
XBorne 2016: A Brief Introduction

Jean Michel Fourneau(B), Youssef Ait El Mahjoub, Franck Quessette,
and Dimitris Vekris

DAVID, UVSQ, Versailles, France
jean-michel.fourneau@uvsq.fr

Abstract. We present the new version of XBorne a software tool for
the probabilistic modeling with Markov chains. The tool which has been
developed initially as a testbed for the algorithmic stochastic compar-
isons of stochastic matrices and Markov chains, is now a general purpose
framework which can be used for the Markovian modelling in education
and research.

Keywords: Performance · Numerical analysis · Simulation · Markov
chains

1 Introduction

The numerical analysis of Markov chains always deals with a tradeoff between
complexity and accuracy. Therefore we need tools to compare the approaches,
the codes and some well-defined examples to use as a testbed. After many years
of development of exact or bounding algorithms for stochastic matrices, we have
gathered the most efficient into XBorne, our numerical analysis tool [8]. Typically
using XBorne, one can easily build models with tens of millions of states. Note
that solving any questions with this size of models is a challenging issue. XBorne
was developed with the following key ideas:

1. Build one software tool dedicated to only one function and let the tools com-
municate with file sharing

2. If another tool already exists for free and is sufficiently efficient, use it and
write the export tool (only create tools you cannot find easily).

3. Allow to recompile the code to include new models.
4. Separate the data and the description of the data.

As a consequence, we have chosen to avoid the creation of a new modelling
language. The models are written in C and included as a set of 4 functions to be
compiled by the model generator. This aspect of the tool will be emphasized in
Sect. 2 with the presentation of an example (a queue with hysteresis). The tool
decomposition approach will also be illustrated in the paper.

XBorne is now a part of the French project MARMOTE which aims to build
a set of tools for the analysis of Markovian models. It is based on PSI3 to per-
form perfect simulation (i.e. Coupling from the past) of monotone systems and
c© The Author(s) 2016
T. Czachórski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 134–141, 2016.
DOI: 10.1007/978-3-319-47217-1 15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191256965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


XBorne 2016: A Brief Introduction 135

their generalizations [5], MarmoteCore to provide an object interface to Markov
objects and associated methods, and XBorne that we will present in this paper.
The aim of XBorne (and the other tools developed in the MARMOTE project)
is not to replace older modeling tools but to be included into a larger framework
where we can share tools and models developed in well-specified frameworks
which can be translated into one another. XBorne will be freely available upon
request.

The technical part of the paper is as follows: in Sect. 2, we present how we can
build a new model. We show in Sect. 3 how it can be solved and we present some
numerical results. Sections 4 and 5 are devoted to two new solving techniques.
In Sect. 4, we consider the quasi-lumpability technique. We modify the Tarjan
and Paige approach used for the detection of macro-states for aggregation or
bisimulation [12] to relax the assumption on the creation of macro states and
accommodate a quasi-lumpable partition of the state space. Section 5 is devoted
to the simulation of Markov chains and it is presented here to show how we have
chosen to connect XBorne with other tools.

2 Building a Model with XBorne

XBorne can be used to generate a sparse matrix representation of a Discrete
Time Markov Chain (DTMC) from a high level description provided in C.
Continuous-time models can be considered after uniformization (see the exam-
ple in the following). Like many other tools, the formalism used by XBorne is
based on the description of the states and the transitions. All the information
concerning the states and the transitions are provided by the modeler using 2
files (1 for the constants and one for the code, respectively denoted as “const.h”
and “fun.c”). States belong to a hyper-rectangle the dimension of which is given
by the constant NEt. The bounds of the hyper-rectangle must be given by func-
tion “InitEtendue()”. The states belong to the hyper-rectangle and they are
found by a BFS visit from an initial state given by the modeler through function
“EtatInitial()”.

The transitions are given in a similar manner. The constant “NbEvtsPossi-
bles” is the number of events which provoke a transition. The idea is that an
event is a mapping applied to a state (not necessarily a one to one mapping).
Each event has a probability given by function “Probabilite()” and its value may
depend on the state description. The mapping realized by an event is described
by function “Equation()”. To conclude, it is sufficient to describe 4 functions in
C and some definitions and recompile the model generator to obtain a new code
which builds the transition probability matrix.

#define NEt 2 #define NbEvtsPossibles 4

#define AlwaysOn 10 #define BufferSize 20

#define OnAndOff 5 #define UPandDOWN 0

#define WARMING 1 #define ALL_UP 2

#define UP 10 #define DOWN 5



136 J.M. Fourneau et al.

We now present an example for the various definitions and functions which
are written in the files “const.h” and “fun.c” to describe the model developed by
Mitrani in [11] to study the tradeoff between energy consumption and quality
of service in a data-center. It is a model of a M/M/(a+b) queue with hystere-
sis and impatience. We have slightly changed the assumptions as follows: the
queue is finite with size “BufferSize”. The arrivals still follow a Poisson process
with rate “Lambda”. The services are exponential with rate “Mu”. Initially only
“AlwaysOn” servers are available. Once the number of customers in the queue
is larger than “UP”, another set (with size OnAndOff) of servers is switched on.
The switching time has an exponential duration with rate “Nu”. If the number
of customers becomes smaller than “DOWN”, this set of servers is switched off.
This action is immediate. As NEt=2, a state is a two dimension vector. The first
dimension is the number of customers and the second dimension encodes the
state of the servers. The initial state is an empty queue with the extra block of
servers which is not activated.

void InitEtendue()

{

Min[0] = 0; Max[0] = BufferSize; Min[1] = UPandDOWN; Max[1] = ALL_UP;

}

void EtatInitial(E)

int *E;

{

E[0] = 0; E[1] = UPandDOWN;

}

double Probabilite(int indexevt, int *E) {

double p1, Delta;

int nbServer, inserv;

nbServer = AlwaysOn;

if (E[1]==ALL_UP) {nbServer += OnAndOff;}

inserv = min(E[0], nbServer);

Delta = Lambda + Nu + Mu*(AlwaysOn + OnAndOff);

switch (indexevt) {

case ARRIVAL: p1 = Lambda/Delta; break;

case SERVICE: p1 = (inserv)*Mu/Delta; break;

case SWITCHINGON: p1 = Nu/Delta; break;

case LOOP: p1 = Mu*(AlwaysOn + OnAndOff - inserv)/Delta; break;

}

return(p1);

}

The model is in continuous time. Thus we build an uniformized version of the
model adding a new event to generate the loops in the transition graph which
are created during the uniformization. After this process we have 4 events:
ARRIVAL, SERVICE, SWITCHINGON, LOOP. In all the functions, E and
F are states. The generation tool creates 3 files: one contains the transition
matrix in sparse row format, the second gives information on the number of
states and transitions and the third one stores the encoding of the states. Indeed
the states are found during the BFS visit of the graph and they are ordered by
this visit algorithm. Thus, we have to store in a file the mapping between the



XBorne 2016: A Brief Introduction 137

state number given by the algorithm and the state description needed by the
modeler and some algorithms.

void Equation(int *E, int indexevt, int *F, int *R)

{

F[0] = E[0]; F[1] = E[1];

switch (indexevt) {

case ARRIVAL: if (E[0]<BufferSize) {F[0]++;}

if ((E[0]>=UP) && (E[1]==UPandDOWN)) {F[1]=WARMING;}

break;

case SERVICE: if (E[0]>0) {F[0]--;}

if ((F[0]==DOWN) && (E[1]>UpandDOWN)) {F[1]=UPandDOWN;}

break;

case SWITCHINGON: if (E[1]==WARMING) {F[1]=ALL_UP;}

break;

case LOOP: break;

}

}

Once the steady-state distribution is obtained with some numerical algo-
rithms, the marginal distributions and some rewards are computed using the
description of the states obtained by the generation method and codes provided
(and compiled) by the modeler to specify the rewards (see in the left part of
Fig. 1 the marginal distribution for the queue size).

5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Index

V2

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Index

V3

Fig. 1. Mitrani’s model. Steady-state for the queue size (left). Sample path of the state
of the servers (right).

3 Numerical Resolution

In XBorne, we have developed some well-known numerical algorithms to com-
pute the steady-state distribution (GTH for small matrices), SOR and Gauss
Seidel for large sparse matrices but we have chosen to export the matrices into



138 J.M. Fourneau et al.

MatrixMarket format to use state of the art solvers which are now available
on the web. But we also provide new algorithms for the stochastic bounds or
the element-wise bound of the matrices, the stochastic bound or the entry-wise
bounds of the steady-state distribution. These bounds are based on the algorith-
mic stochastic comparison of Discrete Time Markov Chain (see [10] for a survey)
where stochastic comparison relations are mitigated with structural constraints
on the bounding chains. More precisely, the following methods are available:

– Lumpability: to enforce the bounding matrix to be ordinary lumpable. Thus,
we can aggregate the chain [9].

– Pattern based: to enforce the bounding matrix to follow a pattern which pro-
vides an ad-hoc numerical algorithm (think at a upper Hessenberg matrix for
instance) [2].

– Censored Markov chain: only the useful part of the chain is censored and we
provide bounds based on this partial representation of the chain [1,7].

Other techniques for entry-wise bounds of the steady state distribution have also
been derived and implemented [3]. They allow in some particular cases to deal
with infinite state space (otherwise not considered in XBorne).

More recently, we have developed a new low rank decomposition for a sto-
chastic matrix [4]. This decomposition is adapted to stochastic matrices because
it provides an approximation which is still a stochastic matrix while singular
value decomposition gives a low rank matrix which is not stochastic anymore.
Our low rank decomposition allows to compute the steady-state distribution and
the transient distribution with a lower complexity which takes into account the
matrix rank. For instance, for a matrix of rank k and size N , the computation of
the steady-state distribution requires O(Nk2) operations. We also have derived
algorithms to provide stochastic bounds with a given rank for any stochastic
matrix (see [4]).

Note that the integration with other tools we mention previously is not lim-
ited to numerical algorithms provided by statistical package like R. We also

Power Consuming

U

D

10

20

30

40

10 20 30 40

10

11

12

13

14

Fig. 2. Mitrani’s model. Directed graph of the chain (left). Energy consumption (right).



XBorne 2016: A Brief Introduction 139

use their graphic capabilities and the layout algorithms. We illustrate these two
aspects in Fig. 2. In the left part we have drawn the layout of the Markov chain
associated with Mitrani’s model for a small buffer size (i.e. 20). We have devel-
oped a tool which reads the Markov chains description and write it as a labelled
directed graph in “tgf” format. With this graph description, we use the graph
editors available on the web to obtain a layout of the chain and to visualize the
states and their transitions. On the right part of the figure, we have depicted a
heat diagram for the energy consumption associated to Mitrani’s model for all
the values of the thresholds U and D.

4 Quasi-Lumpability

Quasi-Lumpability testing has been recently added into XBorne to analyze very
large matrices. The numerical algorithms which have been developed are also
used to analyze stochastic matrices which are not completely specified. It is well-
known now that Tarjan’s algorithm can be used to obtain the coarsest partition
of the state space of a Markov chain which is ordinary lumpable and which is
consistent with an initial partition provided by the modeler. Lumpable matrix
can be aggregated to obtain a smaller matrix, easier to analyze. Logarithmic
reduction in size are often reported in the literature. We define quasi-lumpability
of partition A1, A2, . . . , Ak with threshold ε of stochastic matrix M as follows:
for all macro-states Ai and Aj we have

max
l1,l2∈Ai

∣
∣
∣
∣
∣
∣

∑

k∈Aj

M(l1, k) −
∑

k∈Aj

M(l2, k)

∣
∣
∣
∣
∣
∣

= E(i, j) ≤ ε. (1)

When ε = 0 we obtain the definition of ordinary lumpability. We have modified
Tarjan’s algorithm to obtain a partition which is quasi-lumpable given an initial
partition and a maximum threshold ε. The output of the algorithm is the coarsest
partition consistent with the initial partition and the real threshold needed in
the algorithm (which can be smaller than ε). Note that the algorithm always
returns a partition. However the partition may be useless as it may have a large
number of nodes. The next step is to lump matrix M according to the partition
found by the modified Tarjan’s algorithm. If the real threshold needed is equal
to 0, the matrix is lumpable and the aggregated matrix is stochastic. It is solved
with classical methods.

If the threshold needed is positive, we obtain two aggregated matrices Up and
Lo: one where the transition probability between macro states Ai and Aj is equal
to maxl∈Ai

∑

k∈Aj
M(l, k) and one where it is equal to minl∈Ai

∑

k∈Aj
M(l, k).

Up is super-stochastic while Lo is sub-stochastic. These two bounding matrices
also appear when the Markov chains are not completely specified and transitions
are associated with intervals of probability. We have implemented Courtois and
Semal algorithm [6] to obtain entry-wise bounds on the steady-state distribution
of all matrices between Up and Lo. We are still conducting new research to
improve this algorithm.



140 J.M. Fourneau et al.

5 Simulation

We have added several simulation engines in XBorne, mainly for educational
purpose and for verification. All of them define a model with the same functions
we have previously presented to design a Markov chain. The modeler just needs
to add the simulation time and the seed for the generator when a random number
generator is used by the simulation code. Thus, the same model description (i.e.
the four C functions) is used for the simulation and the Markov chain generation.

Two types of engines have been developed: a simulator with random number
generation in C and a trace base version where the random number generation
(and generally the random variables generation) are outside the simulation code
and previously stored in a file by some statistical packages (typically R). Simi-
larly, the output of the simulations are sample paths which are stored in separate
files to be analyzed by state of the art statistical packages where various test algo-
rithms and confidence intervals computations are performed by efficient methods
already available in these packages. Thus, the modeler is expected to concentrate
on the development of the model simulation, leaving the statistical details to
other packages. Similarly, the drawing of the paths can be obtained from the
statistical package like in the right part of Fig. 1 where we depict the evolution
of the second component of Mitrani’s model (i.e. the state of the server). The
trace based simulation is also used to simulate Semi-Markov processes.

The simulation engines also differ by the definition of paths: the general pur-
pose simulation engine builds one path per seed for the simulation time, while
the regenerative Markovian simulation stores one path per regenerative cycle.
Furthermore, to deal with the complexity of the simulation of discrete distribu-
tion by the reverse transform method, we have implemented two types of engine:
a general inverse distribution method when the distribution of probability for the
next event changes with the state, and an alias method when this distribution
is the same for all the states.

Acknowledgments. This work was partially supported by project MARMOTE
(ANR-12-MONU-00019). Y. Ait El Mahjoub is supported by Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the pro-
gram Investissement d’Avenir Idex Paris-Saclay (ANR-11-IDEX-0003-02).

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


XBorne 2016: A Brief Introduction 141

References

1. Busic, A., Djafri, H., Fourneau, J.M.: Bounded state space truncation and censored
Markov chains. In: 51st IEEE Conference on Decision and Control (CDC 2012)
(2012)

2. Busic, A., Fourneau, J.M.: A matrix pattern compliant strong stochastic bound. In:
2005 IEEE/IPSJ International Symposium on Applications and the Internet Work-
shops (SAINT Workshops), Italy, pp. 260–263. IEEE Computer Society (2005)

3. Busic, A., Fourneau, J.M.: Iterative component-wise bounds for the steady-state
distribution of a Markov chain. Numer. Linear Algebra Appl. 18(6), 1031–1049
(2011)

4. Busic, A., Fourneau, J.M., Ben Mamoun, M.: Stochastic bounds with a low rank
decomposition. Stochast. Models 30(4), 494–520 (2014). Special Issue with selected
papers from the Eighth Int. Conf. on Matrix-Analytic Methods in Stochastic Mod-
els

5. Busic, A., Gaujal, B., Gorgo, G., Vincent, J.M.: Psi2: Envelope perfect sampling of
non monotone systems. In: QEST 2010, Seventh International Conference on the
Quantitative Evaluation of Systems, Virginia, USA, pp. 83–84. IEEE Computer
Society (2010)

6. Courtois, P.J., Semal, P.: On polyhedra of Perron-Frobenius eigenvectors. Linear
Algebra Appl. 65, 157–170 (1985)

7. Dayar, T., Pekergin, N., Younès, S.: Conditional steady-state bounds for a subset
of states in Markov chains. In: Structured Markov Chain (SMCTools) workshop in
VALUETOOLS. ACM (2006)

8. Fourneau, J.M., Le Coz, M., Pekergin, N., Quessette, F.: An open tool to compute
stochastic bounds on steady-state distributions and rewards. In: 11th International
Conference on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, Orlando. IEEE Computer Society (2003)

9. Fourneau, J.M., Le Coz, M., Quessette, F.: Algorithms for an irreducible and
lumpable strong stochastic bound. Linear Algebra Appl. 386, 167–185 (2004)

10. Fourneau, J.M., Pekergin, N.: An algorithmic approach to stochastic bounds. In:
Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 64–88.
Springer, Heidelberg (2002). doi:10.1007/3-540-45798-4 4

11. Mitrani, I.: Service center trade-offs between customer impatience and power con-
sumption. Perform. Eval. 68(11), 1222–1231 (2011)

12. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/3-540-45798-4_4

	XBorne 2016: A Brief Introduction
	1 Introduction
	2 Building a Model with XBorne
	3 Numerical Resolution
	4 Quasi-Lumpability
	5 Simulation
	References


