functions. We can think of

A = {α1, . . . ,αk} B = {β1, . . . ,β�}
andwith I = {1, 2, . . . , k} and J = {1, 2, . . . , �}we partition I = I1∪I2 and J = J1∪J2. Then
in our decompositionsA = A1 ∪A2 and B = B1 ∪B2 we haveA1 = {αi : i ∈ I1} etc. These
correspond to the decompositions m = m1m2 and n = n1n2. If we write m = μ1 . . . μk
and n = ν1 . . . ν� then we can putm1 = ∏

i∈I1 μi etc. The number of such decompositions
of A or of m is just the number of subsets of A, i.e. 2k ; and the number for B is 2�. We
can associate an automorphism as above with each such decomposition. Therefore, there
are 2k+� automorphisms in total. So each term is counted with a multiplicity 2k+�. Now
let’s see that this overcounting is in agreement with the number of ways of producing the
term from the recipe with, say, S = {α1,α2} and T = {β1,β2}. The term from the recipe
will occur whenever we have a decomposition of A = A1 ∪ A2 and B = B1 ∪ B2 in which
precisely one of α1 and α2 is in A1 and the other in A2 and similarly for B and the βs. How
many ways are there to do this? If we say that α1 is to be in A1 and α2 in A2 then we have
k−2 other elements to be partitioned into two sets. There are 2k−2 subsets and the chosen
subset can be assigned to go with α1 or with α2, so we have an extra factor of 2; then and
then another factor of 2 by putting α1 in A2 and α2 in A1. Therefore, a total of 2k ways to
do this. And 2� for the βs into the Bs. So, we have the same amount of overcounting as
there are automorphisms. Taking this into account, we obtain just a single copy of each
term from the recipe.

9 Conclusion
We have shown how to obtain an asymptotic formula with power savings for the mean
square of a Dirichlet polynomial of length X where T 2 � X � T 3 with coefficients that
are general divisor functions in two different ways: one way is via Perron’s formula and
the recipe, and the other is by calculating a convolution of shifted divisor correlations.
The two approaches give exactly the same answer.
In the next paper, which will conclude this introductory series, we will consider the

completely general situation with an arbitrary length Dirichlet polynomial.
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10 The semi-diagonal arithmetic factor
It remains to prove that the arithmetic factors agree. This calculation is surprisingly
involved. In order to carry it out with minimal notational difficulties we introduce a new
set of notation. These appendices are self-contained.
We begin by introducing a little notation. First of all, we are working locally; basically

we are identifying the local p-factor in an Euler product. As far as we are concerned p is
fixed for this discussion so we often suppress it. In fact we write X for 1/p and mostly
consider power series in X . We take the unusual step of suppressing not only the prime p
but the divisor function and so we write A(n) in place of τA(pn). Also, for a set A we let

Aα = {a + α : a ∈ A}.
A further piece of notation: A+ = A ∪ {0}. We have two important identities. The first is

A+(d) = A(d) + A+(d − 1).

This is a special case of

(A ∪ {−α})(d − 1) = Xα

(
(A ∪ {−α})(d) − A(d)

)
.

The other identity is
R∑

r=0
A(r + M) = A+(R + M) − A+(M − 1)

which follows by repeated application of the first identity.
For arbitrary sets A,B, C and D we let

C(A, B) :=
∞∑

M=0
A(M)B(M)XM

and

F (A, B;C,D) =
∑
K,L,M

A(K )B(K + M)C(L)D(L + M)XK+L+M ;

Also, we let

Z(A) =
∞∑
j=0

A(j)Xj =
∏
a∈A

(1 − X1+a)−1.

Wehave a lemmaaboutF andC which is really just a formalmanipulation; consequently
we state it in a more general form.

Lemma 1 For any 4 functions a, A, b, B let

F (a, A; b, B) =
∑
K,L,M

a(K )A(K + M)b(L)B(L + M)XK+L+M

and

C(a, b) =
∞∑
r=0

a(r)b(r)Xr

we have

F (a, A; b, B) + F (A, a;B, b) = C(A � b, a � B) + C(a, A)C(b, B).
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Proof Let Y = √
Xe(θ ). Then

F (a, A; b, B) =
∫ 1

0

∑
r,s,M,N

a(r)A(r + M)Y r+s+Mb(s)B(s + N )Y r+s+N dθ

=
∫ 1

0

∑
R,S

r≤R;s≤S

a(r)A(R)Y s+Rb(s)B(S)Y r+S dθ

=
∑

r+S=R+s
r≤R;s≤S

a(r)A(R)b(s)B(S)Xr+S

The latter sum is
∑

r+S=R+s
a(r)A(R)b(s)B(S)Xr+S −

∑
r+S=R+s
r>R;s>S

a(r)A(R)b(s)B(S)Xr+S

= C(a � B, A � b) + C(a, A)C(b, B) − F (A, a;B, b)

as desired. ��

Now we address the arithmetic factor from the semi-diagonal term. The p part of

Z((A′
1)−α)Z((B′

1)−β )
∑

(M,N )=1

1
M1−βN 1−α

∑
�,d

τA2 (N�)τB2 (M�)
�1+sd1+s

×
∑
q≥1

μ(q)(qd, N )1−α(qd,M)1−β

q2−α−β

×GA1

(
1 − α,

qd
(qd, N )

)
GB1

(
1 − β ,

qd
(qd,M)

)
s

is (after setting s = 0)∑
min(M,N )=0

XM(1−β)+N (1−α)
∑
�,d

A2(N + �)B2(M + �)X�+d

×
∑
q

μ(pq)X−min(q+d,N )(1−α)−min(q+d,M)(1−β)+q(2−α−β)

×
∑
j,k

A′
1(j + q + d − min(q + d,N ))

×B′
1(k + q + d − min(q + d,M))Xj(1−α)+k(1−β)

We use ∑
min(M,N )=0

f (M,N ) =
∑
M

f (M, 0) +
∑
N

f (0, N ) − f (0, 0)

and get SL + SR − S0 where

S0 =
∑

�,d,q,j,k
A2(�)B2(�)μ(pq)A′

1(j + q + d)B′
1(k + q + d)

×Xq(2−α−β)+�+d+j(1−α)+k(1−β),

SL =
∑
M

XM(1−β)
∑
�,d

A2(�)B2(M + �)X�+d
∑
q

μ(pq)X−min(q+d,M)(1−β)+q(2−α−β)

×
∑
j,k

A′
1(j + q + d)B′

1(k + q + d − min(q + d,M))Xj(1−α)+k(1−β).
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SR =
∑
N

XN (1−α)
∑
�,d

A2(N + �)B2(�)X�+d
∑
q

μ(pq)X−min(q+d,N )(1−α)+q(2−α−β)

×
∑
j,k

A′
1(j + q + d − min(q + d,N ))B′

1(k + q + d)Xj(1−α)+k(1−β).

We expand the q sum in S0 to get

S0 =
∑
�,d,j,k

A2(�)B2(�)A′
1(j + d)B′

1(k + d)X�+d+j(1−α)+k(1−β)

−
∑
�,d,j,k

A2(�)B2(�)A′
1(j + 1 + d)B′

1(k + 1 + d)X2−α−β+�+d+j(1−α)+k(1−β).

This telescopes in j and k to give

S0 =
∑
�,d,j

A2(�)B2(�)A′
1(j + d)B′

1(d)X
�+d+j(1−α)

+
∑
�,d,k

A2(�)B2(�)A′
1(d)B

′
1(k + d)X�+d+k(1−β)

−
∑
�,d

A2(�)B2(�)A′
1(d)B

′
1(d)X

�+d

= C(A2, B2)
(∑

r
Xr(1−α)A′

1(r)
∑
d≤r

XdαB′
1(d)

+
∑
r

Xr(1−β)B′
1(r)

∑
d≤r

XdβA′
1(d) − C(A′

1, B
′
1)

)

= C(A2, B2)
(∑

r
Xr(1−α)A′

1(r)((B
′
1)α)

+(r)

+
∑
r

Xr(1−β)B′
1(r)((A

′
1)β )

+(r) − C(A′
1, B

′
1)

)

= C(A2, B2)
(C((A′

1)−α , ((B′
1)α)

+) + C((B′
1)−β , ((A′

1)β )
+) − C(A′

1, B
′
1)

)
.

This may be rewritten as

S0 = C(A2, B2)
(C(A′

1, B
′
1 ∪ {−α}) + C(B′

1, A
′
1 ∪ {−β}) − C(A′

1, B
′
1)

)
.

Now we turn to SL. Expanding in q we have

SL =
∑

M,�,d,j,k
A2(�)B2(M + �)A′

1(j + d)B′
1(k + d − min(d,M))

×X�+d+M(1−β)−min(d,M)(1−β)+j(1−α)+k(1−β)

−
∑

M,�,d,j,k
A2(�)B2(M + �)A′

1(j + 1 + d)B′
1(k + 1 + d − min(1 + d,M))

×X�+d+M(1−β)−min(1+d,M)(1−β)+2−α−β+j(1−α)+k(1−β).

We split this into SL = S−
L + S+

L where S−
L denotes those terms for which d < M and S+

L
contains those terms with d ≥ M. We have

S−
L =

∑
M,�,j,k
d<M

A2(�)B2(M + �)A′
1(j + d)B′

1(k)X
�+M(1−β)+dβ+j(1−α)+k(1−β)

−
∑
M,�,j,k
d<M

A2(�)B2(M + �)A′
1(j + 1 + d)B′

1(k)X
�+M(1−β)+dβ+(j+1)(1−α)+k(1−β).
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The sum over j telescopes; we are left with

S−
L =

∑
M,�,k
d<M

A2(�)B2(M + �)A′
1(d)B

′
1(k)X

�+M(1−β)+dβ+k(1−β)

We execute the sum over k to obtain

S−
L = Z((B′

1)−β )
∑
M,�,
d<M

A2(�)B2(M + �)A′
1(d)X

�+M(1−β)+dβ .

The sum over d gives

S−
L = Z((B′

1)−β )
∑
M,�

A2(�)B2(M + �)((A′
1)β )

+(M − 1)X�+M(1−β)

= Z((B′
1)−β )

∑
M,�

A2(�)B2(M + �)
(
((A′

1)β )
+(M) − (A′

1)β (M)
)
X�+M(1−β)

= Z((B′
1)−β )

∑
M,�

A2(�)B2(M + �)
(
(A′

1 ∪ {−β})(M) − A′
1(M)

)
X�+M

= Z((B′
1)−β )

(C(A′
1 ∪ A2 ∪ {−β}, B2) − C(A′

1 ∪ A2, B2)
)
.

Now we consider S+
L . We have

S+
L =

∑
M,�,j,k
d≥M

A2(�)B2(M + �)A′
1(j + d)B′

1(k + d − M)X�+d+j(1−α)+k(1−β)

−
∑
M,�,j,k
d≥M

A2(�)B2(M + �)A′
1(j + 1 + d)

×B′
1(k + 1 + d − M)X�+d+2−α−β+j(1−α)+k(1−β).

This sum telescopes in j and k . We have

S+
L =

∑
M,�,j
d≥M

A2(�)B2(M + �)A′
1(j + d)B′

1(d − M)X�+d+j(1−α)

+
∑
M,�,k
d≥M

A2(�)B2(M + �)A′
1(d)B

′
1(k + d − M)X�+d+k(1−β)

−
∑
M,�
d≥M

A2(�)B2(M + �)A′
1(d)B

′
1(d − M)X�+d.

We replace d by d + M and have

S+
L =

∑
M,�,j,d

A2(�)B2(M + �)A′
1(j + d + M)B′

1(d)X
�+d+M+j(1−α)

+
∑

M,�,k,d
A2(�)B2(M + �)A′

1(d + M)B′
1(k + d)X�+d+M+k(1−β)

−
∑
M,�,d

A2(�)B2(M + �)A′
1(d + M)B′

1(d)X
�+d+M.

In the first term we replace j + d by r and sum over d; it becomes
∑
M,�,r

A2(�)B2(M + �)(A′
1)−α(r + M)((B′

1)α)
+(r)X�+r+M+Mα .
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In the second term we execute the sum over k as follows:
∑
k,d

A′
1(d + M)B′

1(k + d)Xd+k(1−β)

=
∑
K

(B′
1)−β (K )

∑
d≤K

A′
1(d + M)Xd+Kβ

= X−Mβ
∑
K

(B′
1)−β (K )XK

∑
d≤K

(A′
1)β (d + M)

= X−Mβ
∑
K

(B′
1)−β (K )XK (

((A′
1)β )

+(K + M) − ((A′
1)β )

+(M − 1)
)

This may be rewritten as

X−Mβ
∑
K

(B′
1)−β (K )XK ((A′

1)β )
+(K + M)

−X−Mβ ((A′
1)β )

+(M)Z((B′
1)−β ) + X−Mβ (A′

1)β (M)Z((B′
1)−β ).

Thus, altogether we have

S+
L =

∑
M,�,r

A2(�)B2(M + �)(A′
1)−α(r + M)((B′

1)α)
+(r)X�+r+M+Mα

+
∑
M,�

A2(�)B2(M + �)
(
X−Mβ

∑
K

(B′
1)−β (K )XK ((A′

1)β )
+(K + M)

−X−Mβ ((A′
1)β )

+(M)Z((B′
1)−β ) + X−Mβ (A′

1)β (M)Z((B′
1)−β )

)
X�+M

−
∑
M,�,d

A2(�)B2(M + �)A′
1(d + M)B′

1(d)X
�+d+M.

In the first line notice that (((B′
1)α)+)−α = B′

1 ∪ {−α}. Also, recall our notation:
F (A, B;C,D) =

∑
K,L,M

A(K )B(K + M)C(L)D(L + M)XK+L+M.

Using this notation we have that

S+
L = F (B′

1 ∪ {−α}, A′
1;A2, B2) + F (B′

1, A
′
1 ∪ {−β};A2, B2) − F (B′

1, A
′
1;A2, B2)

−Z((B′
1)−β )C(A′

1 ∪ A2 ∪ {−β}, B2) + Z((B′
1)−β )C(A′

1 ∪ A2, B2).

We add this with our expression for S−
L and have

SL = F (B′
1 ∪ {−α}, A′

1;A2, B2) + F (B′
1, A

′
1 ∪ {−β};A2, B2) − F (B′

1, A
′
1;A2, B2).

The expression for SR is obtained by the symmetry α ↔ β ; A1 ↔ B1; and A2 ↔ B2. Thus,

SR = F (A′
1 ∪ {−β}, B′

1;B2, A2) + F (A′
1, B

′
1 ∪ {−α};B2, A2) − F (A′

1, B
′
1;B2, A2).

Recall that

F (A, B;C,D) + F (B, A;D,C) = C(A ∪ D, B ∪ C) + C(A, B)C(C,D).
Thus,

SL + SR = C(A′
1 ∪ A2 ∪ {−β}, B′

1 ∪ B2) + C(A′
1 ∪ A2, B′

1 ∪ B2 ∪ {−α})
−C(A′

1 ∪ A2, B′
1 ∪ B2) + C(A′

1 ∪ {−β}, B′
1)C(B2, A2)

+ C(A′
1, B

′
1 ∪ {−α})C(B2, A2) − C(A′

1, B
′
1)C(B2, A2).
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Adding this to −S0 we have

SL + SR − S0 = C(A′
1 ∪ A2 ∪ {−β}, B′

1 ∪ B2) + C(A′
1 ∪ A2, B′

1 ∪ B2 ∪ {−α})
−C(A′

1 ∪ A2, B′
1 ∪ B2).

This is equal to

(1 − X1−α−β ) C(A′
1 ∪ A2 ∪ {−β}, B′

1 ∪ B2 ∪ {−α})
as desired.

11 Proof of Theorem 2
We shall it convenient to recast the identity of Theorem 2 using a set-theoretic language.

11.1 A reformulation of the identity

We begin with 4 sets A, B, C and D and 4 numbers α,β , γ and δ. We consider∑
min(M,N )=0

X−M(γ+β)−N (α+δ)�1(M,N )�2(M,N )XM+N

where

�1(M,N ) =
∑
d,j,k
q≤1

(−1)qXd(α+β)A−α(j + q + d − min(q + d,N ))

×B−β (k + q + d − min(q + d,M))X2q+d+j+k−min(q+d,M)−min(q+d,N )

and

�2(M,N ) =
∑
d,j,k
q≤1

(−1)qXd(γ+δ)C−γ (j + q + d − min(q + d,M))

×D−δ(k + q + d − min(q + d,N ))X2q+d+j+k−min(q+d,M)−min(q+d,N ).

The problem is to express this quantity in terms of the C function, namely we want to
prove that the above is

= (1 − X1−α−β )(1 − X1−γ−δ)C(A ∪ C ∪ {−β ,−δ}, B ∪ D ∪ {−α,−γ }).

11.2 Initial reductions

We can decompose the sum overM and N via

∑
min(M,N )=0

f (M,N ) =
∞∑

M=0
f (M, 0) +

∞∑
N=0

f (0, N ) − f (0, 0).

Thus, the sum above is SL + SR − S0 where

SL =
∞∑

M=0
X−M(γ+β)�1(M, 0)�2(M, 0)XM

SR =
∞∑

N=0
X−N (α+δ)�1(0, N )�2(0, N )XN

and

S0 = �1(0, 0)�2(0, 0).



Conrey and Keating Res. Number Theory (2016) 2:24 Page 20 of 24

We have

S0 =

⎛
⎜⎜⎝

∑
d,j,k
q≤1

(−1)qXd(α+β)A−α(j + q + d)B−β (k + q + d)X2q+d+j+k

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

∑
d,j,k
q≤1

(−1)qXd(γ+δ)C−γ (j + q + d)D−δ(k + q + d)X2q+d+j+k

⎞
⎟⎟⎠ .

The first factor here is
∑
d,j,k

Xd(α+β)A−α(j + d)B−β (k + d)Xd+j+k

−
∑
d,j,k

Xd(α+β)A−α(j + 1 + d)B−β (k + 1 + d)X2+d+j+k

which telescopes in j and k . Thus, it is
∑
d,j

Xd(α+β)A−α(j + d)B−β (d)Xd+j +
∑
d,k

Xd(α+β)A−α(d)B−β (k + d)Xd+k

−
∑
d

Xd(α+β)A−α(d)B−β (d)Xd.

The first term here is
∑
d,j

Xd(α+β)A−α(j + d)B−β (d)Xd+j =
∞∑
J=0

A−α(J )XJ
∑
d≤J

B−β (d)Xd(α+β).

Now

B−β (d)Xd(α+β) = Bα(d)

and
∑
d≤J

Bα(d) = (Bα)+(J ).

Thus, the above is
∞∑
J=0

A−α(J )(Bα)+(J )XJ = C(A−α , (Bα)+) = C(A, B ∪ {−α}).

The second term is

C((Aβ )+, B−β ) = C(A ∪ {−β}, B)
and the third term is

C(A, B).
We can do the same with the second factor. The net result is that

S0 =
(
C(A, B ∪ {−α}) + C(A ∪ {−β}, B) − C(A, B)

)

×
(
C(C,D ∪ {−γ }) + C(C ∪ {−δ}, D) − C(C,D)

)
.
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Next we analyze SL. First consider �1(M, 0):

�1(M, 0) =
∑
d,j,k

Xd(α+β)A−α(j + d)B−β (k + d − min(d,M))Xd+j+k−min(d,M)

−
∑
d,j,k

Xd(α+β)A−α(j + 1 + d)B−β (k + 1 + d − min(1 + d,M))

×X2+d+j+k−min(1+d,M).

We split this into the terms with d < M and those with d ≥ M. We have

�−
1 (M, 0) =

∑
j,k

d<M

Xd(α+β)A−α(j + d)B−β (k)Xj+k

−
∑
j,k

d<M

Xd(α+β)A−α(j + 1 + d)B−β (k)X1+j+k

= Z(B−β )

⎛
⎜⎜⎝

∑
j

d<M

Xd(α+β)A−α(j + d)Xj −
∑
j

d<M

Xd(α+β)A−α(j + 1 + d)X1+j

⎞
⎟⎟⎠ .

The sum over j telescopes so that this is

�−
1 (M, 0) = Z(B−β )

∑
d<M

Xd(α+β)A−α(d)

= Z(B−β )
∑
d<M

Aβ (d) = Z(B−β )(Aβ )+(M − 1).

Next we consider

�+
1 (M) =

∑
j,k

d≥M

Xd(α+β)A−α(j + d)B−β (k + d − M)Xd+j+k−M

−
∑
j,k

d≥M

Xd(α+β)A−α(j + 1 + d)B−β (k + 1 + d − M)X2+d+j+k−M.

We replace d by d + M and have

�+
1 (M) =

∑
j,k,d

X (d+M)(α+β)A−α(j + d + M)B−β (k + d)Xd+j+k

−
∑
j,k,d

X (d+M)(α+β)A−α(j + 1 + d + M)B−β (k + 1 + d)X2+d+j+k .

Now the sum over j and k telescopes and we have

�+
1 (M) =

∑
j,d

X (d+M)(α+β)A−α(j + d + M)B−β (d)Xd+j

+
∑
k,d

X (d+M)(α+β)A−α(d + M)B−β (k + d)Xd+k

−
∑
d

X (d+M)(α+β)A−α(d + M)B−β (d)Xd
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We recognize a convolution in the first term and rewrite this as

�+
1 (M) =

∑
r

XM(α+β)A−α(r + M)(Bα)+(r)Xr

+
∑
k,d

X (d+M)(α+β)A−α(d + M)B−β (k + d)Xd+k

−
∑
d

X (d+M)(α+β)A−α(d + M)B−β (d)Xd

The middle term here may be written as
∑
K

B−β (K )XK
∑
d≤K

Aβ (d + M)

=
∑
K

B−β (K )XK (
(Aβ )+(K + M) − (Aβ )+(M − 1)

)

=
∑
K

B−β (K )(Aβ )+(K + M)XK − Z(B−β )(Aβ )+(M − 1).

The second term of this cancels with �−
1 (M, 0) and so we have

�1(M, 0) = XM(α+β)
∑
K

(Bα)+(K )A−α(K + M)XK

−XM(α+β)
∑
K

Bα(K )A−α(K + M)XK

+
∑
K

B−β (K )(Aβ )+(K + M)XK .

This may be rewritten as

�1(M, 0) = XMβ

( ∑
K

(B ∪ {−α})(K )A(K + M)XK −
∑
K

B(K )A(K + M)XK

+
∑
K

B(K )(A ∪ {−β})(K + M)XK
)

By symmetry

�2(M, 0) = XMγ

(∑
L
(C ∪ {−δ})(L)D(L + M)XL −

∑
L

C(L)D(L + M)XL

+
∑
L

C(L)(D ∪ {−γ })(L + M)XL
)
.

Recall that we are trying to evaluate

SL =
∑
M

XM(1−γ−β)�1(M, 0) × �2(M, 0).

If we multiply out the three terms of �1 by the three terms of �2 and then sum over M
we get a total of nine expressions the first of which is

∑
K,L,M

(B ∪ {−α})(K )A(K + M)(C ∪ {−δ})(L)D(L + M)XK+L+M

= F (B ∪ {−α}, A;C ∪ {−δ}, D).



Conrey and Keating Res. Number Theory (2016) 2:24 Page 23 of 24

Thus we now see SL as a sum of nine terms of F at different arguments which we encap-
sulate in the following table for SL:

# sign K K + M L L + M
1 + B ∪ {−α} A C ∪ {−δ} D
2 − B ∪ {−α} A C D
3 + B ∪ {−α} A C D ∪ {−γ }
4 − B A C ∪ {−δ} D
5 + B A C D
6 − B A C D ∪ {−γ }
7 + B A ∪ {−β} C ∪ {−δ} D
8 − B A ∪ {−β} C D
9 + B A ∪ {−β} C D ∪ {−γ }

Note that SR is just the same as SL but with α ↔ β ; γ ↔ δ; A ↔ B; and C ↔ D. Thus, we
have the table for SR:

# sign K K + M L L + M
1 + A ∪ {−β} B D ∪ {−γ } C
2 − A ∪ {−β} B D C
3 + A ∪ {−β} B D C ∪ {−δ}
4 − A B D ∪ {−γ } C
5 + A B D C
6 − A B D C ∪ {−δ}
7 + A B ∪ {−α} D ∪ {−γ } C
8 − A B ∪ {−α} D C
9 + A B ∪ {−α} D C ∪ {−δ}

Now we pair up line x from SL with line 10 − x from SR and we use the lemma to express
the sum of the F-terms as C’s. We have

SL + SR = C(A ∪ C ∪ {−δ}, B ∪ D ∪ {−α}) + C(A ∪ {−β}, B) C(D ∪ {−γ }, C)
− C(A ∪ C, B ∪ D ∪ {−α}) − C(A ∪ {−β}, B) C(D,C)
+ C(A ∪ C, B ∪ D ∪ {−α,−γ }) + C(A ∪ {−β}, B) C(D,C ∪ {−δ})
− C(A ∪ C ∪ {−δ}, B ∪ D) − C(A, B) C(D ∪ {−γ }, C)
+ C(A ∪ C, B ∪ D) + C(A, B) C(D,C)
− C(A ∪ C, B ∪ D ∪ {−γ }) − C(A, B) C(D,C ∪ {−δ})
+ C(A ∪ C ∪ {−β ,−δ}, B ∪ D) + C(A, B ∪ {−α}) C(D ∪ {−γ }, C)
− C(A ∪ C ∪ {−β}, B ∪ D) − C(A, B ∪ {−α}) C(D,C)
+ C(A ∪ C ∪ {−β}, B ∪ D ∪ {−γ }) + C(A, B ∪ {−α}) C(D,C ∪ {−δ}).

When we subtract S0 all of the terms that are products of two Cs cancel:
SL + SR − S0 = C(A ∪ C ∪ {−δ}, B ∪ D ∪ {−α}) − C(A ∪ C, B ∪ D ∪ {−α})

+ C(A ∪ C, B ∪ D ∪ {−α,−γ }) − C(A ∪ C ∪ {−δ}, B ∪ D)

+ C(A ∪ C, B ∪ D) − C(A ∪ C, B ∪ D ∪ {−γ })
+ C(A ∪ C ∪ {−β ,−δ}, B ∪ D) − C(A ∪ C ∪ {−β}, B ∪ D)

+ C(A ∪ C ∪ {−β}, B ∪ D ∪ {−γ }).
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11.3 The final reckoning

A generalization of
A+(d) = A(d) + A+(d − 1)

is

(A ∪ {−α})(d − 1) = Xα

(
(A ∪ {−α})(d) − A(d)

)
.

We apply this to the expression

(1 − X1−α−β )(1 − X1−γ−δ)
∞∑
r=0

(A ∪ C ∪ {−β ,−δ})(r)(B ∪ D ∪ {−α,−γ })(r)Xr

and after some work find that it is equal to the expression above for SL + SR − S0.
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