
Android Malware Classification by Applying
Online Machine Learning

Abdurrahman Pektaş1, Mahmut Çavdar2, and Tankut Acarman2(B)

1 The Scientific and Technological Research Council of Turkey, Ankara, Turkey
2 Computer Engineering Department, Galatasaray University, İstanbul, Turkey

acarmant@gmail.com

Abstract. A malware is deployed to execute malicious activities in the
compromised operating systems. The widespread use of android smart-
phones with high speed Internet and permissions granted to applications
for accessing internal logs provides a favorable environment for the exe-
cution of unauthorized and malicious activities. The major risk and chal-
lenge lies along classification of a large volume and variety of malware. A
malware may evolve and continue to hide its malicious activies against
security systems. Knowing malware features a priori and classification of
a malware plays a crucial role at defending the safety and liability critical
user’s information. In this paper, we study android malware activities,
features and apply online machine learning algorithm to classify a new
android malware. We extract a fairly adequate set of malware features
and we evaluate a machine learning based classification method. The run-
time model is built and it can be implemented to detect variants of an
android malware. The metrics illustrate the effectiveness of the proposed
classification method.

1 Introduction

According to Internet Security Report, 1.4 billion smartphones were sold in 2015
and 83,3 % phones were running Android, [1]. Their users may save information
about their personal identities, online payment system access and user’s cre-
dentials. Malware authors, cyber criminals aim to steal these information via
the distribution and installation of android applications. Overall, 3.3 million
applications were classified as malware in 2015. Malware authors deliver this
large variety and volume of malicious software by using advanced obfuscation
techniques. Therefore, behavior-based malware analysis and classification of a
malware sample to its original family plays a crucial and timely role at taking
security and protection counter measures.

Android is a complete operating system that uses Android application (app)
package (APK) for distribution and installation of mobile apps. APK file con-
tains components which share a set of resources like database, preference, files,
classes compiled in the dex file format, etc., App components are divided in
four categories: activities handling the user interaction; services carrying out
background tasks; content providers managing app’s data; broadcast receivers
c© The Author(s) 2016
T. Czachórski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 72–80, 2016.
DOI: 10.1007/978-3-319-47217-1 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191326538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Android Malware Classification by Applying Online Machine Learning 73

Table 1. List of system commands and command’s execution frequency by our malware
test set

Command Description Frequency

/system/bin/cat (i.e. cat) display files 33

logCat reads the compressed logging files and
outputs human-readable messages

13

ping verifies IP-level connectivity by using
ICMP

6

chmod used to change the permissions of files
or directories

4

ln creates a link to an existing file 3

mount attaches additional filesystem 2

echo outputs text to the screen or a file 2

su used to execute commands with the
privileges of another account

2

id print user ID and group ID of the
current user

2

assuring communications between components, app’s, even more Android OS.
The manifest declares the app’s components and how they interact. Also user
permissions required by the apps are placed in the manifest file. Android is a
privilege-separated operating system, in which each application runs with a dis-
tinct system identity (Linux user ID and group ID). Parts of the system are also
separated into distinct identities. Linux thereby isolates applications from each
other and from the system.

Several commands can be used to infect Android devices. For example, Cat
command, i.e., System/bin/cat displays files in the system and it can be executed
for malicious purposes. The command-line tool LogCat can be used for viewing
the internal logs. Log messages may include privacy-related information. An app
can access the log file by giving every app the READ LOGS permission with aid
of the chmod command. The list of commands is described in Table 1.

In line with the emerging market of android smartphones, detection and clas-
sification of its malware has attracted a lot of attention. Static analysis of the exe-
cutables by using commands, and modelling of malware features by using permis-
sions and API calls is presented for the detection of a malware in [2,3]. K-means
algorithm for clustering and a decision tree learning algorithm for classification
of a malware is presented by monitoring various permission based features and
events extracted from applications in [4]. A learning model database is obtained
by collecting the extracted features and N-gram signatures are created in [5]. Text
mining and information retrieval is applied for the static analysis of a malware in
[6]. In [7], a heuristics approach by using 39 different behaviour flags such as Java
API calls, presence of embedded executables and code size is developed to deter-
mine whether an application is malicious or not. A deep learning for automatic
generation of malware signature is studied to detect a majority of new variants
of a malware in [8]. And, a detection model is trained with the information gath-
ered via the communication among components. A security framework has been



74 A. Pektaş et al.

deployed by an European project called NEMESYS for gathering and analyzing
information about the nature of cyber-attacks targeting mobile devices and pre-
sented a model-based approach for detection of anomalies [9–11].

The paper is organized as follows: In Sect. 2, we present the selected features.
In Sect. 3, we implement online machine learning algorithm to the classification
of malware samples and we evaluate the results. Finally, we conclude our paper.

2 Feature Set

Cuckoo Sandbox is an open source analysis system and relies on virtualization
technology to run a given file, [12]. It can analyze both executable and non-
executable files and monitor the run-time activities. In this study, we extracted

Table 2. Features and their types

Feature category Type Value

commands String /system/bin/cat

services String com.houseads.AdService,

com.applovin.sdk.AppLovinService,’

fingerprint String getSimCountryIso, getDeviceId, getLine1Number

permissions String INTERNET, ACCESS NETWORK STATE,

READ PHONE STATE, GET ACCOUNTS

data leak String getAccounts

file accessed String /proc/net/if inet6, /proc/meminfo ...

httpConnections String http://houseads.eu/ads/new user.php?id=147
&im= 351451208401216 &l=en&c=us&bm
=Nexus+5&bv=4.1.2&v=4.2&ct=UMTS
&a=null&ts=04032016070451&m=&s=16

send sms Boolean FALSE

receive sms Boolean FALSE

read sms Boolean FALSE

call phone Boolean FALSE

ap execute shell commands Boolean TRUE

app queried account info Boolean TRUE

app queried installed apps Boolean FALSE

app queried phone number Boolean TRUE

app queried private info Boolean FALSE

app recording audio Boolean FALSE

app registered receiver runtime Boolean TRUE

app uses location Boolean FALSE

embedded apk Boolean FALSE

is dynamic code Boolean TRUE

is native code Boolean FALSE

is reflection code Boolean TRUE

http://houseads.eu/ads/new
http://houseads.eu/ads/new
http://houseads.eu/ads/new
http://houseads.eu/ads/new


Android Malware Classification by Applying Online Machine Learning 75

Table 3. Top 20 requested permissions

Permissions Frequency

INTERNET 867

READ PHONE STATE 826

WRITE EXTERNAL STORAGE 764

ACCESS NETWORK STATE 744

SEND SMS 565

INSTALL SHORTCUT 535

ACCESS WIFI STATE 524

WAKE LOCK 473

RECEIVE BOOT COMPLETED 420

VIBRATE 382

RECEIVE SMS 348

GET TASKS 337

WRITE SETTINGS 306

READ SMS 285

ACCESS COARSE LOCATION 281

READ SETTINGS 278

CHANGE WIFI STATE 277

ACCESS FINE LOCATION 270

CALL PHONE 215

SYSTEM ALERT WINDOW 182

the most significant and distinguishing behavioral features from the Cuckoo’s
analysis report. The list of android malware features is given in Table 2. The
permissions requested by the applications are ranked according to their persis-
tency in Table 3.

3 Implementation

The testing malware dataset is obtained from “VirusShare Malware Sharing
Platform” ([13]), which provides a huge amount of different type malware includ-
ing PE, HTML, Flash, Java, PDF, APK etc. All experiments were conducted
under the Ubuntu 14.04 Desktop operating system with Intel(R) Core(TM)
i5-2410M@2.30 GHz processor and 2 GB of RAM. The analysis with 5 guest
machines took 5 days to analyze approximately 2000 samples. For labeling mal-
ware samples, we used Virustotal, an online web-based multi anti-virus scanner,
[14]. The malware classes along their class-specific measures are given in Table 4.



76 A. Pektaş et al.

Table 4. Malware families and their class-specific measures

Family Code # Recall Specificity Precision Balanced
accuracy

android.trojan.fakeinst 1 193 0.94 0.98 0.94 0.96

android.riskware.smsreg 2 104 0.67 0.99 0.86 0.83

android.trojan.agent 3 79 0.60 1.00 1.00 0.80

android.adware.gingermaster 4 74 0.67 0.99 0.80 0.83

android.adware.adwo 5 69 0.83 1.00 1.00 0.92

android.trojan.smssend 6 66 1.00 0.84 0.35 0.92

android.trojan.smskey 7 48 0.25 1.00 1.00 0.63

android.adware.utchi 8 45 1.00 1.00 1.00 1.00

android.trojan.clicker 9 37 1.00 0.99 0.75 0.99

android.adware.appquanta 10 34 1.00 1.00 1.00 1.00

android.adware.plankton 11 34 0.50 1.00 1.00 0.75

android.trojan.fakeapp 12 19 1.00 1.00 1.00 1.00

android.trojan.boqx 13 18 0.50 1.00 1.00 0.75

android.trojan.killav 14 17 1.00 1.00 1.00 1.00

android.riskware.tocrenu 15 14 0.50 1.00 1.00 0.75

android.exploit.gingerbreak 16 12 1.00 1.00 1.00 1.00

android.trojan.bankun 17 12 1.00 1.00 1.00 1.00

android.trojan.smsspy 18 11 1.00 1.00 1.00 1.00

3.1 Online Classification Algorithms

In general, an online learning algorithm works in a sequence of consecutive
rounds. At round t, the algorithm takes an instance xt ∈ Rd , d-dimensional
vector, as input to make the prediction ŷt ∈ {+1,−1} (for binary classification)
regarding to its current prediction model. After predicting, it receives the true
label yt ∈ {+1,−1} and updates its model (a.k.a. hypothesis) based on pre-
diction loss �(yt, ŷt) meaning the incompatibility between prediction and actual
class. The goal of online learning is to minimize the total number of incorrect
predictions; sum(t : yt �= ŷt). Pseudo-code for generic online learning is given in
Algorithm-1.

3.2 Classification Metrics

To evaluate the proposed method, the following class-specific metrics are used:
precision , recall (a.k.a. sensitivity), specificity , balanced accuracy , and
overall accuracy (the overall correctness of the model). Recall is the probabil-
ity for a sample in class c to be classified correctly. On the contrary, specificity is



Android Malware Classification by Applying Online Machine Learning 77

Algorithm 1. Generic online learning algorithm
Input : wt=1 = (0, ..., 0)

1 foreach round t in (1,2,..,N) do

2 Receive instance xt ∈ Rd

3 Predict label of xt : ŷt = sign(xt.wt)
4 Obtain true label of the xt : yt ∈ {+1, −1}
5 Calculate the loss: �t
6 Update the weights: wt+1

7 end
Output: wt=N = (w1, ..., wd)

the probability for a sample not in class c to be classified correctly. The metrics
are given as follows:

precision =
tp

tp + fp
(1)

recall =
tp

tp + fn
(2)

specificity =
tn

tn + fp
(3)

balanced accuracy =
recall + specificity

2
=

1
2

(
tp

tp + fn
+

tn
tn + fp

)
(4)

accuracy =
correctly classified instances
total number of instances

(5)

For instance, consider a given class c. True positives (tp) refer to the number
of the samples in class c that are correctly classified while true negatives (tn)
are the number of the samples not in class c that are correctly classified. False
positives (fp) refer the number of the samples not in class c that are incorrectly
classified. Similarly, false negatives (fn) are the number of the samples in class
c that are incorrectly classified. The terms positive and negative indicate the
classifier’s success, and true and false denotes whether or not the prediction
matches with ground truth label.

3.3 Testing Accuracy Results

The accuracy of testing is computed subject to different value of regularization
weight parameter. The regularization weight parameter is denoted by C and
determines the size of weight change at each iteration. A larger value means a
possibility of a higher change in the updated weight vector and the model is
created faster. But as a consequence, the model becomes more dependent to the
training set and more susceptible to noise data. 10-fold cross-validation approach
is used. The class-wise results for the most successful algorithm (i.e. Confidence-
weighted linear classification in [15]) according to the different weight C are
given in Table 5.



78 A. Pektaş et al.

Table 5. Classification accuracy versus different regularization weight parameter

C = 1 C = 2 C = 3 C = 4 C = 5 C = 10 C = 100

0.81 0.83 0.84 0.89 0.80 0.78 0.76

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Predicted Class

Ac
tu

al
 C

la
ss

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Normalized
Frequency

Fig. 1. Normalized confusion matrix

To analyze how well the classifier can recognize instance of different classes,
we created the confusion matrix as shown in Fig. 1. The confusion matrix dis-
plays the number of correct and incorrect predictions made by the classifier with
respect to ground truth (actual classes). The diagonal elements in the matrix
represent the number of correctly classified instances for each class, while the
off-diagonal elements represent the number of misclassified elements by the clas-
sifier. The higher the diagonal values of the confusion matrix are, the better the
model fits the dataset (higher accuracy in individual family prediction). Since
android.trojan.bankun family combines many functionalities executed also by
other families in our dataset, android.trojan.agent, android.trojan.smskey and
android.exploit.gingerbreak are incorrectly estimated as android.trojan.bankun.



Android Malware Classification by Applying Online Machine Learning 79

4 Conclusions

This paper addresses the challenge of classifying android malware samples by
using runtime artifacts while being robust to obfuscation. The presented classi-
fication system is usable on a large scale in real world due to its online machine
learning methodology. The proposed method uses run-time behaviors of an exe-
cutable to build the feature vector. We evaluated an online machine learning
algorithm with 2000 samples belonging to 18 families. The results of this study
indicate that runtime behavior modeling is a useful approach for classifying an
android malware.

Acknowledgments. The authors gratefully acknowledge the support of Galatasaray
University, scientific research support program under grant #16.401.004.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Internet Security Threat Report (2016) Available via Symantec. https://www.
symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf. Cited
15 Jun 2016

2. Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J., Kiraz, O.: Static analysis
of executables for collaborative malware detection on Android. In: 2009 IEEE
International Conference on Communications, Dresden, pp. 1–5 (2009)

3. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and API calls. In: Proceedings of the ICTAI 2013, The IEEE 25th Inter-
national Conference on Tools with Artificial Intelligence, pp. 300–305 (2013)

4. Aung, Z., Zaw, W.: Permission-based android malware detection. Int. J. Scient.
Technol. Res. 2, 228–234 (2013)

5. Dhaya, R., Poongodi, M.: Detecting software vulnerabilities in android using static
analysis. In: Proceedings of ICACCCT, Communication IEEE International Con-
ference on Advanced Communication Control and Computing Technologies, pp.
915–918 (2014)

6. Tangil, G.S., Tapiador, J.E., Lopez, P.P., Blasco, J.: A text mining approach to
analyzing and classifying code structures in android malware families. Expert Syst.
Appl. 4, 1104–1117 (2014)

7. Apvrille, A., Strazzere, T.: Reducing the window of opportunity for Android mal-
ware gotta catch em all. J. Comput. Virol. 8, 61–71 (2012)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf


80 A. Pektaş et al.

8. Xu, K., Li, Y., Deng, R.H.: ICCDetector: ICC-based malware detection on Android.
Inf. Forensics Sec. 11, 1252–1264 (2016)

9. Abdelrahman, O.H., Gelenbe, E., Görbil, G., Oklander, B.: Mobile network anom-
aly detection and mitigation: the NEMESYS approach. In: Gelenbe, E., Lent, R.
(eds.) Information Sciences and Systems. LNEE, vol. 264, pp. 429–438. Springer,
Switzerland (2013). doi:10.1007/978-3-319-01604-7 42

10. Gelenbe, E., Görbil, G., Tzovaras, D., Liebergeld, S., Garcia, D., Baltatu, M.,
Lyberopoulos, G.: NEMESYS: enhanced network security for seamless service pro-
visioning in the smart mobile ecosystem. In: Information Sciences and Systems
(2013). doi:10.1007/978-3-319-01604-7 36

11. Gelenbe, E., Görbil, G., Tzovaras, D., Liebergeld, S., Garcia, D., Baltatu, M.,
Lyberopoulos, G.: Security for smart mobile networks: the NEMESYS approach.
In: Proceedings of the Global High Tech Congress on Electronics, pp. 63–69. IEEE
(2013)

12. Cuckoo Sandbox (2016). cuckoosandbox.org. Cited 15 Jun 2016
13. Virusshare: Malware Sharing Platform (2016). http://www.virusshare.com/
14. Virustotal: An online multiple AV Scan Service (2016). http://www.virustotal.

com/
15. Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification.

In: Proceedings of the 25th International Conference on Machine Learning, pp.
264–271. ACM (2008)

http://dx.doi.org/10.1007/978-3-319-01604-7_42
http://dx.doi.org/10.1007/978-3-319-01604-7_36
http://cuckoosandbox.org
http://www.virusshare.com/
http://www.virustotal.com/
http://www.virustotal.com/

	Android Malware Classification by Applying Online Machine Learning
	1 Introduction
	2 Feature Set
	3 Implementation
	3.1 Online Classification Algorithms
	3.2 Classification Metrics
	3.3 Testing Accuracy Results

	4 Conclusions
	References


