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1 Introduction

Recent high precision cosmological observations [1–4] have set important constraints on

models describing the early universe. The coming measures (see e.g. [5]) could even put

a quantum gravity theory such as string theory under pressure [6]. It is thus a timely

moment to address crucial pending questions of string cosmology, among which finding

a metastable de Sitter vacuum. Our present accelerating universe is well described as a

four-dimensional de Sitter space-time, and without a proposal for an evolution mechanism,

this shape should remain when going back to the early times. For instance, the end-point

or vacuum of inflation scenarios, where reheating occurs, is commonly considered to be

a de Sitter vacuum (see also [7]). In supergravity, many inflationary models have been

proposed recently and been compared to the new experimental data, but few of them are

realised completely within string theory (see e.g. [8]). This prevents from connecting them

to U.V. and quantum gravity aspects. To achieve this, one should be able to embed these

scenarios in a string compactification, which requires to know the de Sitter vacuum, the

internal compact geometry, etc. in full detail. In addition, this would allow to verify that

all aspects of the compactification, e.g. moduli stabilisation, are under control and do not

spoil the inflation mechanism. With these motivations in mind, in the present paper we

focus on the question of finding de Sitter vacua.

Several ideas have been proposed for how to construct de Sitter within string theory. A

problem with these proposals is often the use of features that lack a full understanding in ten
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dimensions. A famous idea to achieve de Sitter is given in [9] where anti-branes are used

to uplift the value of the cosmological constant. Attempts to construct the underlying,

backreacted, ten-dimensional solution supporting this scenario have encountered several

challenges, starting with [10]. While this has been an active subject for years, the final

outcome of [9] remains unclear, see e.g. [11]. Other remarks can be found e.g. in [12, 13].

While further proposals have been made to obtain a positive cosmological constant at

the four-dimensional level (in particular by the use of non-geometric fluxes), we prefer here

to remain in the simpler and somewhat safer (in terms of control on the compactification)

setting of ten-dimensional classical de Sitter vacua. We consider standard ten-dimensional

type II supergravities without α′ corrections, supplemented by the Ramond-Ramond (RR)

sources Dp-branes and orientifold Op-planes; no Neveu-Schwarz source such as NS5-branes

or Kaluza-Klein (KK) monopoles are included. Relevant to us are vacua where the space-

time is the warped product of a four-dimensional de Sitter space-time and a six-dimensional

compact internal manifoldM: with a controlled value of the dilaton, this would be a valid

classical background of string theory.1 This ten-dimensional setting could be the only one

where a classical de Sitter string background exists: indeed, such vacua have been ruled-out

recently among supersymmetric heterotic string backgrounds [14–17].

In our context, no-go theorems have also been established. To start with, standard

ones for classical de Sitter vacua with compact internal geometries [18–21] are circumvented

by requiring orientifolds. This is however far from being enough, and many refined no-go

theorems have been worked-out [22–33], most of them studying the corresponding four-

dimensional scalar potential inspired by [34], sometimes considering as well constraints on

the slow-roll parameter for inflation or on the vacuum metastability. Note that the four-

dimensional approach always has the drawback of considering smeared sources, and thus

neglecting (or averaging) their backreaction (see e.g. [35, 36] on this topic); the effectiveness

of these models is also often debatable. In the present paper, we avoid such questions by

working purely in ten dimensions and keeping the dependence on the warp factor and

dilaton explicitly during our computation. From this whole literature, an outcome is that

very few classical de Sitter vacua have been found, and none of them is metastable [24–

26, 28, 37, 38]. Further work was dedicated directly to the stability problem [39–42], but

no systematic explanation has been found for the tachyons appearing.

In this paper, we work in ten dimensions and focus on the existence of classical de

Sitter vacua of type II supergravities with Dp and Op sources, without ever considering

the four-dimensional stability. We aim to provide general statements that would clarify

the situation and refine the boundaries of the classical de Sitter landscape. To that end,

we consider sources of one fixed dimension at a time, 3 ≤ p ≤ 8, which are also parallel,

i.e. not intersecting, or equivalently, having the same transverse subspace; see section 2 for

the detailed specifications on the sources and the internal geometry. In the particular case of

a parallelizable internal manifoldM, having parallel sources would lead, after dimensional

reduction, to a four-dimensional N = 4 gauged supergravity. There, to the best of our

1With some abuse of common terminology, a vacuum refers here to a solution of the equations of motion

and Bianchi identities.
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knowledge, only de Sitter solutions have been found with non-compact gaugings or gaugings

with angles, which are unlikely to have a compactification origin. In addition, all known ten-

dimensional (unstable) classical de Sitter vacua mentioned above have intersecting sources.

A natural guess is then that a no-go theorem exists for parallel sources: the outcome of

this work is very close to such a result. We first prove the following

There is no de Sitter vacuum for p = 3, 7, or 8. (1.1)

The p = 3 result was already derived in [35], whose methods act as an inspiration for

the generalization to other p. Note that for p = 3, sources are always parallel, making

this result very general. In the other cases, we first reproduce in section 3 some results

previously obtained in four dimensions. More importantly, we then derive the following

There is no de Sitter vacuum for p = 4, 5, or 6, (1.2)

if some curvature terms are ≤ −bound or ≥ 0.

These curvature terms are related to curvatures of internal subspaces. As discussed in

section 4.2, their value is constrained to a tight range, summarized in (4.36), leaving even-

tually very little room for de Sitter vacua, with parallel sources. These terms also vanish

in many examples of Minkowski vacua. Finally, as a side result, we prove two more no-go

theorems (4.6) and (4.9) in the smeared limit, building on the interesting expression (4.5).

These results are derived thanks to appropriate combinations of ten-dimensional equa-

tions of motion and flux Bianchi identities, that isolate the unwarped four-dimensional

curvature R̃4. For a de Sitter vacuum, we require the latter to be positive. On this aspect,

the main result of the paper is the expression (4.21) schematically given by

R̃4 = − (BPS-like)2 − (flux)2 − curvature terms + total derivative (1.3)

It is inspired by the p = 3 case of [35] and generalizes [43]. This expression makes the sign

contributions to R̃4 apparent, and some of the above no-go theorems for p = 3, 4, 5, 6 are

then easy to obtain; in particular, the curvature terms (and flux terms) vanish for p = 3,

leading to (4.32). For p = 7, 8, we followed [8] to derive the appropriate expressions (3.6)

and (3.7). What is denoted “BPS-like” in (1.3) are interesting combinations: setting them

to zero would fix the sourced RR flux Fk (with k = 8− p), and relate the flux Fk−2 to the

H-flux, or at least components thereof. It generalizes the conditions obtained in [43] for

p = 3, in particular the imaginary self-dual condition. This will be the topic of a companion

paper [44], where we focus on Minkowski vacua.

The paper is organised as follows. Conventions on ten-dimensional type II supergravi-

ties are given in the self-contained appendix A, and those are applied to our compactifica-

tion setting as detailed in section 2. Then, we derive the no-go theorems for p = 7, 8 and

further results for other p values in section 3. Different equation manipulations are then

presented in section 4 to conclude and discuss the no-go theorems for p = 3, 4, 5, 6. We

end with an outlook in section 5. Useful formulas and details of computations are given in

appendix C. Appendix B discusses extra conditions obtained by minimizing the energy of

a Dp-brane.
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2 Compactification setting

We consider ten-dimensional type IIA and IIB supergravities and use the conventions given

in appendix A. We allow for Ramond-Ramond (RR) sources, namely Dp-branes and orien-

tifold Op-planes, but for no further ingredient. In particular, we do not include NS5-branes

or KK-monopoles, one problem with those being the Bianchi identity tadpole cancelation.

In this section, we specify to a compactification setting and detail our notations. The ten-

dimensional space-time is a warped product of a four-dimensional maximally symmetric

space-time (anti-de Sitter, Minkowski, de Sitter) along directions dxµ and a six-dimensional

(internal) compact manifold M along directions dym. The metric is written accordingly

ds2 = e2A(y)g̃µν(x)dxµdxν + gmn(y)dymdyn . (2.1)

The warp factor is eA. A tilde denotes quantities without the warp factor, i.e. where it has

been explicitly extracted; we also dub such quantities as “smeared”. Looking for a vacuum,

we will require to preserve Lorentz invariance in four dimensions. A first consequence is

that the dilaton is restricted to depend only on internal coordinates. Further, the fluxes

F0, F1, F2, F3, H have to be purely internal (in components and coordinate dependence),

and F 10
4 and F 10

5 can have four-dimensional components in a constrained manner. With

the unwarped, and warped, four-dimensional volume form denoted ṽol4 =
√
|g̃4|d4x, and

vol4, respectively, one can have

F 10
4 = F 4

4 + F4 with F 4
4 = ṽol4 f4 , F 10

5 = F 4
5 + F5 with F 4

5 = ṽol4 ∧ f5 , (2.2)

with an internal scalar f4, and internal forms F4, F5, f5. We introduce as a notation

an internal 6-form F6 such that f4 = e4A ∗6 F6; because F 4
5 = − ∗10 F5, one obtains

f5 = −e4A ∗6 F5, so

F 4
4 = vol4 ∧ ∗6F6 , F

4
5 = −vol4 ∧ ∗6F5 . (2.3)

Since | ∗6 F6|2 = |F6|2, we deduce |F 10
4 |2 = |F4|2 − |F6|2, and |F5|2 = −|F 4

5 |2 = | ∗6 F5|2.

We now impose few restrictions on the sources Dp and Op and the related internal

geometry. Here are first some properties of the sources:

1. Because of four-dimensional Lorentz invariance, the sources have to be space-time

filling, meaning that their world-volume spans the whole four-dimensional space-time,

and possibly wraps some internal subspace; this restricts p ≥ 3, and we consider p ≤ 8.

2. We consider for each source that −ı∗[b] + F = 0 (see appendix A for more details).

We also consider them to be BPS, giving µp = Tp.

3. We restrict ourselves to sources of only one fixed size p.

Further, we need in this paper (for p = 4, 5, 6) to formalise the common idea of the sub-

space of M wrapped by a source, and the one transverse to it. Let us start by presenting

our formal characterization of these subspaces for one source, and then give examples of

manifolds M captured by our description. Locally, one can always reach the orthonormal

basis (in which we will work), where the unwarped (smeared) internal metric is written
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ds̃2 = δabẽ
aẽb, with the orthonormal basis one-forms ẽa = ẽamdym. We restrict ourselves

to a setting where the set {ẽa} can be split globally into two sets, one of (p− 3) “parallel”

one-forms {ẽa||} and one of (9− p) “transverse” one-forms {ẽa⊥}. This global requirement

translates mathematically as the structure group of the cotangent (frame) bundle being

reduced from O(6) to O(p−3)×O(9−p), or a subgroup thereof. This does not imply that

each ẽa|| or ẽa⊥ is globally defined, only the whole sets are: for instance, parallel one-forms

may still get exchanged among themselves, but not with transverse ones. We are thus not

restricting to parallelizable manifolds; those, such as twisted tori, are only one example

captured by our setting, since their cotangent bundle structure group is the identity. An-

other example is the direct product of two manifolds, not necessarily parallelizable, e.g. the

product of a two- and a four-sphere: the metric can then be taken to be block diagonal

in some coordinate basis, and this block structure is globally preserved in the orthonormal

basis. More generally, any fibered manifold, or fiber bundle (with metric), fits in our set-

ting. In a fiber bundle, horizontal one-forms (on the base) are well-defined, but one needs

a connection to define vertical ones; this is provided by the metric, which defines vertical

one-forms as being orthogonal to horizontal ones. By definition, the metric is then block

diagonal in this (horizontal/vertical) one-form basis, where one-forms are globally defined.

A standard example is the fibration of a circle (along y) over a base B, where the metric is

given by ds2
B+ gF (dy+A)2, with a base one-form A that makes dy+A globally defined in

M. Natural generalizations of this formula exist for principle fiber bundles. So for a fibered

manifold, the metric is globally block diagonal in some one-form basis, and this structure

can be brought to the orthonormal basis, allowing to define globally the two sets {ẽa||} and

{ẽa⊥}; a fibered manifold is thus captured by our setting. While the physically relevant six-

dimensional internal manifold is the one just discussed, namely the underlying unwarped

or smeared one, we now deform it by introducing the warp factor, with ea = e±Aẽa. More

precisely, for each source, a 10d metric can now be written from (2.1), as

ds2
10 = e2A(ds̃2

4 + ds̃2
6||) + e−2Ads̃2

6⊥ , where ds̃2
6|| = δabẽ

a|| ẽb|| , ds̃2
6⊥ = δabẽ

a⊥ ẽb⊥ . (2.4)

The warp factor is restricted to depend only on transverse directions, in the following

sense: ∀ a|| , ema||∂mA = ∂a||A = e−A∂ã||A = 0. With some abuse, we will call collectively

the sets of parallel or transverse directions as the parallel or transverse subspaces, and

define naturally their “volume forms”: vol|| = εa1||...a(p−3)||e
a1|| ∧ . . .∧ ea(p−3)|| , and similarly

for vol⊥. These volume forms are globally defined by construction. With our ordering

conventions, one has

vol4 ∧ vol|| ∧ vol⊥ = vol10 = d10x
√
|g10| , (2.5)

vol|| ∧ vol⊥ = vol6 = d6y
√
|g6| , ∗6vol⊥ = (−1)9−pvol|| , ∗6vol|| = vol⊥ .

Let us summarize the above geometric considerations and relate this to the sources:

4. For each source, we assume the existence of a global split of {ẽa} into {ẽa||} and

{ẽa⊥}, i.e. we require the structure group of the cotangent bundle to be a subgroup

of O(p − 3) × O(9 − p); this includes e.g. fibered manifolds. The 10d metric is then
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given by (2.4), and one defines accordingly the (global) volume forms vol|| and vol⊥
satisfying the above properties. Finally, each source is considered to wrap its parallel

subspace, meaning that its world-volume form is given by

dp+1ξ
√
|ı∗[g10]| = ı∗[vol4 ∧ vol||] . (2.6)

We finally specify two more restrictions on the sources and related geometry.

5. We consider all sources to be parallel, meaning having the same transverse directions.

Note that for p = 3, this is not an assumption. As a consequence, the metric (2.4)

specified for each source holds in general, using only one warp factor. We also recall

that the coordinate dependence of ds̃2
6||, ds̃2

6⊥ has so far been left generic.

6. Even though most of our computations are done locally (with equations of motion), we

will need in the very end to perform an integral. We will then require the transverse

unwarped subspace to be a compact manifold without boundary.2 If for instance

M is a fibered manifold and the transverse subspace is the base, one can easily find

examples where this property holds.

Thanks to these properties, the Bianchi identities (BI) for F 10
4 and F 10

5 impose f4 and

f5 to be closed; then, the RR BI can be restricted to the internal forms Fk only, towards

dFk −H ∧ Fk−2 = −εp 2κ2
10 Tp

∑
p−sources

cp δ
⊥
9−p = εp

T10

p+ 1
vol⊥ , (2.7)

for 0 ≤ k = 8− p ≤ 5 , εp = (−1)p+1(−1)[
9−p
2 ] ,

where F−1 = F−2 = 0, and one uses (A.12) for T10. Given the right-hand side of (2.7),

we will need to project forms on the transverse directions. To that end, we introduce the

following notations: for a form G, we denote its projection on the transverse directions

with G|⊥ or (G)|⊥, i.e. the form obtained by keeping only its components entirely along

those directions. In addition, if G is a (9−p)-form, (G)⊥ denotes the coefficient of this form

on the transverse world-volume, i.e. G|⊥ = (G)⊥vol⊥; one has equivalently (G)⊥ = ∗⊥G|⊥.

We deduce that the BI (2.7) gives after projection

(dFk)⊥ − (H ∧ Fk−2)⊥ = εp
T10

p+ 1
. (2.8)

2The (naive) singularities at the sources loci, and the cut-off at the string scale required to stay in a

valid supergravity regime, may raise some doubt on the use of this “no boundary” assumption, especially

when getting close to the sources (see also [30]). One should first note that this assumption is made on

an unwarped space, described by g̃mn, which intrinsically does not have any source-related singularity: if

any, those are present in the warp factor, outside of g̃mn. Secondly, when this assumption is used here to

integrate a total derivative, the integrand is not a gauge potential (as e.g. in [30]) but a flux and derivatives

of warp factor. This integration is very close to the standard one of the Laplacian of the warp factor in the

flux Bianchi identity, which always gives zero. We thus believe that the presence of sources does not affect

here our use of this assumption.
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Note that (H ∧ Fk−2)|⊥ = H|⊥ ∧ Fk−2|⊥. Using that A ∧ ∗B = B ∧ ∗A for forms A and B

of same degree, we can show that ∗⊥H|⊥ ∧ ∗⊥Fk−2|⊥ = Fk−2|⊥ ∧ ∗2⊥H|⊥ = H|⊥ ∧ Fk−2|⊥.

From this we conclude, for any sign ε∣∣∣∗⊥H|⊥ + εeφFk−2|⊥
∣∣∣2 = |H|⊥|2 + e2φ|Fk−2|⊥|2 + 2εeφ(H ∧ Fk−2)⊥ , (2.9)

where the definition of the square is given below (A.5). This formula and reasoning will

be useful. For completeness, we give the fluxes’ equations of motion (e.o.m.) expressed in

terms of internal quantities, considering no source contribution to the b-field e.o.m.

e−4Ad(e4A ∗6 Fq) +H ∧ ∗6Fq+2 = 0 (1 ≤ q ≤ 4) , (2.10)

e−4Ad(e4A−2φ ∗6 H)−
∑

0≤q≤4

Fq ∧ ∗6Fq+2 = 0 . (2.11)

We turn to the dilaton e.o.m. and Einstein equation. We denote R10 = gMNRMN , and

R4 = gMNRMN=µν , R6 = gMNRMN=mn = R10 −R4 , (∇∂φ)4 = gMN=µν∇M∂Nφ .
(2.12)

The dilaton e.o.m., the ten-dimensional Einstein trace, and the four-dimensional one,3 are

2R10 + eφ
T10

p+ 1
− |H|2 + 8(∆φ− |∂φ|2) = 0 , (2.13)

4R10 +
eφ

2
T10 − |H|2 −

e2φ

2

6∑
q=0

(5− q)|Fq|2 − 20|∂φ|2 + 18∆φ = 0 , (2.14)

R4 − 2R10 −
2eφ

p+ 1
T10 + |H|2 + e2φ

6∑
q=0

|Fq|2 + 2(∇∂φ)4 + 8|∂φ|2 − 8∆φ = 0 , (2.15)

where one should only consider even/odd RR fluxes in IIA/IIB, and we used the above prop-

erties (we only used Point 1 through 4 for the sources), giving in particular gMNTMN=µν =

4T10/(p+ 1). These scalar equations will be combined to express R4 in terms of a limited

number of ingredients.

3 No de Sitter vacuum for O7, O8, and more no-go theorems

Given the context presented in section 2, we prove here that there cannot be any de Sitter

vacuum for p = 7, 8 sources, and get constraints for the other p, that can be viewed as no-

go theorems. We derive these results in ten dimensions; for p = 7, 8, this is done without

3Let us detail the indices counting for F 10
5 : the four-dimensional trace selects the F 4

5 piece giving

gµν

2 · 4!
F 4
5 µPQRSF

4 PQRS
5 ν =

gµν

2 · 3!
F 4
5 µπρτsF

4 πρτs
5 ν

=
2

4!
F 4
5 µπρτsF

4 µπρτs
5 =

2

5 · 4!
F 4
5 MPQRSF

4 MPQRS
5 = 2|F 4

5 |2 .

– 7 –
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smearing. This reproduces known results obtained in [26, 29] from a four-dimensional

approach, that uses conditions for a vacuum but also for its stability.

We proceed as in [8]: we first use the dilaton e.o.m. to eliminate T10 in respectively

the ten- and four-dimensional traces; we get (with even/odd RR fluxes in IIA/IIB)

(p−3)
(
−2R10+|H|2+8|∂φ|2−8∆φ

)
+2|H|2−e2φ

6∑
q=0

(5−q)|Fq|2−2e2φ∆e−2φ = 0 (3.1)

3R4 = −2R6 + |H|2 − e2φ
6∑
q=0

|Fq|2 − 2(∇∂φ)4 + 8|∂φ|2 − 8∆φ . (3.2)

with −2|∂φ|2 + ∆φ = −1
2e

2φ∆e−2φ. We now multiply (3.2) by (p− 3), insert (3.1) and get

(p− 3)R4 = −2|H|2 + e2φ
6∑
q=0

(8− q − p)|Fq|2 + 2e2φ∆e−2φ − 2(p− 3)(∇∂φ)4 . (3.3)

Now, the warp factor and dilaton terms need to be computed: this is done in appendix C

using the metric (2.1). As mentioned there, we pick in this paper the following standard

dilaton value, that provides natural simplifications

eφ = gse
A(p−3) , (3.4)

where gs is a constant. This value might be derived for p = 7, 8 from (3.3), but we simply

impose it here for all p. Note that this prevents us from capturing the non-perturbative

F-theory solutions. As shown with (C.6), this value allows to obtain

(p− 3)R4 − 2e2φ∆e−2φ + 2(p− 3)(∇∂φ)4 = (p− 3)e−2AR̃4 , (3.5)

where R̃4 is the four-dimensional Ricci scalar built from g̃µν . We conclude in IIA and IIB

(p− 3)

e2A
R̃4 =− 2|H|2+e2φ

(
(8−p)|F0|2+(6−p)|F2|2+(4−p)|F4|2+(2−p)|F6|2

)
, (3.6)

(p− 3)

e2A
R̃4 =− 2|H|2 + e2φ

(
(7− p)|F1|2 + (5− p)|F3|2 + (3− p)|F5|2

)
. (3.7)

These equations have an interesting interpretation for p 6= 3: if the Dp and Op source

magnetically the flux Fk, the coefficient in front of Fk precisely vanishes [8]; R̃4 is then

only given by the non-sourced fluxes.

We now study the possibility of getting a de Sitter vacuum, i.e. R̃4 > 0. From (3.6)

and (3.7), the result is clear for p = 7, 8:

There is no de Sitter vacuum for p = 7 or p = 8. (3.8)

Let us make a comment: we only used combinations of e.o.m. which required Points 1, 2

and 3, from section 2, on the sources. In particular, we did not require Point 5 on the

assumption of parallel sources. So this result on p = 7, 8 could be extended to intersect-

ing sources.

We now turn to the sources with 3 ≤ p ≤ 6 in the smeared limit, in which the

dilaton and warp factor are taken constant. We denote collectively (φ) the dilaton terms

to be neglected.
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• p = 6: equating (3.3) with (3.2), we get (as in [45])

9

2
R4 = 3

(
e2φ
(
|F0|2 − |F4|2 − 2|F6|2

)
− |H|2

)
+ (φ) (3.9)

= −2R6 − e2φ
(
|F2|2 + 2|F4|2 + 3|F6|2

)
+ (φ) .

For de Sitter, one needs F0 6= 0 and R6 < 0 of sufficient magnitude to overtake the

remaining possible non-zero terms, as pointed-out already in [23].

• p = 5: equating three halves of (3.3) with (3.2), we get

4R4 = 4
(
e2φ(|F1|2 − |F5|2)− |H|2

)
+(φ) = −2R6−e2φ(|F3|2+2|F5|2)+(φ) . (3.10)

For de Sitter, one needs F1 6= 0 and R6 < 0, of sufficient magnitude.

• p = 4: equating three times (3.3) with (3.2), we get (as in [8])

7

2
R4 = 7

(
e2φ(2|F0|2 + |F2|2 − |F6|2)− |H|2

)
+ (φ) (3.11)

= −2R6 + e2φ(|F0|2 − |F4|2 − 2|F6|2) + (φ) .

For de Sitter, one needs F0 6= 0, or F2 6= 0 and R6 < 0, all of sufficient magnitude.

• p = 3: (3.3) and (3.2) give (using (3.4) for the dilaton)

3R4 = −2R6 + e2φ(|F1|2 − |F5|2) , 2e2φ|F1|2 = |H|2 − e2φ|F3|2 . (3.12)

For de Sitter, one needs R6 < 0, or F1 6= 0 and H 6= 0, all of sufficient magnitude.

These are limited results, valid in the smeared limit. In the next section we will make use

of the BI which will allow us to put further restrictions on the possibility of de Sitter vacua.

4 No de Sitter vacuum for O3, no-go theorems for O4, O5, O6

4.1 First manipulations

In section 3, we combined the e.o.m. to eliminate T10. Here we will eliminate R10 (or R6),

and make a further step by using the BI for T10. Finally, we will use another equation, the

trace of the Einstein equation along the internal parallel directions, to rewrite the result

more conveniently: this will bring us to the no-go theorems.

We start by combining the dilaton e.o.m. and the four-dimensional trace to get

R4 = eφ
T10

p+ 1
− e2φ

6∑
q=0

|Fq|2 − 2(∇∂φ)4 , (4.1)

with even/odd RR fluxes in IIA/IIB. Note that in smeared limit where the dilaton and

warp factor are constant, one concludes that de Sitter needs T10 > 0 [20]; this requirement
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not only means having Op, but also that they contribute more than Dp. We now combine

the dilaton e.o.m. with the ten-dimensional trace and get

(p− 3)eφ
T10

p+ 1
+ 2|H|2 − e2φ

6∑
q=0

(5− q)|Fq|2 − 8|∂φ|2 + 4∆φ = 0 . (4.2)

Equation (4.1) is multiplied by −(p+ 1), and added to (4.2), giving

R4+2(∇∂φ)4 = − 1

p+ 1

(
−8|∂φ|2+4∆φ−4eφ

T10

p+ 1
+2|H|2+e2φ

6∑
q=0

(p+q−4)|Fq|2
)
. (4.3)

From now on, we use notations of (2.7), where the magnetically sourced flux is Fk with

0 ≤ k = 8 − p ≤ 5, and F−1 = F−2 = F7 = F8 = F9 = F10 = F11 = 0. Then, (4.3) gets

rewritten as

R4 + 2(∇∂φ)4 = − 2

p+ 1

(
− 4|∂φ|2 + 2∆φ− 2eφ

T10

p+ 1
+ |H|2 (4.4)

+ e2φ(|Fk−2|2 + 2|Fk|2 + 3|Fk+2|2 + 4|Fk+4|2 + 5|Fk+6|2)

)
.

We now use the BI projected on transverse directions (2.8) to replace T10. With (2.9),

we get

R4 + 2(∇∂φ)4 = − 2

p+ 1

(
− 4|∂φ|2 + 2∆φ− 2εpe

φ(dFk)⊥ +
∣∣∣∗⊥H|⊥ + εpe

φFk−2|⊥
∣∣∣2

+ |H|2 − |H|⊥|2 + e2φ(|Fk−2|2 − |Fk−2|⊥|2) (4.5)

+ e2φ(2|Fk|2 + 3|Fk+2|2 + 4|Fk+4|2 + 5|Fk+6|2)

)
.

Let us make a few comments. In the smeared limit, the only term in the right-hand side

with indefinite sign is (dFk)⊥. There are thus two interesting subcases to mention. First,

we get

There is no (smeared) de Sitter vacuum if in the smeared limit (dFk)⊥ → 0 . (4.6)

For instance, in the Minkowski vacua of [43, 46], Fk is only given by a ∂A which vanishes

in the smeared limit. Deformations of the vacuum preserving this property will then

not give de Sitter. Second, as derived in appendix B, Minkowski vacua with calibrated

sources satisfy

Fk = (−1)pεpe
−4A ∗6 d

(
e4A−φvol||

)
. (4.7)

This calibration condition, related to the source energy minimization, is automatically

satisfied in Minkowski supersymmetric vacua [47]. From (4.7), one can show∫
M

2eφεpf (dFk)⊥vol6 =

∫
M

2e2φf |Fk|2 vol6 , (4.8)
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with f = e4A−2φ. Upon integration, the (dFk)⊥ term in (4.5) is then compensated by the

|Fk|2 one, which leads us to conclude on de Sitter in the smeared limit

There is no (smeared) de Sitter vacuum if sources are Minkowski-calibrated, (4.9)

i.e. if (4.7) holds.

For instance, deforming a supersymmetric Minkowski vacuum while preserving (4.7), by

e.g. adding more fluxes or changing part of the geometry, will not give de Sitter.

To go further, we need to characterise (dFk)⊥. To that end, we use the orthonormal

basis: the internal metric is expressed with vielbeins as gmn = eame
b
nδab and we denote

∂a = ema∂m, e
a = eamdym. In the following we will refer to the Latin indices starting with

a as flat indices. The “geometric flux” fabc is defined as

dea = −1

2
fabce

b ∧ ec ⇔ fabc = 2eam∂[be
m
c] = −2em[c∂b]e

a
m . (4.10)

In section 2, we further introduced the parallel and transverse flat indices, together with

the metric (2.4). We thus decompose Fk on its parallel or transverse (flat) components

Fk =
1

k!
F

(0)
k a1⊥...ak⊥

ea1⊥∧. . .∧eak⊥+
1

(k − 1)!
F

(1)
k a1||...ak⊥

ea1||∧ea2⊥∧. . .∧eak⊥+. . . , (4.11)

where terms with at least two parallel directions have been left out. By definition, F
(0)
k =

Fk|⊥; we also take for convenience F0 = F0|⊥ and F
(1)
0 = 0. One deduces

(dFk)|⊥ = (dF
(0)
k )|⊥ + (dF

(1)
k )|⊥ , (dF

(1)
k )|⊥ = (ι∂a||F

(1)
k ) ∧ (dea||)|⊥ , (4.12)

with ιV the contraction by a vector V , e.g. ι∂a||e
b|| = δ

b||
a|| , and (dea||)|⊥ = −1

2f
a||
b⊥c⊥e

b⊥ ∧
ec⊥ . Proceeding similarly to (2.9), we further have

∑
a||

∣∣∣∗⊥(dea||)|⊥ − εpeφ(ι∂a||F
(1)
k )
∣∣∣2 =

∑
a||

e2φ|(ι∂a||F
(1)
k )|2 +

∑
a||

|(dea||)|⊥|2 (4.13)

− 2εpe
φ((ι∂a||F

(1)
k ) ∧ (dea||)|⊥)⊥

with
∑
a||

e2φ|(ι∂a||F
(1)
k )|2 = e2φ|F (1)

k |
2 ,

∑
a||

|(dea||)|⊥|2 =
1

2
δbeδcfδadf

a||
b⊥c⊥f

d||
e⊥f⊥ .

We thus reconstruct interesting squares from (dFk)⊥ at the cost of introducing the geo-

metric contributions |(dea||)|⊥|2. Those actually appear in curvature terms, present in the

trace of the Einstein equation (A.15) or (A.16) along internal parallel flat directions. So

we turn to this trace, and denote R6|| the trace of the ten-dimensional Ricci tensor along
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internal parallel flat directions. We obtain

R6|| + 2(∇∂φ)6|| =
p− 3

4

(
R4 + 2(∇∂φ)4 + 2e2φ|F6|2

)
(4.14)

+
1

2

(
|H|2 − |H|⊥|2 + e2φ(|F2|2 − |F2|⊥|2 + |F4|2 − |F4|⊥|2

)
R6|| + 2(∇∂φ)6|| =

p− 3

4

(
R4 + 2(∇∂φ)4 + e2φ|F5|2

)
(4.15)

+
1

2

(
|H|2 − |H|⊥|2 + e2φ(|F1|2 − |F1|⊥|2 + |F3|2 − |F3|⊥|2

)
+

1

4
e2φ
(
|F5|2 − |F5|⊥|2 − | ∗6 F5|2 + |(∗6F5)|⊥|2

)
,

where we used the four-dimensional trace of the Einstein equation for terms in p− 3. The

above is valid for 0 ≤ k = 8− p ≤ 5; for p = 3 where all internal directions are transverse,

we take as a definition of the left-hand side that it vanishes. A generic rewriting of the

above is

2R6|| + 4(∇∂φ)6||−
p− 3

2
(R4 + 2(∇∂φ)4) = |H|2 − |H|⊥|2 + e2φ

(
|Fk−2|2 − |Fk−2|⊥|2

)
+ e2φ

(
|Fk|2 − |Fk|⊥|2 + |Fk+2|2 + (9− p)|Fk+4|2 (4.16)

+ 5|Fk+6|2 +
1

2
(|(∗6F5)|⊥|2 − |F5|⊥|2)

)
where the F5 terms should only be considered in IIB, we took the same conventions as

for (4.4), and used that F5|⊥ = 0 for p = 5, 7, F4|⊥ = 0 for p = 6, 8, F3|⊥ = 0 for p = 7,

F2|⊥ = 0 for p = 8. We now combine (4.16) with (4.5) to get

2R4 + 4(∇∂φ)4 = −
(
− 4|∂φ|2 + 2∆φ+

∣∣∣∗⊥H|⊥ + εpe
φFk−2|⊥

∣∣∣2 (4.17)

+ 2R6|| + 4(∇∂φ)6|| − 2εpe
φ(dFk)⊥ + e2φ

(
|Fk|2 + |Fk|⊥|2

)
+ e2φ

(
2|Fk+2|2 + (p− 5)|Fk+4|2 +

1

2
(|F5|⊥|2 − |(∗6F5)|⊥|2)

))
.

One can verify that the last line of (4.17) is always positive; we are now interested in the

second line. First, we determine in appendix C the expression for R6||, which combined to

the other warp factor and dilaton contributions gives

2R4 + 4(∇∂φ)4 − 4|∂φ|2 + 2∆φ+ 4(∇∂φ)6|| + 2R6|| (4.18)

= 2e−2AR̃4 + 2R|| + 2R⊥|| +
∑
a||

|(dea||)|⊥|2 + 2e6A∆̃⊥e
−4A − 2e10A|d̃e−4A|2 .

This is derived in (C.24) and (C.20), and the curvature terms R|| and R⊥|| are defined

in (C.13) and (C.14). We used, for simplicity, Point 6 on sources in section 2 requir-

ing the transverse (unwarped) subspace to be a compact manifold, without boundary.

Combining (4.18) with (dF
(1)
k )⊥ will simplify, given (4.13) and as initially motivated
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there. The remaining (dF
(0)
k )⊥ will combine interestingly with the warp factor terms,

and |Fk|⊥|2 = |F (0)
k |

2. To that end we introduce (G)⊥̃, an analogous coefficient to (G)⊥
(defined above (2.8)) on the smeared transverse subspace (i.e. for A = 0)

G|⊥ = (G)⊥̃ṽol⊥ , (G)⊥̃ = ∗̃⊥G|⊥ , (G)⊥̃ = (G)⊥e
A(p−9) . (4.19)

We then have ∆̃⊥e
−4A = ∗̃⊥d(∗̃⊥de−4A) =

(
d(∗̃⊥de−4A)

)
⊥̃, and eφ(dF

(0)
k )⊥ =

e6Ags(dF
(0)
k )⊥̃. We also make use of the rewriting (C.25) that gives

e2φ|F (0)
k |

2 = e2φ|g−1
s ∗̃⊥de−4A − εpF (0)

k |
2 + e10A|d̃e−4A|2 (4.20)

+ e−2A
(

d
(
e8A∗̃⊥de−4A − e8AεpgsF

(0)
k

))
⊥̃

− e6A
(

d
(
∗̃⊥de−4A − εpgsF (0)

k

))
⊥̃
.

Combining (4.17) with (4.12), (4.13), (4.18) and (4.20) finally leads to

2e−2AR̃4 = −
∣∣∣∗⊥H|⊥ + εpe

φFk−2|⊥
∣∣∣2 − 2e2φ

∣∣∣g−1
s ∗̃⊥de−4A − εpF (0)

k

∣∣∣2 (4.21)

−
∑
a||

∣∣∣∗⊥(dea||)|⊥ − εpeφ(ι∂a||F
(1)
k )
∣∣∣2 − 2R|| − 2R⊥||

− 2e−2A
(

d
(
e8A∗̃⊥de−4A − e8AεpgsF

(0)
k

))
⊥̃

− e2φ

(
|Fk|2 − |F

(0)
k |

2 − |F (1)
k |

2 + 2|Fk+2|2

+ (p− 5)|Fk+4|2 +
1

2
(|F5|⊥|2 − |(∗6F5)|⊥|2)

)
For clarity, we detail the last two lines of (4.21), i.e. the −(flux)2 contribution

p = 3 : −e2φ(fluxes) = 0 (4.22)

p = 4 : −e2φ(fluxes) = −2e2φ|F6|2 (4.23)

p = 5 : −e2φ(fluxes) = −e2φ

(
|F3|2 − |F (0)

3 |
2 − |F (1)

3 |
2 + 2|F5|2 −

1

2
|(∗6F5)|⊥|2

)
(4.24)

p = 6 : −e2φ(fluxes) = −e2φ
(
|F2|2 − |F (0)

2 |
2 − |F (1)

2 |
2 + 2|F4|2 + |F6|2

)
(4.25)

p = 7 : −e2φ(fluxes) = −2e2φ

(
|F3|2 + |F5|2 −

1

4
|(∗6F5)|⊥|2

)
(4.26)

p = 8 : −e2φ(fluxes) = −e2φ
(

2|F2|2 + 3|F4|2
)
. (4.27)

One has |Fk|2 − |F
(0)
k |

2 − |F (1)
k |

2 ≥ 0 and |F5|2 = | ∗6 F5|2 ≥ |(∗6F5)|⊥|2, so these two lines

always give a negative (semi-)definite contribution to R̃4.

We now integrate (4.21) (times e2A

2 ) over the six-dimensional underlying, unwarped or

smeared, manifold M̃, considered compact (without boundary). Concretely, this amounts
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to multiply the expression by the unwarped six-dimensional volume form ṽol6 and integrate.

Thanks to (2.5), this form is equal to ṽol||∧ ṽol⊥. Let us focus on the total derivative term:

for convenience, we denote the form under the derivative I8−p = e8A∗̃⊥de−4A−e8AεpgsF
(0)
k .

This (8− p)-form is along the transverse subspace. One has∫
M̃

ṽol6 (dI8−p)⊥̃ =

∫
M̃

ṽol|| ∧ (dI8−p) |⊥ =

∫
M̃

ṽol|| ∧ dI8−p = (−1)p
∫
M̃

dṽol|| ∧ I8−p

= (−1)p+1

∫
M̃
f̃a||b⊥a|| ẽ

b⊥ ∧ ṽol|| ∧ I8−p . (4.28)

Thanks again to Point 6 on the sources in section 2, i.e. the transverse (unwarped) subspace

is a compact manifold without boundary, one gets f̃a⊥d⊥a⊥ = −f̃a||d⊥a|| = 0 (see also

appendix C), so the above vanishes. In other words, the total derivative in (4.21) is

integrated to give zero,4 resulting in

R̃4

∫
M̃

ṽol6 = −
∫
M̃

ṽol6
e2A

2

( ∣∣∣∗⊥H|⊥ + εpe
φFk−2|⊥

∣∣∣2 + 2e2φ
∣∣∣g−1
s ∗̃⊥de−4A − εpF (0)

k

∣∣∣2
+
∑
a||

∣∣∣∗⊥(dea||)|⊥ − εpeφ(ι∂a||F
(1)
k )
∣∣∣2 + 2R|| + 2R⊥||

+ e2φ

(
|Fk|2 − |F

(0)
k |

2 − |F (1)
k |

2 + 2|Fk+2|2 (4.29)

+ (p− 5)|Fk+4|2 +
1

2
(|F5|⊥|2 − |(∗6F5)|⊥|2)

))
4.2 No-go theorems

From (4.29), we conclude straightforwardly on the no-go theorem

There is no de Sitter vacuum for p = 4, 5, or 6, if the curvature terms vanish (4.30)

or are positive, i.e. for R|| +R⊥|| ≥ 0.

We recall that R|| and R⊥|| are defined in (C.13) and (C.14). This no-go theorem (4.30) is

actually valid for all 3 ≤ p ≤ 8, as is (4.29). But we proved the complete absence of de

Sitter vacuum for p = 7, 8 in (3.8), while for p = 3, since all directions are transverse, one

has by definition R|| = R⊥|| = 0. This leads us to

There is no de Sitter vacuum for p = 3. (4.31)

This result was already obtained in [35]. In type IIB, the R̃4 expression (4.21) has been

obtained combining (4.5) with (4.15), with various rewritings. As indicated below (4.15),

4Given Point 6 on the sources in section 2, and that ṽol⊥ is globally defined, one may also integrate

directly over the unwarped transverse subspace. Physically, it is reasonable to assume that I8−p is globally

defined, since it is not made of e.g. a gauge potential but rather a flux and derivative of the warp factor;

the total derivative would then be integrated to give zero. However, one may worry about the dependence

of the fields on internal non-transverse directions, also in the other terms of (4.21). So we rather integrate

over M̃.
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that equation is however completely vanishing for p = 3, so one can verify that (4.21)

and (4.5) are then identical, and boil down to

p = 3 : 2e−2AR̃4 =−
∣∣∣∗6H + ε3e

φF3

∣∣∣2 − 2
∣∣∗̃6de−4A − ε3gsF5

∣∣2 (4.32)

− 2e−2A
(
d
(
e8A∗̃6de−4A − e8Aε3gsF5

))
⊥̃ .

Integrating the above makes (4.31) even more apparent.

Before giving more no-go theorems, let us pause and comment on R|| and R⊥|| for

p = 4, 5, 6. These two quantities rather tend to be negative, so the no-go theorem (4.30)

would apply for them vanishing. As an example, in all known supersymmetric Minkowski

vacua on twisted tori (see [46]), they do vanish. R|| encodes the curvature of the wrapped

subspace, which vanishes in the case of a flat torus. Also for p = 4, where there is only

one internal parallel direction, R|| = 0. R⊥|| is in part encoding through fa⊥b||c|| the

fibration of the transverse subspace over the parallel base subspace, which is an unusual

configuration. If the sources rather wrap a fiber, and the transverse subspace is a base, one

can consider ∂a||e
b⊥
m = 0, implying fa⊥b||c|| = 0, making part of R⊥|| vanishing. There are

more instances where fa⊥b||c|| = 0: for p = 4, that has only one parallel direction, also for

dṽol⊥ = 0, or on group manifolds where the f̃abc are constant; for the latter, the orientifold

projection sets f̃a⊥b||c|| = 0.5 This vanishing can also be viewed as the “T-dual” condition

to Ha||b||c|| = 0, required to avoid the Freed-Witten anomaly (see e.g. [48] and references

therein), and may then be imposed.

We now turn to another important constraint on these curvatures terms for de Sitter

vacua. (4.16) imposes

2R6|| + 4(∇∂φ)6|| −
p− 3

2
(R4 + 2(∇∂φ)4) ≥ 0 . (4.33)

From results of appendix C, this quantity is found equal to 2R6|||(∂A=0)− p−3
2 e−2AR̃4. We

deduce the following requirement for a de Sitter vacuum when p > 3

2R6|||(∂A=0) = 2R|| + 2R⊥|| +
1

2
δchδdjδabf

a||
c⊥j⊥f

b||
h⊥d⊥ > 0 , (4.34)

where we recall that
∑

a||
|(dea||)|⊥|2 = 1

2δ
chδdjδabf

a||
c⊥j⊥f

b||
h⊥d⊥ . In other words, we

deduce the no-go theorem

There is no de Sitter vacuum for p = 4, 5, or 6, if R|| +R⊥|| < −
1

2

∑
a||

|(dea||)|⊥|2. (4.35)

Note that this holds point wise. Upon integration, we can combine the requirement (4.34)

with the one read from (4.29), to conclude the following

There is no de Sitter vacuum for p = 4, 5, or 6, if the inequalities (4.36)

− 1

2

∫
M̃

ṽol6 e
2A
∑
a||

|(dea||)|⊥|2 <

∫
M̃

ṽol6 e
2A
(
R|| +R⊥||

)
< 0 are not satisfied.

5Generally in this paper, the orientifold projection is not helping since most objects are a priori functions

and not constant, and are thus only constrained to be even or odd.
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This narrow window which would allow de Sitter can easily be checked on concrete exam-

ples.6 The requirement fa||b⊥c⊥ 6= 0 is particularly interesting.

We end this section with a remark on vacua T-dual to a vacuum with O3. In four

dimensions, the scalar potential of a gauged supergravity is invariant under T-duality (its

terms and scalar fields are covariant, making the whole invariant), so its vacuum value,

related to R̃4, is not changed by T-duality. In other words, from this perspective, a de

Sitter vacuum does not appear by T-dualizing. Therefore, given the no-go theorem (4.31)

against de Sitter vacua with O3, no T-dual vacuum to one with O3 would be de Sitter

either. Another argument in favor of this result goes as follows. In the case of an O3, all

internal directions are transverse: the (geometric) NSNS fluxes have components Ha⊥b⊥c⊥

and fa⊥b⊥c⊥ . The schematic four-dimensional T-duality rule is to raise or lower indices in

T-dualized directions [49], while parallel and transverse directions to a source would get

exchanged. This way it is easy to generate for instance fa||b⊥c⊥ from the H-flux. It is

however impossible to generate fa||b||c|| , f
a⊥

b⊥c|| or fa⊥b||c|| , thus leaving R|| = R⊥|| = 0.

Given (4.30), a vacuum T-dual to one with O3 is thus not de Sitter.

5 Outlook

In this paper, we study classical de Sitter vacua of ten-dimensional type II supergravities,

where the sources Dp and Op have only one size p and are parallel. As summarized in

the Introduction, we show that there is no such de Sitter vacuum for p = 3, 7, 8; for

p = 4, 5, 6, we cannot completely exclude these vacua, but still set high constraints on them,

which amounts to having restricted values for some curvature terms of internal subspaces.

These results provide clearer and tighter boundaries for the de Sitter string landscape.

In addition, they can be applied concretely on various cosmological scenarios to test if

those can be uplifted to string theory through a compactification. For instance, de Sitter

vacua required to embed the monodromy inflation mechanism of [50] are fully excluded,

completing the no-go theorem [8]: indeed, this model needs an O4 and fa||b⊥c⊥ = 0,

which violates the requirement (4.36). Finally, all technical tools are presented here in a

self-contained manner, and can be used to pursue the search for de Sitter vacua in more

involved settings.

While restrictions on the curvature terms for p = 4, 5, 6 are discussed in details in

section 4.2, one may wonder if additional information could be brought to further constrain

them, and exclude completely de Sitter vacua. An idea would be to use calibration of Dp

and Op. As discussed in appendix B, the conditions for calibrated sources correspond

to a minimization of their energy and are thus physically relevant. Using a condition

derived for sources along Minkowski (4.8), we already obtain a no-go theorem (4.9). The

corresponding condition for anti-de Sitter was derived in [51] and differs by a boundary

term. In both cases, although not mandatory, supersymmetry serves as an interesting

guideline, making the study of the de Sitter case more difficult. It would still be interesting

to derive analogous conditions for de Sitter. Related geometric conditions could constrain

6For p = 8 where there is only one transverse direction, the left-hand side of (4.36) vanishes, making us

recover the no-go theorem (3.8) in that case.
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the curvature terms further. Another idea would be to study the stability of a vacuum

with such terms present. The work [41] could be useful to that end: the four-dimensional

scalar fields introduced there are relevant to reproduce our results in the smeared limit,

and determine the stability. Proving that the curvature terms generically lead to tachyons

would be an important result.

The complete exclusion of classical de Sitter vacua with parallel sources would have two

important consequences. On the one hand, having parallel sources is the only setting where

a complete type II supergravity description of the vacuum is possible. Indeed, having either

intersecting sources, or trying to add NS-sources, forces one to a partial or total smearing

of the sources, at least in the current state of the art. Neglecting the backreaction of the

sources in such a manner cannot always be properly justified. Progress on this is then

required for any string cosmology. On the other hand, we have only focused on the shape

of our universe without considering its content: matter should arise from the open string

sector. In this context, the standard model would arise from intersecting branes rather than

parallel branes. In addition, intersecting branes would break more supersymmetries. There

is thus an optimistic view on an exclusion of classical de Sitter vacua with parallel sources:

if string theory requires (specific?) intersecting branes settings to admit metastable de

Sitter backgrounds, it could turn-out to be predictive when describing our universe. An

application of a classical de Sitter vacuum supporting an intersecting brane model would

be the description of the reheating phase after inflation. To that end, further development

of intersecting brane models beyond simple torus geometries, as e.g. in [52], is crucial for

a connection to string cosmology.
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A Type II supergravities

We consider (massive) type II supergravities in string frame, supplemented with the

Ramond-Ramond (RR) sources Dp-branes and orientifold Op-planes. The bosonic part

of the ten-dimensional action can be decomposed as follows

S = Sbulk + Ssources where Sbulk = S0 + SCS, Ssources = SDBI + SWZ . (A.1)

The bulk fields are first the metric gMN (M,N denote ten-dimensional curved indices), the

dilaton φ and the Kalb-Ramond two-form b. In addition, the IIA p-form potentials are C1,
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C3 and the IIB ones are C0, C2 and C4. The fluxes are H = db, and the Romans mass F0,

F2 = dC1 + bF0, F 10
4 = dC3−H ∧C1 + 1

2b∧ bF0 in IIA, F1 = dC0, F3 = dC2−H ∧C0 and

F 10
5 in IIB. The corresponding action in IIA is

S0 =
1

2κ2
10

∫
d10x

√
|g10|

(
e−2φ

(
R10 + 4|∂φ|2 − 1

2
|H|2

)
− 1

2
(|F0|2 + |F2|2 + |F 10

4 |2)

)
,

(A.2)

with 2κ2
10 = (2π)7(α′)4, α′ = l2s , and |g10| the absolute value of the determinant of the

metric. For a p-form Ap, we denote |Ap|2 = ApM1...Mp g
M1N1 . . . gMpNpApN1...Np/p!. In IIB,

one has

S0 =
1

2κ2
10

∫
d10x

√
|g10|

(
e−2φ

(
R10 + 4|∂φ|2 − 1

2
|H|2

)
− 1

2

(
|F1|2 + |F3|2 +

1

2
|F 10

5 |2
))

.

(A.3)

This is a pseudo-action for the flux F 10
5 , that has to satisfy the following constraint on-shell

F 10
5 = − ∗10 F

10
5 . (A.4)

The Hodge star in dimension D is defined as follows, with the Levi-Civita

symbol ε0...D−1 = 1,

∗D (dxm1 ∧ . . .∧dxmp) =

√
|gD|

(D − p)!
gm1n1 . . . gmpnpεn1...nprp+1...rDdxrp+1 ∧ . . .∧dxrD . (A.5)

One has Ap ∧ ∗DAp = dDx
√
|gD| |Ap|2, and we recall that ∗2DAp = s(−1)p(D−p)Ap for a

signature s. From the constraint (A.4), one gets on-shell

F 10
5 ∧ ∗10F

10
5 = − ∗10 F

10
5 ∧ F 10

5 = −F 10
5 ∧ ∗10F

10
5 ⇒ |F 10

5 |2 = 0 . (A.6)

This would imply that F 10
5 vanishes for a positive definite metric, which is not the case

here. We will not need to specify the Chern-Simons term SCS, so we turn to the Dirac-

Born-Infeld action

SDBI = −cp Tp
∫

Σp+1

dp+1ξ e−φ
√
|ı∗[g10 − b] + F| , (A.7)

where Σp+1 is the source world-volume and ı∗[·] the pull-back to it. The tension Tp is given

by T 2
p = π

κ210
(4π2α′)3−p. For a Dp, cp = 1; for an Op, cp = −2p−5 and F = 0. Finally, the

Wess-Zumino term is given by

SWZ = cp µp

∫
Σp+1

∑
q

ı∗[Cq] ∧ e−ı
∗[b]+F , (A.8)

where the charge µp = Tp for BPS sources as we consider here. One also has dF = 0.

We now impose two restrictions on the sources and related internal geometry that allow

to promote their action to a ten-dimensional one. We first consider −ı∗[b] + F = 0; doing

so at the level of the action instead of the equations of motion (e.o.m.) can only generate

a difference in the b-field e.o.m.. In addition, for each source, we make the geometric
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considerations summarized in Point 4 of section 2 (even if the split between four and

six dimensions is not required here). In particular, we use (2.6), and further define the

(9 − p)-form δ⊥9−p that allows to remove the pull-back and promote the integral to a ten-

dimensional one

SDBI
(here)
=== −cp Tp

∫
e−φ vol4 ∧ vol|| ∧ δ⊥9−p , SWZ

(here)
=== cp µp

∫
Cp+1 ∧ δ⊥9−p , (A.9)

where the form ordering is a convention choice. Given the volume forms relations (2.5),

δ⊥9−p is understood as given by vol⊥ divided by the transverse metric determinant, times a

formal delta function δ(⊥) that localizes the source in the transverse directions. We also

introduce a projector P [·] to the source (parallel) directions, giving vol4 ∧ vol|| ∧ δ⊥9−p =

d10x
√
|P [g10]|δ(⊥); this rewriting is more convenient.

We now derive the Einstein equation and dilaton e.o.m.. SCS and SWZ are topological

terms that do not depend on gMN or φ, so they do not contribute. We define the energy

momentum tensor as

1√
|g10|

∑
sources

δSDBI

δgMN
≡ − e

−φ

4κ2
10

TMN . (A.10)

It is given here, together with its trace, by

TMN = − 2κ2
10√
|g10|

∑
sources

cp Tp P [gMN ]
√
|P [g10]| δ(⊥) , (A.11)

T10 = gMNTMN

= − 2κ2
10√
|g10|

∑
sources

cp Tp (p+ 1)
√
|P [g10]| δ(⊥) ≡

∑
sources

(p+ 1) tp . (A.12)

One can then verify

1√
|g10|

∑
sources

δSDBI

δφ
= − e

−φ

2κ2
10

∑
sources

tp . (A.13)

We deduce the dilaton equation of motion and the Einstein equation7 in type IIA and IIB

2R10 − |H|2 + 8(∆φ− |∂φ|2) = −eφ
∑

sources

tp , (A.14)

RMN −
gMN

2
R10 =

1

4
HMPQH

PQ
N +

e2φ

2

(
F2 MPF

P
2 N +

1

3!
F 10

4 MPQRF
10 PQR
4 N

)
+
eφ

2
TMN −

gMN

4

(
|H|2 + e2φ(|F0|2 + |F2|2 + |F 10

4 |2)
)

(A.15)

− 2∇M∂Nφ+ 2gMN (∆φ− |∂φ|2) ,

7On the dilaton terms in the Einstein equation, we refer to Footnote 30 of [53]. We also recall the

Laplacian on a function ϕ: ∆ϕ = gMN∇M∂Nϕ = 1√
|g|
∂M (

√
|g|gMN∂Nϕ); ∆ stands here for the ten-

dimensional one.
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RMN −
gMN

2
R10 =

1

4
HMPQH

PQ
N

+
e2φ

2

(
F1 MF1 N +

1

2!
F3 MPQF

PQ
3 N +

1

2 · 4!
F 10

5 MPQRSF
10 PQRS
5 N

)
+
eφ

2
TMN −

gMN

4

(
|H|2 + e2φ(|F1|2 + |F3|2)

)
(A.16)

− 2∇M∂Nφ+ 2gMN (∆φ− |∂φ|2) ,

where we imposed the constraint (A.6).

We now turn to the fluxes. As pointed-out in the seminal paper [54], the Wess-Zumino

action (A.9) is problematic for the higher Dp-branes, and the magnetic coupling. To derive

the fluxes Bianchi identities (BI) and e.o.m. in presence of sources, one should then use the

democratic formalism, that has in addition the advantage of avoiding the Chern-Simons

terms. One replaces the previous RR action for the following pseudo-action

1

2κ2
10

∫ (
−1

4

)∑
q

Fq+1 ∧ ∗10Fq+1 +
∑

sources, q

cq−1µq−1

∫
1

2
Cq ∧ δ⊥10−q , (A.17)

where q = 1, 3, 5, 7, 9 for IIA and q = 0, 2, 4, 6, 8 for IIB, with Fp = dCp−1−H∧Cp−3+F0e
b|p

consistently with above. One should then impose on-shell the following constraint

Fp = (−1)[
p+1
2 ] ∗10 F10−p , (A.18)

where the integer part of p
2 can be rewritten as (−1)[

p
2 ] = (−1)

p(p−1)
2 , giving (−1)[

p+1
2 ] =

(−1)
(p+1)p

2 = (−1)p(−1)[
p
2 ]. The e.o.m. for Cq is now

d(∗10Fq+1) +H ∧ ∗10Fq+3 = 2κ2
10 (−1)q+1

∑
(q−1)−sources

cq−1µq−1 δ
⊥
10−q . (A.19)

Imposing the constraint gives the equivalent equation

d(F9−q)−H ∧ F7−q = 2κ2
10 (−1)q+1

∑
(q−1)−sources

cq−1µq−1 λ(δ⊥10−q) , (A.20)

where for a p-form Ap, λ(Ap) = (−1)[
p
2 ]Ap. To get respectively the standard e.o.m. and

BI, we restrict to the standard fluxes, giving in IIA and IIB

d(∗10F2) +H ∧ ∗10F
10
4 = 2κ2

10

∑
0−sources

c0µ0 δ
⊥
9 ,

d(∗10F
10
4 ) +H ∧ F 10

4 = 2κ2
10

∑
2−sources

c2µ2 δ
⊥
7 ,

d(F0) = 2κ2
10

∑
8−sources

c8µ8 δ
⊥
1 ,

d(F2)−H ∧ F0 = − 2κ2
10

∑
6−sources

c6µ6 δ
⊥
3 , (A.21)

d(F 10
4 )−H ∧ F2 = 2κ2

10

∑
4−sources

c4µ4 δ
⊥
5 ;

– 20 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
2

d(∗10F1) +H ∧ ∗10F3 = 0 ,

d(∗10F3) +H ∧ ∗10F
10
5 = − 2κ2

10

∑
1−sources

c1µ1 δ
⊥
8 , (A.22)

d(∗10F
10
5 ) +H ∧ F3 = − 2κ2

10

∑
3−sources

c3µ3 δ
⊥
6

⇔ d(F 10
5 )−H ∧ F3 = 2κ2

10

∑
3−sources

c3µ3 δ
⊥
6 ,

d(F1) = 2κ2
10

∑
7−sources

c7µ7 δ
⊥
2 ,

d(F3)−H ∧ F1 = − 2κ2
10

∑
5−sources

c5µ5 δ
⊥
4 .

Finally, with the above pseudo-action, the b-field e.o.m. is given by

d(e−2φ ∗10 H)−
∑

1≤q≤4

Fq−1 ∧ ∗10Fq+1 −
1

2
F 10

4 ∧ F 10
4 = sources , (A.23)

where the democratic formalism constraint (A.18) has been applied. The right-hand side

“sources” denotes collectively the contribution from Ssources as well as from the source

term in the right-hand side of (A.19) that has been used. The latter seems to cancel the

contribution from SWZ, leaving only the contribution from SDBI, as pointed-out in [55].

We will not use this e.o.m.. In absence of NS5-branes as here, the BI is

dH = 0 . (A.24)

Relation to other conventions. We follow the democratic formalism conventions [54]

(the same as [56]), except for the Hodge star definition, where we get a sign (−1)(D−p)p =

(−1)(D−1)p. We thus make this sign explicit, as in the constraint (A.18). Also, in [54] is

not considered a b-field in the sources action, for which we then follow consistently [57].

Another set of conventions in the literature are those of e.g. [47, 55, 58, 59]. These

conventions differ from the democratic formalism ones by a change of sign of H in IIB,

and the change Cq → (−1)
q−1
2 Cq in IIA. The latter is equivalent to no change of Cq, but

a change of sign of H together with Fq+1 → (−1)
q−1
2 Fq+1 for q ≥ 0, leading to rewriting

the constraint by replacing (−1)[
p
2 ] by (−1)[

p−1
2 ]. That replacement is neutral in IIB, so

the constraint can be rewritten in both theories. The map from our conventions to those

of [47, 55, 58, 59], for both IIA and IIB, is then to change the sign of H, or actually of the

b-field, rewriting the constraint (A.18) by replacing (−1)[
p
2 ] → (−1)[

p−1
2 ], and changing the

Hodge star by an appropriate sign.8 Upon this map, one can verify that the e.o.m. (A.19)

and (B.6) of [55] match, using δ⊥10−(p+1) = λ(j(Σp,0)). But since the constraint differs by a

sign, the BI differ by a sign (in IIA), making them not equivalent. That sign has however

no physical relevance: it could be avoided by changing the sign of the WZ term in the brane

8Another difference is the value of the Levi-Civita symbol, which is opposite. This has no impact here

since this symbol is considered only formally, defining e.g. d10x ≡ 1/10! εM1...M10dxM1 ∧ . . . ∧ dxM10 . It

may matter if one computes explicit duals of forms, as e.g. the RR fluxes in [46, 56].
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action, which amounts to change the definition of brane versus anti-brane, or equivalently

change which of the two type II supersymmetries are preserved (and its projector), or

change the orientation of the world-volume. Note that the calibration (poly)form, related

to the volume form of the sources, would then also pick a sign in IIA.

B Dp-brane energy minimization and calibration

We derive in this appendix conditions to minimize the energy of a Dp-brane, for a

Minkowski four-dimensional space-time. They should correspond to e.o.m. of the Dp-

brane own bosonic degrees of freedom, namely of its scalar fields,9 and should thus be

satisfied when looking for a vacuum. Minimizing the Dp-brane energy is related to the

notion of calibration, that we will first recall. Most of the work on this topic has been

made for supersymmetric vacua; we go here beyond this context as we do not consider

supersymmetry.

We first follow [47] and consider a Dp-brane on a world-volume Σp+1 with flux F . A

generalized calibration [47, 55, 60–63], denoted ω, is a sum of forms of different degrees, or

polyform, in ten dimensions such that (d −H∧)ω = 0 and

ı∗[ω] ∧ e−ı∗[b]+F ≤ E(Σp+1,F) , (B.1)

where the inequality is understood under projection on Σp+1 along dp+1ξ. The coefficient

of E gives the energy density. For static configurations (as considered in this paper), E is

read from SDBI + SWZ and is given, for Tp = µp, by10

E(Σp+1,F) = cp Tp

(
dp+1ξ e−φ

√
|ı∗[g10 − b] + F| −

∑
q

ı∗[Cq] ∧ e−ı
∗[b]+F

)
. (B.2)

A Dp-brane is said to be calibrated by ω, in a generalized sense, if ω saturates the inequality

for some Σp+1 and F
ı∗[ω] ∧ e−ı∗[b]+F = E(Σp+1,F) . (B.3)

As argued in [47], under some conditions, this saturation can be understood as a minimiza-

tion of the energy E. Indeed, for Σp+1 being a cycle, consider continuous deformations to

Σ′p+1 in the same homology class, i.e. Σ′p+1 − Σp+1 = ∂B, with F̂ on B restricting to F
or F ′. Then

E(Σ′p+1,F ′) =

∫
Σ′p+1

E(Σ′p+1,F ′) (B.4)

≥
∫

Σ′p+1

ı∗[ω] ∧ e−ı∗[b]+F ′

=

∫
Σp+1

ı∗[ω] ∧ e−ı∗[b]+F +

∫
B
ı∗[(d−H∧)ω] ∧ e−ı∗[b]+F̂

9The other Dp-brane degrees of freedom are the gauge potentials and flux F , but having them to vanish

is a solution to their e.o.m., at least for Minkowski, so we do not need to consider this other e.o.m. further.
10The time direction may need to be removed from the forms; we refer to [47] or appendix A of [51] for

more details.
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=

∫
Σp+1

ı∗[ω] ∧ e−ı∗[b]+F =

∫
Σp+1

E(Σp+1,F)

= E(Σp+1,F) .

So a calibrated Dp-brane has its energy minimized. Note that the fluctuations of Σp+1 can

be understood as that of the embedding coordinates, i.e. the brane scalar fields. The above

reasoning holds e.g. for Σp+1 being the product of Minkowski times an internal cycle [47].

Given the equality (B.3), a candidate for the calibration ω is given by

ω = cpTp

(
e−φ volΣp+1,F ∧ eb−F −

∑
q≤p+1

Cq|4
)
, (B.5)

where the form volΣp+1,F is such that ı∗[volΣp+1,F ] = dp+1ξ
√
|ı∗[g10 − b] + F|, and we

restrict to the components of Cq containing the full four-dimensional volume form. For

space-time filling sources, ı∗[Cq|4] = ı∗[Cq] so this restriction is only future convenience;

the same holds for q ≤ p+ 1. A minimized energy becomes equivalent to (d −H∧)ω = 0,

i.e. to

Fh<p+2 |4 = 0 , (B.6)

d
(
e−φ volΣp+1,F

)
− Fp+2|4 = 0 , (B.7)

with the RR fluxes restricted to their components containing the four-

dimensional volume.11

We now consider Dp-branes having the properties of Points 1, 2, 4 of section 2. In

particular, −ı∗[b] +F = 0 gives with (2.6) volΣp+1,F = vol4 ∧ vol||. The metric (2.1) allows

to extract the unwarped four-dimensional volume form as vol4 = e4Aṽol4. On top, we

have used the electric RR coupling to the Dp-brane while for us p ≥ 3: as explained in

appendix A, this requires to use the democratic formalism. Because p ≥ 3, the Fp+2 are

the higher fluxes only: to recover proper fluxes of type II supergravities, we then have to

use the democratic formalism constraint (A.18) (and sources become the magnetic ones).

We rewrite (B.7) as

ṽol4 ∧ d
(
e4A−φvol||

)
= (−1)[

p+3
2 ](∗10F8−p)|4 = (−1)[

p+3
2 ] ∗10 (F8−p)|⊂6

⇔ e−4A ∗6 d
(
e4A−φvol||

)
= (−1)[

p+3
2 ](−1)p F8−p ,

where from the last line on, we drop the projection on internal components |⊂6, since Fk
without any index 4 or 10 denotes the internal part of the flux. Similarly, we rewrite (B.6)

0 = (∗10Fl>8−p)|4 = ∗10(Fl>8−p)|⊂6 = ∗10Fl>8−p . (B.8)

11One would naively get on top of (B.6), (B.7), equations on forms of higher degree. But the projection

in (B.3) and (B.4) actually bounds the relevant degrees of ω and (d−H∧)ω, avoiding higher degrees with

a refined reasoning.

– 23 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
2

Using that (−1)[
p+3
2 ](−1)p = −(−1)[

p
2 ] = −(−1)[

8−p
2 ](−1)8−p = −(−1)[

9−p
2 ] = (−1)pεp, we

rewrite the above as

Fk = (−1)pεpe
−4A ∗6 d

(
e4A−φvol||

)
, 0 ≤ k = 8− p ≤ 5 , (B.9)

Fl>k = 0 . (B.10)

We call (B.9) the calibration condition. As shown in [47], it is automatically satisfied

for a supersymmetric Minkowski background, using the supersymmetry preserved by the

Dp-brane. Here, we considered Minkowski and conditions on the sources, but not super-

symmetry. We proved that minimizing the energy was equivalent to (B.9) and (B.10).

In the case of a four-dimensional anti-de Sitter space-time, (B.9) gets modified by an

additional term X, as explained in [51]. This can be seen already through the supersymme-

try conditions for anti-de Sitter, that include X. This term is due to the space boundaries

of anti-de Sitter [51]; those require to adapt the reasoning (B.4), not valid otherwise. Here,

the question would be to determine analogous conditions for de Sitter. We cannot be

guided by supersymmetry, but we still expect a correction to (B.9), related to properties

of de Sitter space-time. Getting such conditions would bring relevant new constraints for

de Sitter vacua.

C Computational details

In this appendix, we compute various terms involving the warp factor and the dilaton, as

well as curvature terms. We first compute the ten-dimensional Ricci tensor in curved indices

along four-dimensional directions, and the corresponding scalar R4 = gMNRMN=µν , for

the Levi-Civita connection; see e.g. [8, 64] for relevant formulas. We extract the warp

factor dependence using the metric (2.1) and obtain

RMN=µν = R̃µν −
1

2
g̃µν

(
∆6 e

2A + e−2A(∂e2A)2
)
, (C.1)

R4 = e−2AR̃4 − 2e−2A
(
∆6 e

2A + e−2A(∂e2A)2
)
, (C.2)

where R̃µν is the purely four-dimensional Ricci tensor built from g̃µν and R̃4 its Ricci

scalar, ∆6 is the internal Laplacian and (∂e2A)2 = gmn∂me
2A∂ne

2A. This computation

required the following connection coefficient

ΓP=p
MN=µν = −1

2
g̃µνg

pn∂ne
2A , (C.3)

that we use again to compute the quantities

2(∇∂φ)4 ≡ 2gMN=µν
(
∂M∂Nφ− ΓPMN∂Pφ

)
= −2e2φ−2Agmn∂me

2A∂ne
−2φ , (C.4)

4|∂φ|2 − 2∆φ = e2φ∆e−2φ = e2φ∆6 e
−2φ + 2e2φ−2Agmn∂me

2A∂ne
−2φ , (C.5)

where the second equations made use that the dilaton depends only on internal directions.
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We now use these results in equation (3.3): it involves the quantity

(p− 3)R4 − 2e2φ∆e−2φ + 2(p− 3)(∇∂φ)4 (C.6)

= (p− 3)e−2AR̃4 − 2e2φ−2A(p−3)∆6 e
2A(p−3)−2φ

+ 2(p− 5)e2φ−2A(p−2)gmn∂me
2A∂ne

2A(p−3)−2φ .

The last two terms vanish for the standard value of a Dp-brane solution, picked in this paper

eφ = gse
A(p−3) , (C.7)

where gs is a constant.12 We conclude that the quantity (C.6) is equal to (p− 3)e−2AR̃4,

and use this result in section 3.

We now turn to (4.17) that involves the quantity

2R4 + 4(∇∂φ)4 − 4|∂φ|2 + 2∆φ+ 4(∇∂φ)6|| + 2R6|| . (C.8)

To compute the last two terms, we need to use flat indices (definitions in section 2 and

around (4.10)). For the Levi-Civita connection, the spin connection is related to fabc, so

that one has generically for the Ricci tensor in flat indices (see e.g. [65])

2 Rcd = ∂af
a
cd + 2ηab∂af

g
b(cηd)g − 2∂cf

b
bd (C.9)

+ faab

(
f bcd + 2ηbgfhg(cηd)h

)
− f bacfabd − ηbgηahfhgcfabd

+
1

2
ηahηbjηciηdgf

i
ajf

g
hb .

From now on, we denote respectively A, α, a the flat ten-, four- and six-dimensional indices,

and refer to the metric (2.4). We take ∂αA = 0 , ∂a||A = 0, which implies

fa||BC = δbBδ
c
Cf

a||
bc , f

A
Bc|| = δAa δ

b
Bf

a
bc|| , f

A
Bc⊥ = δAa δ

b
Bf

a
bc⊥ + δAα δ

β
Bδ

α
β e
−A∂c⊥e

A .

(C.10)

This allows to compute R6|| = ηABRAB=a||b|| , giving

2R6|| = 2δcd∂cf
a||
da|| + 8δcdfa||c⊥a||e

−A∂d⊥e
A − 2δab∂a||f

c
cb|| + 2δcdfa||ca||f

e
ed

− δabfdca||f
c
db|| − δ

abδdgδchf
h
ga||f

c
db|| +

1

2
δchδdjδabf

a||
cjf

b||
hd (C.11)

= 2δcd∂c⊥f
a||
d⊥a|| + 8δcdfa||c⊥a||e

−A∂d⊥e
A − 2δab∂a||f

c
cb|| + 2δcdfa||ca||f

e
ed

+ 2R|| + 2R⊥|| +
1

2
δchδdjδabf

a||
c⊥j⊥f

b||
h⊥d⊥ , (C.12)

where 2R|| = 2δcd∂c||f
a||
d||a|| − δ

abfd||c||a||f
c||
d||b|| −

1

2
δchδdjδabf

a||
c||j||f

b||
h||d|| , (C.13)

2R⊥|| =− δabfd⊥c⊥a||f
c⊥
d⊥b|| − δ

abδdgδchf
h⊥

g⊥a||f
c⊥
d⊥b|| (C.14)

− 2δabfd⊥c||a||f
c||
d⊥b|| − δ

abδdgδchf
h⊥

g||a||f
c⊥
d||b|| .

12The value (C.7) might be derived rather than imposed, as we sketch here. Using more knowledge on

the internal metric, one may show that the last two terms of (C.6) actually combine into one term with a

Laplacian of the unwarped internal metric ∆̃6 e
2A(p−3)−2φ. For p = 7, 8, this quantity can have a definite

sign through (3.3). Using an integration, one can then show that this quantity vanishes. Harmonic functions

on a compact manifold without boundary are constant, so one would derive this way (C.7).
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We now extract the warp factor with ea||m = eAẽa||m, ea⊥m = e−Aẽa⊥m. We first obtain

fa||b||c|| = e−Af̃a||b||c|| , f
a⊥

b||c|| = e−3Af̃a⊥b||c|| , f
a⊥

b⊥c|| = e−Af̃a⊥b⊥c|| , (C.15)

fa||b⊥c|| = eAf̃a||b⊥c|| − δ
a||
c|| ∂b̃⊥e

A , fa⊥b⊥c⊥ = eAf̃a⊥b⊥c⊥ + 2e2Aδã⊥
[b̃⊥
∂c̃⊥]e

−A .

With in addition fa||c⊥j⊥ = e3Af̃a||c⊥j⊥ , one shows that the last line in (C.12) does not

produce any ∂A, so contributes to what we denote R6|||(∂A=0). We turn to the other

line. For a compact manifold (without boundary), one generically has faab = 0. Here the

relevant manifold is the unwarped or smeared one (see above (2.4)), meaning the correct

condition is f̃aab = 0. From the above, we deduce

faab|| = 0 , faab⊥ = (2p− 11)∂b̃⊥e
A . (C.16)

We then compute the first line of (C.12)

2δcd∂c⊥f
a||
d⊥a|| + 8δcdfa||c⊥a||e

−A∂d⊥e
A − 2δab∂a||f

c
cb|| + 2δcdfa||ca||f

e
ed (C.17)

= 2δcde2A∂c̃⊥ f̃
a||
d⊥a|| + e2A(p−2)δcd∂c̃⊥∂d̃⊥e

−2A(p−3)

+ 2δcde2A(p−3)∂c̃⊥e
−2A(p−3)

(
−e2Af̃a||d⊥a|| + (p− 3)∂d̃⊥e

2A
)
.

Generically, ∇aVb = ∂aVb−ωacbVc and ω(a
c
b) = δcdf ed(aδb)e, so we deduce, with f̃ad⊥a = 0,

∆̃⊥e
−2A(p−3) = δcd∂c̃⊥∂d̃⊥e

−2A(p−3) + δcdf̃a||d⊥a||∂c̃⊥e
−2A(p−3) , (C.18)

4(∇∂φ)6|| = 4δAB=a||b||∇A∂Bφ
= 2δcde2φ+2Af̃a||d⊥a||∂c̃⊥e

−2φ − (p− 3)δcde2φ∂c̃⊥e
−2φ∂c̃⊥e

2A ,

where ∆̃⊥ is the Laplacian on the transverse subspace with smeared metric, i.e. involving

only indices ã⊥ . Point 6 on sources in section 2 requires a compact transverse unwarped

subspace without boundaries, implying f̃a⊥d⊥a⊥ = −f̃a||d⊥a|| = 0. Setting this to zero, we

eventually obtain

2R6|| = 2R6|||(∂A=0) + e2A(p−2)∆̃⊥e
−2A(p−3)

+ 2(p− 3)δcde2A(p−3)∂c̃⊥e
−2A(p−3)∂d̃⊥e

2A (C.19)

where 2R6|||(∂A=0) = 2R|| + 2R⊥|| +
1

2
δchδdjδabf

a||
c⊥j⊥f

b||
h⊥d⊥ , (C.20)

4(∇∂φ)6|| = − (p− 3)δcde2φ∂c̃⊥e
−2φ∂d̃⊥e

2A . (C.21)

Finally, for a function f such that ∂a||f = 0, one gets using the above

∆6f = e2A∆̃⊥f + (p− 5)δab∂ã⊥e
2A∂b̃⊥f . (C.22)

Using this in (C.2) and in (C.5), together with (C.4), (C.19), (C.21), and the dilaton

expression (C.7), we obtain for the quantity (C.8)

2R4 + 4(∇∂φ)4 − 4|∂φ|2 + 2∆φ+ 4(∇∂φ)6|| + 2R6|| (C.23)

= 2e−2AR̃4 + 2R6|||(∂A=0) − 4∆̃⊥e
2A + 4e−2A|d̃e2A|2 ,
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with |d̃e2A|2 = δcd∂c̃⊥e
2A∂d̃⊥e

2A. It is more convenient to make the quantity ∆̃⊥e
−4A

appear: in our conventions, this quantity is produced by dFk in the BI (see e.g. [46] for

explicit examples), thus typically generates the δ functions that localize the Dp and Op

sources, as in T10. Then, using ∆̃⊥e
−4A = −2e−6A∆̃⊥e

2A + 6e−8A|d̃e2A|2, we rewrite the

above as

2R4 + 4(∇∂φ)4 − 4|∂φ|2 + 2∆φ+ 4(∇∂φ)6|| + 2R6|| (C.24)

= 2e−2AR̃4 + 2R6|||(∂A=0) + 2e6A∆̃⊥e
−4A − 2e10A|d̃e−4A|2 .

One can finally make use of (C.24) in (4.17), with R6|||(∂A=0) given in (C.20).

We now detail the following rewriting useful for (4.17). One has e2φ|F (0)
k |

2 =

e10A|g̃sF (0)
k |

2 thanks to the dilaton (C.7), and analogously to (2.9) with (4.19),

|g̃sF (0)
k |

2 = |εpgsF (0)
k − ∗̃⊥de−4A + ∗̃⊥de−4A|2̃ (C.25)

= |εpgsF (0)
k − ∗̃⊥de−4A|2̃ + |∗̃⊥de−4A|2̃

+ 2
(

de−4A ∧
(
εpgsF

(0)
k − ∗̃⊥de−4A

))
⊥̃

= e2φ−10A|εpF (0)
k − g−1

s ∗̃⊥de−4A|2 + |d̃e−4A|2

− e−12A
(

de8A ∧
(
εpgsF

(0)
k − ∗̃⊥de−4A

))
⊥̃

= e2φ−10A|g−1
s ∗̃⊥de−4A − εpF (0)

k |
2 + |d̃e−4A|2

+ e−12A
(

d
(
e8A∗̃⊥de−4A − e8AεpgsF

(0)
k

))
⊥̃

− e−4A
(

d
(
∗̃⊥de−4A − εpgsF (0)

k

))
⊥̃
.
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