
Chapter 13
An Exhaustive Tree Search for Stopping
Sets of LDPC Codes

13.1 Introduction and Preliminaries

The performance of all error-correcting codes is determined by the minimum Ham-
ming distance between codewords. For codes which are iteratively decoded such as
LDPC codes and turbo codes, the performance of the codes for the erasure channel is
determined by the stopping set spectrum, the weight (and number) of erasure patterns
which cause the iterative decoder to fail to correct all of the erasures. Codes which
perform poorly on the erasure channel do not perform well on the AWGN channel.
To determine all of the stopping sets of a general (n, k) code is a prohibitive task, for
example, a binary (1000, 700) code would require evaluation of 21000 possible stop-
ping sets. It should be noted by the reader that all codewords are also stopping sets,
but most stopping sets are not codewords. Fortunately the properties of particular
types of codes may be used to reduce considerably the scale of the task, and in par-
ticular codes with sparse parity-check matrices such as LDPC codes and turbo codes
are amenable to analysis in practice. As the tree search is exhaustive, the emphasis
is first on focusing the search so that only low-weight stopping sets are found, up to
a specified weight, and second the emphasis is on the efficiency of the algorithms
involved.

In a landmark paper in 2007, Rosnes andYtrehus [7] showed that exhaustive, low-
weight stopping set analysis of codes whose parity-check matrix is sparse is feasible
using a bounded tree search over the length of the code with no distinction between
information and parity bits. A previous paper on the same topic of an exhaustive
search of stopping sets of LDPC codes by Wang et al. [2] used a different and much
less efficient algorithm. In commonwith this earlier research, we use similar notation
in the following preliminaries.

The code C is defined to be binary and linear of length n and dimension k and is a
k-dimensional subspace of {0, 1}n , and may be specified as the null space of am × n
binary parity-check matrix H of rank n − k. The number of parity-check equations,
m of H satisfies m ≥ (n − k), although there are, of course, only n − k independent
parity-check equations. It should be noted, as illustrated in the results below, that the
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number of parity-check equations m in excess of n− k can have a dramatic effect on
the stopping set weight spectrum, excluding codewords of course, as these are not
affected.

As in [7], S is used to denote a subset of {0, 1}n , the set of all binary vectors of
length n. At any point in the tree search, a constraint set,F is defined consisting of
bit positions pi and the states of these bit positions spi , spi ∈ {0, 1}n . The support set
χ(F ) of the constraint set,F , is the set of positionswhere spi = 1, and theHamming
weight of F is the number of such positions. The sub-matrix Hχ(F ) consists of all
the columns of H where spi = 1, and the row weight of Hχ(F ) is the number of 1′s
in that row. An active row of Hχ(F ) is a row with unity row weight. It is obvious
that if all rows of Hχ(F ) have even row weight then F is a codeword, noting that
for an iterative decoder codewords are also stopping sets. If at least one row has odd
weight, 3 or higher and there are no active rows then F is a stopping set but not a
codeword. If there are active rows thenF has either to be appended with additional
bit positions or one or more states spi need to be changed to form a stopping set.With
this set of basic definitions, tree search algorithms may be described which carry out
an exhaustive search of {0, 1}n using a sequence of constraintsF to find all stopping
sets whose Hamming weight is ≤ τ .

13.2 An Efficient Tree Search Algorithm

At any given point in the search, the constraint set F is used to represent the set of
searched known bits (up to this point) of a code C , which forms a branch of the tree
in the tree search. The set of active rows in H is denoted by {h0, ..., hφ−1}, where φ

is the total number of active rows. A constraint set F with size n is said to be valid
if and only if there exists no active rows in H(F). In which case the constraint set
is equal to a stopping set. The pseudocode of one particularly efficient algorithm to
find all the stopping sets including codeword sets with weight equal to or less than τ

is given in Algorithm 13.1 below. Each time a stopping set is found, it is stored and
the algorithm progresses until the entire 2n space has been searched.

The modified iterative decoding is carried out on a n-length binary input vector
containing erasures in some of the positions. Let r j (F) be the rank (ones) of row
j , j ∈ {0, ...,m − 1} for the constrained position {pi : (pi , 1) ∈ F} intersected
by row j on H. And let r ′

j (F) be the rank of row j for the unconstrained position
{pi : (pi , 1) ∈ {0, ..., n − 1}\F} intersected by row j on H. The modified iterative
decoding algorithm based on belief-propagation decoding algorithm over the binary
erasure channel is shown in Algorithm 13.2. As noted in the line with marked (*),
the modified iterative decoder is not invoked if the condition of r j ≤ 1 and r ′

j = 1
is not met; or the branch with constraint set F has condition of r j = 1 and r ′

j = 0.
This significantly speeds up the tree search. As noted in the line with marked (*),
the modified iterative decoder is not necessary to call, if the condition of r j ≤ 1 and
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Algorithm 13.1 Tree search based Stopping Set Enumeration (TSSE)
repeat
Pick one untouched branch as a constraint set F .
if |F | = n and w(F) ≤ τ then
Constraint set F is saved, if F is valid

else
1). Pass F to the modified iterative decoder (*) with erasures in the unconstrained positions.
2). Construct a new constraint set F ′ with new decoded positions, which is the extended
branch.
if |F ′| = n and w(F ′) ≤ τ then
Constraint set F ′ is saved, if F ′ is valid

else if No contradiction is found in H(F ′), and w′(F ′) ≤ τ then
a). Pick an unconstrained position p.
b). Extending branch F ′ to position p to get new branch F ′′ = F ′ ⋃{(p, 1)} and branch
F ′′′ = F ′ ⋃{(p, 0)}.

end if
end if

until Tree has been fully explored

Algorithm 13.2 Modified Iterative Decoding
Get rank r(F) and r′(F) for all the equation rows on H.
repeat
if r j > 1 then
Row j is flagged

else if r j = 1 and r ′
j = 0 then

Contradiction → Quit decoder
else if r j ≤ 1 and r ′

j = 1 then
1). Row j is flagged
2). The variable bit i is decoded as the XOR of the value of r j .
3). Update the value of r j and r ′

j , if Hji = 1.
end if

until No new unconstrained bit is decoded

r ′
j = 1 is not met; or the branch with constraint set F can be ignored, if condition

of r j = 1 and r ′
j = 0 occurs. Thus the computing complexity can be significantly

reduced than calling it for every new branch with the corresponding constraint set F .

13.2.1 An Efficient Lower Bound

The tree search along the current branch may be terminated if the weight necessary
for additional bits to produce a stopping set plus the weight of the current constraint
set F exceeds τ . Instead of actually evaluating these bits, it is more effective to
calculate a lower bound on the weight of the additional bits. The bound uses the
active rows I (F) = {Ii0(F), ..., Iiq−1(F)}, where Ii0(F) is the set of active rows
with constraint set F corresponding to the i0th column hi0 ofH, and q is the number
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Table 13.3 WiMax 2/3A LDPC Codes

i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

13 15 76(76) 228(152) () () () () ()

14 14 80(0) 80(80) 160(0) () () () ()

15 15 84(84) 252(0) () () () () ()

16 15 88(88) 0(0) () () () () ()

17 15 92(92) 0(0) 92(92) 460(276) () () ()

18 15 96(96) 0(0) 96(96) 480(384) () () ()

Table 13.4 WiMax 2/3B LDPC Codes

i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

6 16 96(48) 432(48) () () () () ()

7 15 52(52) 0(0) 104(104) 156(104) 728(312) 2041(533) ()

8 16 63(63) 56(56) 196(56) 560(168) 1568(196) () ()

9 17 120(60) () () () () () ()

10 15 64(64) 0(0) 0(0) 0(0) 128(0) 384(64) ()

11 18 204(68) () () () () () ()

12 15 72(72) 0(0) 0(0) 72(0) () () ()

13 15 76(76) 0(0) 0(0) 0(0) 0(0) 76(0) ()

14 16 80(80) 80(0) () () () () ()

15 15 84(84) 0(0) 0(0) 0(0) 84(84) 294(168) ()

16 16 88(88) 88(0) () () () () ()

17 20 92(92) 92(0) 92(0) () () () ()

18 15 96(96) 0(0) 0(0) 0(0) 0(0) 144(96) ()

of intersected unknown bits. Let w(hI j (F)

j ) be the weight of ones on j th column of
H, which is the number of active rows intersected with j th column. Under a worst
case assumption, the I j (F) with larger column weight of ones on j th column is
always with value 1, then the active rows can be compensated by I j (F) and the total

number of active rows φ is reduced by w(hI j (F)

j ) until φ ≤ 0. Algorithm 13.3 shows
the pseudocode of computing the smallest number of intersected unknown bits q in
order to produce no active rows. The lower bound w′(F) = w(F) + q is the result.

Algorithm 13.3 Simple method to find the smallest collection set of active rows
1. Arrange the set ofI (F) in descending order, where hi ′0 is the columnwith themaximal column
weight corresponding to constraint F .
2. q is initialised as 0.
while φ > 0 do
1). φ is subtracted by w(hi ′0 ).
2). q is accumulated by 1.

end while
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Table 13.5 WiMax 3/4A LDPC Codes
i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

6 10 48(0) 0(0) 24(0) 240(48) 624(288) () ()

7 12 26(0) 156(52) 260(104) 2184(416) () () ()

8 12 28(0) 112(0) 224(168) 952(280) () () ()

9 12 90(60) 60(0) 180(60) 372(192) () () ()

11 12 34(0) 68(68) 0(0) 0(0) () () ()

12 12 36(0) 0(0) 0(0) 0(0) 72(0) 504(144) ()

13 12 38(0) 76(76) 0(0) 76(76) () () ()

14 12 40(0) 80(0) 160(0) 240(0) 240(0) 800(160) ()

15 12 42(0) 0(0) 0(0) 0(0) 0(0) 168(84) ()

16 12 44(0) 0(0) 0(0) 88(88) () () ()

17 12 46(0) 0(0) 0(0) 0(0) 0(0) 0(0) ()

18 12 48(0) 0(0) 0(0) 0(0) 0(0) 0(0) 96(0)

Table 13.6 WiMax 3/4B LDPC Codes
i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

7 9 52(52) 52(52) 52(52) 312(156) 988(416) 3094(1274) 11180(3952)

8 12 560(392) 616(224) 1792(616) 7784(2968) () () ()

9 10 60(60) 60(60) 130(10) 540(240) 2190(810) 7440(2940) ()

10 11 64(64) 128(128) 128(64) 960(640) 3648(1408) () ()

11 13 272(204) 748(544) 2992(1564) () () () ()

12 12 72(0) 576(432) 576(216) 2520(936) () () ()

13 12 228(228) 380(304) 988(836) 2888(836) () () ()

14 10 80(80) 0(0) 0(0) 0(0) 640(480) 2416(1216) ()

15 11 84(0) 84(84) 336(168) 546(294) 1260(588) () ()

16 14 176(88) 968(792) () () () () ()

17 13 184(92) 92(92) 1012(644) () () () ()

18 12 16(16) 96(96) 672(480) () () () ()

13.2.2 Best Next Coordinate Position Selection

In the evaluation of the lower bound above, the selected unconstrained positions
are assumed to have value 1. Correspondingly, the first position in the index list
has maximal column weight and is the best choice for the coordinate to add to the
constraint set F .
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Table 13.7 Weight Spectra and stopping set spectra for the WiMax LDPC Codes [1]

Code Length N = 576 + 96i

i 0 1 2 3 4 5 6 7 8 9

N 576 672 768 864 960 1056 1152 1248 1344 1440

Code Rate Minimum Codeword Weight dm

1/2 13 19 20 19 19 21 19 22 23 27

2/3A 10 9 8 11 13 10 14 13 14 13

2/3B 12 11 14 16 15 15 16 15 16 17

3/4A 10 10 10 12 12 13 13 13 14 12

3/4B 8 8 9 11 11 9 11 9 12 10

5/6 5 7 7 7 7 7 7 7 7 7

Minimum Stopping Set Weight sm

1/2 18 18 18 21 19 19 24 19 24 24

2/3A 10 10 11 9 12 13 13 14 14 14

2/3B 10 12 13 15 14 16 16 18 18 17

3/4A 9 8 10 11 12 12 10 12 12 12

3/4B 9 10 10 10 11 11 11 12 12 12

5/6 6 6 7 7 7 7 7 9 7 8

Code Length N = 576 + 96i

i 10 11 12 13 14 15 16 17 18

N 1536 1632 1728 1824 1920 2016 2112 2208 2304

Code Rate Minimum Codeword Weight dm

1/2 20 27 21 19 25 27 28 23 31

2/3A 12 13 15 15 15 15 15 15 15

2/3B 15 18 15 15 16 15 16 20 15

3/4A 14 13 17 13 17 17 15 20 19

3/4B 11 13 13 12 10 12 14 13 12

5/6 7 7 8 8 7 7 8 8 9

Minimum Stopping Set Weight sm

1/2 24 28 28 28 25 29 29 28 28

2/3A 15 12 14 16 14 16 17 18 18

2/3B 19 18 18 20 17 20 17 21 20

3/4A 12 12 12 12 12 12 12 12 12

3/4B 13 13 12 13 14 11 14 13 15

5/6 8 9 7 9 7 8 9 8 10

13.3 Results

The algorithms above have been used to evaluate all of the low-weight stopping
sets for some well-known LDPC codes. The results are given in Table13.1 together
with the respective references where details of the codes may be found. The total
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number of stopping sets are shown for a given weight with the number of codewords
in parentheses. Interestingly, the Tanner code has 93 parity-check equations, 2 more
than the 91 parity-check equations needed to encode the code. If only 91 parity-check
equations are used by the iterative decoder there is a stopping set of weight 12 instead
of 18 which will degrade the performance of the decoder. The corollary of this is that
the performance of some LDPC codes may be improved by introducing additional,
dependent, parity-check equations by selecting low-weight codewords of the dual
code. A subsequent tree search will reveal whether there has been an improvement
to the stopping sets as a result.

13.3.1 WiMax LDPC Codes

WiMax LDPC codes [1], as the IEEE 802.16e standard LDPC codes, have been
fully analysed and the low-weight stopping sets for all combinations of code rates
and lengths have been found. Detailed results for WiMax LDPC codes of code rates
1/2, 2/3A, 2/3B, 3/4A, 3/4B are given inTables13.2, 13.3, 13.4, 13.5, 13.6. In these
tables, the code index i is linked to the code length N by the formula N = 576+96i .
The minimum weight of non-codeword stopping sets (sm) and codeword stopping
sets (dm) for all WiMax LDPC codes is given in Table13.7.

13.4 Conclusions

An efficient algorithm has been presented which enables all of the low weight stop-
ping sets to be evaluated for some common LDPC codes. Future research is planned
that will explore the determination of efficient algorithms for use with multiple com-
puters operating in parallel in order to evaluate all low weight stopping sets for
commonly used LDPC codes several thousand bits long.

13.5 Summary

It has been shown that the indicative performance of an LDPC code may be deter-
mined from exhaustive analysis of the low-weight spectral terms of the code’s stop-
ping sets which by definition includes the low-weight codewords. In a breakthrough,
Rosnes and Ytrehus demonstrated the feasibility of exhaustive, low-weight stopping
set analysis of codes whose parity-checkmatrix is sparse using a bounded tree search
over the length of the code, with no distinction between information and parity bits.
For an (n, k) code, the potential total search space is of size 2n but a good choice of
bound dramatically reduces this search space to a practical size. Indeed, the choice of
bound is critical to the success of the algorithm. It has been shown that an improved
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algorithm can be obtained if the bounded tree search is applied to a set of k infor-
mation bits since the potential total search space is initially reduced to size 2k . Since
such a restriction will only find codewords and not all stopping sets, a class of bits is
defined as unsolved parity bits, and these are also searched as appended bits in order
to find all low-weight stopping sets. Weight spectrum results have been presented for
commonly used WiMax LDPC codes in addition to some other well-known LDPC
codes.

An interesting area of future research has been identified whose aim is to improve
the performance of the iterative decoder, for a given LDPC code, by determining
low-weight codewords of the dual code and using these as additional parity-check
equations. The tree search may be used to determine improvements to the code’s
stopping sets as a result.
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