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Abstract

The mature heart valves consist of stratified extracellular matrix (ECM) layers,

and heart valve disease is characterized by ECM dysregulation and mineraliza-

tion. There is increasing evidence that regulatory pathways that control heart

valve development also are active in disease. In human diseased valves and

mouse models, the expression of valve progenitor markers, including Twist1,

Msx1/2 and Snail1/2, is induced. Additional markers of osteogenesis, including

Runx2, osteocalcin and bone sialoprotein, also are expressed in calcific aortic

valve disease (CAVD) in humans and mice. New mouse models have been

developed for studies of valve disease mechanisms. Klotho-null mice are a

model for premature aging and exhibit calcified nodules in aortic valves with

osteogenic gene induction. Osteogenesis Imperfecta mice, bearing a collagen1a2

mutation, develop features of myxomatous valve disease, including thickening,

increased proteoglycan deposition and chondrogenic gene induction. Together,

these findings demonstrate specific molecular indicators of valve disease pro-

gression, including the identification of early disease markers, which represent

potential targets for therapeutic intervention.
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18.1 Introduction

The semilunar and atrioventricular (AV) valves of the heart are made up of highly

organized extracellular matrix (ECM) layers populated by quiescent valve intersti-

tial cells (VICs) [1]. In healthy valves, the ECM is compartmentalized into layers

composed of collagens, proteoglycans, and elastin, which are maintained by the

VICs for proper valve function throughout life (Reviewed in [2]). In diseased

valves, the leaflets are thickened as a result of ECM dysregulation and VIC

activation. Calcific aortic valve disease (CAVD) includes calcification of the

cusps [3], whereas mitral valve prolapse (MVP) is accompanied by increased

proteoglycans and myxomatous changes in the leaflets [4]. Currently, the standard

treatment for severe heart valve disease is surgical replacement, and new therapies

based on molecular mechanisms are needed.

Molecular mechanisms associated with heart valve disease include activation of

signaling pathways involved in progenitor specification, cell proliferation, and

differentiation of heart valve and bone precursors [5, 6]. We have reported that

pediatric and adult diseased valves are characterized by expression of markers of

valve mesenchymal and chondrogenic progenitor cells, while adult diseased aortic

valves express markers of osteogenic calcification [7]. We also have identified

novel mouse models of calcific and myxomatous valve disease [8] that will be

useful in determination of the underlying mechanisms driving disease and in

development of pharmacologic-based therapies.

18.2 Heart Valve Development

Heart valve development in vertebrate embryos begins with the formation of

endocardial cushions in the AV canal and outflow tract of the primitive heart tube

[5]. The mesenchymal cells of the endocardial cushions originate from the endo-

cardium after an endothelial-to-mesenchymal transition (EMT). Valve progenitors

are highly proliferative and migratory and express transcription factors Twist1,

Tbx20, Sox9, Msx1/2, and Snai1. The endocardial cushion cells diversify into

lineages that express distinct ECM profiles regulated by BMP and FGF signaling

[9]. Wnt/β-catenin signaling also is active during endocardial cushion maturation,

but the specific role for this pathway in valve lineage differentiation is yet to be

determined [10]. Valve development continues with the remodeling of the endo-

cardial cushions into thin elongated leaflets composed of stratified ECM, which

occurs soon after birth in mice and humans [2]. The ECM layers consist of the

collagen-rich fibrosa, proteoglycan-rich spongiosa, and elastin-rich atrialis/

ventricularis [2]. These layers are oriented in the semilunar and AV valves with

the elastin layer adjacent to blood flow. While it is likely that hemodynamics has a

role in leaflet stratification, the regulatory pathways that control ECM organization

and compartmentalization during valve maturation are largely unknown.
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18.3 Heart Valve Disease

Heart valve disease can result from congenital malformation or gene mutations, or

it may be acquired later in life [1]. The prevalence of heart valve disease increases

significantly with age, such that ~10 % of people >75 years old have moderate

aortic or mitral valve disease [11]. However, the pathogenic mechanisms that drive

the development of heart valve disease and that could serve as potential therapeutic

targets are not well understood. There is increasing evidence that regulatory

pathways that control heart valve and bone development also are active in disease.

However, the roles of these pathways in valve pathogenesis and/or repair are not

well defined.

18.3.1 Calcific Aortic Valve Disease (CAVD)

CAVD is a progressive disease, initially presenting with aortic valve (AoV)

thickening (sclerosis) and resulting in valve stenosis and insufficiency later in life

[12]. End-stage disease is characterized by the presence of calcific nodules at the

hinge region of the AoV, underlying the pathology of CAVD [3]. In an effort to

draw parallels between the progression of disease and the underlying molecular

mechanisms, pediatric and adult diseased AoV were analyzed for markers of valve

development and endochondral bone formation [7]. Activated VICs in both pediat-

ric and adult valves have increased expression of valvulogenic markers Twist1,

Msx2, and Sox9. Strikingly, the formation of calcific nodules was found to be an

exclusive feature of adult calcified AoV. Furthermore, phosphorylation of Smads1/

5/8, indicative of active BMP signaling, in addition to expression of osteogenic

genes, such as Runx2, was observed only in adult calcified AoV. These findings

demonstrate that both pediatric and adult diseased AoV express valvulogenic

markers, while adult calcified AoV also express markers of osteogenic calcification.

Differential expression of these markers suggests that an osteogenic regulatory

mechanism contributes specifically to CAVD.

The incidence of human CAVD strongly correlates with aging, which is an

independent risk factor for AoV disease. We have recently identified Klotho-/- mice,

a model of premature aging, as a novel mouse model of CAVD [8]. Notably,

Klotho-/- mice develop calcific nodules at the hinge region of the fibrosa side of

the AoV (Fig. 18.1a, b), similar to human CAVD. In these mice, calcification occurs

independent of inflammation and cusp thickening, providing initial evidence for a

valve-intrinsic molecular mechanism for age-related calcification common in

elderly patients. Klotho-/- AoV have increased expression of osteogenic factors

Runx2 andOsteopontin, in addition to increased expression of chondrogenic factors
Sox9 and Col10a1, consistent with an osteochondrogenic-like mechanism of dis-

ease (Fig. 18.1e). Increased activation of pSmad1/5/8 also precedes calcification in

the Klotho-/- mice, and inhibition of BMP signaling represents an attractive new

therapeutic approach for CAVD.
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Fig. 18.1 Valvulogenic, chondrogenic, and osteogenic programs are induced in mouse models of

calcific (Klotho-/-) and myxomatous (Oim/Oim) valve disease. Klotho-/- mice (b) exhibit AoV
nodular calcification (arrows), as compared to wild-type littermate controls (a) at 6 weeks of age,
as detected by von Kossa staining. Oim/Oim AoV cusps (d) exhibit distal thickening and increased
proteoglycan deposition (aqua, arrows), compared to WT littermates (c) at 9 months of age as

observed by Movat’s pentachrome staining. Expression of genes involved in valvulogenesis,

chondrogenesis, and osteogenesis was examined by qRT-PCR of RNA isolated from Klotho-/-
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18.3.2 Myxomatous Valve Disease

The most common cause of MVP is myxomatous valve disease, which is defined by

pathological thickening of the valve leaflets, primarily due to accumulation of

proteoglycans [4]. This is accompanied by alterations in the distribution of ECM

components, such as disrupted collagen fiber organization and elastic fiber frag-

mentation. The pathogenesis of MVP is not well understood; however, MVP is

often linked to connective tissue disorders or specific mutations in ECM genes,

supporting the concept that defects originating during valve development could

underlie adult disease.

While myxomatous disease most commonly affects the mitral valves, myxoid

AoV have been reported. Osteogenesis imperfecta murine (Oim) have a spontane-
ous mutation in the Col1a2 gene and display bone fragility characteristic of human

osteogenesis imperfecta (OI) [13]. Interestingly, humans with OI or Col1a2
mutations have a predisposition to AoV disease [14]. Likewise, the AoV of Oim/
Oim mice exhibit distal cusp thickening and increased proteoglycan accumulation,

characteristic of myxomatous valve disease (Fig. 18.1c, d) [8]. Furthermore, the

Oim/Oim mice have increased expression of valve progenitor markers Twist1,
Col2a1, Mmp13, Sox9, and Hapln1, in addition to increased Col10a1 and Asporin
expression (Fig. 18.1e). These changes in gene expression are consistent with

increased proteoglycan accumulation and cartilage gene induction, which are key

features of myxomatous disease.

18.4 Signaling Pathways in Heart Valve Development
and Disease

Similar to heart valve and bone development, studies of human explanted valves

implicate BMP, Notch, and Wnt signaling pathways in the progression of CAVD.

Thus, heart valve disease shares signaling networks with valve and bone develop-

mental pathways. Together, these studies demonstrate that activation of both BMP

and Wnt signaling correlates with progression of CAVD [15, 16]. On the other

hand, loss-of-function mutations in NOTCH1 are associated with bicuspid aortic

valve (BAV) and CAVD, in humans and mice, suggesting an inhibitory function for

the Notch pathway in valve calcification [17]. Human genetic conditions including

Marfan syndrome and Loeys-Dietz syndrome lead to myxomatous mitral valve

disease and are associated with increased TGF-β signaling [18, 19]. However, the

specific mechanisms by which these different pathways contribute to the develop-

ment and progression of heart valve disease remain unknown.

�

Fig. 18.1 (continued) and Oim/Oim mice aortic valves relative to wild-type littermate controls

(e). Normalized values are shown as average fold changes compared to wild-type group set at 1.0.

* is p-value �0.05 calculated by paired student’s t-test
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18.5 Future Directions and Clinical Implications

Klotho-/- and Oim/Oim mice are novel mouse models of CAVD and myxomatous

valve disease that will be useful for determination of the underlying pathogenic

mechanisms driving valve disease. Understanding how signaling networks contrib-

ute to disease will likely have a significant impact on clinical outcomes, since

knowledge gained from these studies will allow for the development and design of

new drugs/treatments for patients with valve disease.
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