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1  Introduction

To adequately function in society, citizens need to overcome their deterministic 
thinking and accept the existence of fundamental chance in nature. At the same 
time, they need to acquire strategies and ways of reasoning that help them in  making 
adequate decisions in everyday and professional situations where chance is present.

This need for probability literacy has been recognized by educational authori-
ties in many countries by including probability in the curricula at different edu-
cational levels and in the education of teachers. However, including a topic in the 
curriculum does not automatically assure its correct teaching and learning; the 
specific characteristics of probability, such as a multifaceted view of probability 
or the lack of reversibility of random experiments, are not usually found in other 
areas and will create special challenges for teachers and students.

Research in probability education tries to respond to the above challenges and 
it is now well established, as shown by the Teaching and Learning of Probability 
Topic Study Group at the 13th International Congress of Mathematics Education 
(ICME). Probability education research is also visible in the many papers on 
this topic presented at conferences such as the European Mathematics Education 
Conference (CERME), the International Conference on Teaching Statistics 
(ICOTS), as well as in regional or national conferences such as the Latin-America 
Mathematics Education Conference (RELME).

Furthermore, several books and major handbook chapters listed in the Further 
Readings section suggest the relevance of this field and the need to (re)formulate 
a research agenda in this area for the coming years. In this survey on the state of 
the art, we summarise existing research in probability education before pointing to 
some ideas and questions that may help in framing a future research agenda.
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2 Research on Teaching and Learning Probability

2  Survey on the State of the Art

Research in probability education has a fairly long history and includes theoretical 
analyses and empirical research on a variety of topics and from different perspec-
tives, as described in the next sections. As we reviewed the existing literature on 
probability education, several major themes came to the fore. These themes have 
been used to organize a brief review of our current understanding of probability 
education that informs the discussions for the 2016 ICME topic study group.

2.1  The Nature of Chance and Probability

Research in any area of mathematics education should be supported by an episte-
mological reflection about the objects that are being investigated. This reflection 
is especially relevant when focusing on probability, where different approaches to 
the concept that influence both the practice of stochastics and the school curricula 
are still being debated in the scientific community.

According to Hacking (1975), probability was conceived from two main, albeit 
different, perspectives since its emergence. A statistical side of probability is 
related to the need to find the objective mathematical rules that govern random 
processes; probability values are assigned through data collected from surveys and 
experiments. Complementary to this vision, an epistemic side views probability as 
a personal degree of belief, which depends on information available to the person 
assigning a probability. From these two main perspectives, which are reflected in 
the works of the main authors who have contributed to the progress of probabil-
ity, different views of probability have been sustained through history (Batanero 
2015; Batanero and Díaz 2007; Batanero et al. 2005a, b; Borovcnik and Kapadia 
2014a; Chernoff and Russell 2012). Currently, the main primary interpretations 
are intuitive, classical, frequentist, subjective, logical, propensity, and axiomatic. 
Each of these views entails some philosophical issues and is more suited to model 
particular real-world phenomena or to be taken into account in curricula for spe-
cific students.

In the next sections we briefly summarise the main features of the afore-
mentioned views of probabilities, part of which have been introduced in school 
curricula.

2.1.1  Intuitive View of Probability

The theory of probability is, in essence, a formal encapsulation of intuitive views 
of chance that lead to the fundamental idea of assigning numbers to uncertain 
events. Intuitive ideas about chance emerged very early in history in many differ-
ent cultures and were linked to problems related to setting fair betting in games 
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of chance (Batanero and Díaz 2007; Bennet 1999). According to David (1962), 
cubic dice were abundant in primitive cultures (e.g., the Egyptian, Chinese, Greek 
and Roman civilizations), which used games of chance in an attempt to predict or 
control fate in decision-making or religious ceremonies. Interestingly, the develop-
ment of the theory of probability is much more recent with, according to David 
(1962), no clear reasons to explain this delay.

Intuitive ideas about chance and probability also appear in young children who 
use qualitative expressions (such as terms “probable” or “unlikely”) to express 
their degrees of belief in the occurrence of random events. These intuitive ideas 
can be used by a teacher to help children develop a more mature understanding 
and use probability as a tool to compare likelihood of different events in a world 
filled with uncertainty.

2.1.2  Classical Meaning

The earlier theoretical progress in probability theory was linked to games of 
chance such as throwing dice. For example, in his correspondence with Fermat, 
Pascal (1654/1963) solved the problem of estimating the fair amount to be given 
to each player if the game is interrupted by “force majeure” by proportionally 
dividing the stakes among each player’s chances. In another example, Cardano 
(1663/1961) advised players to consider the number of total possibilities and the 
number of ways favourable results can occur and to compare the two numbers in 
order to make a fair bet.

It is not surprising that the initial formalization of this concept was based on 
an assumption that all possible elementary events were equiprobable, since this 
hypothesis is reasonable in many chance games. In the classical definition of prob-
ability, given by Abraham de Moivre in 1718 in Doctrine of Chances and later 
refined by Laplace in 1814 in his Philosophical Essay on Probability, probability 
is simply a fraction of the number of favourable cases to a particular event divided 
by the number of all cases possible. This definition has been widely criticised 
since its publication, since the assumption of equiprobability of outcomes is sub-
jective and it impedes the application of probability to a broad variety of natural 
phenomena where this assumption may not be valid.

2.1.3  Frequentist Meaning

The convergence of relative frequencies for the same event to a constant value 
after a large number of independent identical trials of a random experiment has 
been observed by many authors. In trying to extend the scope of probability to 
life-expectancy and insurance problems, Bernoulli (1713/1987) proved a first ver-
sion of the Law of Large Numbers. According to this theorem, the relative fre-
quency hn for a given event in a large number of trials should be close to the 
theoretical probability p of that event and tend to become closer as more trials are 
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performed.1 Given that stabilised frequencies are observable, this theorem was 
also considered as a proof of the objective character of probability (Fine 1971).

In this frequentist approach, sustained later by von Mises (1928/1952) and 
Renyi (1966/1992), probability is defined as the hypothetical number towards 
which the relative frequency tends when a random experiment is repeated infi-
nitely many times.

Since such an empirical tendency is visible in many natural phenomena, this 
particular definition of probability extended the range of applications enormously.

A practical drawback of this frequentist view is that we only obtain an esti-
mation of probability that varies from one series of repetitions of experiments 
(called samples) to another. Moreover, this approach is not appropriate when it is 
not possible to repeat an experiment under exactly the same conditions (Batanero 
et al. 2005a, b). Consequently, it is important to make clear to students the dif-
ference between a theoretical model of probability and the frequency data from 
reality used to create a model of probability. Sometimes this difference is not 
made explicit in the classroom and may confuse students who need to use abstract 
knowledge about probability to solve concrete problems from real life.

2.1.4  Propensity Meaning

Popper (1959) introduced the idea of propensity as a measure of the tendency of a 
random system to behave in a certain way and as a physical disposition to produce 
an outcome of a certain kind. In the same sense, Peirce (1910/1932) proposed a 
concept of probability according to which a die, for example, possesses expected 
dispositions for its various possible outcomes; these propensities are directly 
related to the long-run trends and indirectly to singular events.

In the long run, propensities are tendencies to produce relative frequencies with 
particular values, but the propensities are not the probability values themselves 
(Gillies 2000). For example, a cube-shaped die has an extremely strong tendency 
(i.e., propensity) to produce a 5 when rolled with long-run relative frequency of 
1/6. The probability value 1/6 is small, so it does not measure this strong tendency. 
In single-case theory (e.g., Mellor 1971) the propensities are identical to the prob-
ability values and are considered as probabilistic causal tendencies to produce a 
particular result on a specific occasion.

Again this propensity interpretation of probability is controversial. In the long-
run interpretation, propensity is not expressed in terms of other empirically verifi-
able quantities, and we then have no method of empirically finding the value of a 
propensity. With regards to the single-case interpretation, it is difficult to assign 
an objective probability for single events (Gillies 2000). It is also unclear whether 
single-case propensity theories obey the probability calculus or not.

1Given ε > 0, α > 0 arbitrarily small, the theorem establishes that for n >
pq

εα2
, with q = 1−p

P(|hn − p| < ε) ≥ 1− α.
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2.1.5  Logical Meaning

Researchers such as Keynes (1921) and Carnap (1950) developed the logical 
theories of probability, which retain the classical idea that probabilities can be 
determined a priori by an examination of the space of possibilities; however, the 
possibilities may be assigned unequal weights. In this view, probability is a degree 
of implication that measures the support provided by some evidence E to a given 
hypothesis H. Between certainty (1) and impossibility (0), all other degrees of 
probability are possible. This view amplifies deductive logic, since implication and 
incompatibility can be considered as extreme cases of probability.

Carnap (1950) constructed a formal language and defined probability as a 
rational degree of confirmation. The degree of confirmation of one hypothesis 
H, given some evidence E, is a conditional probability and depends entirely on 
the logical and semantic properties of H and E and the relations between them. 
Therefore, probability is only defined for the particular formal language in which 
these relations are made explicit.

Another problem in this approach is that there are many possible confirmation 
functions, depending on the possible choices of initial measures and on the lan-
guage in which the hypothesis is stated. A further problem is selecting the ade-
quate evidence E in an objective way, since the amount of evidence might vary 
from one person to another (Batanero and Díaz 2007).

2.1.6  Subjective Meaning

In the previous approaches presented, probability is an “objective” value that we 
assign to each event. However, Bayes’ theorem, published in 1763, proved that the 
probability for an event can be revised in light of new available data. A simple 
version this theorem establishes that, when the “prior” probabilities P(Ai) and the 
likelihood P(B|Ai) to obtain B for each Ai are known for a number of incompatible 
events Ai such that 

⋃n
1=1 Ai = E, then it holds:

Using Bayes’ theorem, an initial (prior) probability can be transformed into a 
posterior probability using new data and probability loses its objective character. 
Following this interpretation, some mathematicians (e.g., Keynes, Ramsey and 
de Finetti) considered probability as a personal degree of belief that depends on 
a person’s knowledge or experience. However, the status of the prior distribution 
in this approach was criticised as subjective, even if the impact of the prior dimin-
ishes by objective data, and de Finetti proposed a system of axioms to justify this 
view in 1937.

In this subjectivist viewpoint, the repetition of the same situation is no longer 
necessary to give a sense to probability, and for this reason the applications of 

P(Ai|B) =
P(B|Ai) · P(Ai)

∑n
j=1 P(B|Aj) · P(Aj)
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probability entered new fields such as politics and economy, where it is difficult to 
assure replications of experiments. Today the Bayesian approach to inference, which 
is based in this approach, is quickly gaining further traction in numerous fields.

2.1.7  Axiomatic Theory

Despite the strong philosophical discussion on the foundations, the applications 
of probability to all sciences and sectors of human activity expanded very quickly. 
Throughout the 20th century, different mathematicians tried to formalise the math-
ematical theory of probability. Following Borel’s work on set and measure theory, 
Kolmogorov (1933/1950), who corroborated the frequentist view, derived an axi-
omatic theory.

The set S of all possible outcomes of a random experiment is called the sample 
space of the experiment.2 In order to define probability a set algebra A containing 
subsets of the sample space and which is closed under numerable union and com-
plement operations is considered.3 The complement of an event Ā is made of all 
the outcomes that do not take part in A. The event S = A∪ Ā always happens and 
is called a certain event.

Probability is any function defined from A in the interval of real numbers [0,1] 
that fulfils the following three axioms, from which many probability properties 
and theorems can be deduced:

1. 0 ≤ P(A) ≤ 1, for every A ∈ A;
2. P(S) = 1;
3. (a) For a finite sample space S and incompatible or disjoint events A and B, i 

.e., A∩B = ∅, it holds that P(A∪B) = P(A)+ P(B).

 (b) For an infinite sample space S and a countable collection of pairwise  
disjoint sets Ai,i = 1,2, . . . it holds, P

(
⋃∞

i=1 Ai

)

=
∑∞

i=1 P(Ai).

This axiomatic theory was accepted by the different probability schools because, 
with some compromise, the mathematics of probability (classical, frequentist or 
subjective) may be encoded by Kolmogorov’s theory. However, the interpretation 
of what is a probability would differ according to the perspective one adheres to; 
the discussion about the meanings of probability is still very much alive in differ-
ent approaches to statistics. This link between probability and philosophy may also 
explain people’s intuitions that often conflict with the mathematical rules of prob-
ability (Borovcnik et al. 1991).

2The sample space may be finite, countably infinite or uncountably infinite. The sample space is 
countably infinite when it can be put in correspondence with the set N of natural numbers.
3For finite or countably infinite sample spaces S, A includes all subsets of S. For finite sample 
spaces A is a Boolean Algebra; in case of a countably infinite sample space, A is a σ-algebra, that 
is, it is closed under countable union and intersection operations and complement building. For 
uncountable (continuous) infinite sample spaces, the set algebra considered to assign probability 
does not include all possible subsets of S; A is restricted instead to a system of events of S, closed 
under countable union and intersection operations and forming complements (Chung 2001).
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2.1.8  Summary of Different Views

Our exposition suggests that the different views of probability described involve 
specific differences, not only in the definition of probability itself, but also in the 
related concepts, properties, and procedures that have emerged to solve various 
problems related to each view. We summarise some of these differences in Table 1, 
partially adapted from Batanero and Díaz (2007).

2.1.9  Different Views of Probability in School Curricula

The above debates were, and are, reflected in school curricula, although not all 
the approaches to probability received the same interest. Before 1970, the classi-
cal view of probability based on combinatorial calculus dominated the secondary 

Table 1  Elements characterizing the different views of probability (adapted from Batanero and 
Díaz 2007, p. 117)

Views of 
probability

Procedures Properties Some related concepts

Classical • Combinatorics
• Proportions
•  A priori analysis of the 

experiment structure

•  Proportion of favourable  
to all possible cases

•  Equiprobability of  
elementary events

• Expectation
• Fairness

Frequentist •  A posteriori collection 
of statistical data

•  Statistical analysis of 
data

• Curve fitting

•  “Limit” of relative  
frequencies in the long run

•  Objective; based on  
empirical facts

• Repeatable experiment

• Relative frequency
• Data distribution
• Convergence
• Independence of trials

Propensity •  A priori analysis of the 
experimental set up

•  Physical disposition or 
tendency

• Applicable to single cases
•  Related to the experimental 

conditions

• Propensity
•  Probabilistic causal 

tendency

Logical •  A priori analysis of the 
space of possibilities

• Propositional logic
• Inductive logic

• Objective degree of belief
• Revisable with experience
•  Relationships between two 

statements, generalises 
implication

• Evidence
• Hypothesis
• Degree of implication

Subjective • Bayes’ theorem
• Conditional probability

• Subjective character
• Revisable with experience

• Likelihood
• Exchangeability
•  A priori probability 

(or distribution)
•  A posteriori probabil-

ity (or distribution)

Axiomatic • Set theory
• Set algebra

• Measurable function • Sample space
• Certain event
• Algebra of events
• Measure

2 Survey on the State of the Art
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school curriculum in countries such as France (Henry 2010). Since this view relies 
strongly on combinatorial reasoning, the study of probability, beyond very simple 
problems, was difficult for students.

The axiomatic approach was also dominant in the modern mathematics era 
because probability was used as a relevant example of the power of set theory. 
However, in both the classical and axiomatic approaches, multiple applications 
of probability to different sciences were hidden to students. Consequently, prob-
ability was considered by many secondary school teachers as a subsidiary part 
of mathematics, dealing only with chance games, and there was a tendency to 
“reduce” the teaching of probability (Batanero 2015).

Today, with the increasing interest in statistics and technology developments, 
the frequentist approach is receiving preferential treatment. An experimental 
introduction of probability as a limit of relative frequencies is suggested in many 
curricula and standards documents (e.g., the Common Core State Standards 
in Mathematics [CCSSI] 2010; the Ministerio de Educación, Cultura y Deporte 
[MECD] 2014; and the National Council of Teachers of Mathematics [NCTM] 
2000), and probability is presented as a theoretical tool used to approach problems 
that arise from statistical experiences. At the primary school level, an intuitive 
view, where children start from their intuitive ideas related to chance and probabil-
ity, is also favoured. The axiomatic approach is not used at the school level, being 
too formal and adequate only for those who follow studies of pure mathematics at 
the post-secondary level. More details of probability contents in the school cur-
ricula will be discussed in Sect. 2.3.

2.2  Probabilistic Knowledge and Reasoning

The recent emphasis on the frequentist view and on informal approaches in the 
teaching of inference may lead to a temptation to reduce teaching probability to 
the teaching of simulations—with little reflection on probability rules. However, 
as described by Gal (2005), probability knowledge and reasoning is needed in 
everyday and professional settings for all citizens in decision-making situa-
tions (e.g., stock market, medical diagnosis, voting, and many others), as well as 
to understand sampling and inference, even in informal approaches. Moreover, 
when considering the training of scientists or professionals (e.g., engineers, doc-
tors) at university level, a more complex knowledge of probability is required. 
Consequently, designing educational programmes that help develop probability 
knowledge and reasoning for a variety of students requires the description of its 
different components.

While there is an intense discussion on the nature of statistical thinking and 
how it differs from statistical reasoning and statistical literacy (e.g., Ben-Zvi and 
Garfield 2004), the discussion of core components of probabilistic reasoning is 
still a research concern. Below we describe some points to advance future research 
on this topic.
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2.2.1  What Is Probabilistic Reasoning?

Probability constitutes a distinct approach to thinking and reasoning about real-
life phenomena. Probabilistic reasoning is a mode of reasoning that refers to 
judgments and decision-making under uncertainty and is relevant to real life, for 
example, when evaluating risks (Falk and Konold 1992). It is thinking in scenarios 
that allow for the exploration and evaluation of different possible outcomes in situ-
ations of uncertainty. Thus, probabilistic reasoning includes the ability to:

•	 Identify random events in nature, technology, and society;
•	 Analyse conditions of such events and derive appropriate modelling 

assumptions;
•	 Construct mathematical models for stochastic situations and explore various 

scenarios and outcomes from these models; and
•	 Apply mathematical methods and procedures of probability and statistics.

An important step in any application of probability to real-world phenomena is 
modelling random situations (Chaput et al. 2011). Probability models, such as the 
binomial or normal distribution, supply us with the means to structure reality: they 
constitute important tools to recognise and to solve problems. Probability-related 
knowledge relevant to understanding real-life situations includes concepts such as 
conditional probabilities, proportional reasoning, random variables, and expecta-
tion. It is also important to be able to critically assess the application of proba-
bilistic models of real phenomena. Since today an increasing number of events 
are described in terms of risk, the underlying concepts and reasoning have to be 
learned in school, and the understanding of risk by children should also be investi-
gated (Martignon 2014; Pange and Talbot 2003).

2.2.2  Paradoxes and Counterintuitive Results

Probabilistic reasoning is different from reasoning in classical two-valued logic, 
where a statement is either true or false. Probabilistic reasoning follows different 
rules than classical logic. A famous example, where the transitivity of preferences 
does not hold, is Efron’s intransitive dice (Savage 1994), where the second person 
who selects a die to play always has an advantage in the game (no matter which 
die their opponent first chooses).

Furthermore, the field of probability is replete with intuitive challenges and par-
adoxes, while misconceptions and fallacies are abundant (Borovcnik and Kapadia 
2014b). These counterintuitive results also appear in elementary probability, while 
in other areas of mathematics counterintuitive results only happen when work-
ing with advanced concepts (Batanero 2013; Borovcnik 2011). For example, it is 
counterintuitive that obtaining a run of four consecutive heads when tossing a fair 
coin does not affect the probability that the following coin flip will result in heads 
(i.e., the gambler’s fallacy).

2 Survey on the State of the Art
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Probability utilises language and terminology that is demanding and is not 
always identical to the notation common in other areas of mathematics (e.g., the 
use of Greek or capital letters to denote random variables). Yet, probability pro-
vides an important thinking mode on its own, not just a precursor of inferential 
statistics. The important contribution of probability to solve real problems justifies 
its inclusion into school curriculum.

2.2.3  Causality and Conditioning

Another component of probabilistic reasoning is distinguishing between causality 
and conditioning. Although independence is mathematically reduced to the multi-
plicative rule, a didactical analysis of independence should include discussion of 
the relationships between stochastic and physical independence and of psychologi-
cal issues related to causal explanation that people often relate to independence 
(Borovcnik 2012). While dependence in probability characterises a bi-directional 
relation, the two directions involved in conditional probabilities have a completely 
different connotation from a causal standpoint. For example, whereas the condi-
tional probability of having some virus to having a positive result on a diagnos-
tic test is causal, the backward direction of conditional probability from a positive 
diagnosis to actually having the virus is merely indicative. Alternatively stated, 
while the test is positive because of a disease, no disease is caused by a positive 
test result.

In many real-life situations the causal and probabilistic approach are intermin-
gled. Often we observe phenomena that have a particular behaviour due to some 
causal impact factors plus some random perturbations. Then the challenge, often 
attacked with statistical methods, is to separate the causal from the random influ-
ence. A sound grasp of conditional probabilities is needed to understand all these 
situations, as well as for a foundation for understanding inferential statistics.

2.2.4  Random and Causal Variation

Another key element in probabilistic reasoning is discriminating random from 
causal variation. Variability is a key feature of any statistical data, and understand-
ing of variation is a core element of statistical reasoning (Wild and Pfannkuch 
1999). However, whereas variation of different samples from the same population 
or process (e.g., height of different students) may be attributed to random effects, 
the differences between samples from different populations (e.g., heights of boys 
and girls) are sometimes explained causally. Besides, the larger the size of the 
individual variation, the smaller the amount of variation that can be attributed to 
systematic causes.

A helpful metaphor in this regard is to separate the signal (the true causal dif-
ference) from the noise (the individual random variation) (Konold and Pollatsek 
2002). Said authors characterise data analysis as the search for signals (causal 
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variations) in noisy processes (which include random variation). Borovcnik (2005) 
introduced the structural equation, which represents data as decomposed into a 
signal to be recovered and noise. Figure 1 displays five expressions of the signal-
noise idea from different perspectives. The structural equation is a core idea of 
modelling statistical data and is a metaphor for our human response to deal with 
an overwhelming magnitude of relevant and irrelevant information contained in 
observed data. How to separate causal from random sources of variation is by no 
means unique. Probability hereby acquires more the character of a heuristic tool to 
analyse reality.

Random and causal sources of variation are complementary to each other, as 
they are considered in probability models used in statistical decision processes. 
Consider, for example, the problem of deciding whether expected values of two 
random variables differ. Several realisations of each of the two single variables 
will not be identical and most likely the empirical means will not be equal. Based 
on a sample of realisations of each random variable, we perform an analysis that 
leads to the classical two-sample statistical test. Statistical inference based on 
probabilistic reasoning provides methods and criteria to decide, with a margin of 
error, when the observed differences are due to random or causal variation.

It may be surprising, and from an epistemological point of view is far from 
obvious, that patterns of variation in careful measurements or in data of many indi-
viduals can be described by the same type of mathematics that is used to charac-
terise the results of random experiments. Indeed, it is here where data and chance 
(i.e., statistics as the science of analysing data and probability as the study of ran-
dom phenomena) come together to build the powerful foundation of statistical 
inference.

However, the above is not obvious for some students, who may reveal a prevail-
ing inclination to attribute even small variation in observed phenomena to deter-
ministic causes. As is the case in the following quote from a 17-year-old student: 
“I accept the idea of randomness when I ask for the sum of two dice, but what is 
random about the weight loss of a person following a particular diet plan?” (Engel 
et al. 2008). A perspective of losing weight as a noisy process may solve the prob-
lem for the student: sticking to a particular diet plan may have an influence on 
body weight over time, described by a (deterministic) function which, however, is 
affected by individual, unforeseen, and unpredictable random influences.

Data     = 

Signal

  + 

Noise

Pattern Deviation

Structure Randomness

Model Fit Residual

Explained Unexplained variation

Fig. 1  Different versions of the structural equation

2 Survey on the State of the Art
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Wild and Pfannkuch (1999) state that people have a strong natural tendency to 
search for specific causes. This tendency leads people to search for causes even 
when an individual’s data are quite within the bounds of expected random varia-
tion. Konold (1989) has accounted for this tendency in his outcome approach. This 
tendency is, in particular, visible in secondary school students, whose adherence 
to a mechanistic-deterministic view of the world is well documented and does not 
seem to fade with increasing years of schooling (Engel and Sedlmeier 2005).

2.2.5  Probabilistic Versus Statistical Reasoning

To conclude this section we remark that probabilistic reasoning is closely related 
to, and yet different from, statistical reasoning. Statistics can be portrayed as the 
science of learning from data (Moore 2010). At first glance it may be surprising to 
recognize that data (from Latin datum, the given) can be connected with random-
ness as the unforeseen. The outcome of a random experiment is uncertain. How 
is it possible to associate measurement readings collected in a concrete physical 
context with the rather metaphysical concept of randomness, which even cannot be 
defined in exact mathematical terms?

While probabilistic reasoning aims at structuring our thinking through models, 
statistical reasoning tries to make sense of observed data by searching for mod-
els that may explain the data. Probabilistic reasoning usually starts with models, 
investigates various scenarios and attempts to predict possible realizations of ran-
dom variables based on these models. The initial points of statistical reasoning 
are data, and suitable models are fitted to these data as a means to gain insight 
into the data-producing process. These different approaches may be reconciled by 
paraphrasing Immanuel Kant’s famous statement, “Theory without data is empty, 
data without theory is blind.” Both statistical reasoning and probabilistic reasoning 
alone have their limitations and their merits. Their full power for advancing human 
knowledge comes to bear only in the synthesis acknowledging that they are two 
sides of the same coin.

2.3  Probability in School Curricula

The described need to understand random phenomena and to make adequate 
decisions when confronted with uncertainty has been recognised by many edu-
cational authorities. Consequently, the teaching of probability is included in cur-
ricula in many countries during primary or secondary education. An important 
area of research in probability education is the analysis of curricular guidelines 
and curricular materials, such as textbooks. Both topics are now commented on 
in turn.



13

2.3.1  Probability in Primary School

At the beginning of this century, the Standards of the National Council of 
Teachers of Mathematics (NCTM 2000) in the United States included the follow-
ing recommendations related to understanding and applying basic concepts of 
probability for children in Grades 3–5:

•	 Describe events as likely or unlikely and discuss the degree of likelihood using 
such words as certain, equally likely, and impossible;

•	 Predict the probability of outcomes of simple experiments and test the predictions;
•	 Understand that the measure of the likelihood of an event can be represented by 

a number from 0 to 1.

Their recommendations have been reproduced in other curricular guidelines for 
Primary school. For example, in Spain (Ministerio de Educación y Ciencia [MEC] 
2006), the language of chance and the difference between “certain,” “impossible,” 
and “possible” were introduced in Grades 1–2; in Grades 3–4 the suggestion was 
that children were encouraged to perform simple experiments and evaluate their 
results; and in Grades 5–6, children were expected to compare the likelihood of 
different events and make estimates for the probability of simple situations.

Today, some curricula include probability from the first or second levels of pri-
mary education (e.g., Australian Curriculum, Assessment and Reporting Authority 
[ACARA] 2010; MECD 2014, 2015; Ministerio de Educación Pública [MEP] 
2012; Ministry of Education [ME] 2007), while in other curricular guidelines 
probability has been delayed to either Level 6 or to secondary education (e.g., 
CCSSI 2010; Secretaría de Educación Pública [SEP] 2011). In the case of Mexico, 
for example, probability was postponed to the middle school level on the argument 
that primary school teachers have many difficulties in understanding probability 
and therefore are not well prepared to teach the topic.

A possible explanation for the tendency to delay teaching probability is its 
diminished emphasis in some statistics education researchers’ suggestions that sta-
tistical inference be taught with an informal approach. This change does not take 
into account, however, the relevance of educating probabilistic reasoning in young 
children, which was emphasised by Fischbein (1975), or the multiple connections 
between probability and other areas of mathematics as stated in the Guidelines for 
Assessment and Instruction in Statistics Education (GAISE) for pre-K-12 levels 
(Franklin et al. 2007, p. 8): “Probability is an important part of any mathematical 
education. It is a part of mathematics that enriches the subject as a whole by its 
interactions with other uses of mathematics.”

2.3.2  Probability at the Middle and High School Levels

There has been a long tradition of teaching probability in middle and high school cur-
ricula where the topics taught include compound experiments and conditional prob-
ability. For example, the NCTM (2000) stated that students in Grades 6–8 should:
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•	 Understand and use appropriate terminology to describe complementary and 
mutually exclusive events;

•	 Use proportionality and a basic understanding of probability to make and test 
conjectures about the results of experiments and simulations;

•	 Compute probabilities for simple compound events, using such methods as 
organised lists, tree diagrams, and area models.

In Grades 9–12 students should:

•	 Understand the concepts of sample space and probability distribution and con-
struct sample spaces and distributions in simple cases;

•	 Use simulations to construct empirical probability distributions;
•	 Compute and interpret the expected value of random variables in simple cases;
•	 Understand the concepts of conditional probability and independent events;
•	 Understand how to compute the probability of a compound event.

Similar content was included, even reinforced, in other curricular guidelines, such 
as ACARA (2010), Kultusministerkonferenz (KMK) (2004, 2012), MEC (2007a, 
b), MECD (2015), and SEP (2011). For example, in Spain and South Australia the 
high school curriculum (MEC 2007b; MECD 2015; Senior Secondary Board of 
South Australia (SSBSA) 2002) for social science students includes the binomial 
and normal distributions and an introduction to inference (sampling distributions, 
hypothesis tests, and confidence intervals). In Mexico, there are different high 
school strands; in most of them a compulsory course in probability and statistics is 
included. In France, the main statistical content in the last year of high school (ter-
minale, 17-year-olds) is statistical inference, e.g., confidence intervals, intuitive 
introduction to hypothesis testing (Raoult 2013). In the last level of high school, 
CCSSI (2010) also recommends that U.S. students use sample data and simulation 
models to estimate a population mean or proportion and develop a margin of error 
and that they use data from randomised experiments to compare two treatments 
and decide if differences between parameters are significant.

2.3.3  Fundamental Probabilistic Ideas

A key point in teaching probability is to reflect on the main content that should be 
included at different educational levels. Heitele (1975) suggested a list of funda-
mental probabilistic concepts that played a key role in the history of probability 
and are the basis for the modern theory of probability. At the same time, people 
frequently hold incorrect intuitions about their meaning or application in absence 
of instruction. This list includes the ideas of random experiment and sample space, 
the addition and multiplication rule, independence and conditional probability, 
random variables and distribution, combinations and permutations, convergence, 
sampling, and simulation. Below we briefly comment on some of these ideas, 
which were analysed by Batanero et al. (2005a, b):
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•	 Randomness. Though randomness is a foundational concept in probability (ran-
dom variation, random process, or experiment), it is a “fuzzy” concept, not 
always defined in textbooks. Research shows the coexistence of different inter-
pretations as well as misconceptions held by students and suggests the need to 
reinforce understanding of randomness in students (Batanero 2015).

•	 Events and sample space. Some children only concentrate on a single event 
since their thinking is mainly deterministic (Langrall and Mooney 2005). It is 
then important that children understand the need to take into account all differ-
ent possible outcomes in an experiment to compute its probability.

•	 Combinatorial enumeration and counting. Combinatorics is used in listing all 
the events in a sample space or in counting (without listing) all its elements. 
Although in the frequentist approach we do not need combinatorics to estimate 
the value of probability, combinatorial reasoning is nevertheless needed in other 
situations, for example, to understand how events in a compound experiment are 
formed or to understand how different samples of the same size can be selected 
from a population. Combinatorial reasoning is difficult; however, it is possible 
to use tools such as tree diagrams to help students reinforce this particular type 
of reasoning.

•	 Independence and conditional probability. The notion of independence is 
important to understand simulations and the empirical estimates of probability 
via frequency, since when repeating experiments we require independence of 
trials. Computing probabilities in compound experiments requires one to ana-
lyse whether the experiments are dependent or not. Finally, the idea of condi-
tional probability is needed to understand many concepts in probability and 
statistics, such as confidence intervals or hypotheses tests.

•	 Probability distribution and expectation. Although there is abundant research 
related to distribution, most of this research concentrates on data distribution or 
in sampling distribution. Another type of distribution is linked to the random 
variable, a powerful idea in probability, as well as the associated idea of expec-
tation. Some probability distribution models in wide use are the binomial, uni-
form, and normal distributions.

•	 Convergence and laws of large numbers. The progressive stabilization of 
the relative frequency of a given outcome in a large number of trials has been 
observed for centuries; Bernoulli proved the first version of the law of large 
numbers that justified the frequentist definition of probability. Today the fre-
quentist approach, where probability is an estimate of the relative frequency of 
a result in a long series of trials, is promoted in teaching. It is important that 
students understand that each outcome is unpredictable and that regularity is 
only achieved in the long run. At the same time, older students should be able to 
discriminate between a frequency estimate (a value that varies) and probability 
(which is always a theoretical value) (Chaput et al. 2011).

•	 Sampling and sampling distribution. Given that we are rarely able to study com-
plete populations, our knowledge of a population is based on samples. Students 
are required to understand the ideas of sample representativeness and sampling 
variability. The sampling distributions describe the variation of a summary 
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measure (e.g., sample means) along different samples from the same popula-
tion. Instead of using the exact sampling distribution (e.g., a normal curve), 
teaching currently favours the use of simulation or re-sampling to find an 
empirical sampling distribution. This is a suitable teaching strategy, but teachers 
should be conscious that, as any estimate, the empirical sampling distribution 
only approximates the theoretical sampling distribution.

•	 Modelling and simulation. Today we witness increasing recommendations 
to approach the teaching of probability from the point of view of modelling 
(Chaput et al. 2011; Eichler and Vogel 2014; Prodromou 2014). Simulation 
allows the exploration of probability concepts and properties, and is used in 
informal approaches to inference. Simulation acts as an intermediary step 
between reality and the mathematical model. As a didactic tool, it can serve to 
improve students’ probabilistic intuition, to acquire experience in the work of 
modelling, and to help students discriminate between model and reality.

2.4  Intuitions and Learning Difficulties

When teaching probability it is important to take into account the informal ideas 
that children and adolescents assign to chance and probability before instruction. 
These ideas are described in the breadth and depth of research investigating proba-
bilistic intuitions, informal notions of probability, and resulting learning difficul-
ties. Topics associated with teaching and learning probability, such as intuition, 
informal notions of probability, cognition, misconceptions, heuristics, knowledge, 
learning, reasoning, teaching, thinking, and understanding (among others), have 
developed over the last 60 years of research investigating probabilistic thinking 
(Chernoff and Sriraman 2014a).

We now revisit the essentials associated with probabilistic intuition and diffi-
culties associated with learning probability. Framing our historical approach, we 
adopt the periods of Jones and Thornton’s (2005) “historical overview of research 
on the learning and teaching of probability” (p. 66), which was recently extended 
by Chernoff and Sriraman (2014b).

2.4.1  Piagetian and Post-piagetian Periods

Initial research in probability cognition was undertaken during the 1950s and 1960s 
by Piaget and Inhelder and by psychologists with varying theoretical orientations 
(Jones and Thornton 2005). Research during this period was dominated by the work 
of Piaget and Inhelder,4 which largely investigated “developmental growth and 
structure of people’s probabilistic thinking” (p. 65). Extensive investigations would 

4To such an extent that Jones and Thornton denoted this period of research as “Piagetian Period.”
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reveal that children in particular stages were prone to subjective intuitions (Piaget 
and Inhelder 1951/1975). Alternatively stated, research investigating intuition and 
learning difficulties was central at the beginnings of research in probabilistic think-
ing and would continue on into the next (historical) phase of research.

The next phase of research, the “Post-piagetian Period,” would be dominated, 
on the one hand, by work of Efraim Fischbein and, on the other hand, by Daniel 
Kahneman and Amos Tversky (Jones and Thornton 2005). The work of Fischbein 
would continue the work of Piaget and Inhelder (i.e., a continued focus on prob-
abilistic intuitions), but introduce and explicate a distinction between what he 
denoted as primary and secondary intuitions. More specifically, Fischbein’s (1975) 
notion of primary intuitions (not associated with formal instruction) continued the 
work of Piaget and Inhelder’s research, but he differentiated his work during this 
period by investigating secondary intuitions (associated with formal instruction) 
and, further, how primary intuitions would not necessarily be overcome but rather 
replaced by secondary intuitions.

2.4.2  Heuristics and Biases Program

As mentioned, other investigations involving intuition were occurring in the field 
of psychology during this period, using different terminology.5 Kahneman and 
Tversky’s original heuristics and biases program (see, for example, Kahneman 
et al. 1982), which became widely known (e.g., Kahneman 2011) and was revis-
ited 20 years later (Gilovich et al. 2002), was, in essence, an in-depth investigation 
into intuitions (and learning difficulties).

Kahneman and Tversky’s research program investigated strategies that peo-
ple used to calculate probabilities (heuristics) and the resultant systematic errors 
(biases). Their research revealed numerous heuristics (e.g., representativeness, 
availability and adjustment, and anchoring) and resulting biases. Years after gener-
alising the notion of heuristics (Kahneman and Frederick 2002), Kahneman (2011) 
noted the essence of intuitive heuristics: “when faced with a difficult question, 
we often answer an easier one instead, usually without noticing the substitution” 
(p. 12). This research program played a key role in shaping many other fields of 
research (see, for example, behavioural economics).

In the field of mathematics education, the research of Shaughnessy (1977, 
1981) brought forth not only the theoretical ideas of Tversky and Kahneman, 
but also, in essence, research on probabilistic intuitions and learning difficulties. 
Although not explicitly deemed as intuitions and difficulties, work in this general 
area of research was conducted by a number of different individuals.

In particular, Falk’s (1981) research investigated difficulties associated with 
learning probability, and Konold (1989, 1991) conducted research looking into 
informal conceptions of probability (most notably the outcome approach). As the 

5The theoretical constructs adopted by Daniel Kahneman and Amos Tversky differed from those 
of Fischbein and colleagues (e.g., Fischbein et al. 1970) and Piaget and Inhelder.
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Post-piagetian Period came to a close, the field of mathematics education began to 
see an increasing volume of research on intuitions and learning difficulties (e.g., 
Green 1979, 1983, 1989; Fischbein and Gazit 1984), which is well summarised 
and synthesised in Shaughnessy’s (1992) extensive chapter on research in prob-
ability and statistics education. Moving from one period to the next, research into 
probabilistic intuitions and learning difficulties would come into its own during 
what Jones (2005) called Phase Three: Contemporary Research.

2.4.3  Contemporary Research

During this new phase there was, arguably, a major shift towards investigating 
curriculum and instruction, and the leadership of investigating probabilistic intui-
tions and learning difficulties was carried on by a particular group of researchers. 
Worthy of note, mathematics education researchers in this phase, as the case with 
Konold (1989, 1991) and Falk (1981) in the previous phase, began to develop their 
own theories, frameworks, and models associated with responses to a variety of 
probabilistic tasks.

These theories, frameworks, and models were developed during research that 
investigated a variety of topics in probability, which included (difficulties associ-
ated with): randomness (e.g., Batanero et al. 2014; Batanero and Serrano 1999; 
Falk and Konold 1997; Pratt 2000), sample space (Jones et al. 1997, 1999; Nunes 
et al. 2014), and probabilistic reasoning (Fischbein et al. 1991; Fischbein and 
Schnarch 1997; Lecoutre 1992; Konold et al. 1993). Worthy of note, the term mis-
conception, which acted as the de facto terminology for a number of years, has 
more recently evolved to preconceptions and other variants, which are perhaps 
better aligned with other theories in the field of mathematics education. In line 
with the above, research developing theories, models, and frameworks associated 
with intuition and learning difficulties continued into the next phase of research, 
which Chernoff and Sriraman (2014a) have (prematurely) called the Assimilation 
Period.

After more than 50 years of research investigating probabilistic intuitions and 
difficulties associated with learning probability, the field of mathematics educa-
tion has, in essence, come into its own, which is evidenced by the type of research 
being conducted and the manner in which results are presented. Gone are the 
early days where researchers were attempting to replicate research found in dif-
ferent fields, such as psychology (e.g., Shaughnessy 1977, 1992). With that said, 
researchers are attempting to import theories, models, and frameworks from other 
fields; however, researchers in the field of mathematics education are forging their 
own interpretations of results stemming from the intuitive nature and difficulties 
associated with probability thinking and the teaching and learning of probability. 
Theories, models, and frameworks such as inadvertent metonymy (Abrahamson 
2008, 2009), sample space partitions (Chernoff 2009, 2012a, b), and others dem-
onstrate that research into intuitions and difficulties continues in the field of math-
ematics education.
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This does not mean, however, that the field does not continue to look to other 
domains of research to help better inform mathematics education. For example, 
recent investigations (e.g., Chernoff 2012a, b) have gone back to their proverbial 
roots and integrated recent developments to the heuristics and biases program, 
which attempts to deal with the “arrested development of the representativeness 
heuristic in the field of mathematics education” (Chernoff 2012a, p. 951). Similar 
investigations embracing research from other fields have opened the door to alter-
native views of heuristics, intuitions, and learning difficulties, such as in the work 
by Gigerenzer and the Adaptive Behavior and Cognition (ABC) Group at the Max 
Planck Institute for Human Development in Berlin (e.g., Gigerenzer et al. 2011).

Based on these developments, the field of mathematics education is starting to 
also develop particular research which is building upon and questioning certain 
aspects of probabilistic intuitions and learning difficulties. For example, Chernoff, 
in a recent string of studies (e.g., Chernoff 2012a, b; Chernoff and Zazkis 2011), 
has begun to establish that perhaps normatively incorrect responses to a variety of 
probabilistic tasks are best accounted for not by heuristics or informal reasoning, 
but rather participants’ use of logical fallacies.

In considering how students reason about probability, advances in technol-
ogy and other educational resources have allowed for another important area of 
research, as described in the next section.

2.5  Technology and Educational Resources

Many educational resources have been used to support probability education. 
Some of the most common resources include physical devices such as dice, coins, 
spinners, marbles in a bag, and a Galton board that help create game-like scenarios 
that involve chance (Nilsson 2014). These devices are often used to support a clas-
sical approach to probability for computing the probability of an event occurring 
a priori by examining the object and making assumptions about symmetry that 
often lead to equiprobable outcomes for a single trial. When used together (e.g., 
two coins, a die, and a four-section spinner) these devices can be used to explore 
compound events and conditional probabilities (e.g., Martignon and Krauss 2009). 
Organizational tools such as two-by-two tables and tree diagrams are also used to 
assist in enumerating sample spaces (Nunes et al. 2014) and computing probabili-
ties and can serve as important educational resources for students.

Since physical devices can also be acted upon, curriculum resources and teach-
ers have increased the use of experiments with these devices to induce chance 
events (e.g., by rolling, spinning, choosing, or dropping a marble), often using 
relatively small sample sizes and recording frequencies of events. These frequen-
cies and relative frequencies are used as an estimate of probability in the frequen-
tist perspective, then often compared to the a priori computed probability based 
on examination of the object. Research by Nilsson (2007, 2009), for example, 
provides insights into students’ thinking when engaged with experiments with 
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such physical devices. Depending on the teachers’ or the students’ perspective, 
these experiments may favour one estimate of probability over another and issues 
related to sample size and the law of large numbers, or the difference between fre-
quency and probability may or may not be discussed (Stohl 2005).

Many researchers (e.g., Chaput et al. 2011; Eicher and Vogel 2014; Lee and Lee 
2011; Pratt 2011; Pratt and Ainley 2014; Prodromou 2014), and some curricula (e.g., 
CCSSI 2010; Raoult 2013), have recently emphasised that probability be taught as a 
way to model real-world phenomena rather than merely as an abstract measurement 
of something unseen about a real physical object (e.g., measure of likelihood of land-
ing on heads when a coin is tossed). The sentiment is expressed by Pratt (2011):

Of course, if the modelling meaning of probability was stressed in the curriculum, it is 
debatable whether there is much advantage in maintaining the current emphasis on coins, 
spinners, dice and balls drawn from a bag. Perhaps, in days gone by when children played 
board games, there was some natural relevance in such contexts but, now that games take 
place in real time on screens, probability has much more relevance as a tool for modelling 
computer-based action and for simulating real-world events and phenomena (p. 892).

One way to help students use probability to model real-world phenomena is to 
engage the necessity to make a model explicit when using technology. In Biehler’s 
(1991) insightful comments on how technology should be used in probability 
education, he recommended several ways technology could advance learning and 
teaching probability. Sampling, storing, organising, and analysing data generated 
from a probabilistic model are facilitated tremendously by technology. These rec-
ommendations have been used by many researchers and have recently been made 
explicit for recommendations for teachers by Lee and Lee (2011) and for research-
ers by Pratt and Ainley (2014) and Pratt et al. (2011a, b).

Accordingly, we still need to make substantial progress to investigate how stu-
dents’ learning of probability models can be supported by the affordances of tech-
nology tools that will be used to frame the remaining discussion in the next sections.

2.5.1  Replicating Trials and Storing Data

One major contribution of technology to the study of probability is the ability to 
generate a large sample of data very quickly, store data in raw form as a sequence 
of outputs or organised table of frequencies, and collapse data into various aggre-
gate representations. At times, the number of trials to perform is dictated by a 
teacher/researcher because of a pedagogical goal in mind; however, at other times, 
the number of trials is left open to be chosen by students.

Several researchers have discussed what students notice about sample size, 
particularly when they are able to examine its impact on variability in data dis-
tributions (e.g., Lee and Lee 2009; Lee et al. 2010; Pratt 2000). The ability of 
technology tools such as Probability Explorer or Fathom to store long lists of data 
sequences can also afford opportunities for students to examine a history of out-
comes in the order in which they occurred, as well as conveniently collapsed in 
frequency and relative frequency tables and graphs.
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2.5.2  Representing and Analysing Data

Technology tools bring real power to classrooms by allowing students to rapidly 
generate a large amount of data, quickly create tabular and graphical representa-
tions, and perform computations on data with ease. Students can then spend more 
time focused on making sense of data in various representations. Different repre-
sentations of data in aggregate form can afford different perspectives on a prob-
lem. In addition, technology facilitates quickly generating, storing, and comparing 
multiple samples, each consisting of as many trials as desired. Instead of having 
each student in a class collect a small amount of data and then pool the data to 
form a class aggregate, students (or small groups) can generate individual samples 
of data, both small and large, and engage in reasoning about their own data as well 
as contribute to class discussions that examine results across samples (Stohl and 
Tarr 2002).

Technology can also provide opportunities for students to make sense of how 
an empirical distribution changes as data is being collected. This dynamic view 
of a distribution can assist students in exploring the relationship between a prob-
ability model and a resulting empirical distribution and how sample size impacts 
the variability observed (Drier 2000; Pratt et al. 2011a, b). This relies upon intui-
tions about laws of large numbers; such intuitions may be strengthened by observ-
ing the settling down of relative frequency distributions as trials are simulated and 
displayed in real time. This type of work provides promising tasks and technol-
ogy tools as well as future directions for how we can build on this work to better 
understand students’ reasoning with such dynamic representations.

2.5.3  Probability Technological Models

It is important to investigate the opportunities that technology affords for teach-
ers and students to discuss explicitly the assumptions needed to build models to 
describe real-world scenarios through simulation. The model-building process 
should include discussing the pertinent characteristics of a situation being mod-
elled, while in the same way simplifying reality (Chaput et al. 2011; Eichler and 
Vogel 2014). In the next steps, creating a mathematical model and working with it, 
the student should find ways to partition the events in which the probabilities are 
easily identifiable, using physical “chance makers” to model the random processes 
if possible and building and working with a simulated model with technological 
tools. Such steps are opportunities for students to grow in their understandings 
of a situation, the model, and many probability ideas. Using various technology 
tools (e.g., a graphing calculator, spreadsheet, or software such as Fathom or 
TinkerPlots) to create simulations for the same situation can force students to con-
sider carefully how different commands in a tool can be used to create a model for 
a situation. Further, this can afford opportunities for discussing why two differ-
ent ways of modelling a situation may be similar or different and differentiating 
between model and reality.
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The modelling process may be as “simple” as having students design a discrete 
probability distribution that models a real spinner with three unequal sectors (e.g., 
Stohl and Tarr 2002) or designing a working model to consider whether larger 
families tend to either have more girls or more boys rather than the same number 
of boys and girls (Lee and Lee 2011). Modelling may also be as complex as inter-
preting medical information using input probabilities from real-life scenarios such 
as success or complications from back surgery to help a patient make an important 
life decision (e.g., Pratt et al. 2011a, b).

Several tasks and tools discussed by Prodromou (2014) and Pratt and Ainley 
(2014) illustrate the importance of the ability to adjust parameters in a model-
building and model-fitting process. The ability to easily adjust parameters in a 
model can afford many opportunities for students to explore “what if” scenarios. 
It allows for a process of model development, data generation and analysis, and 
model adjustment. Konold and Kazak (2008), for example, described how this 
process helped students in creating and modifying models based on how well a 
particular model behaved when a simulation was run.

2.5.4  Hiding a Model

Engaging with probability models and the data generated from such models can 
provide very important foundations for how probability is used in statistics, par-
ticularly in making inferences about populations and testing hypotheses. In the 
above cases, the models used in a simulation are typically created by students or 
created by a teacher but open for inspection by students. However, technology 
tools afford the ability to hide a model from the user such that underlying prob-
ability distributions that control a simulation are unknowable. These “black-box” 
types of simulations may assist students in thinking about probability from a sub-
jective or frequentist perspective where they can only use data generated from 
a simulation to make estimates of probabilities that they can use in inference or 
decision-making situations. One example of such inference and decision-making 
situations can be found in the work of Lee et al. (2010) where 11- and 12-year-
olds investigate whether a die company produces fair dice to make a decision 
about whether to buy dice from the company for a board game.

In summary, technology provides a big opportunity for probability education 
but also sets some challenges. One of them is the education of teachers to teach 
probability in general and to use technology in their teaching of probability in par-
ticular. We deal with this specific issue in the last section of our survey.

2.6  Education of Teachers

A consequence of the philosophical debates around the meaning of probability, 
the particular features of probabilistic reasoning, the students’ misconceptions and 
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difficulties, and the increasing variety of technological resources is that teachers 
need specific preparation to teach probability. Although school textbooks provide 
examples and teaching resources, some texts present too narrow a view of prob-
abilistic concepts or only one approach to probability. The applications of prob-
ability in textbooks may be restricted to games of chance and/or the definitions of 
concepts may be incorrect or incomplete (Cañizares et al. 2002).

Research in this area is scarce and is mostly focussed on the evaluation of pro-
spective teachers’ knowledge of probability (e.g., Batanero et al. 2014; Chernoff 
and Russel 2012). While there is still need for further research into prospective 
and practising teacher probability knowledge, two important missing areas of 
research in probability education are the analysis of the components of teachers’ 
knowledge and the design of adequate materials and effective activities for educat-
ing teachers.

2.6.1  Components in Teacher Knowledge

Existent models of the knowledge needed by teachers in mathematics educa-
tion, such as mathematical knowledge for teaching (MKT; Ball et al. 2008), sug-
gest that teachers need different types of content and pedagogical knowledge. 
However, as stated by Godino et al. (2011) and Groth and Bergner (2013), for the 
particular case of statistical knowledge for teaching (SKT) it is important to rec-
ognise that teachers need content-specific knowledge to guide instruction. This 
means that any discussion of probability knowledge for teaching (PKT) should be 
supported in the specific features of probability.

First, teachers need adequate probabilistic knowledge. However, even if pro-
spective teachers have a degree in mathematics, they have usually only studied 
theoretical probability and lack experience in designing investigations or simula-
tions to work with students (Kvatinsky and Even 2002; Stohl 2005). The educa-
tion of primary school teachers is even more challenging, because few of them 
have had suitable training in either theoretical or applied probability (Franklin 
and Mewborn 2006). Moreover, recent research suggests that many prospective 
teachers share with their students common biases in probabilistic reasoning (e.g., 
Batanero et al. 2014; Prodromou 2012)

A second component is the pedagogical knowledge needed to teach probabil-
ity, where general principles valid for other areas of mathematics are not always 
appropriate (Batanero et al. 2004). For example, in arithmetic or geometry, ele-
mentary operations can be reversed, and this reversibility can be represented by 
concrete materials, which serve to organise experiences where children progres-
sively abstract the structure behind the concrete situation. The lack of reversibility 
in random experiences makes it more difficult for children to grasp the essential 
features of randomness, which may explain why they do not always develop cor-
rect probabilistic intuitions without a specific instruction.

In addition to the above, probability is difficult to teach because the teacher 
should not only present different probabilistic concepts and their applications but 
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be aware of the different meanings of probability and philosophical controversies 
around them (Batanero et al. 2004). Finally, teachers should be acquainted with 
research results that describe children’s reasoning and beliefs in uncertain situa-
tions and with didactic materials that can help their students develop correct intui-
tions in this field.

The current use of technology warrants special considerations in the educa-
tion of teachers that should be analysed. Lee and Hollebrands (2011) introduced a 
framework to describe what they call technological pedagogical statistical knowl-
edge (TPSK) with examples of components in this knowledge. The evaluation and 
development of components in this framework for the specific case of probability 
is a promising research area.

2.6.2  Effective Ways to Train Teachers

Another line of research is designing and evaluating suitable and effective tasks 
that help in increasing the probabilistic and didactic knowledge of teachers. Some 
researchers describe different experiences directed towards achieving this goal.

Teachers should engage with and analyse probability simulations and inves-
tigations. Simulations and experiments are recommended when working with 
students. To be able to use investigations in their own classrooms, teachers need 
competencies with this approach to teaching. When the time available for educat-
ing teachers is scarce, one possibility is to give teachers first a project or investiga-
tion to work with and, when finished, carry out a didactical analysis of the project. 
This type of analysis can help to simultaneously increase the teachers’ mathemati-
cal and pedagogical knowledge (Batanero et al. 2004).

Teachers should engage with case discussions. Groth and Xu (2011) used case 
discussion among a group of teachers as a valuable strategy to educate teachers. 
The authors indicated that in teaching stochastics teachers navigate between two 
layers of uncertainty. On the one hand, uncertainty is part of stochastic knowledge; 
on the other hand, in any classroom uncertainty appears as a result of the dynamic 
interactions amongst teacher, students, and the topic being taught. Discussions 
among the teachers may help them to increase their knowledge since experiences 
with general pedagogy, mathematical content, and content-specific pedagogy can 
be offered and debated.

Teachers also need experience planning and analysing a lesson. When teachers 
plan and then analyse a lesson devised to teach some content they develop their 
probabilistic and professional knowledge (Chick and Pierce 2008). Teachers need 
to understand the probability they teach to their students. One strategy is to have 
teachers play the role of a learner and afterwards analyse what they learnt. If they 
have the chance to go through a lesson as a learner and at the same time look at it 
from the point a view of a teacher, they may understand better how the lesson will 
unfold later in the classroom.

Teachers should have extensive experience working with technology. We can 
also capitalise on technology as a tool-builder for teachers gaining a conceptual 
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understanding of probabilistic ideas. Lee and Hollebrands (2011) describe the way 
technology can function both as amplifiers and reorganisers of teachers’ knowl-
edge. They also discuss how technology can provide teachers with first-hand expe-
rience about how these tools can be useful in improving their stochastic thinking 
and knowledge. Other examples describe experiences and courses specifically 
directed to train teachers to teach probability or suggestions of how this training 
should be (e.g., Batanero et al. 2005a, b; Dugdale 2001; Kvatinsky and Even 2002; 
Stohl 2005).

Research and development in teacher education related to probability education 
is still scarce and needs to be fostered.

3  Summary and Looking Ahead

In the previous sections we analysed the multifaceted nature of probability, the 
probabilistic contents in curricula, research dealing with intuitions and misconcep-
tions, the role of technology, and the education of teachers. To finish this survey 
we suggest some points where new research is needed.

Different views on probability: As discussed in Sect. 2.1, the different views 
of probability are linked to philosophical debates, and the school curricula at 
times has given too much emphasis to only one probability view. Since different 
views of probability are complementary (Henry 2010), reducing teaching to just 
one approach may explain some learning difficulties, as students may consider or 
apply only one interpretation in situations where it is inappropriate. Some research 
questions on this topic include: (a) an analysis of the particular views of proba-
bility implicit in curricular documents and textbooks for different school levels, 
(b) an exploration and consequent recommendations about the best age at which a 
particular view of probability should be introduced to students and about the best 
sequence to introduce different approaches to probability, (c) the design and evalu-
ation of curricular guidelines for different ages that take into account each par-
ticular view of probability, and (d) the analyses of teachers’ educational needs in 
relation to each particular view of probability.

Probabilistic thinking and reasoning: Our analysis in Sect. 2.2 suggests that 
probabilistic reasoning complements logical, causal, and statistical reasoning. 
Consequently, the teaching of probabilistic thinking is important and justified in 
its own right and not simply as a tool to pave the way to inferential methods of 
statistics. Important research problems in this regard are: (a) clarifying the way in 
which probabilistic thinking could contribute to improving mathematical compe-
tencies of students, (b) analysing how different probability models and their appli-
cations can be presented to the students, (c) finding ways in which it is possible 
to engage students in questions related to how to obtain knowledge from data and 
why a probability model is suitable, and (d) how to help students develop valid 
intuitions in this field.

2 Survey on the State of the Art
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Probability in school curricula: Another important area of research is to 
enquire about how the fundamental ideas of probability have been reflected in 
school curricula at different levels and in different countries. The presentation 
of these ideas in textbooks for different curricular levels should also been taken 
into account (following previous research, e.g., Azcárate et al. 2006; Jones and 
Tarr 2007). We also need to find different levels of formalisation to teach each of 
these ideas depending on age and previous knowledge of students. Consequently, 
it is important to reflect on the main ideas that students should acquire at different 
ages, appropriate teaching methods, and suitable teaching situations.

Students’ intuitions and learning difficulties: As suggested in previous research, 
probabilistic intuitions and difficulties in learning probability, albeit described in 
a variety of different forms, are a mainstay of research in psychology and math-
ematics education. Further, as the field grows and diversifies, there is reason to 
expect that this particular thread of research will not only continue but also grow. 
Important research questions in this area are: (a) describing primary school chil-
dren’s preconceptions and intuitions in relation to new probability content in 
school curricula, (b) analysing changes in students’ intuitions about different prob-
ability concepts after specific teaching experiments, and (c) how “best” to account 
for preconceptions and difficulties.

Technology and education of teachers: The quick changes in technological 
development suggest a need for new research on students’ use of technology to 
solve real problem scenarios that use probability models. We need to know more 
about how students construct models and how they reason with data generated from 
such models. It is also important to evaluate the impact of technology on recent 
curricula and on the education of teachers. There is also a need for more systematic 
research about how teachers and students use technology in classrooms and how 
large-scale assessment should respond to capture new meanings for probability that 
may emerge from students working with probability using technology tools.

In conclusion, in this brief survey we have tried to summarise the extensive 
research in probability education. At the same time we intended to convince our 
readers of the need for new research and the many different ideas that still need 
to be investigated. We hope to have achieved these goals and look forward to new 
research in probability education.
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