
1

Chapter 1

Cyber Security in the
Mobile Age

The number of new security threats identified every month continues
to rise. We have concluded that security has now become the third
pillar of computing, joining energy-efficient performance and Internet
connectivity in importance.

—Paul S. Otellini

This book is an in-depth technical introduction to an embedded system developed
and manufactured by Intel Corporation. The embedded system is not an independent
product; it is a native ingredient inside most of Intel’s computer product portfolio,
which includes servers, desktops, workstations, laptops, tablets, and smartphones.
Although not well known to most end users, the embedded system plays a critical role
in many consumer applications that people use every day. As such, its architecture,
implementation, and security features are worth studying.

Depending on the end product in which the embedded engine resides, the engine is
denominated differently:

For the embedded system shipped with computing devices •	
featuring Intel Core family microprocessors, it is called the
management engine.

For the embedded system shipped with computing devices •	
featuring the Intel Atom system-on-chip (SoC), it is called the
security engine. Note that not all Atom platforms use the security
engine introduced in this book.

For the sake of convenience, this book refers to it as the security and management
engine, the embedded engine, or simply the engine.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191290913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 1 ■ Cyber SeCurity in the Mobile age

2

Three Pillars of Mobile Computing
In August 2010, Intel announced the acquisition of security giant McAfee. Paul S. Otellini,
Intel’s president and CEO at the time, emphasized that “security has become the third
pillar of computing” when commenting on the investment. The other two pillars of
computing are energy-efficient performance and Internet connectivity.

The three pillars summarize the core characteristics for computing, especially
mobile computing. Intel’s security and management engine is an embedded component
that serves as the backbone that supports the three pillars for multiple forms of
computers, including mobile endpoints, desktops, workstations, and servers. As its
name indicates, the engine’s main functionalities are security and management. In the
meantime, power efficiency and connectivity are also addressed in its design.

Power Efficiency
Mobile devices distinguish themselves from stationary platforms in mobility and
independence of AC (alternating current) power supply. The battery life is hence an
important factor for evaluating the quality of a mobile product. Before the battery
technology sees a major breakthrough, computer manufacturers have to strive to deliver
hardware and software with low energy consumption.

A number of general strategies can be employed to save power:

Decrease the processor’s clock frequency, with the potential •	
tradeoff of performance. For example, the security and
management engine runs at a significantly lower speed than the
platform’s main processor. This is possible without degrading
the user experiences, because the engine is not designed to be
involved in performance-critical paths.

Dim the display screen and shut down devices that are not being •	
used or place them in sleep states. For example, after being idle
for a configurable amount of time, like 30 seconds, the security
and management engine may completely power off or run in
a low-power state with very low clock frequency. Events that
may wake up the engine to its full-power state include device
interrupts and messages received from the host operating system.

Simplify and adjust hardware and software logic. Redundant •	
routines should be removed. For example, applying blinding to
public key operations is meaningless, because there is no secret
to be secured from side-channel attacks; whenever feasible, favor
performance over memory consumptions for runtime programs.
These are part of the design guidelines for the security and
management engine.

Chapter 1 ■ Cyber SeCurity in the Mobile age

3

Internet Connectivity
Needless to say, the majority of applications running on a mobile device rely on network
connections to function. Looking into the architecture, there are two models of splitting
the workload between the local device and the cloud:

The main functionality of the cloud is storage, for contents such •	
as movies, music, and personal files. The local device carries
out most of computational tasks. This model requires stronger
computing capability of the mobile devices, which may imply
higher prices.

Besides storage, the cloud also performs a certain amount of •	
computations for the device. The device is responsible for only
limited computations, and its main tasks are input and output.
This model is advantageous in lowering the cost of the device.
However, it requires high network bandwidth and powerful
servers that are able to support a large number of devices
simultaneously.

Security
Security is not standalone, but closely relevant to the other two pillars. Security is
becoming vitally important for computers, thanks to the increasing connectivity. While
enjoying all the benefits and conveniences the Internet has to offer, connected devices
are also exposed to widespread attackers, viruses, and malware on the open network. The
new challenges of securing mobile platforms are originated from three characteristics of
mobile computing:

•	 Always connected: Smartphones and tablets may never be turned
off. Attacks can be mounted at any time and take any amount
of time.

•	 Large data transmission: Because of its convenience, mobile
devices are used more often for operations that involve secure
data transmission with servers, for example, web site logon,
financial transaction, online purchase, and so forth. This makes
attacks that require collecting a large amount of data more likely
to succeed.

•	 Privacy: Mobile devices hold sensitive data that would not
normally appear on stationary computers. The data includes
but is not limited to phonebook and location information.
A security objective for mobile devices is to protect users’
personal information.

To mitigate these threats, security researchers have invented and deployed various
countermeasures to safeguard computers and prevent leakage and abuse of assets. They
include software-based solutions, like antivirus programs, firewalls, and so on, and
hardware-based solutions, such as secure boot.

Chapter 1 ■ Cyber SeCurity in the Mobile age

4

Now let’s take a look at the relationship between security and power. Unfortunately,
improvements in security and reduction in energy consumption are largely contradictory.
A security measure, although an essential element, costs power to accomplish its
work that is not functionally beneficial. However, an insecure system is not practically
usable. Well-designed cryptography and security implementations can provide desired
protection strengths with minimum power consumption. The following are some
strategies that can be considered:

Offload intensive mathematical operations to hardware engines •	
that operate at lower frequency. Most cryptography algorithms
are built on complex mathematics. The dedicated hardware
should feature specific logic for underlying operations, so the
calculation can be completed faster with lower power, compared
to general-purpose processors.

Utilize efficient algorithms and parameters; for example, when •	
designing elliptic curve cryptography, select the curves carefully,
and use the ones that require the fewest operations without
degrading the security strength.

Avoid overengineering. Choose algorithms and key sizes •	
that meet, but don’t overwhelmingly exceed, robustness
requirements. For example, using a public key cryptosystem with
security strength of 256 bits to protect a 128-bit symmetric key is a
waste of computing power.

Store keys and other secrets in secure, nonvolatile memory if •	
possible and avoid repeated derivations for every power cycle.

BYOD
Bring Your Own Device, or BYOD, is a fast-growing emerging application thanks to the
booming mobile computing development. An increasing number of companies now
support BYOD programs and allow employees to use their personal mobile devices for
work, such as sending and receiving corporate e-mails and accessing work data.

According to a survey1 conducted by Intel, the following are the three top-ranked
benefits voted by corporate IT (information technology) managers across different
continents:

Improve efficiency and worker productivity•	

Increase opportunities for worker mobility•	

Save costs by not having to purchase as many devices for •	
employees to use

Chapter 1 ■ Cyber SeCurity in the Mobile age

5

Alongside the gains are risks and challenges. Not surprisingly, security is the
number-one rated barrier of deploying BYOD in most countries, especially for heavily
regulated industries. With BYOD, it is increasingly common to see malware that targets
the IT infrastructures of government agencies and industrial companies. The safety level
of a corporate asset is equal to the strength of the weakest link that handles the asset.
Because the employees’ devices are handling confidential business data, they must apply
the required security enforcements per the company’s IT policies.

Here are a few security considerations when converting an employee’s device
for BYOD:

•	 Secure boot: The system integrity must be guaranteed. Rootkits
and malware that infects the boot flow place the entire operating
environment at risk. It is recommended that rooted mobile
devices should not be permitted for BYOD. Refer to Chapter 6 for
technical insights into Intel’s Boot Guard technology.

•	 Hard-drive encryption: The whole drive, or at least the partition
that stores business data, should be encrypted with a standard
algorithm. The encryption key may be randomly generated at
the first boot and sealed in a dedicated trusted device, such as a
TPM2 (Trusted Platform Module). The key may also be calculated
from the user’s credentials using a one-way function with a salt
at each boot. Regardless of how the key is generated, it should be
unique per device. Deriving the key solely from a password is not
a good idea, because the employee may use the same password
for multiple purposes.

•	 Strong authentication: The minimal length and complexity of
the login password should be enforced. A password should be a
combination of characters and cannot be a four-digit number.
The device memory should not contain plaintext secrets before
the device is unlocked by the employee. In addition, some
business applications may warrant additional multifactor
authentication at runtime.

•	 Isolated execution: Sensitive applications should execute in a
secure mode that is logically separated from the nonsecure mode
and other irrelevant applications. Intel’s proprietary features,
like TXT3 (Trusted Execution Technology) and the upcoming
SGX4 (Software Guard Extensions) technology, have built
infrastructures for isolated execution.

•	 Employee privacy: Depending on the organization’s BYOD policy,
the employee’s personal data, such as photos, videos, e-mails,
documents, web browse cache, and so on, may need to be
secured from access or abuse by business applications. This can
be achieved by the same isolation technique mentioned earlier.

Chapter 1 ■ Cyber SeCurity in the Mobile age

6

•	 Remote wipe capability: Mobile device theft is on the rise, rapidly.
Consumer Reports projects that about 3.1 million American
consumers were victims of smartphone theft in 2013, more than
double the 1.4 million in 2012. Once a BYOD device is reported
stolen, even though the hard drive is encrypted, it is still essential,
for defense in depth, to wipe the hard drive and prevent loss of
business data and personal information. In April 2014, major
industry players, including Apple, Google, Microsoft, Samsung,
Nokia, AT&T, Sprint, and others, signed on to the “Smartphone
Anti-Theft Voluntary Commitment”5 that pledges to implement
a “kill switch” feature by 2015 that can wipe the data of a lost
phone and disallow the phone from being reactivated without an
authorized user’s consent.

While tightening up the security of employees’ mobile equipment and getting ready
for BYOD, an inevitable side effect is the increased power consumption and worsening
battery life. To improve employee satisfaction, the strategies discussed in the previous
section should be taken into account when defining BYOD policies.

Incident Case Study
What’s happening in the area of cyber security? From credit card fraud to identity theft,
from data breach to remote execution, cyber security is being covered increasingly by the
media—not only technical journals but also popular newspapers and magazines—and is
drawing a lot of public attention. The subject of cyber security is no longer an academic
matter that concerns only researchers and computer manufacturers. In the era of mobile
computing, cyber security is a problem that impacts everyone’s life more realistically
than ever.

eBay Data Breach
In a press release from May 21, 2014, the giant Internet auction house eBay said it would
ask its 145 million customers to change their passwords, due to a cyber-attack that
compromised a database containing encrypted passwords and other nonfinancial data.6

How did it happen? According to the press release, the cyber-attack occurred
between February and March of 2014. It comprised a small number of employee login
credentials, allowing unauthorized access to eBay’s corporate network. The company
later clarified that the passwords were not only “encrypted,” but also protected by eBay’s
“sophisticated and proprietary hashing and salting technology,” and there was no
evidence that the stolen data could be used in fraudulent actives.

Despite the fact that the stolen passwords were protected (encrypted and hashed),
there are still a series of implications of the incident:

Users’ private information—including name, postal and e-mail •	
addresses, phone number, date of birth, and so forth—was stored
in the clear and leaked.

Chapter 1 ■ Cyber SeCurity in the Mobile age

7

Depending on the encryption or hashing algorithms (which •	
are not disclosed by eBay) that are used to protect passwords,
dedicated attackers may be able to reverse-engineer the
algorithms and retrieve clear passwords.

Password reuse among multiple sites is a poor but extremely •	
popular practice. Even if a victim changes her password for eBay.
com, her cyber security is still in danger if she also uses the same
password for other web sites, such as Amazon.com. Therefore, an
eBay user must change passwords for all web sites for which the
compromised password is used, to be safe.

Target Data Breach
On December 19, 2013, Target, the second largest retail store in the United States,
reported a data breach that resulted in approximately 40 million credit and debit card
numbers being stolen.7 Victims were consumers who shopped at Target stores (excluding
Target.com) between November 27 and December 15, 2013 and paid with payment cards.
In January 10, 2014, the company further announced that, in addition to the 40 million
stolen cards, personal information, including names, phone numbers, and postal and
e-mail addresses of approximately 70 million customers, was also compromised due to
the incident. In other words, nearly one-third of the total population of the United States
was impacted.

Following one of the most massive breaches in US history, in February 2014 Target
reported that its net earnings for the holiday season had plunged 46 percent year-to-year.
On March 5, the company’s chief information security officer resigned from the job. Two
months later, Target’s chairman, president, and CEO Gregg Steinhafel also stepped down,
after as many as 35 years of service at the company. The press release described that
Steinhafel “held himself personally accountable” for the breach.

The company explained in January 2014 that the breach was due to login credentials
being stolen from one of its vendors and then used to access Target’s internal network.
The attacker might have exploited vulnerabilities in the management software deployed
in the internal network to access the secret data. Target did not disclose the name of the
vendor or the management software.

From the brief description, one may reasonably deduce what happened: the attacker
logged into Target’s network using the stolen credentials. He then installed malware on
the flawed management software to exploit the vulnerability. The malware scanned in
the host memory for payment card numbers and then secretly uploaded to a remote
server established by the attacker that harvested them. Furthermore, the fact that online
purchases at Target.com were not affected suggested that the malware might have
infected point-of-sale (POS) machines. A research conducted by Intel’s McAfee Labs
following the incident had identified a number of malware that aims at POS endpoints
and transaction verification systems.8

Chapter 1 ■ Cyber SeCurity in the Mobile age

8

The breach unfolded several problems with Target’s information security
management:

Vendors’ access to Target’s network was not protected with a •	
sufficiently strong authentication method. A credential that
can be stolen and used without the victim’s knowledge is
likely a username and password. This old and simple way of
authentication is very vulnerable and too weak to fortify
valuable assets.

The vendor’s account was allowed to perform privileged •	
operations after accessing Target’s internal network, and the
operations were not closely monitored and examined. The
principle of least privilege should always be exercised as a best
practice of information security, not only in computer product
designs but also in enterprises’ IT management.

The third-party management software suffered critical security •	
flaws. Either the software vendor did not know about the
vulnerability until the breach took place or Target did not apply
patches that fixed the vulnerability in a timely manner.

OpenSSL Heartbleed
The Request for Comments 6520 “Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat Extension,”9 published by the Internet
Engineering Task Force (IETF) in February 2012, introduces and standardizes the
heartbeat extension for the TLS/DTLS protocol. In a nutshell, it is a simple two-way
protocol between a client and a server that have already established a secure TLS/DTLS
session. One party sends a heartbeat request message with an arbitrary payload to its
peer, who in turn sends back a heartbeat response message that echoes the payload
within a certain amount of time. This extension is mainly used for checking the liveliness
of the peer.

The core of the mobile computing is interconnectivity—connections between
a client (laptop, smartphone, tablet, and so forth) and a server, between two servers,
or between two clients. There exist various protocols that offer secure links between
two entities, for example, the SIGMA (SIGn and message authentication) protocol
introduced in Chapter 5 of this book. However, TLS/DTLS is used in the majority of
secure connections over the Internet today. It provides not only one-way or mutual
authentication but also encryption and integrity for messages. Most implementations of
TLS/DTLS take advantage of the open-source OpenSSL cryptography library.

Heartbleed is a severe security bug in OpenSSL.10 The vulnerability was first reported
by Neel Mehta of Google’s security team on April 1, 2014. The Finnish cyber security
company, Codenomicon, found the same issue independently at almost the same time
and named it Heartbleed. The bug was fixed promptly in an OpenSSL release on April 7.

Chapter 1 ■ Cyber SeCurity in the Mobile age

9

A heartbeat request message consists of four elements:

1. Message type (1 byte)

2. payload_length in bytes (2 bytes)

3. Payload (length is determined by payload_length)

4. Padding (at least 16 bytes)

The total size of a heartbeat request message is transmitted to the receiver in variable
TLSPlaintext.length or DTLSPlaintext.length, whose value must not exceed 16384 according
to the protocol. Notice that the 16-bit integer payload_length can denote up to 65535.
The bug in the vulnerable OpenSSL releases lies in the receiver side of the heartbeat
implementation. The code misses bounds checking and fails to make sure that the
payload_length is such that the total size of the four fields is not greater than the actual
message size indicated by TLSPlaintext.length or DTLSPlaintext.length. The flawed
implementation outputs a response heartbeat message with memory buffer of size
calculated based on payload_length, instead of TLSPlaintext.length or DTLSPlaintext.length.

To exploit the vulnerability, a malicious TLS/DTLS client assigns a small number to
TLSPlaintext.length or DTLSPlaintext.length, manipulates payload_length to its allowed
maximum, 65535, and sends the falsified heartbeat request to a vulnerable server. On
the server side, nearly 64KB of the memory beyond the payload is transmitted back to
the malicious client in the heartbeat response. Although the attacker cannot choose the
memory region at which he can peek, the leaked memory likely contains information
used for the current TLS/DTLS session, including the server’s secrets. And the attacker
can iterate heartbeat requests repeatedly to gather more memory content from the server.
Similar attacks can be launched from a rogue server to attack flawed clients.

Figure 1-1 shows the attack scenario. The attacker’s client first establishes a TLS/DTLS
connection with the target server. The client then sends a manipulated heartbeat
request to the server. The message is only 28 bytes in size, but it specifies, on purpose,
the payload length as 65535—the maximum value that can be represented by a 16-bit
integer—although the actual payload is only 9 bytes long: {ed 15 ed 7c 05 9f 7b 99 62}.
In the OpenSSL implementation, the size of the padding field is fixed at the minimum
allowed by the standard, 16 bytes.

Chapter 1 ■ Cyber SeCurity in the Mobile age

10

The server with a buggy OpenSSL library calculates the total size of the heartbeat
response buffer by adding the sizes of the message type (1 byte), payload_length field
(2 bytes), payload (payload_length bytes), and padding (16 bytes), which works out to be
1+2+65535+16=65554 bytes in this case. Due to the missing bounds check, the server fails
to realize that the size of its response has exceeded the maximum, 16384 bytes, defined by
the specification. The size of the response also exceeds the size, 28 bytes, of the received
heartbeat request. That is, as many as 65535-9=65526 bytes of the server’s memory
(an illustrative example is underlined in the figure: {96 89 e3 07 ee f2 ee 2c 00 aa
3c fd e8 ed 2a 79 ...}) following the payload is sent to the client in the heartbeat
response. The leaked memory could contain the server’s private key.

The bug had existed in OpenSSL for over two years before it was discovered. The two
most popular open-source web servers, Apache and nginx, both leverage OpenSSL and
are hence vulnerable. Among all active Internet web sites in the world, two out of three
use Apache or nginx, as reported by Netcraft’s April 2014 Web Server Survey.11 Affected
sites include popular ones such as Yahoo! and Flickr. Other than web servers, OpenSSL
is the dominant library embedded in many other types of networked computer products

Target
TLS/DTLS server

Attacker’s
TLS/DTLS client

Heartbeat request

(D)TLSPlaintext.length = 28 bytes
message_type = REQUEST
payload_length = 65535 bytes
payload = ed15ed7c059f7b9962 (9bytes)
padding =
c1533444c8d1d98b3e3c259f03830072 (16
bytes)

Heartbeat response

(D)TLSPlaintext.length = 65554 bytes
message_type = RESPONSE
payload_length = 65535 bytes
payload =
“ed15ed7c059f7b99629689e307eef2ee2c00
aa3cfde8ed2a79… (65535 bytes)
padding =
c1533444c8d1d98b3e3c259f03830072 (16
bytes)

TLS/DTSL session establishment

Figure 1-1. Heartbleed attack

Chapter 1 ■ Cyber SeCurity in the Mobile age

11

as well, such as secure teleconferencing devices. Intel’s AMT12 (advanced management
technology) software development kit is also affected. Famous cryptographer Bruce
Schneier described the incident as “catastrophic.”

Unfortunately, fixing the bug on the servers is just the beginning of the firefighting.
The certificates of impacted servers must be revoked by the issuing certification
authorities, and new certificates must be issued for servers’ new key pairs. In the worst
case, if the server’s private key had been stolen before the fix was applied and the
attacker was also able to obtain TLS/DTLS session caches between the server and its
(potentially a large number of) clients, then secrets transmitted in those sessions were
also compromised. Typically, the secrets transported over TLS/DTLS are end users’
passwords, financial transactions, credit card numbers, e-mails, and other confidential
information. What’s worse, there is no trace of whether Heartbleed exploitations had
happened and when. Therefore, it is almost impossible to accurately assess the total loss
caused by the bug due to its retroactive nature.

When it rains it pours. On June 5, 2014, OpenSSL released another security advisory
for six recently reported and fixed flaws.13 These bugs were more difficult to exploit than
Heartbleed, but still drew significant media attention in the wave of Heartbleed.

Key Takeaways
What can we learn from the repeated cyber security crisis? How does a company fight
against cyber-attacks that make it the headlines? How to protect users’ safety on the
Internet? Following is a postmortem on the recent incidents.

Strong Authentication
Organizations, such as law enforcement agencies, offline and online retailers, financial
institutions, medical facilities, and so on, that possess and process high-value assets
should consider implementing strong authentication for access control. A strong
authentication mechanism would require multiple factors of credentials for logging in.
The second credential factor is usually a physical object—for example, a token—that
belongs to a legitimate user.

Today, multifactor authentication is no longer an expensive investment, thanks to
the emergence of innovative technologies. For many applications, the potential monetary
loss due to identity theft far surpasses the cost of deploying multifactor authentication.
Chapter 10 discusses strong authentication in detail and Intel’s unique and cost-effective
solution to the problem—IPT14 (Identity Protection Technology).

Network Management
Organizations should closely monitor all network activities and flag suspicious
operations. Advanced firewall devices and antivirus programs should be employed to
detect malware and respond correspondingly. Intel’s AMT, a core member of the vPro
technology, provides a hardware-based out-of-band platform management solution that
reduces cost and simplifies network administrators’ work.

Chapter 1 ■ Cyber SeCurity in the Mobile age

12

Boot Integrity
A platform that has been infected by virus, malware, or rootkits is running in a state that
is different from its trusted and known-good state. Secure boot mechanisms, available
on most new computers, examine the integrity of the platform’s firmware and software
components during power-on. They are designed to detect changes in platform state and
identify malicious programs on the system.

In addition, secure boot can collaborate with other security measures to store secrets
inside hardware, so that the confidential data is available for use only if the platform is
running in a trusted state.

Hardware-Based Protection
Sophisticated viruses are capable of scanning a system’s memory for signatures of
interesting data, such as transactions and payment card numbers. For software-based
protections, sensitive data has to appear in the system’s memory in the clear at some point
to be consumed by software programs. The duration of the exposure may be very short but
still enough for malware to do its work. Even though the data is properly protected during
transmission and at rest, attackers only need to circumvent the weakest point.

The ultimate solution is to depend on hardware for security, in which case the
secrets are never exposed in the system’s memory in the clear. Successful attacks against
hardware launched from a remote location, if not impossible, would require extremely
advanced skills to find and exploit critical hardware vulnerabilities.

State-of-the-art computers are equipped with necessary devices and hardware-based
countermeasures to safeguard users’ confidentiality, at rest and at runtime. For example,
the TPM serves as the hardware root of trust (see Chapter 7 for more information) for a
platform; Intel’s SGX technology allows software programs to create and run in dedicated
enclaves that are inaccessible by other components, including ring 0 drivers.

Open-Source Software Best Practice
Besides open-source operating systems such as Linux, open-source implementations
of standardized protocols and functionalities have become a mainstream. Open-source
software is gaining widespread popularity on endpoint devices and clouds because of
many advantages it fosters: low cost, maturity, allowing faster development cycle and
reduced maintenance effort, and so on. Developers simply port the functional modules
they need and integrate with their products, instead of writing from scratch. They usually
do not have to dig into the internal details of how the libraries structure and function. All
they need is to understand the API (application programming interface) and invoke it.

This practice is good and bad. Although it saves engineering resources, on the other
hand, it also poses risks because engineers are blind to the code that they are responsible
for. One of the major disadvantages of free open-source software is that the volunteering
authors provide the source code as-is and are not liable for consequences of bugs in the
code, therefore the users must exercise caution during integration.

Open-source software, especially those that have been used for a long period of
time by a large number of commercial products, normally enjoys high quality and
performance with regard to functionality. However, the security side is a completely

Chapter 1 ■ Cyber SeCurity in the Mobile age

13

different story. For software development, writing working code is a relatively easier
job compared to security auditing that requires dedicated resources with specialized
expertise for code review and penetration testing, which, due to funding shortage, is often
inadequate for open-source software.

Many adopters do not exercise comprehensive security validation for open-source
modules of the products like they do for their owned components. This is usually due
to lacking an in-depth understanding of the open-source modules, which renders it
difficult or impossible to come up with effective test cases that are likely to identify critical
vulnerabilities. Another excuse for deprioritizing security validation on open source is
the presumption, and de facto an illusion, that open-source software “must be” mature
because it is open and can be read and reviewed by anyone, plus it has been deployed
by countless other products for so many years. In reality, the openness does not imply
secure code. The security validation gap of using open-source software should be filled by
individual product owners.

Eventually, the amount of resources that should be spent on comprehending and
validating open-source code is a judgment call about opportunity cost. If vulnerabilities
are discovered in released products, will the expense of fixing the issue and deploying
the patch be higher than the investment on validation? Notice that there is an intangible
price of brand name damages that must be taken into consideration as well.

In the security and management engine’s firmware, only a small fraction originates
from open-source domain, and it is only used in modules that do not assume security
responsibilities. For example, the TLS implementation in the AMT firmware application
is not ported from OpenSSL and hence not affected by OpenSSL’s vulnerabilities such as
the Heartbleed. The validation of the engine does not discriminate between open source
and closed source. Thorough testing is performed against open-source software used by
the engine.

As a good general guideline, the technical white paper “Reducing Security Risks from
Open-Source Software”15 proposes five steps that organizations should go through to take
advantage of open source and lower the associative risks:

1. Identify and analyze all usages of open source.

2. Assess open source for vulnerabilities ad resolve issues.

3. Develop open-source usage policies.

4. Develop a patch management process.

5. Create a compliance gate.

Third-Party Software Best Practice
Before purchasing commercial software from for-profit vendors or outsourcing software
development to external parties, buyers should ask the following:

What is the security development process exercised by the vendor?•	

What types of security auditing are preformed? Is it done by the •	
vendor itself or external consultants?

What is the vulnerability tracking and response process?•	

Chapter 1 ■ Cyber SeCurity in the Mobile age

14

Security validation is a pivotal stage in software development. A vendor with a good
quality control system should apply proven techniques, such as static code analysis,
penetration testing, and so forth, to their product development life cycle.

Even though the third-party software has been tested for security by its vendor,
in many cases it is still worth it for the adopter to conduct independent code review and
end-to-end validations, either in-house or by hiring specialized security auditing firms.
This is necessary especially for modules that process sensitive data.

Note ■ Consider performing comprehensive security validation and auditing for open-source
and third-party software.

Security Development Lifecycle
The Security Development Lifecycle, or SDL, is a process consisting of activities and
milestones that attempt to find and fix security problems during the development
of software, firmware, or hardware. The SDL is extensively exercised by technology
companies, for example, Microsoft and Intel. Different companies decide their specific
procedures and requirements for SDL, but they all aim at the same goal: to produce
high-quality products with regard to security and to reduce the cost of handling aftermaths
for vulnerabilities found after release.

Intel is committed to securing its products and customers’ privacy, secrets, and
assets. To build a solid third pillar for computing, a sophisticated SDL procedure of five
stages is implemented at Intel to make security and privacy an integral part of product
definition, design, development, and validation:

•	 Assessment: Determine what SDL activities are applicable and will
be performed.

•	 Architecture review: Set security objectives, list a threat analysis,
and design corresponding mitigations.

•	 Design review: Map security objectives to low-level design
artifacts. Make sure designs meet security requirements.

•	 Development review: Conduct a comprehensive code review to
eliminate security vulnerabilities, such as buffer overflow.

•	 Deployment review: Perform security-focus validation and
penetration testing and assure that the product is ready for
release, from both the privacy and security perspectives.

The SDL process applies to hardware, firmware, and software, with small differences
in different stages.

Intel takes users’ privacy seriously. The privacy aspect is called out in the SDL
process and evaluated separately, in parallel with the technical aspect of security,
throughout all the five phases. Figure 1-2 shows the SDL phases and components.
A product may ship only after the deployment privacy and security review has been
accomplished and approved.

Chapter 1 ■ Cyber SeCurity in the Mobile age

15

Assessment
The SDL assessment happens as part of the definition stage of a new product. The privacy
assessment asks whether the product will collect users’ personal information, and if so,
what kinds of information, what it will be used for, and what techniques are employed
to protect it from leakage and misuse. Intel has invented advanced technologies to
safeguard users’ fundamental right to privacy. Chapter 5 of this book is dedicated to
privacy protection and Intel’s EPID (enhanced privacy identification) scheme. The
discussion in this section will focus on the security aspect of SDL.

Based on the nature and properties of the product, the assessment review concludes
the set of SDL activities that must be conducted during the remainder of the product
development life cycle. Generally speaking, a security feature—such as a TPM device
or a cryptography engine—is subject to a complete SDL review, including architecture,
design, implementation, and deployment. On the other hand, only select SDL stages
may be required for those functions that are not sensitive to security per se, for example,
Intel’s Quiet System Technology (QST). Normally, architecture and design reviews may be
skipped if the risk of waiving is deemed low; however, implementation and deployment
reviews are almost always planned for all features.

Assessment

Architecture

Design

Implementation

Deployment

Privacy
review

Security
review

SDL
phase

Product
milestone

Definition

Release

Figure 1-2. SDL phases and components

Chapter 1 ■ Cyber SeCurity in the Mobile age

16

Architecture
In this phase, the architecture owners of the product put together an intensive
architecture description that presents the following points:

•	 Security architecture: The architecture includes components of
the products, functionalities of each component, internal and
external interfaces, dependencies, flow diagrams, and so on.
A product’s architecture is driven by its assets and functional
requirements.

•	 Assets: Assets are valuable data that must be protected by the
product, for confidentiality, integrity, and/or anti-replay. For
example, the endorsement private key is a critical asset for a TPM
and may not be exposed outside of the TPM. Notice that an asset
is not necessarily the product’s native value; it can also be users’
data, such as passwords and credit card numbers. The security
and management engine processes various types of user secrets
and it is responsible for handling them properly per defined
objectives.

•	 Security objectives: Security objectives are the goals that the
product intends to meet for protection. For example, guarding
the endorsement private key for confidentiality and integrity is
a security objective for a TPM device; whereas thwarting denial
of service (DoS) when an attacker is physically present is a not a
security objective for the security and management engine.

•	 Threat analysis: Based on the in-scope security objectives, a list
of possible attacker threats to compromise the objectives and
assets are documented and analyzed. For example, in order to
steal TPM’s endorsement private key, an attacker may utilize
side-channel attacks by accurately measuring power and time
consumptions during a large number of the TPM’s endorsement
signing operations.

•	 Mitigations against threats: The mitigation plans detail how
the architecture is designed to deter threats, protect assets, and
achieve security objectives. In most cases, effective mitigations
are realized through well-known and proven cryptography and
security approaches. Note that security through obscurity is not a
meaningful mitigation approach.

Figure 1-3 illustrates the components of the architecture review and relationships
among them.

Chapter 1 ■ Cyber SeCurity in the Mobile age

17

The architecture with aforementioned content is peer-reviewed and challenged
by a group of architects and engineers with extensive experience and strong expertise
in security. It is possible that a proposed new product be killed because one or more
security objectives that are considered mandatory cannot be satisfied by a feasible and
reasonable architecture. If and once the security architecture is approved, the SDL review
process will move on to the design stage.

Design
During the design phase, high-level requirements are converted to prototypes. The
design work for a software or firmware product contains a wide range of aspects. From
the security perspective, in general, the most interesting ones are internal flows and
external interfaces:

•	 Internal flows: A few security best practices should be followed in
the flow design. For example: involve as few resources as possible;
minimize dependency on shared objects and other modules; apply
caution when consuming shared objects to prevent racing and
deadlock conditions; avoid using recurrence on embedded systems.

•	 External interfaces: API must be defined with security in mind.
For example: simplify parameters; do not trust the caller;
always assume the minimum set of privileges that are needed to
complete the tasks; verify the validity of input parameters before
use; handle DoS attacks properly, if required.

Mitigations Threats

Security
objectives

Assets

Architecture

drive

defines

thwart

compromise

protect

Figure 1-3. Components of the architecture review and their relationships

Chapter 1 ■ Cyber SeCurity in the Mobile age

18

Besides generic design principles, every product has its unique set of security
objectives and requirements derived from the architecture review, which must be
reflected in the design. The mitigations against threats and the protection mechanisms
for assets are materialized in the design phase as well.

The design of cryptography should follow latest applicable government and industry
standards. For example, encrypting data with AES16 (advanced encryption standard);
applying blinding to private key operations, if mitigation against timing attacks is an
objective. Proprietary algorithms should be introduced only if absolutely necessary.
Notice that use of nonstandard cryptography may pose difficulty in achieving security
certifications such as the FIPS (federal information processing standard) 140-2 standard.17

Implementation
Engineers who implement the product in hardware or software languages should be
knowledgeable about security coding practices. Members of the development team that is
responsible for the security and management engine are required to complete advanced
security coding classes and a training session on the security properties of the embedded
engine, prior to working on the implementation.

Here are a few sample guidelines for software and firmware development:

Use secure memory and string functions (for example, •	
memcpy_s() instead of memcpy()) where applicable. Note that this
recommendation does not apply to certain performance critical
flows, such as paging.

Comparison of two buffers should be independent of time to •	
mitigate timing attacks. That is, memcmp() should process every
byte instead of returning nonzero upon the first unmatched byte
among the two buffers.

Beware of buffer overflows.•	

Make sure a pointer is valid before dereferencing it.•	

Beware of dangling pointers.•	

Beware that •	 sizeof(struct) may result in a greater value than
the total sizes of the structure’s individual components, due to
alignments.

Set memory that contains secrets to zero immediately after use.•	

Beware of integer overflows and underflows, especially in •	
multiplication, subtraction, and addition operations.

Remember bounds checks where applicable.•	

Do not trust the caller’s input if it is not in the trust boundary. •	
Perform input parameter validation.

Chapter 1 ■ Cyber SeCurity in the Mobile age

19

When comparing the contents of two buffers, first compare their •	
sizes. Call memcmp() only if their sizes are equal.

Protect resources that are shared by multiple processes with •	
mechanisms such as semaphore and mutex.

In addition, the development team that owns the security and management engine
also observes a list of coding BKMs (best known methods) that are specific for the
embedded engine. These BKMs are an executive summary of representative firmware
bugs previously seen on the engine. It is crucial to learn from mistakes.

In practice, production code that is developed from scratch by an engineer with a
secure coding mindset may be less of a problem. The more worrisome code in a product
is usually those taken from nonproduction code. For example, proof-of-concept (POC)
code created for the purpose of functional demonstration is often written with plenty of
shortcuts and workarounds, but without security practice or performance considerations
in mind. It is a bad practice to reuse the POC code in the final product, if and when the
POC hatches to production, because in most cases, it is more difficult and resource
consuming to repair poor code than to rewrite. Another source of possibly low-quality
code similar to POC code is test code.

Following the completion of coding, the implementation review kicks off. The review
is a three-fold effort: static analysis, dynamic analysis, and manual inspection. They may
occur in tandem or in parallel.

The static analysis analyzes a software or firmware program by scanning the source
code for problems without actually executing the program. A number of commercial
static analysis tools are available for use for large-scale projects. If the checkers are
properly configured for a project, then static analysis is often able to catch common
coding errors, such as buffer overflows and memory leaks, and help improve software
quality dramatically. However, despite its convenience, static analysis is not perfect.
Particularly for embedded systems, because the tools in most cases do not fully
comprehend the specific environments and hardware interfaces, a relatively large
number of false positives may be reported. Notice that engineering resources must be
allocated to review every reported issue, including those false positives. For the same
reason, static analysis tools may fail to identify certain types of coding bugs.

In contrast to static analysis, dynamic analysis executes a software or firmware
program on the real or a virtual environment. The analysis tests the system with a
sufficiently large number of input vectors and attempts to exercise all logical paths of
the product. The behavior of the system under test is observed and examined. Security
coding bugs, such as a null pointer dereference, can be revealed when the system crashes
or malfunctions. Such issues can be extremely hard to find without actually running
the program.

The manual inspection is a source code review performed by fellow engineers
that are familiar with the module, but did not write the code. The purpose is to make
sure that the implementation correctly realizes the product’s specific security design
and architecture requirements. For example, an invocation of encryption for a secret
is according to the specified algorithm, mode, and key size. Apparently, these kinds of
issues cannot be found by the automatic tools. In addition, the review also checks that
the generic coding guidelines are followed and tries to capture flaws in the code that were
missed by the static and dynamic analysis.

Chapter 1 ■ Cyber SeCurity in the Mobile age

20

As depicted in Figure 1-4, the implementation review is an iterative process. After
functional or security bugs are fixed or other changes (like adding a small add-on
feature) are made, the updated implementation must go through the three steps again.
To conserve engineering resources, the manual code review may cover only the changed
portions of the code. The two automatic analysis should be executed regularly, such as on
a weekly basis, until the final product is released.

Code complete

Static analysis Dynamic analysisManual review

Deployment review

Bug fixesBug count is zero? No

Figure 1-4. Iterations of the implementation review. In this figure, static analysis,
dynamic analysis, and manual review are performed in parallel

Deployment
The deployment review is the last checkpoint before shipment. Sophisticated validations
are performed against the product in this stage. The materials to help validation engineers
create a test plan include output of the previous stages, such as security objectives of the
architecture phase and the interface definition of the design phase. Comprehensive test
cases aiming at validating the product’s security behaviors are exercised.

Interface Testing
The first test object is the product’s interface. Figure 1-5 is a graphical illustration of the
interface test case design. Note that the output validation takes security objectives as
input. A bug will be recorded when the behavior of the system under test violates one or
more requirements.

Chapter 1 ■ Cyber SeCurity in the Mobile age

21

There are two categories of interface tests:

•	 Positive test: A positive test first invokes the product’s interface
with valid input vectors as specified in the design documents, and
then verifies that the output from the system under test is correct
per the security objectives and requirements. In most cases, there
exist an infinite number of valid input value combinations. The
test console may randomly generate valid inputs, but common
cases (most frequently used values) and corner cases (extreme
values) should be covered.

•	 Negative test: A negative test manipulates the input and invokes
the product’s interface with invalid input. The product is
expected to handle the unexpected input properly and return
an appropriate error code. It requires in-depth knowledge of the
product in order to create good negative test cases that are able to
expose security vulnerabilities.

To emphasize how pivotal the negative tests are, take the Heartbleed for example.
Using the Request for Comments 6520 as the requirement document, a simple negative
test that acts like a malicious client that sends a heartbeat request with an excessive
payload_length to the server under test would have caught the issue, because instead
of notifying the client of an error (expected behavior), the flawed server would happily
respond with its internal memory content of the illegitimate size requested by the client.

In addition to the scenario of “should bailout but does not,” another common failure of
negative tests is system crash, which can be a result of a variety of possibilities, for example,
improper handling of invalid input parameters, buffer overflow, and memory leaks.

Fuzz testing, a kind of the negative testing, has become very popular in the recent
years. The fuzz testing is an automated or semiautomated technique that provides a large
set of invalid inputs to the product under test. The inputs are randomly generated based
on predefined data models that are fine-tuned for the specific interface that will be tested.
By looking for abnormal responses, such as crashing, security vulnerabilities such as
buffer overflow can be uncovered.

Input generator Output validator

Interface definition
Security objectives
and requirements

System under test

Console

Test result

Figure 1-5. Interface test design

Chapter 1 ■ Cyber SeCurity in the Mobile age

22

Penetration Testing
The second type of tests intends to verify that the implementation is in accordance
with the threat mitigation plan. A test of this type emulates an attack that is in the threat
analysis of the architecture phase, observes the response of the product under test, and
makes sure that it matches the behavior required by the mitigation plan. This type of
testing is known as penetration testing, or pentest for short.

For example, the security and management engine reserves an exclusive region
of the system memory for the purpose of paging. Any entity other than the engine
changing the content of the region is deemed a severe security violation. Such an attack
is considered and documented in the threat analysis, and the corresponding mitigation
required is to trigger an instant power down of the platform as soon as the embedded
engine detects the alteration.

A basic test for this case would flip a random bit in the reserved region of
the host memory using a special tester and see whether the system indeed shuts
down immediately as expected. Passing this basic test proves the correctness of the
implementation at a certain confidence level. However, a more advanced test would
understand the integrity check mechanism used for paging and replace the memory
content with a calculated pattern that may have a higher chance of cheating the
embedded system, and hence bypassing the protection. Obviously, design of such smart
tests requires the knowledge of internal technical information of the product. This is
called white box testing.

Before rolling out the product, a survivability plan should be drafted and archived.
The survivability plan specifies roles, responsibilities, and applicable action items upon
security vulnerabilities are found in the field.

CVSS
Even after going through stringent review and testing, vulnerabilities reported—either
by internal teams or external sources—after the product is released are not uncommon.
It is important to fairly evaluate the severity of escaped defects in order to take the right
actions accordingly. For rating vulnerability, an industry standard used by the National
Institute of Standards and Technology’s National Vulnerability Database (NVD) is the
CVSS18 (Common Vulnerability Scoring System).

The CVSS defines three groups of metrics to describe vulnerability. They are base,
temporal, and environmental, respectively:

•	 Base group: Represents fundamental characteristics of
vulnerability. Such characteristics do not change over time or
environment.

•	 Temporal group: Includes characteristics that change over time,
but not environments.

•	 Environmental group: Covers characteristics that are relevant and
unique to a particular environment.

Chapter 1 ■ Cyber SeCurity in the Mobile age

23

Specifically for assessing severity of vulnerabilities of the security and management
engine’s firmware, the CVSS is slightly adjusted to better suit the nature of the engine:

The access vector options used are •	 network, local, or physical.
Firmware bugs that can be exploited remotely via the network are
more critical. “Local” means that an attacker must access the host
operating system with ring 0 privilege in order to mount an attack.
“Physical” refers to the capability of reading and/or writing the flash
chip that holds the firmware’s binary image and nonvolatile data.

Authentication refers to authenticating to the embedded engine, •	
not the host operating system. Some of the firmware applications,
such as AMT, may require user authentication. However,
authentication is not required for invoking most of the engine’s
features from the host operating system.

Because the engine is a privileged device in the system, the •	
confidentiality, integrity, and availability requirements are all
rated at high in most cases.

Each group consists of several factors to be rated by the analysis. Figure 1-6 lists the
factors under each group. The CVSS formula calculates a base score, a temporal score,
and an environment score, respectively, from applicable factors. The calculation yields
a score ranging from 0 to 10 inclusive, where a higher number indicates worse severity.
According to NVD’s standard, vulnerabilities are labeled “low” severity if they have a base
score of 0.0 to 3.9, “medium” for a base score of 4.0 to 6.9, and “high” for 7.0 to 10.0.

Base metric group

Access vector

Access complexity

Temporal metric group

Exploitability

Remediation level

Authentication Report confidence

Confidentiality impact

CVSS

Environment metric group

Collateral potential

Target distribution

Integrity impact

Availability impact

Confidentiality
requirement

Integrity requirement

Availability requirement

Figure 1-6. CVSS matric groups

Chapter 1 ■ Cyber SeCurity in the Mobile age

24

Once a firmware bug is reported, the remediation plan depends on the CVSS score of
the bug. The following are the general guidelines:

If the defect is of low severity, then do not fix or fix in the next •	
scheduled release.

If the defect is of medium severity, then fix it in the next •	
scheduled release. Prevent firmware downgrade from a firmware
version with the fix to any vulnerable version.

If the defect is of high or critical severity, then fix it in an ad-hoc •	
hot-fix release. Prevent firmware downgrade from a firmware
version with the fix to any vulnerable version. If exploitation of the
bug may result in leakage of the chipset key or EPID private key,
then launch the rekey operation with a remote server after the
firmware is updated.

Notice that bug fixes also pose potential risks—they may introduce new functional
bugs or security vulnerability, or break working flows. Therefore, complete functional
testing and select security reviews should be performed against the fixes for quality control.

Limitations
The CVSS is especially useful for rating software vulnerabilities. However, it is not perfect
when used on hardware, in particular because it does not comprehend survivability.

For example, the level of difficulty of patching a hardware bug is not taken into
account. The remediation may include the following:

Documentation and specification change•	

Software workaround by remote update•	

Firmware workaround by remote update•	

Recall (in the worst case)•	

Such factors should be weighed when evaluating hardware issues.

References
1. Intel IT Center, “Insights on the Current State of BYOD,” www.intel.com/content/

www/us/en/mobile-computing/consumerization-enterprise-byod-peer-
research-paper.html, accessed on June 10, 2014.

2. Trusted Computing Group, “Trusted Platform Module Library,”
www.trustedcomputinggroup.org, accessed on March 20, 2014.

3. Intel, Trusted Execution Technology, www.intel.com/txt, accessed on January 30, 2014.

4. Intel, “Software Guard Extensions Programming Reference,” https://software.
intel.com/sites/default/files/329298-001.pdf, accessed on May 10, 2014.

http://www.intel.com/content/www/us/en/mobile-computing/consumerization-enterprise-byod-peer-research-paper.html
http://www.intel.com/content/www/us/en/mobile-computing/consumerization-enterprise-byod-peer-research-paper.html
http://www.intel.com/content/www/us/en/mobile-computing/consumerization-enterprise-byod-peer-research-paper.html
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.intel.com/txt
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf

Chapter 1 ■ Cyber SeCurity in the Mobile age

25

5. CTIA: The Wireless Association, “Smartphone Anti-Theft Voluntary Commitment,”
www.ctia.org/policy-initiatives/voluntary-guidelines/smartphone-anti-
theft-voluntary-commitment, accessed on June 10, 2014.

6. eBay Inc., “eBay Inc. to Ask eBay Users to Change Passwords,”
http://announcements.ebay.com/2014/05/ebay-inc-to-ask-ebay-users-to-
change-passwords/, accessed on June 10, 2014.

7. Target Corp., “Target Confirms Unauthorized Access to Payment Card Data in U.S.
Stores,” http://pressroom.target.com/news/target-confirms-unauthorized-
access-to-payment-card-data-in-u-s-stores, accessed on June 10, 2014.

8. McAfee Labs, “Threat Advisory: EPOS Data Theft,” https://kc.mcafee.com/
resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24927/
en_US/McAfee_Labs_Threat_Advisory_EPOS_Data_Theft.pdf, accessed on
June 10, 2014.

9. Internet Engineering Task Force (IETF), Request for Comments 6520, “Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS) Heartbeat Extension,”
http://tools.ietf.org/html/rfc6520, accessed on June 10, 2014.

10. OpenSSL Security Advisory, www.openssl.org/news/secadv_20140407.txt,
accessed on June 10, 2014.

11. Netcraft, “April 2014 Web Server Survey,” http://news.netcraft.com/archives/
2014/04/02/april-2014-web-server-survey.html, accessed on June 10, 2014.

12. Kumar, Arvind, Purushottam Goel, and Ylian Saint-Hilaire, Active Platform Management
Demystified: Unleashing the Power of Intel vPro Technology, Intel Press, 2009.

13. OpenSSL Security Advisory, www.openssl.org/news/secadv_20140605.txt,
accessed on June 10, 2014.

14. Intel, Identity Protection Technology, http://ipt.intel.com/, accessed on
April 20, 2014.

15. Hewlett-Packard Development Co., “Reducing Security Risks from Open Source
Software ,” http://h20195.www2.hp.com/v2/GetPDF.aspx%2F4AA0-8061ENW.pdf,
accessed on June 10, 2014.

16. National Institute of Standards and Technology, “Advanced Encryption Standard
(AES),” http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf,
accessed on November 17, 2013.

17. National Institute of Standards and Technology, “Security Requirements for
Cryptographic Modules,” http://csrc.nist.gov/publications/fips/fips140-2/
fips1402.pdf, accessed on April 15, 2014.

18. National Institute of Standards and Technology, Common Vulnerability Scoring
System (CVSS), http://nvd.nist.gov/cvss.cfm, accessed on December 12, 2013.

http://www.ctia.org/policy-initiatives/voluntary-guidelines/smartphone-anti-theft-voluntary-commitment
http://www.ctia.org/policy-initiatives/voluntary-guidelines/smartphone-anti-theft-voluntary-commitment
http://announcements.ebay.com/2014/05/ebay-inc-to-ask-ebay-users-to-change-passwords/
http://announcements.ebay.com/2014/05/ebay-inc-to-ask-ebay-users-to-change-passwords/
http://pressroom.target.com/news/target-confirms-unauthorized-access-to-payment-card-data-in-u-s-stores
http://pressroom.target.com/news/target-confirms-unauthorized-access-to-payment-card-data-in-u-s-stores
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24927/en_US/McAfee_Labs_Threat_Advisory_EPOS_Data_Theft.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24927/en_US/McAfee_Labs_Threat_Advisory_EPOS_Data_Theft.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/24000/PD24927/en_US/McAfee_Labs_Threat_Advisory_EPOS_Data_Theft.pdf
http://tools.ietf.org/html/rfc6520
http://www.openssl.org/news/secadv_20140407.txt
http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
http://www.openssl.org/news/secadv_20140605.txt
http://ipt.intel.com/
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA0-8061ENW.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://nvd.nist.gov/cvss.cfm

	Chapter 1: Cyber Security in the Mobile Age
	Three Pillars of Mobile Computing
	Power Efficiency
	Internet Connectivity
	Security

	BYOD
	Incident Case Study
	eBay Data Breach
	Target Data Breach
	OpenSSL Heartbleed

	Key Takeaways
	Strong Authentication
	Network Management
	Boot Integrity
	Hardware-Based Protection
	Open-Source Software Best Practice
	Third-Party Software Best Practice

	Security Development Lifecycle
	Assessment
	Architecture
	Design
	Implementation
	Deployment
	Interface Testing
	Penetration Testing

	CVSS
	Limitations

	References

